
CHAPTER 2: BONDING AND PROPERTIES

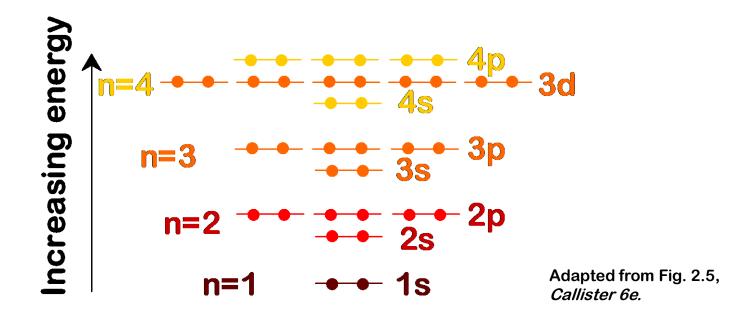
ISSUES TO ADDRESS...

- What promotes bonding?
- What types of bonds are there?
- What properties are inferred from bonding?

BOHR ATOM

Nucleus: Z = # protons

= 1 for hydrogen to 94 for plutonium


N = # neutrons

Atomic mass $A \approx Z + N$

ELECTRON ENERGY STATES

Electrons...

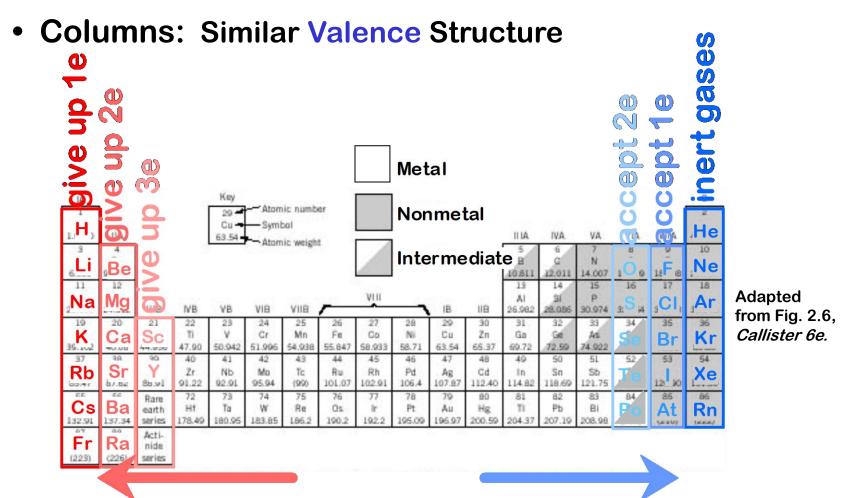
- have discrete energy states
- tend to occupy lowest available energy state.

STABLE ELECTRON CONFIGURATIONS

Stable electron configurations...

- have complete s and p subshells
- tend to be unreactive.

Z	Element	Configuration	
2	He	1s ²	Adapted from Table 2.2,
10	Ne	1s ² 2s ² 2p ⁶	Callister 6e.
18	Ar	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	
36	Kr	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹	0 _{4s} 2 _{4p} 6

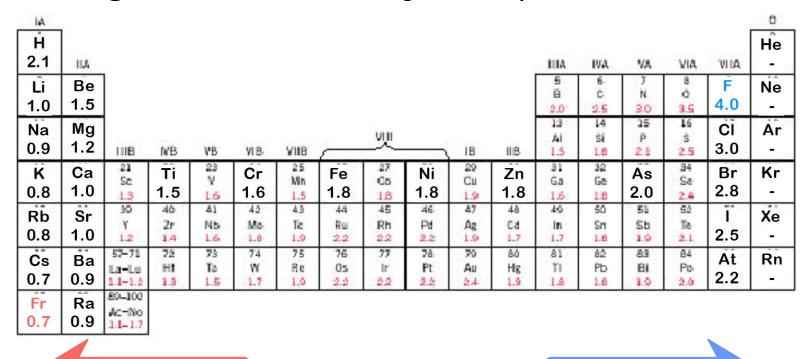

SURVEY OF ELEMENTS

• Most elements: Electron configuration not stable.

