Functions

OVERVIEW Functions are fundamental to the study of calculus. In this chapter we review
what functions are and how they are pictured as graphs, how they are combined and trans-
formed, and ways they can be classified. We review the trigonometric functions, and we
discuss misrepresentations that can occur when using calculators and computers to obtain
a function’s graph. We also discuss inverse, exponential, and logarithmic functions. The
real number system, Cartesian coordinates, straight lines, circles, parabolas, and ellipses
are reviewed in the Appendices.

1 . 1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be
represented by an equation, a graph, a numerical table, or a verbal description; we will use
all four representations throughout this book. This section reviews these function ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level (the boiling
point drops as you ascend). The interest paid on a cash investment depends on the length of
time the investment is held. The area of a circle depends on the radius of the circle. The dis-
tance an object travels at constant speed along a straight-line path depends on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another
variable quantity, which we might call x. We say that “y is a function of x”” and write this
symbolically as

y = fx) (“y equals f of x7).

In this notation, the symbol f represents the function, the letter x is the independent variable
representing the input value of f, and y is the dependent variable or output value of f at x.

DEFINITION A function f from a set D to a set Y is a rule that assigns a unique
(single) element f(x) € Y to each element x € D.

The set D of all possible input values is called the domain of the function. The set of
all output values of f(x) as x varies throughout D is called the range of the function. The
range may not include every element in the set Y. The domain and range of a function can
be any sets of objects, but often in calculus they are sets of real numbers interpreted as
points of a coordinate line. (In Chapters 13—16, we will encounter functions for which the
elements of the sets are points in the coordinate plane or in space.)
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Often a function is given by a formula that describes how to calculate the output value
from the input variable. For instance, the equation A = 7772 is a rule that calculates the
area A of a circle from its radius r (so r, interpreted as a length, can only be positive in this
formula). When we define a function y = f(x) with a formula and the domain is not stated
explicitly or restricted by context, the domain is assumed to be the largest set of real
x-values for which the formula gives real y-values, which is called the natural domain. If
we want to restrict the domain in some way, we must say so. The domain of y = x? is the
entire set of real numbers. To restrict the domain of the function to, say, positive values of
x, we would write “y = x2, x > 0.”

Changing the domain to which we apply a formula usually changes the range as well.
The range of y = x? is [0, 00). The range of y = x2,x = 2, is the set of all numbers
obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1),
the range is {x*|x = 2} or {y|y = 4} or [4,00).

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of most real-valued functions of a real variable we con-
sider are intervals or combinations of intervals. The intervals may be open, closed, or half
open, and may be finite or infinite. Sometimes the range of a function is not easy to find.

A function f is like a machine that produces an output value f(x) in its range whenever we
feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give an
example of a function as a machine. For instance, the Vi key on a calculator gives an output
value (the square root) whenever you enter a nonnegative number x and press the Vix key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associates
an element of the domain D with a unique or single element in the set Y. In Figure 1.2, the
arrows indicate that f(a) is associated with a, f(x) is associated with x, and so on. Notice that
a function can have the same value at two different input elements in the domain (as occurs
with f(a) in Figure 1.2), but each input element x is assigned a single output value f(x).

EXAMPLE 1 Let’s verify the natural domains and associated ranges of some simple
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range (y)
y=x (=00, 00) [0, 00)
y=1/x (=00, 0) U (0, ) (00, 0) U (0, 00)
y=Vax [0,00) [0.00)
y=V4—x (—00, 4] [0, 00)
y=VI1 —x? [—1,1] [0,1]

Solution The formula y = x? gives a real y-value for any real number x, so the domain
is (—00, 00). The range of y = x? is [ 0, 00) because the square of any real number is non-
negative and every nonnegative number y is the square of its own square root, y = ( \/y)2
fory = 0.

The formula y = 1/x gives a real y-value for every x except x = 0. For consistency
in the rules of arithmetic, we cannot divide any number by zero. The range of y = 1/x, the
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since
y = 1/(1/y). That is, for y # 0 the number x = 1/y is the input assigned to the output
value y.

The formula y = Vix gives a real y-value only if x = 0. The range of y = Vx is
[ 0, 00) because every nonnegative number is some number’s square root (namely, it is the
square root of its own square).

In y = V4 — x, the quantity 4 — x cannot be negative. That is, 4 — x = 0, or
x = 4. The formula gives real y-values for all x = 4. The range of V4 — x is [0, ),
the set of all nonnegative numbers.
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The formula y = V1 — x? gives a real y-value for every x in the closed interval from
—1 to 1. Outside this domain, 1 — x> is negative and its square root is not a real number.
The values of 1 — x? vary from 0 to 1 on the given domain, and the square roots of these
values do the same. The range of V1 — x?is [0, 1]. [ |

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane
whose coordinates are the input-output pairs for f. In set notation, the graph is

{(x, f(x)) | xeD}.

The graph of the function f(x) = x + 2 is the set of points with coordinates (x, y) for
which y = x + 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function f is a useful picture of its behavior. If (x, y) is a point on the
graph, then y = f(x) is the height of the graph above (or below) the point x. The height
may be positive or negative, depending on the sign of f(x) (Figure 1.4).
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FIGURE 1.3 The graphof f(x) = x + 2 FIGURE 1.4 1If (x, y) lies on the graph of
is the set of points (x, y) for which y has the f, then the value y = f(x) is the height of

value x + 2. the graph above the point x (or below x if
f(x) is negative).

EXAMPLE 2 Graph the function y = x> over the interval [—2,2].

Solution Make a table of xy-pairs that satisfy the equation y = x>. Plot the points (x, y)
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation)
through the plotted points (see Figure 1.5). |

How do we know that the graph of y = x? doesn’t look like one of these curves?

y =x%? y=x7
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To find out, we could plot more points. But how would we then connect them? The basic
question still remains: How do we know for sure what the graph looks like between the
points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile,
we will have to settle for plotting points and connecting them as best we can.

Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula (the area
function) and visually by a graph (Example 2). Another way to represent a function is
numerically, through a table of values. Numerical representations are often used by engi-
neers and experimental scientists. From an appropriate table of values, a graph of the func-
tion can be obtained using the method illustrated in Example 2, possibly with the aid of a
computer. The graph consisting of only the points in the table is called a scatterplot.

EXAMPLE 3 Musical notes are pressure waves in the air. The data associated with
Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note
produced by a tuning fork. The table provides a representation of the pressure function
over time. If we first make a scatterplot and then connect approximately the data points
(t, p) from the table, we obtain the graph shown in the figure.

p (pressure)

Time Pressure Time Pressure 0
0.00091 —0.080 0.00362 0.217 08F ° bata
0.00108 0.200 0.00379 0.480 04k
0.00125 0.480 0.00398 0.681 02 RS

1 (sec)

0.00144 0.693 0.00416 0.810 —02| 0%01 0.002 WO-W 0-005\%’6
0.00162 0.816 0.00435 0.827 oL
0.00180 0.844 0.00453 0.749
0.00198 0.771 0.00471 0.581 FIGURE 1.6 A smooth curve through the plotted points
0.00216 0.603 0.00489 0.346 gives a graph of the pressure function represented by the
0.00234 0.368 0.00507 0.077 accompanying tabled data (Example 3).
0.00253 0.099 0.00525 —0.164
0.00271 —0.141 0.00543 —0.320
0.00289 —0.309 0.00562 —0.354
0.00307 —0.348 0.00579 —0.248
0.00325 —0.248 0.00598 —0.035
0.00344 —0.041

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function f can
have only one value f(x) for each x in its domain, so no vertical line can intersect the
graph of a function more than once. If @ is in the domain of the function f, then the vertical
line x = a will intersect the graph of f at the single point (a, f(a)).

A circle cannot be the graph of a function, since some vertical lines intersect the circle
twice. The circle graphed in Figure 1.7a, however, does contain the graphs of functions of
x, such as the upper semicircle defined by the function f(x) = V1 — x? and the lower
semicircle defined by the function g(x) = —V'1 — x? (Figures 1.7b and 1.7¢).
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FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The
upper semicircle is the graph of a function f(x) = V1 — x°. (c) The lower semicircle is the graph

of a function g(x) = = V1 — x2

Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts
of its domain. One example is the absolute value function

X,
= {
o

whose graph is given in Figure 1.8. The right-hand side of the equation means that the
function equals x if x = 0, and equals —x if x < 0. Piecewise-defined functions often
arise when real-world data are modeled. Here are some other examples.

x=0
x <0,

First formula

Second formula

EXAMPLE 4

The function

—X, x <0 First formula
fx) = X2, 0=x=1 Second formula
1, x> 1 Third formula

is defined on the entire real line but has values given by different formulas, depending on
the position of x. The values of f are given by y = —x when x < 0, y = x> when
0 =x=1,and y = 1 when x > 1. The function, however, is just one function whose
domain is the entire set of real numbers (Figure 1.9). |

EXAMPLE 5 The function whose value at any number x is the greatest integer less
than or equal to x is called the greatest integer function or the integer floor function. It
is denoted | x |. Figure 1.10 shows the graph. Observe that

[24] =2, [19] =1, lo] =0, |-1.2] = -2,
2] =2, l02] =0, [-03] = —1, |-2] = —2. m
EXAMPLE 6 The function whose value at any number x is the smallest integer

greater than or equal to x is called the least integer function or the integer ceiling func-
tion. It is denoted [ x |. Figure 1.11 shows the graph. For positive values of x, this function
might represent, for example, the cost of parking x hours in a parking lot that charges $1
for each hour or part of an hour. |
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FIGURE 1.11 The graph

of the least integer function

y = [x] lies on or above the line
y = X, so it provides an integer
ceiling for x (Example 6).

(=x,5) (x, y)

(=x, —y)

(b)

FIGURE 1.12 (a) The graph of y = x?
(an even function) is symmetric about the
y-axis. (b) The graph of y = x* (an odd
function) is symmetric about the origin.

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the
function is increasing. If the graph descends or falls as you move from left to right, the
function is decreasing.

DEFINITIONS Let f be a function defined on an interval / and let x; and x, be
any two points in /.

1. If f(x,) > f(x,) whenever x; < x,, then f is said to be increasing on /.
2. If f(x) < f(x;) whenever x; < x,, then f is said to be decreasing on /.

It is important to realize that the definitions of increasing and decreasing functions
must be satisfied for every pair of points x; and x, in [ with x; < x,. Because we use the
inequality < to compare the function values, instead of =, it is sometimes said that f is
strictly increasing or decreasing on /. The interval / may be finite (also called bounded) or
infinite (unbounded) and by definition never consists of a single point (Appendix 1).

EXAMPLE 7 The function graphed in Figure 1.9 is decreasing on (—00, 0 ] and increas-
ing on [0, 1]. The function is neither increasing nor decreasing on the interval [ 1, 00)
because of the strict inequalities used to compare the function values in the definitions. M

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry properties.

DEFINITIONS A function y = f(x) is an

even function of x if f(—x) = f(x),
odd function of x if f(—x) = —f(x),

for every x in the function’s domain.

The names even and odd come from powers of x. If y is an even power of x, as in
y = x>or y = x* itis an even function of x because (—x)> = x? and (—x)* = x* If yis an
odd power of x,asiny = xory = x3, it is an odd function of x because (—x)! = —x and
(—x)} = —x3.

The graph of an even function is symmetric about the y-axis. Since f(—x) = f(x), a
point (x, y) lies on the graph if and only if the point (—x, y) lies on the graph (Figure 1.12a).
A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since f(—x) = —f(x), a
point (x, y) lies on the graph if and only if the point (—x, —y) lies on the graph (Figure 1.12b).
Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin leaves the
graph unchanged. Notice that the definitions imply that both x and —x must be in the domain of f.

EXAMPLE 8 Here are several functions illustrating the definition.

flx) = x? Even function: (—x)> = x* for all x; symmetry about y-axis.

fx) = x>+ 1 Even function: (—x)> + 1 = x*> + 1 for all x; symmetry about
y-axis (Figure 1.13a).

fx) =x Odd function: (—x) = —x for all x; symmetry about the origin.
fx)=x+1 Not odd: f(—x) = —x + 1, but —f(x) = —x — 1. The two are not
equal.

Noteven: (—x) + 1 # x + 1 forall x # 0 (Figure 1.13b). [ |
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FIGURE 1.13 (a) When we add the constant term 1 to the function

y = x2, the resulting function y = x> + 1 is still even and its graph is
still symmetric about the y-axis. (b) When we add the constant term 1 to
the function y = x, the resulting function y = x + 1 is no longer odd,
since the symmetry about the origin is lost. The function y = x + 1 is
also not even (Example 8).

Common Functions

A variety of important types of functions are frequently encountered in calculus. We iden-
tify and briefly describe them here.

Linear Functions A function of the form f(x) = mx + b, for constants m and b, is called
a linear function. Figure 1.14a shows an array of lines f(x) = mx where b = 0, so these
lines pass through the origin. The function f(x) = x where m = 1 and b = 0 is called the
identity function. Constant functions result when the slope m = 0 (Figure 1.14b).
A linear function with positive slope whose graph passes through the origin is called a
proportionality relationship.

(b)

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant func-
tion with slope m = 0.

DEFINITION Two variables y and x are proportional (to one another) if one
is always a constant multiple of the other; that is, if y = kx for some nonzero
constant k.

If the variable y is proportional to the reciprocal 1/x, then sometimes it is said that y is
inversely proportional to x (because 1/x is the multiplicative inverse of x).

Power Functions A function f(x) = x“, where a is a constant, is called a power function.
There are several important cases to consider.
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(a) a = n, apositive integer.

The graphs of f(x) = x", for n = 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval (—1, 1), and to rise more steeply for
|x| > 1. Each curve passes through the point (1, 1) and through the origin. The graphs of
functions with even powers are symmetric about the y-axis; those with odd powers are
symmetric about the origin. The even-powered functions are decreasing on the interval
(=00, 0] and increasing on [0, 00); the odd-powered functions are increasing over the
entire real line (—00, 00).

2
w
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X X X X

FIGURE 1.15 Graphsof f(x) = x",n = 1,2, 3,4, 5, defined for —00 < x < 00.

(b)) a=-1 or a=-2.

The graphs of the functions f(x) = x™' = 1/x and g(x) = x 2 = 1/x? are shown in
Figure 1.16. Both functions are defined for all x ¥ 0 (you can never divide by zero). The
graph of y = 1/x is the hyperbola xy = 1, which approaches the coordinate axes far from
the origin. The graph of y = 1/x? also approaches the coordinate axes. The graph of the
function f is symmetric about the origin; f is decreasing on the intervals (—00, 0) and
(0,00). The graph of the function g is symmetric about the y-axis; g is increasing on
(—09, 0) and decreasing on (0, 00).

Domain: x # 0
Range: y # 0

Domain: x # 0
Range: y>0

(a) (b)

FIGURE 1.16 Graphs of the power functions f(x) = x“ for part (a) a = —1
and for part (b) a = —2.
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The functions f(x) = x'/2 = Vx and gx) = x? = Vx are the square root and cube
root functions, respectively. The domain of the square root function is [0, ©0), but the
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, along
with the graphs of y = x*2 and y = x?/3. (Recall that x*? = (x'/2)? and x?/3 = (x'/3)2)

Polynomials A function p is a polynomial if
px) = ax" + a X"+ -+ ax + a

where n is a nonnegative integer and the numbers ay, a;, a,, . . ., a, are real constants
(called the coefficients of the polynomial). All polynomials have domain (—00, 00). If the
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FIGURE 1.17 Graphs of the power functions f(x) = x“ for a = % %, %, and %

leading coefficient a, # 0 and n > 0, then n is called the degree of the polynomial. Lin-
ear functions with m # 0 are polynomials of degree 1. Polynomials of degree 2, usually
written as p(x) = ax> + bx + c, are called quadratic functions. Likewise, cubic functions
are polynomials p(x) = ax® + bx> + cx + d of degree 3. Figure 1.18 shows the graphs
of three polynomials. Techniques to graph polynomials are studied in Chapter 4.

3 2 3
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-1 1 2
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4 f > X
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—4f 12k

(@) (b) (©)
FIGURE 1.18 Graphs of three polynomial functions.
Rational Functions A rational function is a quotient or ratio f(x) = p(x)/q(x), where

p and g are polynomials. The domain of a rational function is the set of all real x for which
q(x) # 0. The graphs of several rational functions are shown in Figure 1.19.

NOT TO SCALE

() (b) (©

FIGURE 1.19 Graphs of three rational functions. The straight red lines approached by the graphs are called
asymptotes and are not part of the graphs. We discuss asymptotes in Section 2.6.



10

Chapter 1: Functions

Algebraic Functions Any function constructed from polynomials using algebraic oper-
ations (addition, subtraction, multiplication, division, and taking roots) lies within the
class of algebraic functions. All rational functions are algebraic, but also included are
more complicated functions (such as those satisfying an equation like y* — 9xy + x> = 0,
studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

, = —4
y y=x (X ) y y :X(l —X)2/5
L v—i(x )2/3
- y
2+ Ir
1_
1 1
-1 . -1 o] | * 0 51 *
-1 7
-2 bk
-3F

() (b) (©

FIGURE 1.20 Graphs of three algebraic functions.

Trigonometric Functions The six basic trigonometric functions are reviewed in Section 1.3.
The graphs of the sine and cosine functions are shown in Figure 1.21.

N
VIV AV VARV

(a) f(x) =sinx (b) f(x) =cosx

FIGURE 1.21 Graphs of the sine and cosine functions.

Exponential Functions Functions of the form f(x) = a*, where the base a > 0 is a
positive constant and a # 1, are called exponential functions. All exponential functions
have domain (—00, 00) and range (0, ©0), so an exponential function never assumes the
value 0. We discuss exponential functions in Section 1.5. The graphs of some exponential
functions are shown in Figure 1.22.

y y
y=10* y=10""
12 12
10 10
8
6
4
2
—_—T |
-1 =05 0
(a)

FIGURE 1.22 Graphs of exponential functions.
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These are the functions f(x) = log,x, where the base a # 1

is a positive constant. They are the inverse functions of the exponential functions, and
we discuss these functions in Section 1.6. Figure 1.23 shows the graphs of four loga-
rithmic functions with various bases. In each case the domain is (0, ©0) and the range

is (—00, 00),

FIGURE 1.23 Graphs of four logarithmic

functions.

Transcendental Functions

y = logjpx

FIGURE 1.24 Graph of a catenary or
hanging cable. (The Latin word catena
means “chain.”)

These are functions that are not algebraic. They include the

trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many
other functions as well. A particular example of a transcendental function is a catenary.
Its graph has the shape of a cable, like a telephone line or electric cable, strung from one
support to another and hanging freely under its own weight (Figure 1.24). The function
defining the graph is discussed in Section 7.3.

Exercises m

Functions
In Exercises 1-6, find the domain and range of each function.
1 f(x) =1+ 22 2. f =1— Vax
3. F(x) = V5x + 10 4. gx) = Vx> — 3x
_ 4 _ 2
5. f(t)_3—t 6. G(t)_t2—16

In Exercises 7 and 8, which of the graphs are graphs of functions of x,
and which are not? Give reasons for your answers.

7. a. Y b. vy

Finding Formulas for Functions
9. Express the area and perimeter of an equilateral triangle as a
function of the triangle’s side length x.

10. Express the side length of a square as a function of the length d of
the square’s diagonal. Then express the area as a function of the

diagonal length.

11. Express the edge length of a cube as a function of the cube’s
diagonal length d. Then express the surface area and volume of

the cube as a function of the diagonal length.
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12. A point P in the first quadrant lies on the graph of the function
fx) = V. Express the coordinates of P as functions of the
slope of the line joining P to the origin.

13. Consider the point (x,y) lying on the graph of the line
2x + 4y = 5. Let L be the distance from the point (x, y) to the
origin (0, 0). Write L as a function of x.

14. Consider the point (x, y) lying on the graph of y = Vx — 3. Let
L be the distance between the points (x, y) and (4, 0). Write L as a
function of y.

Functions and Graphs
Find the natural domain and graph the functions in Exercises 15-20.

15. fx) =5 — 2x 16. f(x) =1 — 2x — x?

17. gx) = V |x| 18. g(x) = V—x
19. F(r) = t/|1] 20. GO = 1/|1|
21. Find the domain of y = — X3
- Var-—9
22. Find th fy=2+ %
. rn terangeo y = x2+4.

23. Graph the following equations and explain why they are not
graphs of functions of x.

b. y? = x?

a. [y =x
24. Graph the following equations and explain why they are not
graphs of functions of x.

a.\x|+|y\=1 b. |x+y‘=1

Piecewise-Defined Functions
Graph the functions in Exercises 25-28.

25 f()_{x, 0=x=1
TV TLo-x 1<x=2
1 —x, 0=x=1
26. =
&) {Z—x, 1<x=2
4 — 2, x=1
27. F(x) =
@) {x2+2x, x> 1
1/x, <0
28. G(x)={/x *
X, 0=x

Find a formula for each function graphed in Exercises 29-32.

29. a. b.
1 (L, D
ol 2

30. a. b.
2

31. a. y b. y
T 3 ! ¢ X
Oo——o
(—2ﬂ1, ~1 3. 1)
32.a. y b. y
(7, 1)

3T 2T

A

The Greatest and Least Integer Functions
33. For what values of x is

a. [x| =0? b. [x] =0?
34. What real numbers x satisfy the equation | x| = [x]?

T
=] kS
q__

Y -
S
1

~N

IR

35. Does [—x| = —|x ] for all real x? Give reasons for your answer.
36. Graph the function
[x], x=0
o= {1
[x],

x < 0.
Why is f(x) called the integer part of x?

Increasing and Decreasing Functions

Graph the functions in Exercises 37-46. What symmetries, if any, do
the graphs have? Specify the intervals over which the function is
increasing and the intervals where it is decreasing.

3. y=—2 38. y:—%
X
1 1
3. y=—% 40.y=|7|
sy = Vi 2. y=\V—x
PRy 44. y = —4Vx
45. y = —x32 46. y = (—x)*3

Even and Odd Functions
In Exercises 47-58, say whether the function is even, odd, or neither.
Give reasons for your answer.

47. f(x) =3 48. f(x) = x7°

49. fx) = x>+ 1 50. f(x) = x>+ x

51 g(x) = x° + x 52, gx) =x*+3x2 — 1
53. gxv) = o 54. g(x) = T

55. h(r) = ; _1 I 56. h(t) = ||

57. h(t) =2t + 1 58. h(t) =2|t| + 1

Theory and Examples
59. The variable s is proportional to #, and s = 25 when t = 75.
Determine t when s = 60.



60.

61.

62.

63.

64.

Kinetic energy The kinetic energy K of a mass is proportional
to the square of its velocity v. If K = 12,960 joules when
v = 18 m/sec, what is K when v = 10 m/sec?

The variables r and s are inversely proportional, and r = 6 when
s = 4. Determine s when r = 10.

Boyle’s Law Boyle’s Law says that the volume V of a gas at
constant temperature increases whenever the pressure P decreases,
so that V and P are inversely proportional. If P = 14.7 Ib/in?
when V = 1000 in®, then what is V when P = 23.4 1b/in??

A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 14 in. by 22 in. by cutting out
equal squares of side x at each corner and then folding up the
sides as in the figure. Express the volume V of the box as a func-
tion of x.

L
|

The accompanying figure shows a rectangle inscribed in an isos-
celes right triangle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (You might start
by writing an equation for the line AB.)

b. Express the area of the rectangle in terms of x.

y

P(x, ?)

In Exercises 65 and 66, match each equation with its graph. Do not
use a graphing device, and give reasons for your answer.

65.

a. y=x* b. y =x’ c.y=x
y
8
h
N |
f

66.

67.

68.

69.

70.

71.

72.

13

1.1 Functions and Their Graphs

a. y = 5x b. y =5* C.

y

a. Graph the functions f(x) = x/2 and g(x) = 1 + (4/x) to-
gether to identify the values of x for which
X 4
5 > 1+ X
b. Confirm your findings in part (a) algebraically.
a. Graph the functions f(x) = 3/(x — 1) and g(x) = 2/(x + 1)
together to identify the values of x for which
3 2
x—1 < x+ 1
b. Confirm your findings in part (a) algebraically.

For a curve to be symmetric about the x-axis, the point (x, y) must
lie on the curve if and only if the point (x, —y) lies on the curve.
Explain why a curve that is symmetric about the x-axis is not the
graph of a function, unless the functionis y = 0.

Three hundred books sell for $40 each, resulting in a revenue of
(300)($40) = $12,000. For each $5 increase in the price, 25
fewer books are sold. Write the revenue R as a function of the
number x of $5 increases.

A pen in the shape of an isosceles right triangle with legs of
length x ft and hypotenuse of length £ ft is to be built. If fencing
costs $5/ft for the legs and $10/ft for the hypotenuse, write the
total cost C of construction as a function of /.

Industrial costs A power plant sits next to a river where the
river is 800 ft wide. To lay a new cable from the plant to a loca-
tion in the city 2 mi downstream on the opposite side costs $180
per foot across the river and $100 per foot along the land.

I 2 mi g
\’T}i Q cy

I

I
800 ft1

I

I

|

Power plant
NOT TO SCALE

a. Suppose that the cable goes from the plant to a point Q on the
opposite side that is x ft from the point P directly opposite the
plant. Write a function C(x) that gives the cost of laying the
cable in terms of the distance x.

b. Generate a table of values to determine if the least expensive
location for point Q is less than 2000 ft or greater than 2000 ft
from point P.



14

Chapter 1: Functions

1 .2 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form
new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where
the denominator is zero) to produce new functions. If f and g are functions, then for every
x that belongs to the domains of both f and g (that is, for x € D(f) N D(g)), we define
functions f + g, f — g, and fg by the formulas

(f + 90 = f(x) + gl)

(f = 9 = flx) — g

(fo)x) = f(x)gx).

Notice that the + sign on the left-hand side of the first equation represents the operation of
addition of functions, whereas the + on the right-hand side of the equation means addition

of the real numbers f(x) and g(x).
At any point of D(f) N D(g) at which g(x) # 0, we can also define the function f/g

by the formula
f f
()0 -

Functions can also be multiplied by constants: If ¢ is a real number, then the function
cf is defined for all x in the domain of f by

(cHx) = cfx).

(where g(x) # 0).

EXAMPLE 1

The functions defined by the formulas
fo) = Vx and  glx) = V1 —x

have domains D(f) = [0,00) and D(g) = (=090, 1]. The points common to these
domains are the points

[0,00)N (=00, 1] = [0,1].

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write f + g for the product function fg.

Function Formula Domain

f+g (f+ 9w =Va+ V1I—ux [0,1] = D(f) N D(g)

f-3 f— 9w =Vx—VI—ux [0,1]

g— f (g — H®=V1-x—Vx [0,1]

f-g (frox = fgl) = Vx(1 — x) [0,1]

fle f;(x) fg; = p [0, 1)(x = 1 excluded)

g/f f( x) = ?8 L—x (0,1] (x = 0 excluded)
n

The graph of the function f + g is obtained from the graphs of f and g by adding the
corresponding y-coordinates f(x) and g(x) at each point x € D(f) M D(g), as in Figure 1.25.
The graphs of f + g and f + g from Example 1 are shown in Figure 1.26.
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8 —
(L= Urom sl

FIGURE 1.25 Graphical addition of two

functions.

Composite Functions

y
y=r+g
) =V1—x o =Vax
1
L
: v=f-g
1 1 1 1
x of 12 3 4 *
5 5 5 5

FIGURE 1.26 The domain of the function f + g
is the intersection of the domains of f and g, the
interval [0, 1] on the x-axis where these domains
overlap. This interval is also the domain of the
function f - g (Example 1).

Composition is another method for combining functions.

lies in the domain of f.

DEFINITION If f and g are functions, the compeosite function fog (“f com-
posed with g”) is defined by

(fe9)) = f(g)).

The domain of f o g consists of the numbers x in the domain of g for which g(x)

The definition implies that f o g can be formed when the range of g lies in the domain
of f. To find (f ° g)(x), first find g(x) and second find f(g(x)). Figure 1.27 pictures f o g as
a machine diagram, and Figure 1.28 shows the composite as an arrow diagram.

X ey 8 8 [ — fg(x)
FIGURE 1.27 A composite function f © g uses
the output g(x) of the first function g as the input

for the second function f.

fog

f(g(x)

g(x)

FIGURE 1.28 Arrow diagram for f o g. If x lies in the
domain of g and g(x) lies in the domain of f, then the
functions f and g can be composed to form (f © g)(x).

To evaluate the composite function g ° f (when defined), we find f(x) first and then
g(f(x)). The domain of g e f is the set of numbers x in the domain of f such that f(x) lies

in the domain of g.

The functions f o g and g o f are usually quite different.
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y
y:x2+2
y=x2+1
y=x
y=x>-2
1 unit
1 b1 X
-2 0 |\2
_l_l 2 units

FIGURE 1.29 To shift the graph
of f(x) = x? up (or down), we add

-2

positive (or negative) constants
to the formula for f (Examples 3a

and b).

EXAMPLE 2 If f(x) = Vxand g(x) = x + 1, find
(@) (fog)x) (b) (g° Hx) (©) (foHx) (d) (g°g)x).

Solution
Composite Domain
@ (feo)x) = fg) = Vgx) = Vx + 1 [—1,00)
() (go N0 = g(fx) = f&x) + 1= Va + 1 [0,00)
© (FohHw = fF@) = VIx) = V Ve =/ [0,00)
@ (geg)) =gg) =g +1=x+DH+1=x+2 (=00, 00)
To see why the domain of f o g is [—1, 00), notice that g(x) = x + 1 is defined for all real
x but belongs to the domain of f only if x + 1 = 0, that is to say, when x = —1. |

Notice that if f(x) = x* and g(x) = \/);, then (f ° g)(x) = (\/);)2 = x. However, the
domain of f o g is [0, 00), not (—00, o), since Vx requires x = 0.

Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a constant to
each output of the existing function, or to its input variable. The graph of the new function
is the graph of the original function shifted vertically or horizontally, as follows.

Shift Formulas

Vertical Shifts

y=f(x) + k Shifts the graph of f up k units if k > 0
Shifts it down |k| units if £ < 0

Horizontal Shifts

y=f(x+ h) Shifts the graph of f left hunitsif &7 > 0
Shifts it right || units if 2 < 0

EXAMPLE 3

(a) Adding 1 to the right-hand side of the formula y = x? to get y = x> + 1 shifts the
graph up 1 unit (Figure 1.29).

(b) Adding —2 to the right-hand side of the formula y = x> to get y = x> — 2 shifts the
graph down 2 units (Figure 1.29).

(¢) Adding3toxiny = x*>to get y = (x + 3)? shifts the graph 3 units to the left, while
adding —2 shifts the graph 2 units to the right (Figure 1.30).

(d) Adding —2 to xin y = |x|, and then adding —1 to the result, gives y = |[x — 2| — 1
and shifts the graph 2 units to the right and 1 unit down (Figure 1.31). |

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y = f(x) is to stretch or compress it, vertically or hori-
zontally. This is accomplished by multiplying the function f, or the independent variable
x, by an appropriate constant ¢. Reflections across the coordinate axes are special cases
where ¢ = —1.



-1

FIGURE 1.32 Vertically stretching
and compressing the graph y = Vx by a
factor of 3 (Example 4a).
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Add a positive Add a negative
constant to x. y constant to x.

FIGURE 1.30 To shift the graph of y = x? to FIGURE 1.31 The graphof y = |x|

the

3c). To shift the graph to the right, we add a nega-

left, we add a positive constant to x (Example shifted 2 units to the right and 1 unit

down (Example 3d).

tive constant to x.

Vertical and Horizontal Scaling and Reflecting Formulas

For ¢ > 1, the graph is scaled:

y = cf(x) Stretches the graph of f vertically by a factor of c.

y = % fx) Compresses the graph of f vertically by a factor of c.

y = f(cx) Compresses the graph of f horizontally by a factor of c.
y = f(x/c) Stretches the graph of f horizontally by a factor of c.
For ¢ = —1, the graph is reflected:

y =—f(x) Reflects the graph of f across the x-axis.

y = f(—x) Reflects the graph of f across the y-axis.

EXAMPLE 4 Here we scale and reflect the graph of y = Vx.
(a) Vertical: Multiplying the right-hand side of y = Vix by 3togety = 3Vx stretches

the graph vertically by a factor of 3, whereas multiplying by 1/3 compresses the
graph by a factor of 3 (Figure 1.32).

(b) Horizontal: The graph of y = V3x is a horizontal compression of the graph of

(©

y= Vi by a factor of 3, and y = Vx/3 is a horizontal stretching by a factor of 3
(Figure 1.33). Note that y = V3x = V3VXx so a horizontal compression may cor-
respond to a vertical stretching by a different scaling factor. Likewise, a horizontal
stretching may correspond to a vertical compression by a different scaling factor.

Reflection: The graph of y = —Vx is a reflection of y = V/x across the x-axis, and
y = V—x is a reflection across the y-axis (Figure 1.34). |
y
y=V—-x
4 -
3 y=1V3x
compress
2k - = \/; 1 1 ]
_’stretch -3 -2 -~
Iy y=Vx/3
| | | | | -
-1 o] 1 2 3 4 O °
FIGURE 1.33 Horizontally stretching and FIGURE 1.34 Reflections of the graph
compressing the graph y = Vx by a factor of y = Vx across the coordinate axes
3 (Example 4b). (Example 4c).
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EXAMPLE 5 Given the function f(x) = x* — 4x* + 10 (Figure 1.35a), find formulas to

(a) compress the graph horizontally by a factor of 2 followed by a reflection across the
y-axis (Figure 1.35b).

(b) compress the graph vertically by a factor of 2 followed by a reflection across the
x-axis (Figure 1.35¢).

y y=16x*+32x>+10 Y y

f) =x*—4x3+10
20F 20 R
ok Y X7+ 2x7 =5
10F /\
| | | |
1 o 1 3 J4 0 F 2 1 0 i A ) S 2 T *
~10} -10
_10_
()

—20 —20

(a) (b)

FIGURE 1.35 (a) The original graph of f. (b) The horizontal compression of y = f(x) in part (a) by a factor of 2, followed by

a reflection across the y-axis. (c) The vertical compression of y = f(x) in part (a) by a factor of 2, followed by a reflection across
the x-axis (Example 5).

Solution

(a) We multiply x by 2 to get the horizontal compression, and by —1 to give reflection
across the y-axis. The formula is obtained by substituting —2x for x in the right-hand
side of the equation for f:

y = f(=2x) = (—20)* — 4(=2x)* + 10
= l6x* + 32x% + 10.
(b) The formula is

y = =2 = —3xt + 2 — 5. m
Exercisesm
Algebraic Combinations e. f(f(=5)) f. 2(8(2)
In Exercises 1 and 2, find the domains and ranges of f, g, f + g, and g f(f(x) h. g(g(x))
frs 6. If f(x) = x — 1 and g(x) = 1/(x + 1), find the following.
L /@=x gx0=Vx=1 a. f(g(1/2) b. g((1/2))
2 f = Vatl g = Va—l e f(g) d. g(f()
In Exercises 3 and 4, find the domains and ranges of f, g. f/g, and e. f(f(2) f. g(g(2)
8/¥ g F(F() h. g(s(x)
10 =2 g =xtt In Exercises 7-10, write a formula f h
4 f(x) _ 1, g(x) =1+ \/-; n pxercises /—10, write a formula for f 8 .

7. fx) =x+ 1, gx) =3x, h(x) =4 —x

Composites of Functions 8. fx) =3x+4, g)=2x—1, h@x) =

5. If f(x) = x + 5 and g(x) = x*> — 3, find the following.

1 1
a. f(g(0) b. g(f(0)) 9 ) = Vet b g = g M) =x
¢ f(g(x) d. g(f(x)) 10. f(x) = ; '{_' )26’ o) = 2x2 . h() = V2 —x
x” + 1



Let f(x) = x — 3, g(x) = Vx, h(x) = x and j(x) = 2x. Express
each of the functions in Exercises 11 and 12 as a composite involving
one or more of f, g, 1, and j.

1. a. y=Vx—3 b. y=2Vx

c. y=x4 d. y=4x

e. y=Vi-—-3)? f. y=(2x — 67
12. a. y=2x—3 b. y = x3/?

c. y=x° d. y=x-6

e y=2Vx—-3 f.y=Vx-3
13. Copy and complete the following table.

g() fx) (fee)x)

a. x—7 Vx ?

b. x +2 3x ?

e ? x—5 Vit -5

X X

d. x—1 x—1 !

e ? 1 +% x

f. )1; ? X

14. Copy and complete the following table.

gx) fx) (fog)x)
1
a |x] ?
x— 1 X
b. ? T T
c. ? Vax |x]
d. Vx ? |x|
15. Evaluate each expression using the given table of values:
X -2 -1 0 1 2
Fx) 1 0| —2 1 2
2(x) 2 1 0 -1 0
a. f(g(=1)) b. g(f(0)) c. f(f=1)
d. g(g(2) e. g(f(=2) £ f(g(1)
16. Evaluate each expression using the functions
—X, —2=x<0
fo =2~ x, g(x)={xx_ PO
a. f(g0) b. g(f(3)) c. gg(=1)
d. f(f(2) e. g(f(0) f. f(g(1/2))

In Exercises 17 and 18, (a) write formulas for f ° g and g ° f and find
the (b) domain and (c) range of each.

17. f(x) = Vx + 1, g(x) =%

18. f(x) = x2, gx) =1

- Vax

1.2 Combining Functions; Shifting and Scaling Graphs 19

19. Let f(x) = ﬁ Find a function y = g(x) so that
(feg)) = x.
20. Let f(x) = 2x> — 4. Find a function y = g(x) so that

(fog)x) =x + 2.

Shifting Graphs
21. The accompanying figure shows the graph of y = —x? shifted to
two new positions. Write equations for the new graphs.

Position (a) y=—x Position (b)

22. The accompanying figure shows the graph of y = x” shifted to
two new positions. Write equations for the new graphs.

y
Position (a)
L y=x?
1 1 X
0
B Position (b)
_5 -

23. Match the equations listed in parts (a)—(d) to the graphs in the
accompanying figure.

a y=@x-—-172-4
c. y=@x+2?2+2

b. y=(x—2?>+2
d y=(@x+32-2

y

Position 2 Position 1

2o\ [ @»
Position 3 1
1 1 1 1 1

—4-3-2-1N0 1 2
Position 4

(=3,-2)

1, —4)
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24. The accompanying figure shows the graph of y = —x? shifted to
four new positions. Write an equation for each new graph.

(1,4

(b) (a)

2.0

(©) (d)

Exercises 25-34 tell how many units and in what directions the graphs
of the given equations are to be shifted. Give an equation for the
shifted graph. Then sketch the original and shifted graphs together,
labeling each graph with its equation.

25. x> + y> =49 Down 3, left 2
26. x> +y> =25 Up3,left4
27. y =x3 Leftl,down I

28. y = x** Right 1, down 1
29. y = Vx Left0.81

30. y = —Vx Right3

3. y=2x—7 Up7

32y =30+ 1)+5 Downs, right 1

33. y=1/x Upl,right1
34. y = 1/x> Left2, down 1

Graph the functions in Exercises 35-54.

35. y=Vx +4 36. y= V9 —x
37. y = |x — 2| 3. y=|1—-x| -1
39. y=1+ Vx—1 40. y=1-— Vx
41. y = (x + )3 42. y = (x — 8%
43. y=1— x*3 4. y + 4 =x
45. y=Va-1-1 46. y = (x +2)* + 1
1 1
47.)7:x_2 48. y =y~ 2
4. y=142 50. y = —
VT X YT x 2
1 1
51, y = 52, y=——1
YT a oy TR
3. y=L 41 54 y= —1
YT e IR

55. The accompanying figure shows the graph of a function f(x) with
domain [0, 2] and range [0, 1]. Find the domains and ranges of
the following functions, and sketch their graphs.