Element	Atomic #	Electron configuration
Hydrogen	1	1s ¹
Helium	2	1s ² (stable)
Lithium	3	1s ² 2s ¹
Beryllium	4	1s ² 2s ²
Boron	5	1s ² 2s ² 2p ¹ Adapted from Table 2.2,
Carbon	6	1s ² 2s ² 2p ² Callister 6e.
•••		•••
Neon	10	1s ² 2s ² 2p ⁶ (stable)
Sodium	11	1s ² 2s ² 2p ⁶ 3s ¹
Magnesium	12	1s ² 2s ² 2p ⁶ 3s ²
Aluminum	13	1s ² 2s ² 2p ⁶ 3s ² 3p ¹
•••		•••
Argon	18	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ (stable)
	•••	•••
Krypton	36	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4 ⁶ (stable)

• Why? Valence (outer) shell usually not filled completely.

THE PERIODIC TABLE

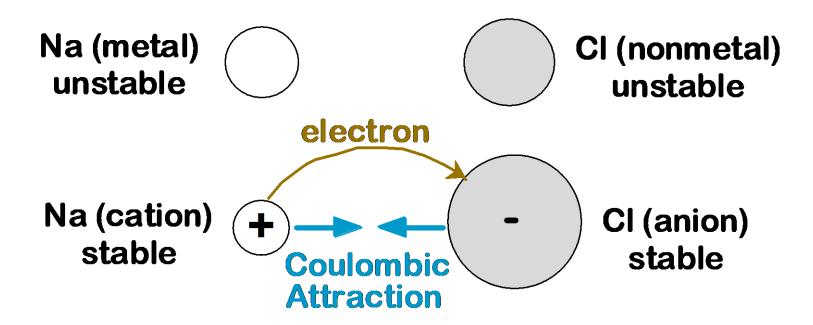


Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions.

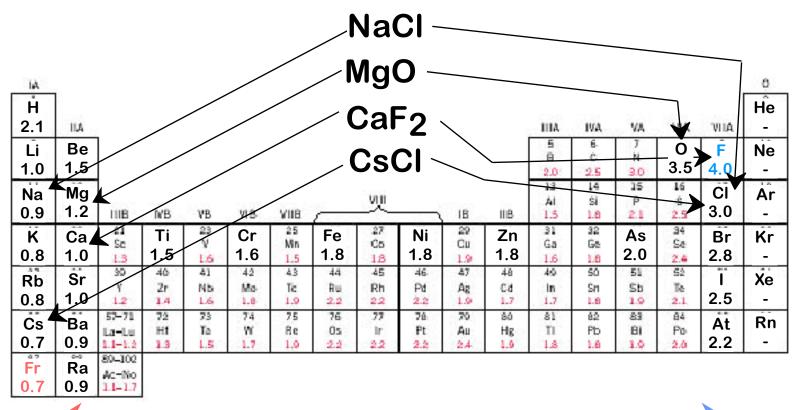
ELECTRONEGATIVITY

- Ranges from 0.7 to 4.0,
- Large values: tendency to acquire electrons.

Larger electronegativity


Adapted from Fig. 2.7, *Callister 6e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Chapter 2-


IONIC BONDING

- Occurs between + and ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

EXAMPLES: IONIC BONDING

Predominant bonding in Ceramics

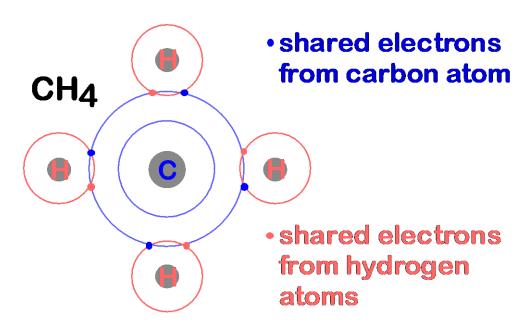
Give up electrons

Acquire electrons

Adapted from Fig. 2.7, *Callister 6e.* (Fig. 2.7 is adapted from Linus Pauling, *The Nature of the Chemical Bond*, 3rd edition, Copyright 1939 and 1940, 3rd edition. Copyright 1960 by Cornell University.