0 2 *
a. f(x) +2 b. f(x) — 1
¢ 2f(x) d. —f(x)
e. fx+2) f. fGx—1)
g. f(—x) he —fx+ 1) + 1

56. The accompanying figure shows the graph of a function g() with
domain [—4,0] and range [—3,0]. Find the domains and
ranges of the following functions, and sketch their graphs.

y
L 1 t

—4 -2 0

y =g
a. g(—1) b. —g(®)
c. g(n+3 d 1 -3
e. g(—t+2) f. gt —2)
g gl —0) h. —g(r — 4)

Vertical and Horizontal Scaling

Exercises 57-66 tell by what factor and direction the graphs of the
given functions are to be stretched or compressed. Give an equation
for the stretched or compressed graph.

57. y = x> — 1, stretched vertically by a factor of 3

58. y = x> — 1, compressed horizontally by a factor of 2

59. y=1+ iz, compressed vertically by a factor of 2
X

60. y=1+ %, stretched horizontally by a factor of 3
X

61. y = Vx + 1, compressed horizontally by a factor of 4
62. y = Vx + 1, stretched vertically by a factor of 3

63. y = V4 — x2, stretched horizontally by a factor of 2
64. y = V4 — x%  compressed vertically by a factor of 3
65. y =1 — x%, compressed horizontally by a factor of 3

66. y = 1 — x3, stretched horizontally by a factor of 2



Graphing

In Exercises 67-74, graph each function, not by plotting points, but by
starting with the graph of one of the standard functions presented in
Figures 1.14—1.17 and applying an appropriate transformation.

67. y=—V2x + 1 68.y:1/1—)2£

69. y=(x— 17 +2 70. y=(1—2x)° +2

71.y:21—x—1 72.y:)%+1

73,y = —Va 74. y = (=20
75. Graph the function y = |x> — 1].
76. Graph the function y = V/|x|.

1 .3 Trigonometric Functions
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Combining Functions

77. Assume that f is an even function, g is an odd function, and both
f and g are defined on the entire real line (—00, 00). Which of the
following (where defined) are even? odd?

a. fg b. f/g c g/f
d. f>=ff e g =gg f. fog
g g°f h. fof i geog
78. Can a function be both even and odd? Give reasons for your
answer.

79. (Continuation of Example 1.) Graph the functions f(x) = Vi

and g(x) = V1 — x together with their (a) sum, (b) product,
(c) two differences, (d) two quotients.

80. Let f(x) = x — 7 and g(x) = x% Graph f and g together with

fegandgef.

This section reviews radian measure and the basic trigonometric functions.

Angles

Angles are measured in degrees or radians. The number of radians in the central angle
A'CB' within a circle of radius r is defined as the number of “radius units” contained in
the arc s subtended by that central angle. If we denote this central angle by § when mea-
sured in radians, this means that § = s/r (Figure 1.36), or

s =rb (0 in radians). (1)

FIGURE 1.36 The radian measure
of the central angle A’CB’ is the num-
ber = s/r. For a unit circle of radius
r = 1, 0 is the length of arc AB that 277 radians, we have
central angle ACB cuts from the unit

circle.

and

1 radian = 1§%0 (=57.3) degrees or

If the circle is a unit circle having radius » = 1, then from Figure 1.36 and Equation (1),
we see that the central angle 6 measured in radians is just the length of the arc that the
angle cuts from the unit circle. Since one complete revolution of the unit circle is 360° or

7r radians = 180° )

e = T (~ ;
1 degree = 180( 0.017) radians.

Table 1.1 shows the equivalence between degree and radian measures for some basic

angles.

TABLE 1.1 Angles measured in degrees and radians

Degrees —180 —-135 -9 —-45 0 30
0 (radians) _ —3m i - 0 T
! - 4 2 4 6

45 60 90 120 135 150 180 270 360

&9
W
SN
|
|
|
S|
|
)
S|
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An angle in the xy-plane is said to be in standard position if its vertex lies at the ori-
gin and its initial ray lies along the positive x-axis (Figure 1.37). Angles measured counter-
clockwise from the positive x-axis are assigned positive measures; angles measured clock-
wise are assigned negative measures.

y y
Terminal ray

Initial ray

x
Positive  Initial ray '\JNegative
measure J/ Terminal measure

ray \

FIGURE 1.37 Angles in standard position in the xy-plane.

Angles describing counterclockwise rotations can go arbitrarily far beyond 27 radi-
ans or 360°. Similarly, angles describing clockwise rotations can have negative measures
of all sizes (Figure 1.38).

y y y y
3w i
2
X X X X
/3w
97 4
4
hypotenuse . FIGURE 1.38 Nonzero radian measures can be positive or negative and can go beyond 27r.
opposite
Angle Convention: Use Radians From now on, in this book it is assumed that all angles
\ 0 are measured in radians unless degrees or some other unit is stated explicitly. When we talk
adjacent about the angle 7 /3, we mean v /3 radians (which is 60°), not 7 /3 degrees. We use radians
g — OPP g hyp because it simplifies many of the operations in calculus, and some results we will obtain
M7 e 7T Opp involving the trigonometric functions are not true when angles are measured in degrees.
j h
cos @ = % sec O = a%d?
opp adi The Six Basic Trigonometric Functions
tanf = —  cotf = —
adj opp You are probably familiar with defining the trigonometric functions of an acute angle in
FIGURE 1.39 Trigonometric terms of the sides of a right triangle (Figure 1.39). We extend this definition to obtuse and
ratios of an acute angle. negative angles by first placing the angle in standard position in a circle of radius r. We
then define the trigonometric functions in terms of the coordinates of the point P(x, y)
where the angle’s terminal ray intersects the circle (Figure 1.40).
y . . _y _r
sine: sin6 = cosecant: cscO = y
Plx, )N~ — iha. X . =r
>) y cosine: cosf = 7 secant: secf =
I r
i 0 Y X
! \ N tangent: tan6 = 3.  cotangent: cot6 = y
X0 r
These extended definitions agree with the right-triangle definitions when the angle is acute.
Notice also that whenever the quotients are defined,
_ sinf _ 1
FIGURE 1.40 The trigonometric tan 6 = cos 6 cot = tan 6
functions of a general angle 6 are 1 1
& g sec = cscd) = ——

>

defined in terms of x, y, and r. cos 0 sin



FIGURE 1.41
lengths of two common triangles.

Radian angles and side

y
S A
sin pos all pos
X
T C
tan pos COSs pos
FIGURE 1.42 The CAST rule,

remembered by the statement
“Calculus Activates Student Thinking,”
tells which trigonometric functions

are positive in each quadrant.
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As you can see, tan 6 and sec 6 are not defined if x = cos & = 0. This means they are not
defined if 6 is £7r/2, +37 /2, .. .. Similarly, cot # and csc 6 are not defined for values
of 6 for which y = 0, namely 6 = 0, *m, * 2, .. ..

The exact values of these trigonometric ratios for some angles can be read from the
triangles in Figure 1.41. For instance,

sin*—i sinz—l sinz—ﬁ
4 ) 6 2 3 2

cosz=L cos£=ﬁ cosz=l
4 V2 6 2 3 2
T _ m_ 1 T _

tan i 1 tan 6 /3 tan 3 V3

The CAST rule (Figure 1.42) is useful for remembering when the basic trigonometric func-
tions are positive or negative. For instance, from the triangle in Figure 1.43, we see that
2m _ V3 052£= ! tan%r=—\/§.

= =y

D=

FIGURE 1.43 The triangle for
calculating the sine and cosine of 27 /3
radians. The side lengths come from the
geometry of right triangles.

Using a similar method we determined the values of sin 6, cos 8, and tan 6 shown in Table 1.2.

TABLE 1.2 Values of sin 6, cos 6, and tan 6 for selected values of 9

Degrees -180 -—135 —-90 —45 0 30 45 60 9 120 135 150 180 270 360
0 (radians) — 'Tz‘” _Tﬁ _Tﬂ 0 % % % % 2?" %’T 5?” w 3’2—" 2m
sin 0 %6 1 %ﬁ o % % 1 ? ? : 0 -1 0
cos 0 -1 }ﬁ 0 % 1 % % oo - _T\/E # 10 1
tan 0 0 1 -1 0 % 1 V3 -V3 -l %@ 0 0
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Periods of Trigonometric Functions

= tan x

Period 77: tan(x + )
cot(x + ) =

Period 27:

Even

cos(—x) = cos x

sec(—x) = sec x

Odd

cotx

sin(x + 27) = sinx
cos(x + 2m) = cos x
sec(x + 2m) = secx
csc(x + 2m) = cscx

sin(—x) = —sinx
tan(—x) = —tan x
csc(—x) = —cscx
cot(—x) = —cotx
y
P(cos 6, sin 0) 2 y2 -1
[sin 6 r\()
[ ]
|cos 6] |O 1

FIGURE 1.45 The reference
triangle for a general angle 6.

Periodicity and Graphs of the Trigonometric Functions

When an angle of measure 6 and an angle of measure # + 27 are in standard position,
their terminal rays coincide. The two angles therefore have the same trigonometric func-
tion values: sin(f + 27) =sinf, tan(0 + 27) =tan 6, and so on. Similarly,
cos(@ — 2m) = cos 0, sin(0 — 2m) = sin 6, and so on. We describe this repeating behav-
ior by saying that the six basic trigonometric functions are periodic.

DEFINITION A function f(x) is periodic if there is a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p is the period of f.

When we graph trigonometric functions in the coordinate plane, we usually denote the
independent variable by x instead of 6. Figure 1.44 shows that the tangent and cotangent
functions have period p = r, and the other four functions have period 27. Also, the sym-
metries in these graphs reveal that the cosine and secant functions are even and the other
four functions are odd (although this does not prove those results).

y
=tanx
y y
y =cosx y =sinx
/: |
1 X : 3 f_ 0 71' 3
-7 _fr 0 ¥ opmo2m % ™ 3m
} 2 2 } 2 % 2 ‘2

Domain: —o < x < © Domain: —o < x < 3l

Domain: x #‘*'727, *

2
Range: —-1=y=1 Range: —-1=y=1 L
Period: 27 Period: 27 lljar?gfl.- Ly <®
(a) (b) eriod: ©
v
y =secx y=csex

M
T A

Domain: x st"'g ju 37”, .. Domain: x # 0, =7, X277, . .. Domain: x # 0, =7, 227, ...
Range: y=—lory=1 Range: —oo <y <o
= — = 7 J
E::fg }éw Lory=1 Period: 27 Period: 7

(d) (e) ()

FIGURE 1.44 Graphs of the six basic trigonometric functions using radian measure. The shading
for each trigonometric function indicates its periodicity.

Trigonometric Identities

The coordinates of any point P(x, y) in the plane can be expressed in terms of the point’s
distance r from the origin and the angle 6 that ray OP makes with the positive x-axis (Fig-

ure 1.40). Since x/r = cos 0 and y/r = sin 6, we have
X = rcos 6, y = rsin 6.

When r = 1 we can apply the Pythagorean theorem to the reference right triangle in
Figure 1.45 and obtain the equation

cos? @ + sin® = 1. 3)
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This equation, true for all values of 6, is the most frequently used identity in trigonometry.
Dividing this identity in turn by cos® § and sin” § gives

1 + tan®? @ = sec? @
1 + cot?@ = csc? 0

The following formulas hold for all angles A and B (Exercise 58).

Addition Formulas

cos(A + B) = cosAcos B — sinAsin B

4
sin(A + B) = sinAcos B + cos Asin B “)

There are similar formulas for cos(A — B) and sin(A — B) (Exercises 35 and 36).
All the trigonometric identities needed in this book derive from Equations (3) and (4). For
example, substituting 6 for both A and B in the addition formulas gives

Double-Angle Formulas

cos 20 = cos? 6 — sin® @

)

sin 260 = 2sin 6 cos 0

Additional formulas come from combining the equations
cos? 6 + sin? 6 = 1, cos? 6 — sin? 6 = cos 26.

We add the two equations to get 2cos’> @ = 1 + cos 260 and subtract the second from the
first to get 2sin?0 = 1 — cos 26. This results in the following identities, which are useful
in integral calculus.

Half-Angle Formulas
cos? ) = 1+ (2:03 26 ©)
sin? g = 1= <08 26 2 20 (7)
The Law of Cosines
If a, b, and c are sides of a triangle ABC and if 6 is the angle opposite c, then
2 = a* + b* — 2abcos 6. (8)

This equation is called the law of cosines.
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B(a cos 0, a sin 0)

T

Cc b A(,0)

FIGURE 1.46 The square of the distance
between A and B gives the law of cosines.

o

 urs

X
o 0 A(1,0)

cos 0 1 —cos @

FIGURE 1.47 From the
geometry of this figure, drawn
for § > 0, we get the inequality
sin? 6 + (1 — cos 0)> = 62

We can see why the law holds if we introduce coordinate axes with the origin at C and
the positive x-axis along one side of the triangle, as in Figure 1.46. The coordinates of A
are (b, 0); the coordinates of B are (acos 6, asin 6). The square of the distance between A
and B is therefore
¢ = (acos § — b)*> + (asin 0)?
= a® (cos* 8 + sin® 6) + b> — 2ab cos
[ —
1
=a> + b* — 2abcos 6.
The law of cosines generalizes the Pythagorean theorem. If § = 77/2, then cos § = 0
and ¢? = a*> + b

Two Special Inequalities

For any angle 6 measured in radians, the sine and cosine functions satisfy

—|6] =sind =16 and —|0] =1 —cosb = |6].

To establish these inequalities, we picture 6 as a nonzero angle in standard position
(Figure 1.47). The circle in the figure is a unit circle, so ||equals the length of the circular
arc AP. The length of line segment AP is therefore less than |6|.

Triangle APQ is a right triangle with sides of length

QP = |sin 6], AQ =1 — cos 6.
From the Pythagorean theorem and the fact that AP < |6, we get
sin? @ + (1 — cos ) = (AP)> = 6> 9)

The terms on the left-hand side of Equation (9) are both positive, so each is smaller than
their sum and hence is less than or equal to 62:

sif@ =62 and (1 — cos0)? = 6%
By taking square roots, this is equivalent to saying that

|sin 6] < |6| and |1 —cosB| = |0

so
—16] = sing = |6] and —16] =1 —cosd = 6.

These inequalities will be useful in the next chapter.

Transformations of Trigonometric Graphs

The rules for shifting, stretching, compressing, and reflecting the graph of a function sum-
marized in the following diagram apply to the trigonometric functions we have discussed
in this section.

Vertical stretch or compression; Vertical shift
reflection about y = d if negalive\ /

vy =af(b(x + ¢)) +d

Horizontal stretch or compression: / \Horizontul shift

reflection about x = —c if negative
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The transformation rules applied to the sine function give the general sine function

or sinusoid formula

where |A| is the amplitude,

f(x) = A sin <2g x — C)) + D,

B \ is the period, C is the horizontal shift, and D is the vertical

shift. A graphical interpretation of the various terms is given below.

y
y =Asin<2_77(x— C)) +D
D+AR — B
Horizontal .
shift (C) Amplitude (4) This axis is the
< liney = D
D ___________________________________
Vertical
DA shift (D)
This distance is —|
the period (B).
0 X
Exercises m
Radians and Degrees 0 —3m/2 -3 —m/6 w[4  57/6
1. On acircle of radius 10 m, how long is an arc that subtends a cen-
tral angle of (a) 477/5 radians? (b) 110°? sin 6
2. A central angle in a circle of radius 8 is subtended by an arc of cos 6
length 107r. Find the angle’s radian and degree measures. tan 6
3. You want to make an 80° angle by marking an arc on the perime- cot z
ter of a 12-in.-diameter disk and drawing lines from the ends of sec 0
csc

the arc to the disk’s center. To the nearest tenth of an inch, how
long should the arc be?

4. If you roll a 1-m-diameter wheel forward 30 cm over level
ground, through what angle will the wheel turn? Answer in radi-
ans (to the nearest tenth) and degrees (to the nearest degree).

Evaluating Trigonometric Functions
5. Copy and complete the following table of function values. If the
function is undefined at a given angle, enter “UND.” Do not use a
calculator or tables.

0 -7 —2x/3 0 /2 37 /4

sin 6
cos 6
tan 60
cot 6
sec 6
csc 6

6. Copy and complete the following table of function values. If the
function is undefined at a given angle, enter “UND.” Do not use a
calculator or tables.

In Exercises 7—12, one of sin x, cos x, and tan x is given. Find the
other two if x lies in the specified interval.

S | s _ ™
7. smx—s, XE|:2,7T:| 8. tanx = 2, xe{O,z}

_1 7 __5 s
9. cosx73, xe{ 2,0} 10. cosx = 13 XE|:2,7T}
11. tanx=%, xe{w,%} 12. sinx=—%, xe{ﬂ,%’}

Graphing Trigonometric Functions
Graph the functions in Exercises 13-22. What is the period of each
function?

13. sin 2x 14. sin(x/2)
15. cos mx 16. cos ?

. TX
17. —sin 3

19. cos (x — %)

18. —cos 27mx

20. sin <x + %)
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22. cos (x + 2£> -2

. T
21. sm(x - Z) + 1 3

Graph the functions in Exercises 23-26 in the ts-plane (r-axis horizon-
tal, s-axis vertical). What is the period of each function? What sym-
metries do the graphs have?

23. s = cot 2t 24, s = —tan mt

_ wt — r
25, s = sec( 2) 26. s = csc (2)

27. a. Graph y = cosx and y = secx together for —37/2 < x

= 37r/2. Comment on the behavior of sec x in relation to the
signs and values of cos x.

b. Graph y = sinx and y = csc x together for —7 = x = 2.
Comment on the behavior of csc x in relation to the signs and
values of sin x.

28. Graph y = tanx and y = cot x together for =7 = x = 7. Com-

ment on the behavior of cot x in relation to the signs and values of
tan x.

29. Graph y = sinx and y = [sin x| together. What are the domain
and range of | sin x |?

30. Graph y = sinx and y = [sinx| together. What are the domain
and range of [ sinx]?

Using the Addition Formulas
Use the addition formulas to derive the identities in Exercises 31-36.

31. cos (x - %) = sin x

2
33. sin (x + g) = cosx 34. sin <x - %) = —COS X

35. cos(A — B) = cos Acos B + sin Asin B (Exercise 57 provides a
different derivation.)

36. sin(A — B) = sinAcos B — cos Asin B

37. What happens if you take B = A in the trigonometric identity
cos(A — B) = cos Acos B + sin Asin B? Does the result agree
with something you already know?

32. cos (x + E) = —sinx

38. What happens if you take B = 27 in the addition formulas? Do
the results agree with something you already know?

In Exercises 3942, express the given quantity in terms of sin x and cos x.
39. cos(m + x) 40. sin(2m — x)

. (37 3
41. sin (7 - x) 42. cos (7 + x)

. Im N
43. Evaluate sin B as 51n(4 + 3).

1l mT |, 27
44. Evaluate cos T as cos (Z + ?)

T . Sm
45. Evaluate cos 1 46. Evaluate sin EE

Using the Half-Angle Formulas
Find the function values in Exercises 47-50.

2 T 25T
47. cos 3 48. cos B
49. sin® = 50. sin? 27

12 8

Solving Trigonometric Equations
For Exercises 51-54, solve for the angle 6, where 0 = 6 = 2.

51. sin?f = 2 52. sin’ @ = cos? h

53. sin26 — cos 6 =0 54. cos260 + cos 6 =0

Theory and Examples
55. The tangent sum formula The standard formula for the tan-
gent of the sum of two angles is

_ tanA + tan B
tan( + B) = o Awn B
Derive the formula.
56. (Continuation of Exercise 55.) Derive a formula for tan(A — B).

57. Apply the law of cosines to the triangle in the accompanying fig-
ure to derive the formula for cos (A — B).

58. a. Apply the formula for cos(A — B) to the identity sin § =

2

b. Derive the formula for cos(A + B) by substituting —B for B
in the formula for cos (A — B) from Exercise 35.
59. A triangle has sides @ = 2 and b = 3 and angle C = 60°. Find
the length of side c.
60. A triangle has sides ¢ = 2 and b = 3 and angle C = 40°. Find
the length of side c.

cos (E - 0) to obtain the addition formula for sin(A + B).

61. The law of sines The law of sines says that if a, b, and ¢ are the
sides opposite the angles A, B, and C in a triangle, then

sinA _ sinB _ sinC

a b 3

Use the accompanying figures and the identity sin(7m — 0) =
sin 6, if required, to derive the law.