Chapter 2-9

COVALENT BONDING


Requires shared electrons

• Example: CH4

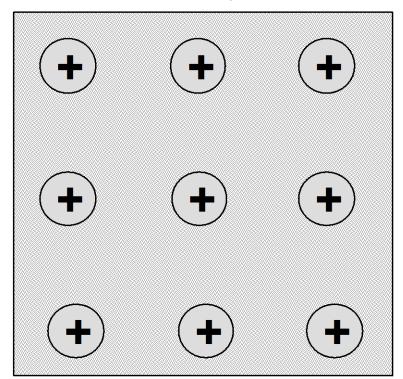
C: has 4 valence e, needs 4 more

H: has 1 valence e, needs 1 more

Electronegativities are comparable.

Adapted from Fig. 2.10, Callister 6e.

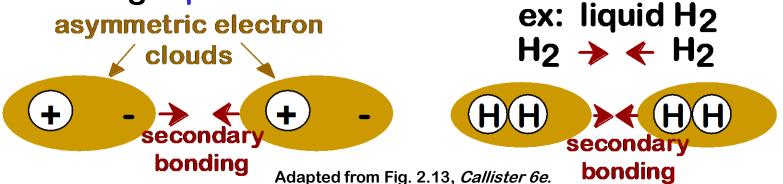
EXAMPLES: COVALENT BONDING



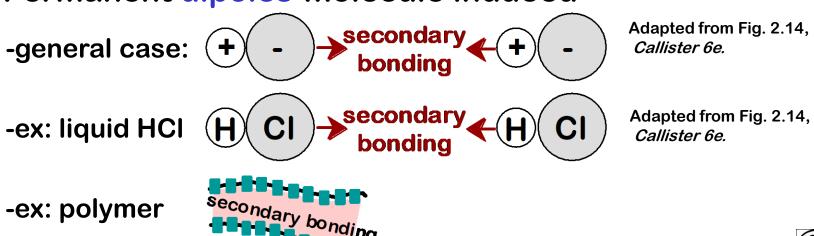
- Molecules with nonmetals
- Molecules with metals and nonmetals
- Elemental solids (RHS of Periodic Table)
- Compound solids (about column IVA)

METALLIC BONDING

 Arises from a sea of donated valence electrons (1, 2, or 3 from each atom).


Adapted from Fig. 2.11, Callister 6e.

Primary bond for metals and their alloys


SECONDARY BONDING

Arises from interaction between dipoles

Fluctuating dipoles

Permanent dipoles-molecule induced

SUMMARY: BONDING

Type

Bond Energy

Comments

Ionic

Large!

Nondirectional (ceramics)

Covalent

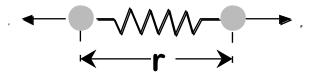
Variable large-Diamond small-Bismuth

Directional semiconductors, ceramics polymer chains)

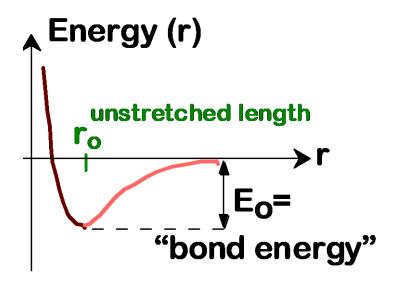
Metallic

Variable large-Tungsten small-Mercury

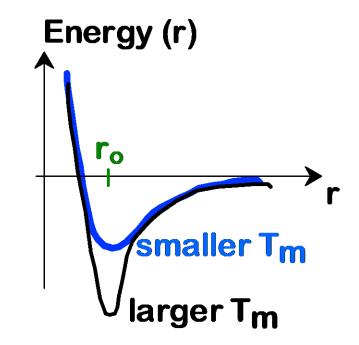
Nondirectional (metals)