A A

B C B (&

62. A triangle has sides @ = 2 and b = 3 and angle C = 60° (as in
Exercise 59). Find the sine of angle B using the law of sines.



63. A triangle has side ¢ = 2 and angles A = 7/4 and B = 7/3.
Find the length « of the side opposite A.

64. The approximation sin x =~ x It is often useful to know that,

when x is measured in radians, sin x =~ x for numerically small val-
ues of x. In Section 3.11, we will see why the approximation holds.
The approximation error is less than 1 in 5000 if |x| < 0.1.

a. With your grapher in radian mode, graph y = sin x and
y = x together in a viewing window about the origin. What
do you see happening as x nears the origin?

b. With your grapher in degree mode, graph y = sin x and
y = x together about the origin again. How is the picture dif-
ferent from the one obtained with radian mode?

General Sine Curves
For

f(x) = Asin (%T(x - C)) + D,

identify A, B, C, and D for the sine functions in Exercises 65-68 and
sketch their graphs.

66. y = lsin(v'rx — 1) + 1

65. y = 2sin(x + 7)) — 1 > >

67. y = —Zsin Gz) ta 68 y=asinTh L>0

COMPUTER EXPLORATIONS
In Exercises 69-72, you will explore graphically the general sine
function

fx) = Asin(%”(x — C)) + D

as you change the values of the constants A, B, C, and D. Use a CAS
or computer grapher to perform the steps in the exercises.

1 4 Graphing with Software

69.

70.

71.

72.

1.4 Graphing with Software 29

The period B Set the constants A = 3,C = D = 0.

a. Plot f(x) for the values B = 1, 3, 27, 57 over the interval
—4m = x = 4ar. Describe what happens to the graph of the
general sine function as the period increases.

b. What happens to the graph for negative values of B? Try it
with B = —3 and B = —2m.
The horizontal shift C  Setthe constants A = 3, B = 6, D = 0.

a. Plot f(x) for the values C = 0, 1, and 2 over the interval
—47 = x = 4. Describe what happens to the graph of the
general sine function as C increases through positive values.

b. What happens to the graph for negative values of C?

¢. What smallest positive value should be assigned to C so the
graph exhibits no horizontal shift? Confirm your answer with
a plot.

The vertical shift D Set the constants A = 3,B = 6,C = 0.

a. Plot f(x) for the values D = 0, 1, and 3 over the interval
—4m = x = 4ar. Describe what happens to the graph of the
general sine function as D increases through positive values.

b. What happens to the graph for negative values of D?

The amplitude A  Set the constants B = 6, C = D = 0.

a. Describe what happens to the graph of the general sine func-
tion as A increases through positive values. Confirm your
answer by plotting f(x) for the values A = 1,5, and 9.

b. What happens to the graph for negative values of A?

Today a number of hardware devices, including computers, calculators, and smartphones,
have graphing applications based on software that enables us to graph very complicated
functions with high precision. Many of these functions could not otherwise be easily
graphed. However, some care must be taken when using such graphing software, and in
this section we address some of the issues that may be involved. In Chapter 4 we will see
how calculus helps us determine that we are accurately viewing all the important features
of a function’s graph.

Graphing Windows

When using software for graphing, a portion of the graph is displayed in a display or viewing
window. Depending on the software, the default window may give an incomplete or mislead-
ing picture of the graph. We use the term square window when the units or scales used on both
axes are the same. This term does not mean that the display window itself is square (usually it
is rectangular), but instead it means that the x-unit is the same length as the y-unit.

When a graph is displayed in the default mode, the x-unit may differ from the y-unit of
scaling in order to capture essential features of the graph. This difference in scaling can
cause visual distortions that may lead to erroneous interpretations of the function’s behavior.



30

Chapter 1: Functions

Some graphing software allows us to set the viewing window by specifying one or both of
the intervals, a = x = b and ¢ = y = d, and it may allow for equalizing the scales used
for the axes as well. The software selects equally spaced x-values in [ a, b] and then plots
the points (x, f(x)). A point is plotted if and only if x lies in the domain of the function and
f(x) lies within the interval [ ¢, d]. A short line segment is then drawn between each plotted
point and its next neighboring point. We now give illustrative examples of some common
problems that may occur with this procedure.

EXAMPLE 1 Graph the function f(x) = x* — 7x*> + 28 in each of the following

display or viewing windows:

(@ [—10,10]by [—10,10] (b) [—4,4] by [—50,10] (c) [—4,10] by [—60, 60]

Solution

(a) Weselecta = —10,b = 10, ¢ = —10, and d = 10 to specify the interval of x-values
and the range of y-values for the window. The resulting graph is shown in Figure 1.48a.

It appears that the window is cutting off the bottom part of the graph and that the
interval of x-values is too large. Let’s try the next window.

10 10 6

| L, :°
\ \ '/ﬁ\\'//'

U

- 16 —50 —60
(a) (b) (©)

FIGURE 1.48 The graph of f(x) = x> — 7x*> + 28 in different viewing windows. Selecting a window that gives a clear
picture of a graph is often a trial-and-error process (Example 1). The default window used by the software may automatically
display the graph in (c).

(b) We see some new features of the graph (Figure 1.48b), but the top is missing and we
need to view more to the right of x = 4 as well. The next window should help.

(¢) Figure 1.48c shows the graph in this new viewing window. Observe that we get a
more complete picture of the graph in this window, and it is a reasonable graph of a
third-degree polynomial. |

EXAMPLE 2 When a graph is displayed, the x-unit may differ from the y-unit, as in
the graphs shown in Figures 1.48b and 1.48c. The result is distortion in the picture, which
may be misleading. The display window can be made square by compressing or stretching
the units on one axis to match the scale on the other, giving the true graph. Many software
systems have built-in options to make the window “square.” If yours does not, you may
have to bring to your viewing some foreknowledge of the true picture.

Figure 1.49a shows the graphs of the perpendicular lines y = x and y = —x + 3V2,
together with the semicircle y = V9 — x% in a nonsquare [—4,4] by [—6, 8] display
window. Notice the distortion. The lines do not appear to be perpendicular, and the semi-
circle appears to be elliptical in shape.

Figure 1.49b shows the graphs of the same functions in a square window in which the
x-units are scaled to be the same as the y-units. Notice that the scaling on the x-axis for
Figure 1.49a has been compressed in Figure 1.49b to make the window square. Figure 1.49¢
gives an enlarged view of Figure 1.49b with a square [—3,3] by [0, 4] window. [ |
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(\_ A ( N s N\

,/'_ , , o ! ! \'6 -

_4|

—6_ —4 0
(a) (b) (c)

FIGURE 1.49 Graphs of the perpendicular lines y = x and y = —x + 32 and of the semicircle
y = V9 — x? appear distorted (a) in a nonsquare window, but clear (b) and (c) in square windows (Example 2).
Some software may not provide options for the views in (b) or (c).

If the denominator of a rational function is zero at some x-value within the viewing
window, graphing software may produce a steep near-vertical line segment from the top to
the bottom of the window. Example 3 illustrates steep line segments.

Sometimes the graph of a trigonometric function oscillates very rapidly. When graph-
ing software plots the points of the graph and connects them, many of the maximum and
minimum points are actually missed. The resulting graph is then very misleading.

EXAMPLE 3 Graph the function f(x) = sin 100x.

Solution Figure 1.50a shows the graph of f in the viewing window [—12,12] by
[—1, 1 ]. We see that the graph looks very strange because the sine curve should oscillate
periodically between —1 and 1. This behavior is not exhibited in Figure 1.50a. We might
experiment with a smaller viewing window, say [—6, 6] by [—1, 1], but the graph is not
better (Figure 1.50b). The difficulty is that the period of the trigonometric function
y = sin 100x is very small (27/100 =~ 0.063). If we choose the much smaller viewing
window [—0.1,0.1] by [—1,1] we get the graph shown in Figure 1.50c. This graph
reveals the expected oscillations of a sine curve. |

FIGURE 1.50 Graphs of the function y = sin 100x in three viewing windows. Because the period is 277/100 = 0.063,
the smaller window in (c) best displays the true aspects of this rapidly oscillating function (Example 3).

EXAMPLE 4 Graph the function y = cos x + ﬁsin 200x.

Solution 1In the viewing window [—6,6] by [—1, 1] the graph appears much like the
cosine function with some very small sharp wiggles on it (Figure 1.51a). We get a better
look when we significantly reduce the window to [—0.2,0.2] by [0.97, 1.01 ], obtaining
the graph in Figure 1.51b. We now see the small but rapid oscillations of the second term,
(1/200)sin 200x, added to the comparatively larger values of the cosine curve. |
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1 1.01

AR
VIV]LIE Y

-1 0.97
(@ (b)

FIGURE 1.51 1In (b) we see a close-up view of the function

y =cosx + 2(1Tosin 200x graphed in (a). The term cos x clearly dominates

the second term, zlmsin 200x, which produces the rapid oscillations along the

cosine curve. Both views are needed for a clear idea of the graph (Example 4).

Obtaining a Complete Graph

Some graphing software will not display the portion of a graph for f(x) when x < 0. Usu-
ally that happens because of the algorithm the software is using to calculate the function
values. Sometimes we can obtain the complete graph by defining the formula for the func-
tion in a different way, as illustrated in the next example.

EXAMPLE 5  Graph the function y = x'/3.

Solution Some graphing software displays the graph shown in Figure 1.52a. When we
compare it with the graph of y = x!/3 = Vx in Figure 1.17, we see that the left branch for
x < 0 is missing. The reason the graphs differ is that the software algorithm calculates
x173 as ¢1/x Since the logarithmic function is not defined for negative values of x, the
software can produce only the right branch, where x > 0. (Logarithmic and exponential
functions are introduced in the next two sections.)

) -2
(a) (b)
FIGURE 1.52 The graph of y = x'/3 is missing the left branch in (a). In (b) we
x

] |x|'/3, obtaining both branches. (See Example 5.)
X

graph the function f(x) =

To obtain the full picture showing both branches, we can graph the function

F&) = 7 a1,
x|

This function equals x'/3 except at x = 0 (where f is undefined, although 03 = 0). A
graph of f is displayed in Figure 1.52b. |
Capturing the Trend of Collected Data

We have pointed out that applied scientists and analysts often collect data to study a par-
ticular issue or phenomenon of interest. If there is no known principle or physical law



TABLE 1.3 Tuition and fees at
the University of California

Year, x Cost, y
1990 1,820
1995 4,166
2000 3,964
2005 6,302
2010 11,287
2011 13,218
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relating the independent and dependent variables, the data can be plotted in a scatterplot to
help find a curve that captures the overall trend of the data points. This process is called
regression analysis, and the curve is called a regression curve.

Many graphing utilities have software that finds the regression curve for a particular
type of curve (such as a straight line, a quadratic or other polynomial, or a power curve) and
then superimposes the graph of the found curve over the scatterplot. This procedure results
in a useful graphical visualization, and often the formula produced for the regression curve
can be used to make reasonable estimates or to help explain the issue of interest.

One common method, known as least squares, finds the desired regression curve by
minimizing the sum of the squares of the vertical distances between the data points and the
curve. The least squares method is an optimization problem. (In Section 14.7 exercises, we
discuss how the regression curve is calculated when fitting a straight line to the data.) Here
we present a few examples illustrating the technique by using available software to find
the curve. Keep in mind that different software packages may have different ways of enter-
ing the data points, and different output features as well.

EXAMPLE 6 Table 1.3 shows the annual cost of tuition and fees for a full-time stu-
dent attending the University of California for the years 1990-2011. The data in the list
cite the beginning of the academic year when the corresponding cost was in effect. Use the
table to find a regression line capturing the trend of the data points, and use the line to
estimate the cost for academic year 2018—19.

Solution We use regression software that allows for fitting a straight line, and we enter
the data from the table to obtain the formula

y = 506.25x — 1.0066 * 10,

where x represents the year and y the cost that took effect that year. Figure 1.53 displays
the scatterplot of the data together with the graph of this regression line. From the equation
of the line, we find that for x = 2018,

y = 506.25(2018) — 1.0066 - 10° = 15,013

is the estimated cost (rounded to the nearest dollar) for the academic year 2018—19. The
last two data points rise above the trend line in the figure, so this estimate may turn out to
be low. |

y

14,000
12,000
10,000
8,000
6,000
4,000
2,000 )

0
1985 1990 1995 2000 2005 2010 2015

FIGURE 1.53 Scatterplot and regression
line for the University of California tuition
and fees from Table 1.3 (Example 6).

EXAMPLE 7 The Centers for Disease Control and Prevention recorded the deaths
from tuberculosis in the United States for 1970-2006. We list the data in Table 1.4 for
5-year intervals. Find linear and quadratic regression curves capturing the trend of the data
points. Which curve might be the better predictor?
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Solution  Using regression software that allows us to fit a straight line as well as a qua-
TABLE 1.4 U.S. deaths from dratic curve, we enter the data to obtain the formulas
tuberculosi
uberculosts y=122279-10° — 111.04x, line fit
Year, x Deaths, y and
1970 5,217 _ 1451, 3,483,953 464,757,147 dratic fit
1975 3,333 Y7 3507 210 28 duadmuen
1980 1,978 where x represents the year and y represents the number of deaths that occurred. A scat-
1985 1,752 terplot of the data, together with the two trend curves, is displayed in Figure 1.54. In look-
1990 1,810 ing at the figure, it would appear that the quadratic curve most closely captures the trend
1995 1,336 of the data, except for the years 1990 and 1995, and would make the better predictor. How-
2000 776 ever, the quadratic seems to have a minimum value near the year 2000, rising upward
2005 648 thereafter, so it would probably not be a useful tool for making good estimates in the years
beyond 2010. This example illustrates the danger of using a regression curve to predict
values beyond the range of the data used to construct the curve. |
y
6,000
5,000 [\
4,000
3,000
2,000 L 4
1,000
0

1970 1980 1990 2000 2010
FIGURE 1.54 Scatterplot with the
regression line and quadratic curves for
tuberculosis deaths in the United States,
based on Table 1.4 (Example 7).

Exercises m

Choosing a Viewing Window should give a picture_ of the oYerall behavior. of the func.tion.. There is
In Exercises 1-4, use graphing software to determine which of the more than one Ch.OlCC, but incorrect choices can miss important
given viewing windows displays the most appropriate graph of the aspects of the function.
. . 3 2
specified function. 5. f) = x* — 48 + 15 6. f(x) = S S
1. f(x) = x* — 7x* + 6x 3 2
a. [—1,1]by [—1,1] b. [-2,2] by [=5,5] 7. f(x) =x = 5x* + 10 8. f(x) = 43 — x*
¢. [—10,10] by [—10,10] d. [—5,5] by [—25,15] 9. f() =xV9 - 10. f(x) = x°(6 — x?)
2. f(x) = x* — 4x? — 4x + 16 11. y = 2x — 3223 12. y = X132 — 8)
a. [—1,1] by [-5,5] b. [—3,3] by [—10,10] 13 y = 5077 = 2x 4. y =55 —x)
c. [=5,5]by [—10,20]  d. [—20,20] by [—100, 100] 15. y = |¥* — 1] 16. y = |* — x|
3 f0=5+12x— & _x+3 —q o
. llbx )lcl b 5,5]b 10, 10 v Y2 R v
a. [—L1]by [~ 1] - [=5,5] by [~10,10] 19, oy - EE2 20, f =¥ 1
c. [—4,4]by [—20,220] d. [—4,5] by [—15,25] - 211 . 211
4. = V5 + 4x —
e, T 2. f) = 5
a. [—2,2] by [—2,2] b. [—2,6] by [—1,4] . 2 - x-6 . 2—9
c. [—3,7] by [0,10] d. [—10,10] by [—10,10] 62 — 15x + 6 e
- _— . 23 f) =" 5 24. f(x) =
Finding a Viewing Window 4x* — 10x x—2
In Exercises 5-30, find an appropriate graphing software viewing win- 25. y = sin 250x 26. y = 3 cos 60x

dow for the given function and use it to display its graph. The window



_ X = Lan(X
27. y = COS(SO) 28. y = 105m<10>

29, y = x + “sin30x 30. y

0 X2+ Lcos 100x

50

Use graphing software to graph the functions specified in Exercises 31-36.
Select a viewing window that reveals the key features of the function.

31. Graph the lower half of the circle defined by the equation
X2+ 2x =4+ 4y — 2

32. Graph the upper branch of the hyperbola y> — 16x* = 1.

33. Graph four periods of the function f(x) = —tan 2x.

X

2+1.

34. Graph two periods of the function f(x) = 3cot

35. Graph the function f(x) = sin 2x + cos 3x.
36. Graph the function f(x) = sin’x.

Regression Lines or Quadratic Curve Fits

Use a graphing utility to find the regression curves specified in Exer-

cises 37-42.

37. Weight of males The table shows the average weight for men
of medium frame based on height as reported by the Metropolitan
Life Insurance Company (1983).

Height (in.) Weight (Ib) | Height (in.) Weight (Ib)

62 136 70 157

63 138 71 160

64 141 72 163.5

65 141.5 73 167

66 145 74 171

67 148 75 174.5

68 151 76 179

69 154

a. Make a scatterplot of the data.

b. Find and plot a regression line, and superimpose the line on
the scatterplot.

¢. Does the regression line reasonably capture the trend of the
data? What weight would you predict for a male of height 6'7"?

38. Federal minimum wage The federal minimum hourly wage
rates have increased over the years. The table shows the rates at
the year in which they first took effect, as reported by the U.S.

Department of Labor.

Year Wage ($) Year Wage ($)
1978 2.65 1996 4.75
1979 2.90 1997 5.15
1980 3.10 2007 5.85
1981 3.35 2008 6.55
1990 3.80 2009 7.25
1991 4.25

a. Make a scatterplot of the data.

b. Find and plot a regression line, and superimpose the line on
the scatterplot.

¢. What do you estimate as the minimum wage for the year 2018?
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39. Median home price The median price of single-family homes
in the United States increased quite consistently during the years
1976-2000. Then a housing “bubble” occurred for the years
2001-2010, in which prices first rose dramatically for 6 years and
then dropped in a steep “crash” over the next 4 years, causing
considerable turmoil in the U.S. economy. The table shows some
of the data as reported by the National Association of Realtors.

Year Price ($) Year Price ($)
1976 37400 2000 122600
1980 56250 2002 150000
1984 66500 2004 187500
1988 87500 2006 247500
1992 95800 2008 183300
1996 104200 2010 162500

a. Make a scatterplot of the data.

b. Find and plot the regression line for the years 1976-2002,
and superimpose the line on the scatterplot in part (a).

c. How would you interpret the meaning of a data point in the
housing “bubble”?

40. Average energy prices The table shows the average residential
and transportation prices for energy consumption in the United
States for the years 2000-2008, as reported by the U.S. Depart-
ment of Energy. The prices are given as dollars paid for one mil-
lion BTU (British thermal units) of consumption.

Year  Residential (§) Transportation ($)

2000 15 10
2001 16 10
2002 15 9
2003 16 11
2004 18 13
2005 19 16
2006 21 19
2007 21 20
2008 23 25

a. Make a scatterplot of the data sets.

b. Find and plot a regression line for each set of data points, and
superimpose the lines on their scatterplots.

c. What do you estimate as the average energy price for resi-
dential and transportation use for a million BTU in year
20177

d. In looking at the trend lines, what do you conclude about the
rising costs of energy across the two sectors of usage?

41. Global annual mean surface air temperature A NASA God-
dard Institute for Space Studies report gives the annual global
mean land-ocean temperature index for the years 1880 to the
present. The index number is the difference between the mean
temperature over the base years 1951-1980 and the actual tem-
perature for the year recorded. For the recorded year, a positive
index is the number of degrees Celsius above the base; a negative
index is the number below the base. The table lists the index for
the years 1940-2010 in 5-year intervals, reported in the NASA
data set.



36 Chapter 1: Functions

Year  Index (°C) Year  Index (°C) 42. Growth of yeast ce?ls The tabl(.t shows the amount gf yfaast
cells (measured as biomass) growing over a 7-hour period in a
1940 0.04 1980 0.20 nutrient, as recorded by R. Pearl (1927) during a well-known bio-
1945 0.06 1985 0.05 logical experiment.
1950 —0.16 1990 0.36
1955 —0.11 1995 0.39 Hour o 1 2 3 4 5 6 7
1960 —0.01 2000 0.35 Biomass 9.6 183 200 472 711 119.1 1746 2573
1965 —0.12 2005 0.62
1970 0.03 2010 0.63 a. Make a scatterplot of the data.
1975 —0.04 b. Find and plot a regression quadratic, and superimpose the
quadratic curve on the scatterplot.
a. Make a scatterplot of the data. ¢. What do you estimate as the biomass of yeast in the nutrient
b. Find and plot a regression line, and superimpose the line on after 11 hours?
the scatterplot. d. Do you think the quadratic curve would provide a good estimate
c¢. Find and plot a quadratic curve that captures the trend of the of the biomass after 18 hours? Give reasons for your answer.

data, and superimpose the curve on the scatterplot.

1 .5 Exponential Functions

Don’t confuse the exponential 2* with
the power function x?. In the exponen-

tial, the variable x is in the exponent,

whereas the variable x is the base in the

power function.

Exponential functions are among the most important in mathematics and occur in a wide
variety of applications, including interest rates, radioactive decay, population growth, the
spread of a disease, consumption of natural resources, the earth’s atmospheric pressure, tem-
perature change of a heated object placed in a cooler environment, and the dating of fossils.
In this section we introduce these functions informally, using an intuitive approach. We give
arigorous development of them in Chapter 7, based on important calculus ideas and results.

Exponential Behavior

When a positive quantity P doubles, it increases by a factor of 2 and the quantity becomes
2P, If it doubles again, it becomes 2(2P) = 2P, and a third doubling gives 2(22P) = 23P.
Continuing to double in this fashion leads us to consider the function f(x) = 2*. We call
this an exponential function because the variable x appears in the exponent of 2*. Func-
tions such as g(x) = 10* and h(x) = (1/2)* are other examples of exponential functions.
In general, if @ # 1 is a positive constant, the function

fx) =a*, a>0

is the exponential function with base a.

EXAMPLE 1 In 2014, $100 is invested in a savings account, where it grows by
accruing interest that is compounded annually (once a year) at an interest rate of 5.5%.
Assuming no additional funds are deposited to the account and no money is withdrawn,
give a formula for a function describing the amount A in the account after x years have
elapsed.

Solution If P = 100, at the end of the first year the amount in the account is the original
amount plus the interest accrued, or

55\, _ _
P+ <100>P = (1 + 0.055)P = (1.035)P.

At the end of the second year the account earns interest again and grows to

(1 + 0.055) - (1.055P) = (1.055)*P = 100 - (1.055). P =100
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FIGURE 1.55 Graphs of exponential

functions.
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Continuing this process, after x years the value of the account is
A = 100~ (1.055)~.

This is a multiple of the exponential function with base 1.055. Table 1.5 shows the
amounts accrued over the first four years. Notice that the amount in the account each year
is always 1.055 times its value in the previous year.

TABLE 1.5 Savings account growth

Year Amount (dollars) Increase (dollars)
2014 100

2015 100(1.055) = 105.50 5.50

2016 100(1.055)> = 111.30 5.80

2017 100(1.055)% = 117.42 6.12

2018 100(1.055)* = 123.88 6.46

In general, the amount after x years is given by P(1 + r)*, where r is the interest rate
(expressed as a decimal). [ |

For integer and rational exponents, the value of an exponential function f(x) = a* is
obtained arithmetically as follows. If x = n is a positive integer, the number @" is given by
multiplying a by itself n times:

a" =a+*a* - *q.
L
n factors
If x = 0, then a® = 1, and if x = —n for some positive integer n, then

If x

1 /n for some positive integer n, then
alln = /a,

which is the positive number that when multiplied by itself n times gives a. If x = p/q is
any rational number, then

ol = Ve = (Va.

If x is irrational, the meaning of a* is not so clear, but its value can be defined by con-
sidering values for rational numbers that get closer and closer to x. This informal approach
is based on the graph of the exponential function, as we are about to describe. In Chapter 7
we define the meaning in a rigorous way.

We displayed the graphs of several exponential functions in Section 1.1, and show
them again in Figure 1.55. These graphs indicate the values of the exponential functions
for all real inputs x. The value at an irrational number x is chosen so that the graph of a*
has no “holes” or “jumps.” Of course, these words are not mathematical terms, but they do
convey the informal idea. We mean that the value of a*, when x is irrational, is chosen so
that the function f(x) = a* is continuous, a notion that will be carefully explored in the
next chapter. This choice ensures the graph retains its increasing behavior when a > 1, or
decreasing behavior when 0 < a < 1 (see Figure 1.55).

Arithmetically, the graphical idea can be described in the following way, using the
exponential function f(x) = 2* as an illustration. Any particular irrational number, say
x = \5 has a decimal expansion

V3 = 1.732050808 . . ..
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TABLE 1.6 Values of 2V3 for
rational r closer and closer to\/3

r 2"
1.0 2.000000000
1.7 3.249009585
1.73 3.317278183
1.732 3.321880096
1.7320 3.321880096
1.73205 3.321995226
1.732050 3.321995226
1.7320508 3.321997068
1.73205080 3.321997068

1.732050808

3.321997086

We then consider the list of numbers, given as follows in the order of taking more and
more digits in the decimal expansion,

. . . 73 .
21’ 21 7, 21 73’ 21 732, 21 7 20’ 21 73205’ . (l)

We know the meaning of each number in list (1) because the successive decimal approxi-
mations to \/3 given by 1, 1.7, 1.73, 1.732, and so on, are all rational numbers. As these
decimal approximations get closer and closer to \/3, it seems reasonable that the list of
numbers in (1) gets closer and closer to some fixed number, which we specify to be 2V3,

Table 1.6 illustrates how taking better approximations to V3 gives better approxima-
tions to the number 23 =~ 3.321997086. It is the completeness property of the real num-
bers (discussed briefly in Appendix 7) which guarantees that this procedure gives a single
number we define to be 23 (although it is beyond the scope of this text to give a proof). In
a similar way, we can identify the number 2* (or a*, a > 0) for any irrational x. By identi-
fying the number a* for both rational and irrational x, we eliminate any “holes” or “gaps” in
the graph of @*. In practice you can use a calculator to find the number a* for irrational x by
taking successive decimal approximations to x and creating a table similar to Table 1.6.

Exponential functions obey the familiar rules of exponents listed below. It is easy to
check these rules using algebra when the exponents are integers or rational numbers. We
prove them for all real exponents in Chapters 4 and 7.

Rules for Exponents
If a > 0 and b > 0, the following rules hold true for all real numbers x and y.

X y x+y ax x—y
1. - a’ = a 2.;=a«

3. (&) = (&) = a”

a _ (a)
s &~ (9)

4. a*- b* = (ab)*

EXAMPLE 2  Weillustrate using the rules for exponents to simplify numerical expressions.
1. 3141,30.7 — 31.1+0.7 — 31.8 Rule 1
(Vio)

2. = (V10)’™" = (V10)) =10 Rue2

V10 ( ) ( ) uie
3. (5V2)V2=5V2 V2= 52 =25 Rule 3
4., 77-8™ = (56)" Rule 4

4 1/2 _ 41/2 ) i
S. <9) = W = § Rule 5 [ |

The Natural Exponential Function e*

The most important exponential function used for modeling natural, physical, and economic
phenomena is the natural exponential function, whose base is the special number e.
The number e is irrational, and its value is 2.718281828 to nine decimal places. (In Sec-
tion 3.8 we will see a way to calculate the value of e.) It might seem strange that we would
use this number for a base rather than a simple number like 2 or 10. The advantage in
using e as a base is that it simplifies many of the calculations in calculus.

If you look at Figure 1.55a you can see that the graphs of the exponential functions
y = a* get steeper as the base a gets larger. This idea of steepness is conveyed by the slope
of the tangent line to the graph at a point. Tangent lines to graphs of functions are defined
precisely in the next chapter, but intuitively the tangent line to the graph at a point is a line
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y — X y y:3x

m=1.1

0
(a) (b) ()

FIGURE 1.56 Among the exponential functions, the graph of y = ¢* has the property that the
slope m of the tangent line to the graph is exactly 1 when it crosses the y-axis. The slope is smaller
for a base less than e, such as 2%, and larger for a base greater than e, such as 3*.

that just touches the graph at the point, like a tangent to a circle. Figure 1.56 shows the
slope of the graph of y = a* as it crosses the y-axis for several values of a. Notice that the
slope is exactly equal to 1 when a equals the number e. The slope is smaller than 1 if
a < e, and larger than 1 if a > e. This is the property that makes the number e so useful
in calculus: The graph of y = ¢* has slope 1 when it crosses the y-axis.

Exponential Growth and Decay

The exponential functions y = ¢**, where k is a nonzero constant, are frequently used for
modeling exponential growth or decay. The function y = y, e is a model for exponential
growth if £ > 0 and a model for exponential decay if £ < 0. Here y, represents a con-
stant. An example of exponential growth occurs when computing interest compounded
continuously modeled by y = P-¢”, where P is the initial monetary investment, r is the
interest rate as a decimal, and ¢ is time in units consistent with r. An example of exponen-
tial decay is the model y = A - ¢ 2107 which represents how the radioactive isotope
carbon-14 decays over time. Here A is the original amount of carbon-14 and ¢ is the time in
years. Carbon-14 decay is used to date the remains of dead organisms such as shells,
seeds, and wooden artifacts. Figure 1.57 shows graphs of exponential growth and expo-
nential decay.

20

15

(a) (b)

FIGURE 1.57 Graphs of (a) exponential growth, X = 1.5 > 0, and (b) exponential decay,
k=-12<0.

EXAMPLE 3 Investment companies often use the model y = Pe'’ in calculating the
growth of an investment. Use this model to track the growth of $100 invested in 2014 at an
annual interest rate of 5.5%.

Solution Let t = O represent 2014, t = 1 represent 2015, and so on. Then the exponen-
tial growth model is y(f) = Pe", where P = 100 (the initial investment), r = 0.055 (the
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annual interest rate expressed as a decimal), and ¢ is time in years. To predict the amount in
the account in 2018, after four years have elapsed, we take ¢+ = 4 and calculate

(4) = 10060‘055(4)
= 100¢%22

= 124.61. Nearest cent using calculator

This compares with $123.88 in the account when the interest is compounded annually
from Example 1. |

EXAMPLE 4  Laboratory experiments indicate that some atoms emit a part of their
mass as radiation, with the remainder of the atom re-forming to make an atom of some
new element. For example, radioactive carbon-14 decays into nitrogen; radium eventually
decays into lead. If y, is the number of radioactive nuclei present at time zero, the number
still present at any later time ¢ will be

y = ye ", r>0.

The number r is called the decay rate of the radioactive substance. (We will see how this
formula is obtained in Section 7.2.) For carbon-14, the decay rate has been determined
experimentally to be about r = 1.2 X 10~* when ¢ is measured in years. Predict the per-
cent of carbon-14 present after 866 years have elapsed.

Solution If we start with an amount y, of carbon-14 nuclei, after 866 years we are left
with the amount

y(866) =y 12X 1074 (866)
(0.901)yy. Calculator evaluation

U

That is, after 866 years, we are left with about 90% of the original amount of carbon-14,
so about 10% of the original nuclei have decayed. In Example 7 in the next section, you
will see how to find the number of years required for half of the radioactive nuclei present
in a sample to decay (called the half-life of the substance). |

You may wonder why we use the family of functions y = ¢** for different values of the
constant k instead of the general exponential functions y = a*. In the next section, we show
that the exponential function a* is equal to ¢** for an appropriate value of k. So the formula
y = e covers the entire range of possibilities, and we will see that it is easier to use.

Exercises m

Sketching Exponential Curves Applying the Laws of Exponents
In Exercises 1-6, sketch the given curves together in the appropriate Use the laws of exponents to simplify the expressions in Exercises
coordinate plane and label each curve with its equation. 11-20.
L y=2y=4y=3%y=(/5" 1. 16%- 16717 12. 913910
;= 3y = QX y — O — X 4.2 5/3
2. 3y 8,y 27y (1/4) 13-% 14.327/3
3.y=2"andy = -2 4. y=3"andy = -3 4 3
5.y=¢andy = 1/¢ 6. y=—¢"andy = —¢™* 15. (251/8)4 16. (13\6)\/2/2
In each of Exercises 7-10, sketch the shifted exponential curves. 17. 2V3.7V3 18. ( \6)1/ 2 (v 12)1/2
— X _ — X _ 4 2
7. y=2 landy =2 1 19. (L> 20. (é)
8. y=3+2andy=3"+2 V2 :

9. y=1—¢e‘andy=1—¢"
10. y=—-1—¢'andy=—1—¢*



Composites Involving Exponential Functions
Find the domain and range for each of the functions in Exercises
21-24.

2. fr) = —1

22. g(t) = cos(e™)

31.
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Radioactive decay The half-life of phosphorus-32 is about
14 days. There are 6.6 grams present initially.

a. Express the amount of phosphorus-32 remaining as a func-
tion of time .

2t b. When will there be 1 gram remaining?
23. g = V1+ 3" 24, f(x) = 3 o 32. If Jean invests $2300 in a retirement account with a 6% interest rate
1 —e

Applications

In Exercises 25-28, use graphs to find approximate solutions.

25. 2 =5 26. ¢* =4
27. 3*=05=0 28. 3 — 27" =

In Exercises 29-36, use an exponential model and a graphing calcula-

tor to estimate the answer in each problem.

29. Population growth The population of Knoxville is 500,000
and is increasing at the rate of 3.75% each year. Approximately
when will the population reach 1 million?

30. Population growth The population of Silver Run in the year
1890 was 6250. Assume the population increased at a rate of
2.75% per year.

a. Estimate the population in 1915 and 1940.
b. Approximately when did the population reach 50,000?

1 6 Inverse Functions and Logarithms

33.

34.

35.

36.

compounded annually, how long will it take until Jean’s account
has a balance of $4150?

Doubling your money Determine how much time is required
for an investment to double in value if interest is earned at the rate
of 6.25% compounded annually.

Tripling your money Determine how much time is required
for an investment to triple in value if interest is earned at the rate
of 5.75% compounded continuously.

Cholera bacteria Suppose that a colony of bacteria starts with
1 bacterium and doubles in number every half hour. How many
bacteria will the colony contain at the end of 24 hr?

Eliminating a disease Suppose that in any given year the num-
ber of cases of a disease is reduced by 20%. If there are 10,000
cases today, how many years will it take

a. toreduce the number of cases to 1000?

b. to eliminate the disease; that is, to reduce the number of cases
to less than 1?

A function that undoes, or inverts, the effect of a function f is called the inverse of f.
Many common functions, though not all, are paired with an inverse. In this section we
present the natural logarithmic function y = In x as the inverse of the exponential function
y = ¢€*, and we also give examples of several inverse trigonometric functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some
functions assign the same range value to more than one element in the domain. The func-
tion f(x) = x? assigns the same value, 1, to both of the numbers —1 and +1; the sines of
7 /3 and 27 /3 are both V3 /2. Other functions assume each value in their range no more
than once. The square roots and cubes of different numbers are always different. A func-
tion that has distinct values at distinct elements in its domain is called one-to-one. These
functions take on any one value in their range exactly once.

DEFINITION A function f(x) is one-to-one on a domain D if f(x;) # f(x,)
whenever x; # x, in D.

EXAMPLE 1 Some functions are one-to-one on their entire natural domain. Other
functions are not one-to-one on their entire domain, but by restricting the function to a
smaller domain we can create a function that is one-to-one. The original and restricted
functions are not the same functions, because they have different domains. However, the
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(a) One-to-one: Graph meets each
horizontal line at most once.

P

Same y-value
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Same y-value
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-1 o] 1 ™ 5m N
6 6/
y =sinx

(b) Not one-to-one: Graph meets one or
more horizontal lines more than once.
FIGURE 1.58 (a)y = x*and y = Vx
are one-to-one on their domains (—00, 00)
and [0,00). (b) y = x* and y = sin x are
not one-to-one on their domains (—00, 00).

Caution Do not confuse the inverse
function f~! with the reciprocal

function 1/f.

two functions have the same values on the smaller domain, so the original function is an
extension of the restricted function from its smaller domain to the larger domain.

@ fix) = V/x is one-to-one on any domain of nonnegative numbers because \/;1 #
\/;2 whenever x; # x,.

(b) g(x) = sin x isnot one-to-one on the interval [ 0, 7 | because sin (7/6) = sin (57 /6).
In fact, for each element x, in the subinterval [0, 7/2) there is a corresponding ele-
ment x, in the subinterval (7 /2, 7] satisfying sin x; = sin x,, so distinct elements in
the domain are assigned to the same value in the range. The sine function is one-to-
one on [0, 7/2], however, because it is an increasing function on [0, /2] giving
distinct outputs for distinct inputs. |

The graph of a one-to-one function y = f(x) can intersect a given horizontal line at
most once. If the function intersects the line more than once, it assumes the same y-value
for at least two different x-values and is therefore not one-to-one (Figure 1.58).

The Horizontal Line Test for One-to-One Functions

A function y = f(x) is one-to-one if and only if its graph intersects each hori-
zontal line at most once.

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the
function can be inverted to send an output back to the input from which it came.

DEFINITION  Suppose that f is a one-to-one function on a domain D with range
R. The inverse function ! is defined by

by =a if f) =b.
The domain of £~! is R and the range of f~!is D.

The symbol ™' for the inverse of f is read “f inverse.” The “—1” in f~! is not an
exponent; f~!(x) does not mean 1/f(x). Notice that the domains and ranges of f and £~
are interchanged.

EXAMPLE 2 Suppose a one-to-one function y = f(x) is given by a table of values

x [tz 3451678 |
fooy | 3 | as | 7] 105 15 ] 205 | 27 | 345 |

A table for the values of x = f~!(y) can then be obtained by simply interchanging the val-
ues in the columns (or rows) of the table for f:

y |3|4.5|7|10.5|15|20.5|27|34.5|

If we apply f to send an input x to the output f(x) and follow by applying f ! to f(x),
we get right back to x, just where we started. Similarly, if we take some number y in the
range of f, apply f~' to it, and then apply f to the resulting value f~!(y), we get back the
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value y with which we began. Composing a function and its inverse has the same effect as
doing nothing.

(f'ef)(x) =x,  forall x in the domain of f
(fefHo =y, for all y in the domain of f~! (or range of f)

Only a one-to-one function can have an inverse. The reason is that if f(x;) = y and
f(x,) =y for two distinct inputs x, and x,, then there is no way to assign a value to f~'(y)
that satisfies both f7'(f(x,)) = x, and f~'(f(x,)) = x,.

A function that is increasing on an interval satisfies the inequality f(x,) > f(x;) when
X, > X1, S0 it is one-to-one and has an inverse. Decreasing functions also have an inverse.
Functions that are neither increasing nor decreasing may still be one-to-one and have an
inverse, as with the function f(x) = 1/x for x # 0 and f(0) = 0, defined on (—00, c0)
and passing the horizontal line test.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a function from
its graph, we start at a point x on the x-axis, go vertically to the graph, and then move horizon-
tally to the y-axis to read the value of y. The inverse function can be read from the graph by
reversing this process. Start with a point y on the y-axis, go horizontally to the graph of
y = f(x), and then move vertically to the x-axis to read the value of x = f~!(y) (Figure 1.59).

y = fx) x =17

RANGE OF f'
<
DOMAIN OF f !
e

0 X 0 x o
DOMAIN OF f RANGE OF [~

(a) To find the value of fat x, we start at x, (b) The graph of f~!is the graph of f, but

go up to the curve, and then over to the y-axis. with x and y interchanged. To find the x that
gave y, we start at y and go over to the curve
and down to the x-axis. The domain of f~! is the
range of f. The range of £~ is the domain of f.

X y
n
T -1
S - y=rrm
< S
Z 1
2 2
]
Z
<
-4
o)’
7 ' 0 '
-1 -1
e DOMAIN OF f' DOMAIN OF f
//
7
7
7
(c) To draw the graph of £~ in the (d) Then we interchange the letters x and y.
more usual way, we reflect the We now have a normal-looking graph of f~!
system across the line y = x. as a function of x.