Secondary

smallest

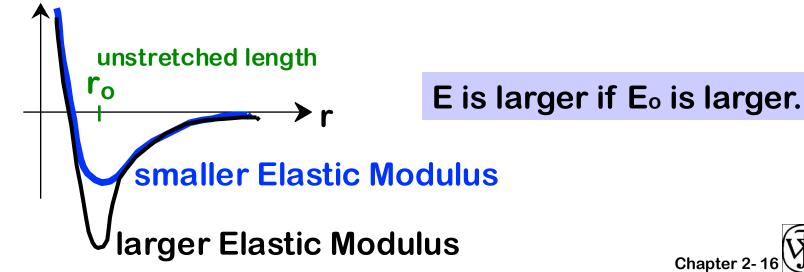

Directional inter-chain (polymer) inter-molecular

PROPERTIES FROM BONDING: T_M


Bond length, r

Bond energy, E_o

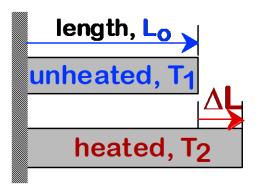
Melting Temperature, Tm



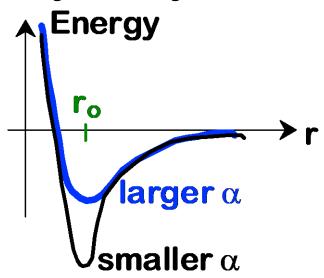
T_m is larger if E₀ is larger.

PROPERTIES FROM BONDING: E

• Elastic modulus, E sectional **Elastic modulus** length, Lo area Ao undeformed deformed


• E ~ curvature at r_o **Energy**

PROPERTIES FROM BONDING: α


• Coefficient of thermal expansion, α

coeff. thermal expansion

$$\frac{\Delta L}{L_0} = \alpha (T_2 - T_1)$$

• α ~ symmetry at r_o

 α is larger if E₀ is smaller.

SUMMARY: PRIMARY BONDS

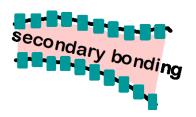
Ceramics

(lonic & covalent bonding):

Large bond energy

large T_m large E small α

Metals


(Metallic bonding):

Variable bond energy

moderate T_m moderate Ε moderate α

Polymers

(Covalent & Secondary):

Directional Properties

Secondary bonding dominates

small T small E large α

ANNOUNCEMENTS

Reading:

Core Problems:

Self-help Problems:

Introduction to Materials Technology

Materials Technology is the branch of science and engineering that studies the properties, structure, processing, and applications of materials used in manufacturing and engineering systems. It bridges the gap between science and practical engineering by focusing on how materials can be selected, modified, and improved to meet design and performance requirements.

1. Importance of Materials Technology

Materials form the foundation of all engineering systems. From bridges and aircraft to microchips and medical implants, the performance, safety, and cost of a product depend largely on the materials used and how they are processed.

2. Classification of Engineering Materials

Engineering materials are generally classified into:

- Metals (e.g., steel, aluminum, copper)
- **Polymers** (e.g., plastics, rubber)
- Ceramics (e.g., glass, porcelain)
- Composites (e.g., fiberglass, carbon fiber)
- Advanced materials (e.g., smart materials, nanomaterials, biomaterials)

3. Structure-Property Relationship

Materials technology emphasizes the relationship between a material's **structure** (atomic or molecular arrangement) and its **properties** (mechanical, electrical, thermal, etc.). Understanding this relationship allows engineers to tailor materials for specific functions.

4. Material Processing

Processing involves shaping, joining, and treating materials to achieve the desired structure and properties. Common processes include casting, forging, welding, heat treatment, and additive manufacturing.

5. Material Selection

Choosing the right material involves balancing performance, cost, availability, and environmental impact. Tools such as Ashby charts help engineers compare materials based on their properties.

6. Applications

Materials technology is essential in fields such as:

- Mechanical and aerospace engineering
- Civil and structural engineering
- Electronics and energy systems
- Biomedical and environmental engineering

7. Future Trends

Emerging trends include:

- Development of smart materials that respond to environmental changes
- Use of **nanotechnology** for improved strength and conductivity
- Focus on **sustainable materials** and recycling to reduce environmental impact