FIGURE 1.59 The graph of y = f~!(x) is obtained by reflecting the graph of y = f(x)
about the line y = x.
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FIGURE 1.60 Graphing

f@) = (1/2)x + land f7'(x) =2x — 2
together shows the graphs’ symmetry with
respect to the line y = x (Example 3).

Y]

FIGURE 1.61 The functions y = Vx
and y = x?, x = 0, are inverses of one
another (Example 4).

We want to set up the graph of f~! so that its input values lie along the x-axis, as is
usually done for functions, rather than on the y-axis. To achieve this we interchange the x-
and y-axes by reflecting across the 45° line y = x. After this reflection we have a new
graph that represents f~!. The value of f~'(x) can now be read from the graph in the usual
way, by starting with a point x on the x-axis, going vertically to the graph, and then horizon-
tally to the y-axis to get the value of f~!(x). Figure 1.59 indicates the relationship between
the graphs of f and f~'. The graphs are interchanged by reflection through the line y = x.

The process of passing from f to f ! can be summarized as a two-step procedure.

1. Solve the equation y = f(x) for x. This gives a formula x = f~!(y) where x is
expressed as a function of y.

2. Interchange x and y, obtaining a formula y = f~!(x) where f~! is expressed in the
conventional format with x as the independent variable and y as the dependent variable.

EXAMPLE 3 Find the inverse of y = l)c + 1, expressed as a function of x.

2
Solution
) 1 The graph is a straight line satisfying the
1. Solve for x in terms of y: y = Ex + 1 horizontal line test (Fig. 1.60).
2y =x+ 2
x =2y — 2.

2. Interchange x andy: y = 2x — 2.

The inverse of the function f(x) = (1/2)x + 1 is the function f~'(x) = 2x — 2. (See
Figure 1.60.) To check, we verify that both composites give the identity function:

f_l(f(x))=2<;x+1)—2=x+2—2=x

f(f_](x)):%(Zx—Z)—i-l:x—1+1:x, m

EXAMPLE 4 Find the inverse of the function y = x?, x = 0, expressed as a function
of x.

Solution For x = 0, the graph satisfies the horizontal line test, so the function is one-to-

one and has an inverse. To find the inverse, we first solve for x in terms of y:
y=x
\[y = \/72 = ‘x| =X |x| = xbecause x = 0
‘We then interchange x and y, obtaining
y = Vax.

The inverse of the function y = x%, x = 0, is the function y = Vx (Figure 1.61).

Notice that the function y = x% x = 0, with domain restricted to the nonnegative real
numbers, is one-to-one (Figure 1.61) and has an inverse. On the other hand, the function y = x2,
with no domain restrictions, is not one-to-one (Figure 1.58b) and therefore has no inverse. M

Logarithmic Functions

If a is any positive real number other than 1, the base a exponential function f(x) = a* is one-
to-one. It therefore has an inverse. Its inverse is called the logarithm function with base a.

DEFINITION The logarithm function with base a, y = log,x, is the inverse of
the base a exponential function y = a*(a > 0,a # 1).




(a)

(b)

FIGURE 1.62 (a) The graph of 2* and
its inverse, log, x. (b) The graph of ¢*
and its inverse, In x.

HISTORICAL BIOGRAPHY*
John Napier

(1550-1617)
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The domain of log,x is (0, o0), the range of a'. The range of log, x is (—00, 00), the
domain of a*.

Figure 1.23 in Section 1.1 shows the graphs of four logarithmic functions with a > 1.
Figure 1.62a shows the graph of y = log,x. The graph of y = a,a > 1, increases rap-
idly for x > 0, so its inverse, y = log,x, increases slowly for x > 1.

Because we have no technique yet for solving the equation y = a* for x in terms of y,
we do not have an explicit formula for computing the logarithm at a given value of x. Nev-
ertheless, we can obtain the graph of y = log,x by reflecting the graph of the exponential
y = a* across the line y = x. Figure 1.62 shows the graphs for @ = 2 and a = e.

Logarithms with base 2 are commonly used in computer science. Logarithms with
base e and base 10 are so important in applications that many calculators have special keys
for them. They also have their own special notation and names:

log,x is written as Inx.

logox is written as logux.

The function y = In x is called the natural logarithm function, and y = log x is
often called the common logarithm function. For the natural logarithm,

Inx=y & & =ux

In particular, if we set x = e, we obtain

Ine=1

1

because ¢' = e.

Properties of Logarithms

Logarithms, invented by John Napier, were the single most important improvement in
arithmetic calculation before the modern electronic computer. What made them so useful
is that the properties of logarithms reduce multiplication of positive numbers to addition of
their logarithms, division of positive numbers to subtraction of their logarithms, and expo-
nentiation of a number to multiplying its logarithm by the exponent.

We summarize these properties for the natural logarithm as a series of rules that we
prove in Chapter 3. Although here we state the Power Rule for all real powers r, the case
when r is an irrational number cannot be dealt with properly until Chapter 4. We also
establish the validity of the rules for logarithmic functions with any base a in Chapter 7.

THEOREM 1—Algebraic Properties of the Natural Logarithm For any num-
bers b > 0 and x > 0, the natural logarithm satisfies the following rules:

1. Product Rule: Inbx = Inb + Inx

2. Quotient Rule: lnﬁ% = Inb — Inx

3. Reciprocal Rule: ln% = —Inx Rule 2 with b = 1
4. Power Rule: Inx" = rlnx

*To learn more about the historical figures mentioned in the text and the development of many major
elements and topics of calculus, visit www.aw.com/thomas.
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EXAMPLE 5 Here we use the properties in Theorem 1 to simplify three expressions.

(a) In4 + Insinx = In(4 sin x) Product Rule
(b) lnzxxt 13 =In(x+1)—In2x — 3) Quotient Rule
(c) ln% = —In8 Reciprocal Rule
=—In2* = —-31n2 Power Rule |

Because a* and log, x are inverses, composing them in either order gives the identity function.

Inverse Properties for a* and log, x
1. Base a: a'°&* = x, log,a* = x, a>0,a# 1,x>0

2. Base e: e"* = x, Ine* = x, x>0

Substituting a* for x in the equation x = ¢™* enables us to rewrite a* as a power of e:

at = " Substitute @ for x in x = e~
= ¢¥hna Power Rule for logs
= enax, Exponent rearranged

Thus, the exponential function a* is the same as ¢ for k = Ina.

Every exponential function is a power of the natural exponential function.
at = e* Ina

That is, a* is the same as e* raised to the power Ina: a* = € for k = In a.

For example,
X = e(an)x = ¢ ln2’ and 5—3x — e(lnS)(—3x) — e—3x 1n5-
Returning once more to the properties of a* and log, x, we have
Inx = In(a'°%) Inverse Property for a* and log, x
= (log,x)(Ina). Power Rule for logarithms, with r = log, x

Rewriting this equation as log,x = (Inx)/(Ina) shows that every logarithmic function is a
constant multiple of the natural logarithm In x. This allows us to extend the algebraic
properties for Inx to log, x. For instance, log, bx = log,b + log, x.

Change of Base Formula
Every logarithmic function is a constant multiple of the natural logarithm.

_ Inx
log,x = na (a>0,a # 1)

Applications
In Section 1.5 we looked at examples of exponential growth and decay problems. Here we

use properties of logarithms to answer more questions concerning such problems.

EXAMPLE 6 If $1000 is invested in an account that earns 5.25% interest compounded
annually, how long will it take the account to reach $2500?
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FIGURE 1.63 Amount of polo-

nium-210 present at time 7, where yq
represents the number of radioactive
atoms initially present (Example 7).
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Solution From Example 1, Section 1.5, with P = 1000 and r = 0.0525, the amount in
the account at any time ¢ in years is 1000(1.0525)", so to find the time ¢ when the account
reaches $2500 we need to solve the equation

1000(1.0525)" = 2500.

Thus we have

(1.0525) = 2.5 Divide by 1000.
In(1.0525) = In2.5 Take logarithms of both sides.
tIn 1.0525 = In 2.5 Power Rule
t= % =~ 179 Values obtained by calculator
The amount in the account will reach $2500 in 18 years, when the annual interest payment
is deposited for that year. |

EXAMPLE 7 The half-life of a radioactive element is the time required for half of the
radioactive nuclei present in a sample to decay. It is a notable fact that the half-life is a
constant that does not depend on the number of radioactive nuclei initially present in the
sample, but only on the radioactive substance.

To see why, let y, be the number of radioactive nuclei initially present in the sample.
Then the number y present at any later time ¢ will be y = y,e . We seek the value of ¢ at
which the number of radioactive nuclei present equals half the original number:

a1

Yoe ' = 70
e—kt — %
—kt = ln% = —In2 Reciprocal Rule for logarithms
In2
t= 7 (D)

This value of # is the half-life of the element. It depends only on the value of k; the number
Yo does not have any effect.

The effective radioactive lifetime of polonium-210 is so short that we measure it in
days rather than years. The number of radioactive atoms remaining after # days in a sample
that starts with y, radioactive atoms is

y = yoe—5><]0*3t.
The element’s half-life is
Half-life = % Eq. (1)
= L The k from polonium’s decay equation
5% 1073 ’ S
~ 139 days.

This means that after 139 days, 1/2 of y, radioactive atoms remain; after another
139 days (or 278 days altogether) half of those remain, or 1/4 of y, radioactive atoms
remain, and so on (see Figure 1.63). [ |

Inverse Trigonometric Functions

The six basic trigonometric functions of a general radian angle x were reviewed in Section 1.3.
These functions are not one-to-one (their values repeat periodically). However, we can
restrict their domains to intervals on which they are one-to-one. The sine function
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y
x =siny
7| y = sin"lx
2 Domain: —l=x=1
Range: —7/2 =y = 7/2
I I x
—1 1
_TL
2
FIGURE 1.64 The graph of y = sin™'x.
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x=siny
y =sin"x

P Domain: [—1, 1]

2 Range: [—m/2,7/2]
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FIGURE 1.65 The graphs of

(@) y =sinx,—7/2 =< x =< 7/2, and
(b) its inverse, y = sin~' x. The graph
of sin~!x, obtained by reflection across
the line y = x, is a portion of the curve
X = siny.

increases from —1 at x = —7/2 to +1 at x = 7 /2. By restricting its domain to the inter-
val [— /2, /2] we make it one-to-one, so that it has an inverse sin”!x (Figure 1.64).
Similar domain restrictions can be applied to all six trigonometric functions.

Domain restrictions that make the trigonometric functions one-to-one

y = sinx
Domain: [—/2, /2]
Range: [—1,1]

y

cotx

(=)
13
4444444:"_4444444

y = cotx
Domain: (0, 7r)
Range: (—00, 00)

y = cosx
Domain: [0, 7 ]
Range: [—1,1]

y = secx

Domain: [0, 7/2) U (7/2, 7]
Range: (—00,—1] U [1,00)

y = tanx
Domain: (— /2, 7/2)
Range: (—00, 00)

> CsC x

X

_1_

[
\
\
[
[
[
[ [
1 1
_T 0 ™
2 2
[ [
[ [
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[ [
[ [

y =cscx
Domain: [—/2,0) U (0, 7/2]
Range: (—00,—1] U [1,00)

Since these restricted functions are now one-to-one, they have inverses, which we

denote by

1

y =sin 'x
y = cos 'x
y = tan'x
y = cot 'x
y = sec 'x
y = csc'x

or

or

or

or

or

or

y = arcsin x
y = arccos x
y = arctan x
y = arccot x
y = arcsec x

Yy = arccesc x

These equations are read “y equals the arcsine of x” or “y equals arcsin x”” and so on.

Caution

The —1 in the expressions for the inverse means “inverse.” It does not mean

reciprocal. For example, the reciprocal of sin xis (sin x)™' = 1/sinx = csc x.

The graphs of the six inverse trigonometric functions are obtained by reflecting the
graphs of the restricted trigonometric functions through the line y = x. Figure 1.65b
shows the graph of y = sin"!'x and Figure 1.66 shows the graphs of all six functions. We

now take a closer look at two of these functions.

The Arcsine and Arccosine Functions

We define the arcsine and arccosine as functions whose values are angles (measured in
radians) that belong to restricted domains of the sine and cosine functions.



The “Arc” in Arcsine and Arccosine
For a unit circle and radian angles, the
arc length equation s = rf becomes

s = 6, so central angles and the arcs
they subtend have the same measure.
If x = siny, then, in addition to being
the angle whose sine is x, y is also the
length of arc on the unit circle that
subtends an angle whose sine is x. So
we call y “the arc whose sine is x.”

y

Arc whose sine is x

Angle whose
sine is x

\
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cosine is x

of \ X
Angle whose
cosine is x
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FIGURE 1.66 Graphs of the six basic inverse trigonometric functions.
DEFINITION
y = sin~lx is the number in [~ /2, w/2] for which siny = x.
y = cos™lx is the numberin [0, 7] for which cos y = x.

The graph of y = sin~!x (Figure 1.65b) is symmetric about the origin (it lies along the

graph of x = sin y). The arcsine is therefore an odd function:

sin”!(—x) = —sin"lx.

The graph of y = cos™!x (Figure 1.67b) has no such symmetry.

EXAMPLE 8  Evaluate (a) sin™! <\/§> and (b) cos™! <_1).

Solution
(a) We see that

2

() -1

2

2

because sin(7/3) = \/3/2 and /3 belongs to the range [—/2, /2] of the arc-

sine function. See Figure 1.

(b) We have

68a.

because cos (27 /3) = —1/2 and 277 /3 belongs to the range [0, 7 ] of the arccosine

function. See Figure 1.68b.
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y y=cosx,0=x=m
Domain: [0, 7]
1 Range: [—1,1]

X =cosy
T
y= cos~lx
Domain: [—1, 1]
T Range: [0, ]
2
1 1 X
-1 0 1
(b)

Using the same procedure illustrated in Example 8, we can create the following table of
common values for the arcsine and arccosine functions.

x sin 'x cos x
V3/2 /3 /6
V2/2 /4 /4

1/2 /6 7/3
-1/2 —7/6 27 /3
-V2/2 —m/4 3 /4
-V3/2 —/3 5m/6
y y

2

FIGURE 1.67 The graphs of (a) y = cos x,

0 = x = 7, and (b) its inverse, y = cos~
The graph of cos™
across the line y = x, is a portion of the curve

X = cosy.

Tx.

! x, obtained by reflection

Chicago

FIGURE 1.

69 Diagram for drift correc-

tion (Example 9), with distances surrounded
to the nearest mile (drawing not to scale).

cos™(—x)

—1\—x
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FIGURE 1.68 Values of the arcsine and arccosine functions

(Example 8).
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During a 240 mi airplane flight from Chicago to St. Louis, after flying

180 mi the navigator determines that the plane is 12 mi off course, as shown in Figure
1.69. Find the angle a for a course parallel to the original correct course, the angle b, and
the drift correction angle ¢ = a + b.

Solution From the Pythagorean theorem and given information, we compute an approxi-
mate hypothetical flight distance of 179 mi, had the plane been flying along the original
correct course (see Figure 1.69). Knowing the flight distance from Chicago to St. Louis, we
next calculate the remaining leg of the original course to be 61 mi. Applying the Pythagorean
theorem again then gives an approximate distance of 62 mi from the position of the plane to

St. Louis. Finally, from Figure 1.69, we see that 180 sina = 12 and 62 sinb = 12, so

L 12

FIGURE 1.70 cos 'x and cos™!(—x) are
supplementary angles (so their sum is 7).

= sin 180 = 0.067 radian =~ 3.8°
b = sin' 12 < 0.195 radian ~ 11.2°
62
c=a+ b= 15° [ |
Identities Involving Arcsine and Arccosine
As we can see from Figure 1.70, the arccosine of x satisfies the identity
cos 'x + cos!(—x) = m, 3)
or
cos™'(—x) = 7 — cos”'x. 4)

Also, we can see from the triangle in Figure 1.71 that for x > 0,

sin"'x + coslx = 7/2. (5)
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Equation (5) holds for the other values of x in [—1, 1] as well, but we cannot conclude this

1 cos~Lx from the triangle in Figure 1.71. It is, however, a consequence of Equations (2) and (4)
x (Exercise 76).
sinlx The arctangent, arccotangent, arcsecant, and arccosecant functions are defined in Sec-

FIGURE 1.71 sin"'x and cos 'x are
complementary angles (so their sum is 7 /2).

Exercises m

Identifying One-to-One Functions Graphically
Which of the functions graphed in Exercises 1-6 are one-to-one, and
which are not?

1. ¥ 2.

<

y= —3x3

=)
|

—_

=

y =2 -

In Exercises 7-10, determine from its graph if the function is one-to-
one.

3—x, x<O0
7. f(x) = c=0

2x + 6, x=-3
s.f<x)—{ o
x=0

9. f(x) =
x+2’ x=0
2—x% x=1
10. f(x) = { > 1

tion 3.9. There we develop additional properties of the inverse trigonometric functions in a
calculus setting using the identities discussed here.

Graphing Inverse Functions

Each of Exercises 11-16 shows the graph of a function y = f(x).
Copy the graph and draw in the line y = x. Then use symmetry with
respect to the line y = x to add the graph of f~! to your sketch. (It is
not necessary to find a formula for f~1.) Identify the domain and
range of £

11. 12.
y y
1 y=fxy=1- —x>0
= flx) = ,x=0 L
y =1 ¥+ 1 : ./_
1 0 1 ’
1 X
0 1
13. 14.
y y
y = f(x) = sin x, y =f(x) = tanx,
LT =y=T - mT_ T
T=x=T 1 —ZT<a<l
T o T" '
2 2
_1_
15. 16.
y y
6 00 x+1, —-1=x=0
X) =
1 ’ —2+gx, 0<x<3
() =6 — 2x, 3
0=x=3 X
X
0 3

17. a. Graph the function f(x) =
metry does the graph have?

V1 — x%,0 = x = 1. What sym-

b. Show that f is its own inverse. (Remember that Va2 = xif
x=0.)

18. a. Graph the function f(x) =
graph have?

1/x. What symmetry does the

b. Show that f is its own inverse.
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Formulas for Inverse Functions
Each of Exercises 19-24 gives a formula for a function y = f(x) and
shows the graphs of f and f~!. Find a formula for f~! in each case.

19. fx)=x>*+1, x=0 20. fx)=x% x=0
y y

y =/

Y=\ 1k

1 y=f" o[ 1

I
0 1

y=f"w

21, fx) =x>—1 22, fy=x*—2x+1, x=1

y =/

)
1

Sy ;

1 X
23 f =+ 1% x=-1 24. fx) =x¥3, x=0
y y
vy =fx) y =)
| y=f")
/ ¥y =Jfx)
1
=T o] 1 * -
_1 — | X
0 1

Each of Exercises 25-36 gives a formula for a function y = f(x). In
each case, find f7!(x) and identify the domain and range of f~'. As a
check, show that f(f~'(x)) = £ 1(f(x)) = x.

25. f(x) =x° 26. fx) =x* x=0

27, f() = + 1 28. f(x) = (1/2x — 7/2

29. f(x) = 1/x%, x>0 30. f(x) =1/x3, x#0
L._x+3 - Vi

3. f) = T R W =

33, fx) =2 —2x, x=1 34, f(x) = 28 + 1)1/5
(Hint: Complete the square.)

x+ b
x—2

36. f(x) = x> — 2bx, b > 0 and constant, x < b

35, f(x) =

b > —2 and constant

Inverses of Lines
37. a. Find the inverse of the function f(x) = mx, where m is a con-
stant different from zero.

b. What can you conclude about the inverse of a function
y = f(x) whose graph is a line through the origin with a non-
zero slope m?

38. Show that the graph of the inverse of f(x) = mx + b, where m
and b are constants and m # 0, is a line with slope 1/m and
y-intercept —b /m.

39. a. Find the inverse of f(x) = x + 1. Graph f and its inverse

together. Add the line y = x to your sketch, drawing it with
dashes or dots for contrast.

b. Find the inverse of f(x) = x + b (b constant). How is the
graph of 7! related to the graph of f?

c¢. What can you conclude about the inverses of functions whose
graphs are lines parallel to the line y = x?

40. a. Find the inverse of f(x) = —x + 1. Graph the line
y = —x + 1 together with the line y = x. At what angle do
the lines intersect?

b. Find the inverse of f(x) = —x + b (b constant). What angle
does the line y = —x + b make with the line y = x?

¢. What can you conclude about the inverses of functions whose
graphs are lines perpendicular to the line y = x?

Logarithms and Exponentials
41. Express the following logarithms in terms of In 2 and In 3.

a. In0.75 b. In(4/9)
c. In(1/2) d. InV9
e. In3\V2 f. n\V135
42. Express the following logarithms in terms of In 5 and In 7.
a. In(1/125) b. In9.8
c. n7V7 d. In1225
e. In 0.056 f. (In35 + In(1/7))/(In25)

Use the properties of logarithms to write the expressions in Exercises
43 and 44 as a single term.

43. a. Insin6 — In (sm 0) b. In(3x2 — 9x) + In (%x)

5
Lo
¢ yIn(ér) = Inb

44. a. Insec 6 + Incos O

¢ 3mVA2 -1 —In(t+ 1)

Find simpler expressions for the quantities in Exercises 45-48.

b. In(8x + 4) — 2lnc

45. a. 7?2 b. ¢ c. onx—lny
46. a. M) b. 03 ¢, nmx—In2
47. a. 2InVe b. In(Ine°) c. In(e™™)
48. a. In(e*?) b. In(e?) c. In(e2n)

In Exercises 49-54, solve for y in terms of 7 or x, as appropriate.
49. Iny =2+ 4 50. ny=—-t+5

51. In(y — b) = 5t 52. In(c — 2y) =1t

53. In(y — 1) — In2 = x + Inx

54. In(y?> — 1) — In(y + 1) = In(sin x)



In Exercises 55 and 56, solve for k.

5S.

56.

k/1000 —

a. e*=4 b. 100e!% = 200 c. e

a =1 b. 80t = 1 c. 0Bk = 08

4

In Exercises 57-60, solve for ¢.

57.

58.

59.

a. ¢0% =27 b. & = % c. M0 =04
a e—0.0lt = 1000 b ekt — i ¢ e(an)t — l
: : 10 : 2

NV = 32 60, @ th = of

Simplify the expressions in Exercises 61-64.

61.

62.

63.
64.

a. 510g57 b. 810g3\/§ C. 1.31031375

d. log,16 e. log3\/§ f. log4(}l>

a. 2ls3 b. 100200/ c. e

d. log;; 121 e. logy 11 f. logg(%>

. Qlogix b. 9log}x C. logz(e(lr&)(binx))
a. 25lossG) b. log,(¢") c. log,(2¢5in%)

Express the ratios in Exercises 65 and 66 as ratios of natural loga-
rithms and simplify.

65.

66.

log, x log, x log.a
a. b. [

logsx loggx log,:a

loggx log\/10x log, b
a log;x © logyax * log,a

Arcsine and Arccosine
In Exercises 67-70, find the exact value of each expression.

67.

68.

69.

70.

=2

a. sin’! (%)

()

a. cos’! 1 b. cos™! -1 c. cos”! ﬁ
. 3 . 5 . )
a. arccos (—1) b. arccos (0)
. . 1
a. arcsin (—1) b. arcsin <_7)
V2

Theory and Examples

71.

72.

73.

If f(x) is one-to-one, can anything be said about g(x) = —f(x)? Is
it also one-to-one? Give reasons for your answer.

If f(x) is one-to-one and f(x) is never zero, can anything be said
about h(x) = 1/f(x)? Is it also one-to-one? Give reasons for your
answer.

Suppose that the range of g lies in the domain of f so that the
composite f o g is defined. If f and g are one-to-one, can any-
thing be said about f o g? Give reasons for your answer.

74.

75.

76.

77.

78.

83.

84.

. Radioactive decay
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1.6 Inverse Functions and Logarithms

If a composite f° g is one-to-one, must g be one-to-one? Give
reasons for your answer.
Find a formula for the inverse function f~' and verify that

(fefHo = F e Hl) = x.

100
a f0) =10

50
b- SO =T

The identity sin"'x + cos™'x = 7/2 Figure 1.71 establishes
the identity for 0 < x < 1. To establish it for the rest of [—1, 1],
verify by direct calculation that it holds for x = 1, 0, and —1.
Then, for values of x in (—1,0), let x = —a,a > 0, and apply
Egs. (3) and (5) to the sum sin™! (—a) + cos™! (—a).

Start with the graph of y = Inx. Find an equation of the graph
that results from

a. shifting down 3 units.
shifting right 1 unit.

shifting left 1, up 3 units.
shifting down 4, right 2 units.

reflecting about the y-axis.

N

. reflecting about the line y = x.

Start with the graph of y = Inx. Find an equation of the graph
that results from

a. vertical stretching by a factor of 2.
b. horizontal stretching by a factor of 3.
c. vertical compression by a factor of 4.

d. horizontal compression by a factor of 2.

. The equation x> = 2* has three solutions: x = 2, x = 4, and one

other. Estimate the third solution as accurately as you can by
graphing.

. Could x™?2 possibly be the same as 2% for x > 0? Graph the

two functions and explain what you see.

The half-life of a certain radioactive sub-
stance is 12 hours. There are 8 grams present initially.

a. Express the amount of substance remaining as a function of
time .

b. When will there be 1 gram remaining?

. Doubling your money Determine how much time is required

for a $500 investment to double in value if interest is earned at the
rate of 4.75% compounded annually.

Population growth The population of Glenbrook is 375,000
and is increasing at the rate of 2.25% per year. Predict when the
population will be 1 million.

Radon-222 The decay equation for radon-222 gas is known to

be y = ype ™%, with r in days. About how long will it take the
radon in a sealed sample of air to fall to 90% of its original value?
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Chapter m Questions to Guide Your Review

1.

10.

11.

12.

13.

14.

What is a function? What is its domain? Its range? What is an
arrow diagram for a function? Give examples.

. What is the graph of a real-valued function of a real variable?

‘What is the vertical line test?

. What is a piecewise-defined function? Give examples.

. What are the important types of functions frequently encountered

in calculus? Give an example of each type.

. What is meant by an increasing function? A decreasing function?

Give an example of each.

. What is an even function? An odd function? What symmetry

properties do the graphs of such functions have? What advantage
can we take of this? Give an example of a function that is neither
even nor odd.

. If f and g are real-valued functions, how are the domains of

f+gf—gfg and f/g related to the domains of f and g?
Give examples.

. When is it possible to compose one function with another? Give

examples of composites and their values at various points. Does
the order in which functions are composed ever matter?

. How do you change the equation y = f(x) to shift its graph verti-

cally up or down by |k| units? Horizontally to the left or right?
Give examples.

How do you change the equation y = f(x) to compress or stretch
the graph by a factor ¢ > 1? Reflect the graph across a coordi-
nate axis? Give examples.

What is radian measure? How do you convert from radians to
degrees? Degrees to radians?

Graph the six basic trigonometric functions. What symmetries do
the graphs have?

What is a periodic function? Give examples. What are the periods
of the six basic trigonometric functions?

Starting with the identity sin*€6 + cos>@ = 1 and the formulas
for cos (A + B) and sin (A + B), show how a variety of other
trigonometric identities may be derived.

Chapterm Practice Exercises

Functions and Graphs

1.

Express the area and circumference of a circle as functions of the
circle’s radius. Then express the area as a function of the
circumference.

. Express the radius of a sphere as a function of the sphere’s sur-

face area. Then express the surface area as a function of the
volume.

. A point P in the first quadrant lies on the parabola y = x2

Express the coordinates of P as functions of the angle of inclina-
tion of the line joining P to the origin.

15

16.

17.

18.

19.

20.

21.

22.

23.

24,

In

. How does the formula for the general sine function f(x) =
Asin (27 /B)(x — C)) + D relate to the shifting, stretching,
compressing, and reflection of its graph? Give examples.
Graph the general sine curve and identify the constants A, B,
C, and D.

Name three issues that arise when functions are graphed using a
calculator or computer with graphing software. Give examples.

What is an exponential function? Give examples. What laws of
exponents does it obey? How does it differ from a simple power
function like f(x) = x"? What kind of real-world phenomena are
modeled by exponential functions?

What is the number e, and how is it defined? What are the domain
and range of f(x) = ¢*? What does its graph look like? How do
the values of ¢* relate to x%, x°, and so on?

What functions have inverses? How do you know if two func-
tions f and g are inverses of one another? Give examples of func-
tions that are (are not) inverses of one another.

How are the domains, ranges, and graphs of functions and their
inverses related? Give an example.

What procedure can you sometimes use to express the inverse of
a function of x as a function of x?

What is a logarithmic function? What properties does it satisty?
What is the natural logarithm function? What are the domain and
range of y = In x? What does its graph look like?

How is the graph of log,, x related to the graph of In x? What truth
is in the statement that there is really only one exponential func-
tion and one logarithmic function?

How are the inverse trigonometric functions defined? How can
you sometimes use right triangles to find values of these func-
tions? Give examples.

. A hot-air balloon rising straight up from a level field is tracked by
a range finder located 500 ft from the point of liftoff. Express the
balloon’s height as a function of the angle the line from the range
finder to the balloon makes with the ground.

Exercises 5-8, determine whether the graph of the function is sym-

metric about the y-axis, the origin, or neither.

5 y=x!/
7

6. y=x*°

Ly=x*—2x— 1 8. y=¢*



In Exercises 9-16, determine whether the function is even, odd, or
neither.

9. y=x2+1 10 y=x"—x*—x
11. y=1 — cosx 12. y = secxtanx
x*+1 .
13. y = 4. y=x—5
Y=o, y =x —sinx

15. y = x + cosx 16. y = xcosx

17. Suppose that f and g are both odd functions defined on the entire
real line. Which of the following (where defined) are even? odd?

a. fg b. f? c. f(sinx) d. g(sec x) e |gl
18. If f(a — x) = f(a + x), show that g(x) = f(x + a) is an even
function.

In Exercises 19-28, find the (a) domain and (b) range.

19. y = |x| -2 20.y=—2+m
21 y = V16 — 2 22, y =3+ 1

23. y=2¢*—3 24. y = tan 2x — )
25. y =2sin(Bx + 7) — 1 26. y = x*°

27. y=In(x —3) + 1 28. y=—1+ V2 —x

29. State whether each function is increasing, decreasing, or neither.
a. Volume of a sphere as a function of its radius
b. Greatest integer function

c. Height above Earth’s sea level as a function of atmospheric
pressure (assumed nonzero)

d. Kinetic energy as a function of a particle’s velocity

30. Find the largest interval on which the given function is increasing.
a. f(x) = |x—2] +1 b. f(x) = (x + 1)*
e gx) =@Bx— 1A d. Rx) = V2x — 1

Piecewise-Defined Functions
In Exercises 31 and 32, find the (a) domain and (b) range.

31 V= —4=x=0
YT WA 0<x=4
—x — 2, 2 =x=-1
32. y= X, —“1<x=1
—x + 2, I <x=2

In Exercises 33 and 34, write a piecewise formula for the function.

33. ¥ 34, v

1 \ 5t @3

4 X
0] i 2
L4 X
0 4

Composition of Functions
In Exercises 35 and 36, find

a. (feg)(—D. b. (g°f)(2).

c. (fe ). d. (g°g) ).

Chapter 1 Practice Exercises 55

3 ) =1 g = ﬁ

glx) = Vi + 1

In Exercises 37 and 38, (a) write formulas for f o g and g ° f and find
the (b) domain and (c¢) range of each.

36. f(x) =2 —x,

37. f(x) =2 — x%, gx) = Vx +2

38. f(x) = Vi, gx) = V1 —x

For Exercises 39 and 40, sketch the graphs of f and f o f.
—x—2, —4=x=-1

39, f(x) = —1, —“I1<x=1
x — 2, 1<x=2
x+1, -2=x<0

40 () =

f® { I, 0=x=2

Composition with absolute values In Exercises 4148, graph f;
and f, together. Then describe how applying the absolute value func-
tion in f, affects the graph of f;.

Fix) Falx)

41. x |x]

42. x? [x]?

43. 1 |3

4. x> + x |22 + x|
45. 4 — x* [4 — ¥?|

1 1

46. % m

47. Vx Vx|
48. sinx sin | x|

Shifting and Scaling Graphs

49. Suppose the graph of g is given. Write equations for the graphs
that are obtained from the graph of g by shifting, scaling, or
reflecting, as indicated.

a. Up % unit, right 3

&

Down 2 units, left %

. Reflect about the y-axis

c
d. Reflect about the x-axis
e. Stretch vertically by a factor of 5
f. Compress horizontally by a factor of 5
50. Describe how each graph is obtained from the graph of y = f(x).
a. y=fx—3) b. y = f(4x)
c. y= f(—3x) d. y=f2x+ 1)

e.y:f(g)—4 f. vy

“3f(x) + i
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In Exercises 51-54, graph each function, not by plotting points, but by
starting with the graph of one of the standard functions presented in
Figures 1.15-1.17, and applying an appropriate transformation.

- _ x —1-=%

51. y = 1+ 3 52. y=1 3

53. y = % +1 54. y = (50!
2x

Trigonometry
In Exercises 55-58, sketch the graph of the given function. What is
the period of the function?

55. y = cos 2x 56. y = sin’z—‘
57. y = sinmx 58. y = cos %

59. Sketch the graph y = 2cos (x - g)

60. Sketch the graph y = 1 + sin (x + %)

In Exercises 61-64, ABC is a right triangle with the right angle at C.
The sides opposite angles A, B, and C are a, b, and c, respectively.

61. a. Findaandbifc =2,B = 7/3.
b. Findaandcif b = 2,B = 7 /3.

62. a. Express ain terms of A and c.

b. Express a in terms of A and b.
63. a. Express a in terms of B and b.

b. Express c in terms of A and a.
64. a. Express sin A in terms of a and c.

b. Express sin A in terms of b and c.

65. Height of a pole Two wires stretch from the top 7" of a vertical
pole to points B and C on the ground, where C is 10 m closer to
the base of the pole than is B. If wire BT makes an angle of 35°
with the horizontal and wire CT makes an angle of 50° with the
horizontal, how high is the pole?

Transcendental Functions
In Exercises 69-72, find the domain of each function.

69. a. f(x) =1+ ¢inx b. g(x) = ¢ + In Vx
70. a. f(x) = '~ . g) = In|4 — x?

=2

71. a. h(x) = sin"(%c) b. f(x) = cos (Vx — 1)

72. a. h(x) = In (cos™' x) b. f(x) = V& — sin"'x

73. If f(x) =Inx and g(x) =4 — x% find the functions
feg,g°f, feof, geg, and their domains.

74. Determine whether f is even, odd, or neither.
a. f(x)=¢~ b. f(x) =1 + sin"!(—x)
c. f(x) = |e d. f(x) = elnhl+l

75. Graph In x, In 2x, In 4x, In 8x, and In 16x (as many as you can)

together for 0 < x = 10. What is going on? Explain.

76. Graph y = In(x> + ¢) for ¢ = —4,—2, 0, 3, and 5. How does the

graph change when ¢ changes?

[T|77. Graph y = In |sinx| in the window 0 = x = 22, -2 =y = 0.

Explain what you see. How could you change the formula to turn
the arches upside down?

78. Graph the three functions y = x4 y = a, and y = log,x to-

gether on the same screen for a = 2, 10, and 20. For large values
of x, which of these functions has the largest values and which
has the smallest values?

Theory and Examples

In Exercises 79 and 80, find the domain and range of each composite
function. Then graph the composites on separate screens. Do the
graphs make sense in each case? Give reasons for your answers and
comment on any differences you see.

79. a. y = sin”!(sin x) b. y = sin (sin"!x)

80. a. y = cos '(cos x) b. y = cos (cos™' x)

81. Use a graph to decide whether f is one-to-one.

a. f)=x =3

X

b. f(x) = x> + 5

66. Height of a weather balloon Observers at positions A and B 82. Use a graph to find to 3 decimal places the values of x for which

2 km apart simultaneously measure the angle of elevation of a
weather balloon to be 40° and 70°, respectively. If the balloon is
directly above a point on the line segment between A and B, find
the height of the balloon.

67. a. Graph the function f(x) = sinx + cos(x/2).

b. What appears to be the period of this function?

o

Confirm your finding in part (b) algebraically.
Graph f(x) = sin (1/x).

. What are the domain and range of f?

I

Is f periodic? Give reasons for your answer.

e* > 10,000,000.

83. a. Show that f(x) = x> and g(x) = V/x are inverses of one
another.
b. Graph f and g over an x-interval large enough to show the
graphs intersecting at (1, 1) and (—1, —1). Be sure the picture
shows the required symmetry in the line y = x.
84. a. Show that h(x) = x*/4 and k(x) = (4x)!/? are inverses of one
another.
b. Graph / and k over an x-interval large enough to show the
graphs intersecting at (2, 2) and (—2, —2). Be sure the picture
shows the required symmetry in the line y = x.
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Functions and Graphs b. Uniqueness Show that there is only one way to write f as
1. Are there two functions f and g such that fog = go f? Give the sum of an even and an odd function. (Hint: One way is
reasons for your answer. given in part (a). If also f(x) = E(x) + O,(x) where E| is
2. Are there two functions f and g with the following property? The cven a}nd O, is odd, show that £ — E; = Oy — O. Then use
graphs of f and g are not straight lines but the graph of feo g isa Exercise 11 to show that £ = E, and O = O;.)

straight line. Give reasons for your answer. Effects of Parameters on Graphs

3. If f(x) is odd, can anything be said of g(x) = f(x) — 2? Whatif f 13. What happens to the graph of y = ax®> + bx + ¢ as
is even instead? Give reasons for your answer.

a. a changes while b and ¢ remain fixed?
b. b changes (a and ¢ fixed, a # 0)?
c. cchanges (a and b fixed, a # 0)?
14. What happens to the graph of y = a(x + b)* + ¢ as
a. a changes while b and ¢ remain fixed?

Derivations and Proofs b. b changes (a and c fixed, a # 0)?
7. Prove the following identities.

4. If g(x) is an odd function defined for all values of x, can anything
be said about g(0)? Give reasons for your answer.

5. Graph the equation |x| + |y| = 1 + x.
6. Graph the equation y + |y| = x + |x|.

¢. ¢ changes (a and b fixed, a # 0)?

I —cosx _ _ sinx 1 —C0SX _ 0k

sin x 1 +cosx  1+cosx 2 Geometry

15. An object’s center of mass moves at a constant velocity v along a
straight line past the origin. The accompanying figure shows the
coordinate system and the line of motion. The dots show posi-
tions that are 1 sec apart. Why are the areas A;, A,, ..., As in the
figure all equal? As in Kepler’s equal area law (see Section 13.6),
the line that joins the object’s center of mass to the origin sweeps
out equal areas in equal times.

8. Explain the following “proof without words™ of the law of cosines.
(Source: Kung, Sidney H., “Proof Without Words: The Law of
Cosines,” Mathematics Magazine, Vol. 63, no. 5, Dec. 1990, p. 342.)

9. Show that the area of triangle ABC is given by §
(1/2)absin C = (1/2)bc sin A = (1/2)ca sin B. E
c ¥
b a
X
Kilometers
A B

¢ 16. a. Find the slope of the line from the origin to the midpoint P of

10. Show that the area of triangle ABC is given by side AB in the triangle in the accompanying figure (a, b > 0).
\/s(s —a)(s — b)(s — ¢) where s = (a + b + ¢)/2 is the
semiperimeter of the triangle.
11. Show that if f is both even and odd, then f(x) = O for every x in
the domain of f. B(0, b)
12. a. Even-odd decompositions Let f be a function whose
domain is symmetric about the origin, that is, —x belongs to P
the domain whenever x does. Show that f is the sum of an
even function and an odd function:

X
o
fx) = E(x) + O®), A(a, 0)
where E is an even function and O is an odd function. (Hint: b. When is OP perpendicular to AB?

Let E(x) = (f(x) + f(—x))/2. Show that E(—x) = E(x), so
that £ is even. Then show that O(x) = f(x) — E(x) is odd.)

y
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17. Consider the quarter-circle of radius 1 and right triangles ABE
and ACD given in the accompanying figure. Use standard area
formulas to conclude that

1. %) 1 sin 6
ZschosG < o) < 2 cos 0"
y
0, 1) c
B
I
1 i
I
0 L Ip ,
@ X
A E (1,0)

18. Let f(x) = ax + b and g(x) = c¢x + d. What condition must be
satisfied by the constants a, b, ¢, d in order that (f° g)(x) =
(g ° f)x) for every value of x?

Theory and Examples
19. Domain and range Suppose that a # 0,5 # 1, and b > 0.
Determine the domain and range of the function.

a. y=ab™ +d

20. Inverse functions Let

b. y =alog,(x —¢) +d

c #0, ad — bc # 0.

a. Give a convincing argument that f is one-to-one.
b. Find a formula for the inverse of f.

21. Depreciation Smith Hauling purchased an 18-wheel truck for
$100,000. The truck depreciates at the constant rate of $10,000
per year for 10 years.

a. Write an expression that gives the value y after x years.

b. When is the value of the truck $55,000?

22. Drug absorption A drug is administered intravenously for
pain. The function

f(H =90 — 521In(1 + 1), 0<r=<4

gives the number of units of the drug remaining in the body after ¢
hours.

a. What was the initial number of units of the drug administered?
b. How much is present after 2 hours?
¢. Draw the graph of f.

23. Finding investment time If Juanita invests $1500 in a retire-
ment account that earns 8% compounded annually, how long will
it take this single payment to grow to $5000?

24. The rule of 70 If you use the approximation In2 = 0.70 (in
place of 0.69314. . .), you can derive a rule of thumb that says,
“To estimate how many years it will take an amount of money to
double when invested at r percent compounded continuously,
divide r into 70.” For instance, an amount of money invested at
5% will double in about 70/5 = 14 years. If you want it to dou-
ble in 10 years instead, you have to invest it at 70/10 = 7%.
Show how the rule of 70 is derived. (A similar “rule of 72” uses
72 instead of 70, because 72 has more integer factors.)

25. For what x > 0 does x*) = (x*)*? Give reasons for your answer.

26. a. If (Inx)/x = (In2)/2, must x = 27

b. If (Inx)/x = —2In2, must x = 1/2?
Give reasons for your answers.

27. The quotient (log,x)/(log,x) has a constant value. What value?
Give reasons for your answer.

28. log, (2) vs. log,(x) How does f(x) = log,(2) compare with

g(x) = log, (x)? Here is one way to find out.
a. Use the equation log,b = (Inb)/(Ina) to express f(x) and
g(x) in terms of natural logarithms.

b. Graph f and g together. Comment on the behavior of f in
relation to the signs and values of g.

Chapterm Technology Application Projects

An Overview of Mathematica

An overview of Mathematica sufficient to complete the Mathematica modules appearing on the Web site.

Mathematica/Maple Module:

Modeling Change: Springs, Driving Safety, Radioactivity, Trees, Fish, and Mammals
Construct and interpret mathematical models, analyze and improve them, and make predictions using them.



Limits and Continuity

OVERVIEW Mathematicians of the seventeenth century were keenly interested in the
study of motion for objects on or near the earth and the motion of planets and stars. This
study involved both the speed of the object and its direction of motion at any instant, and
they knew the direction at a given instant was along a line tangent to the path of motion.
The concept of a limit is fundamental to finding the velocity of a moving object and the
tangent to a curve. In this chapter we develop the limit, first intuitively and then formally.
We use limits to describe the way a function varies. Some functions vary continuously;
small changes in x produce only small changes in f(x). Other functions can have values
that jump, vary erratically, or tend to increase or decrease without bound. The notion of
limit gives a precise way to distinguish between these behaviors.

2 . 1 Rates of Change and Tangents to Curves

HISTORICAL BIOGRAPHY *
Galileo Galilei

(1564-1642)

Calculus is a tool that helps us understand how a change in one quantity is related to a
change in another. How does the speed of a falling object change as a function of time?
How does the level of water in a barrel change as a function of the amount of liquid poured
into it? We see change occurring in nearly everything we observe in the world and universe,
and powerful modern instruments help us see more and more. In this section we introduce
the ideas of average and instantaneous rates of change, and show that they are closely
related to the slope of a curve at a point P on the curve. We give precise developments of
these important concepts in the next chapter, but for now we use an informal approach so
you will see how they lead naturally to the main idea of this chapter, the limit. The idea of
a limit plays a foundational role throughout calculus.

Average and Instantaneous Speed

In the late sixteenth century, Galileo discovered that a solid object dropped from rest (not
moving) near the surface of the earth and allowed to fall freely will fall a distance proportional
to the square of the time it has been falling. This type of motion is called free fall. It assumes
negligible air resistance to slow the object down, and that gravity is the only force acting on
the falling object. If y denotes the distance fallen in feet after 7 seconds, then Galileo’s law is

y = 1612,
where 16 is the (approximate) constant of proportionality. (If y is measured in meters, the
constant is 4.9.)
A moving object’s average speed during an interval of time is found by dividing the
distance covered by the time elapsed. The unit of measure is length per unit time: kilome-
ters per hour, feet (or meters) per second, or whatever is appropriate to the problem at hand.

*To learn more about the historical figures mentioned in the text and the development of many major
elements and topics of calculus, visit www.aw.com/thomas.
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EXAMPLE 1 A rock breaks loose from the top of a tall cliff. What is its average speed

(a) during the first 2 sec of fall?

(b) during the 1-sec interval between second 1 and second 2?

Solution The average speed of the rock during a given time interval is the change in
distance, Ay, divided by the length of the time interval, Az. (Increments like Ay and Ar
are reviewed in Appendix 3, and pronounced “delta y”” and “delta ¢.”) Measuring distance
in feet and time in seconds, we have the following calculations:

Ay 16(2)* — 16(0)*  fi
(a) For the first 2 sec: E = W = 32@
Ay 16(2)* — 16(1)* fi
(b) From sec 1 to sec 2: E = # = 48@ |

We want a way to determine the speed of a falling object at a single instant f,, instead of
using its average speed over an interval of time. To do this, we examine what happens
when we calculate the average speed over shorter and shorter time intervals starting at #,.
The next example illustrates this process. Our discussion is informal here, but it will be
made precise in Chapter 3.

EXAMPLE 2 Find the speed of the falling rock in Example 1 at t = 1 and ¢ = 2sec.

Solution  We can calculate the average speed of the rock over a time interval [y, fy + & ],
having length Az = h, as

Ay 16(t) + h)? — 164>
A 7 . (n

We cannot use this formula to calculate the “instantaneous” speed at the exact moment #,
by simply substituting 2 = 0, because we cannot divide by zero. But we can use it to cal-
culate average speeds over increasingly short time intervals starting at £, = 1 and #, = 2.
When we do so, by taking smaller and smaller values of &, we see a pattern (Table 2.1).

TABLE 2.1 Average speeds over short time intervals [ fy, ty + h]

A o Ay 1601 + h)? — 164>

verage speed: = = i

Length of Average speed over Average speed over
time interval interval of length h interval of length h
h starting at ¢, = 1 starting at 4, = 2
1 48 80
0.1 33.6 65.6
0.01 32.16 64.16
0.001 32.016 64.016
0.0001 32.0016 64.0016

The average speed on intervals starting at #, = 1 seems to approach a limiting value
of 32 as the length of the interval decreases. This suggests that the rock is falling at a speed
of 32 ft/sec at , = 1sec. Let’s confirm this algebraically.



Secant

0 Xy X

FIGURE 2.1 A secant to the graph
y = f(x). Its slope is Ay/Ax, the
average rate of change of f over the
interval [x,, x,].

FIGURE 2.2 L is tangent to the
circle at P if it passes through P
perpendicular to radius OP.
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If we set #, = 1 and then expand the numerator in Equation (1) and simplify, we find
that

Ay 1601 + B — 16(12 _ 16(1 + 2k + 1A — 16
Ar h B h

_ 320 + 161

h = 32 + 16h.

For values of 4 different from 0, the expressions on the right and left are equivalent and the
average speed is 32 + 16h ft/sec. We can now see why the average speed has the limiting
value 32 + 16(0) = 32 ft/sec as h approaches 0.

Similarly, setting #, = 2 in Equation (1), the procedure yields

& 64t 16n

At
for values of 4 different from 0. As & gets closer and closer to 0, the average speed has the
limiting value 64 ft/sec when 1, = 2sec, as suggested by Table 2.1. |

The average speed of a falling object is an example of a more general idea which we
discuss next.

Average Rates of Change and Secant Lines

Given any function y = f(x), we calculate the average rate of change of y with respect to
x over the interval [x;, x,] by dividing the change in the value of y, Ay = f(x,) — f(xy),
by the length Ax = x, — x; = h of the interval over which the change occurs. (We use
the symbol & for Ax to simplify the notation here and later on.)

DEFINITION The average rate of change of y = f(x) with respect to x over the
interval [x;, x,] is

Ay _ feo) = f) _ G+ h) — fo)

Ax X2 T X h

h # 0.

Geometrically, the rate of change of f over [xj, x,] is the slope of the line through the
points P(x, f(x;)) and Q(x,, f(x,)) (Figure 2.1). In geometry, a line joining two points of a
curve is a secant to the curve. Thus, the average rate of change of f from x; to x, is identi-
cal with the slope of secant PQ. Let’s consider what happens as the point Q approaches the
point P along the curve, so the length & of the interval over which the change occurs
approaches zero. We will see that this procedure leads to defining the slope of a curve at a
point.

Defining the Slope of a Curve

We know what is meant by the slope of a straight line, which tells us the rate at which it
rises or falls—its rate of change as a linear function. But what is meant by the slope of a
curve at a point P on the curve? If there is a tangent line to the curve at P—a line that just
touches the curve like the tangent to a circle—it would be reasonable to identify the slope
of the tangent as the slope of the curve at P. So we need a precise meaning for the tangent
at a point on a curve.

For circles, tangency is straightforward. A line L is tangent to a circle at a point P if L
passes through P perpendicular to the radius at P (Figure 2.2). Such a line just touches the
circle. But what does it mean to say that a line L is tangent to some other curve C at a point P?
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HISTORICAL BIOGRAPHY
Pierre de Fermat

(1601-1665)

To define tangency for general curves, we need an approach that takes into account
the behavior of the secants through P and nearby points Q as Q moves toward P along the
curve (Figure 2.3). Here is the idea:

1. Start with what we can calculate, namely the slope of the secant PQ.

2. Investigate the limiting value of the secant slope as Q approaches P along the curve.
(We clarify the limit idea in the next section.)

3. [If the limit exists, take it to be the slope of the curve at P and define the tangent to the
curve at P to be the line through P with this slope.

This procedure is what we were doing in the falling-rock problem discussed in Example 2.
The next example illustrates the geometric idea for the tangent to a curve.

Tangent N Secants

p =

\
0

Tangen’t/'

Secants

FIGURE 2.3 The tangent to the curve at P is the line through P whose slope is the limit of
the secant slopes as Q — P from either side.

EXAMPLE 3 Find the slope of the parabola y = x? at the point P(2, 4). Write an
equation for the tangent to the parabola at this point.

Solution  We begin with a secant line through P(2, 4) and Q(2 + h, (2 + h)?) nearby.
‘We then write an expression for the slope of the secant PQ and investigate what happens to
the slope as Q approaches P along the curve:

Secant slo :&:(2+h)2_22:h2+4h+4_4
¢ Pe = Ax h h

_ R+ 4h _
h

h + 4.

If h > 0, then Q lies above and to the right of P, as in Figure 2.4. If A < 0, then Q lies to the
left of P (not shown). In either case, as Q approaches P along the curve, & approaches zero
and the secant slope & + 4 approaches 4. We take 4 to be the parabola’s slope at P.

h+4.

2 _
Secant slope is Ce+h —4_
h

NOT TO SCALE

FIGURE 2.4 Finding the slope of the parabola y = x? at the point P(2, 4) as
the limit of secant slopes (Example 3).
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The tangent to the parabola at P is the line through P with slope 4:
y = 4+ 4(x — 2) Point-slope equation
y =4x — 4. |

Instantaneous Rates of Change and Tangent Lines

The rates at which the rock in Example 2 was falling at the instants # = 1 and t = 2 are
called instantaneous rates of change. Instantaneous rates and slopes of tangent lines are
closely connected, as we see in the following examples.

EXAMPLE 4 Figure 2.5 shows how a population p of fruit flies (Drosophila) grew
in a 50-day experiment. The number of flies was counted at regular intervals, the counted
values plotted with respect to time £, and the points joined by a smooth curve (colored blue
in Figure 2.5). Find the average growth rate from day 23 to day 45.

Solution  There were 150 flies on day 23 and 340 flies on day 45. Thus the number of
flies increased by 340 — 150 = 190 in 45 — 23 = 22 days. The average rate of change
of the population from day 23 to day 45 was

Ap 340 — 150 _ 190

Average rate of change: — = = =~ 8.6 flies/day.
g AT 4523 T 22 /day
p
350 Z_
(45, 340)
" 300
QO
= 250 Ap= 190
3
= 200 Ap— o,
_é’ s P(23, 150) ViR 8.6 fliesfday
= Ar=22
100
50
t
0 10 20 30 40 50
Time (days)

FIGURE 2.5 Growth of a fruit fly population in a controlled
experiment. The average rate of change over 22 days is the slope
Ap/ At of the secant line (Example 4).

This average is the slope of the secant through the points P and Q on the graph in
Figure 2.5. u

The average rate of change from day 23 to day 45 calculated in Example 4 does not
tell us how fast the population was changing on day 23 itself. For that we need to examine
time intervals closer to the day in question.

EXAMPLE 5 How fast was the number of flies in the population of Example 4 grow-
ing on day 23?

Solution To answer this question, we examine the average rates of change over increas-
ingly short time intervals starting at day 23. In geometric terms, we find these rates by
calculating the slopes of secants from P to Q, for a sequence of points Q approaching P
along the curve (Figure 2.6).
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P
Slope of PQ = Ap/At BG5.350) 7 0
0 (flies / day) 350 :
45,340
45,340 M- 10 g6 g ul
(45, ) 45 — 23 © E 250
=}
330 — 150 g 200
(40, 330) 40 = 23 =~ 10.6 ’é 150 P(23, 150)
4
310 — 150 _ 100
(35, 310) 35 -3 13.3 “
(30, 265) % ~ 16.4 0 167\ 20 30 40 50 "

A(14,0) Time (days)

FIGURE 2.6 The positions and slopes of four secants through the point P on the fruit fly graph (Example 5).

The values in the table show that the secant slopes rise from 8.6 to 16.4 as the ¢-coordinate
of Q decreases from 45 to 30, and we would expect the slopes to rise slightly higher as ¢
continued on toward 23. Geometrically, the secants rotate counterclockwise about P and
seem to approach the red tangent line in the figure. Since the line appears to pass through
the points (14, 0) and (35, 350), it has slope

350 -0 _ . .
35— 14 16.7 flies /day (approximately).
On day 23 the population was increasing at a rate of about 16.7 flies / day. |

The instantaneous rates in Example 2 were found to be the values of the average
speeds, or average rates of change, as the time interval of length / approached 0. That is,
the instantaneous rate is the value the average rate approaches as the length £ of the inter-
val over which the change occurs approaches zero. The average rate of change corre-
sponds to the slope of a secant line; the instantaneous rate corresponds to the slope of the
tangent line as the independent variable approaches a fixed value. In Example 2, the inde-
pendent variable ¢ approached the values ¢ = 1 and r = 2. In Example 3, the independent
variable x approached the value x = 2. So we see that instantaneous rates and slopes of
tangent lines are closely connected. We investigate this connection thoroughly in the next
chapter, but to do so we need the concept of a limit.

Exercisesm

Average Rates of Change 5. RO) = V46 + 1; [0,2]
In Exercises 1-6, find the average rate of change of the function over 6. P(O) = 6° — 407 + 56; [1,2]

the given interval or intervals.

L fo)=x>+1 Slope of a Curve at a Point
a [23] b [—1,1] In Exercises 7-14, use the method in Example 3 to find (a) the slope
’ 5 ’ of the curve at the given point P, and (b) an equation of the tangent
2. gx) = x* — 2x line at P.
a. [1,3] b. [—2.4] 7. y=x*—5, PQ2,—1)
3. h(?) = cott 8. y=7-x% P2,3)
a. [7/4,37/4] b. [m/6,m/2] 9. y=x>—2x—3, P2,-3)
4. g() =2 + cost 10. y = x* — 4x, P(1,-3)

a. [0,7] b. [~ o] 1L y =% P28



12. y=2—-x% P(1,1)
13. y = x*—12x, P(1,—11)
4. y=x>—-3x2+4, PQ,0)

Instantaneous Rates of Change

15. Speed of a car The accompanying figure shows the time-to-
distance graph for a sports car accelerating from a standstill.

b.

s

650
600

500

400

300

Distance (m)

200

100 ,/

0 5 10 15
Elapsed time (sec)
Estimate the slopes of secants PQ,, PQ,, PQ;, and PQ,,
arranging them in order in a table like the one in Figure 2.6.
What are the appropriate units for these slopes?

t
20

Then estimate the car’s speed at time ¢ = 20 sec.

16. The accompanying figure shows the plot of distance fallen versus
time for an object that fell from the lunar landing module a dis-
tance 80 m to the surface of the moon.

a.

b.

Estimate the slopes of the secants PQ,, PQ,, PQs, and PQ,,
arranging them in a table like the one in Figure 2.6.

About how fast was the object going when it hit the surface?
y

80 P
Q4

9
0

60

40

20 [

Distance fallen (m)

t

0 5 10
Elapsed time (sec)

17. The profits of a small company for each of the first five years of

its operation are given in the following table:

Year Profit in $1000s
2010 6
2011 27
2012 62
2013 111
2014 174

a. Plot points representing the profit as a function of year, and
join them by as smooth a curve as you can.
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What is the average rate of increase of the profits between
2012 and 2014?

Use your graph to estimate the rate at which the profits were
changing in 2012.

18. Make a table of values for the function F(x) = (x + 2)/(x — 2)

19.

21.

atthepoints x = 1.2, x = 11/10,x = 101/100, x = 1001,/1000,

x = 10001/10000, and x = 1.

a. Find the average rate of change of F(x) over the intervals
[1,x] foreach x # 1 inyour table.

b. Extending the table if necessary, try to determine the rate of
change of F(x) at x = 1.

Let g(x) = Vx for x = 0.

a. Find the average rate of change of g(x) with respect to x over
the intervals [1,2], [1,1.5] and [1,1 + A].

b. Make a table of values of the average rate of change of g with
respect to x over the interval [ 1, 1 + k] for some values of &
approaching zero, say & = 0.1, 0.01, 0.001, 0.0001, 0.00001,
and 0.000001.

c. What does your table indicate is the rate of change of g(x)
with respect to x at x = 1?

d. Calculate the limit as 4 approaches zero of the average rate of
change of g(x) with respect to x over the interval [ 1,1 + &].

. Let f(r) = 1/t fort # 0.

a. Find the average rate of change of f with respect to ¢ over the
intervals (i) from r = 2tot = 3, and (ii) fromt = 2tot = T.

b. Make a table of values of the average rate of change of f with
respect to ¢ over the interval [2, T], for some values of T
approaching 2, say T = 2.1,2.01,2.001, 2.0001, 2.00001,
and 2.000001.

¢. What does your table indicate is the rate of change of f with
respecttotatt = 2?

d. Calculate the limit as 7 approaches 2 of the average rate of
change of f with respect to 7 over the interval from 2 to 7. You
will have to do some algebra before you can substitute 7 = 2.

The accompanying graph shows the total distance s traveled by a
bicyclist after 7 hours.

N

40
30

20

Distance traveled (mi)

0 1 2 3 4
Elapsed time (hr)

Estimate the bicyclist’s average speed over the time intervals
[0,1],[1,2.5],and [2.5,3.5].

Estimate the bicyclist’s instantaneous speed at the times ¢ = %,
t=2andr = 3.

Estimate the bicyclist’s maximum speed and the specific time
at which it occurs.
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22. The accompanying graph shows the total amount of gasoline A in a. Estimate the average rate of gasoline consumption over the
the gas tank of an automobile after being driven for  days. time intervals [0,3], [0,5],and [7,10].
A b. Estimate the instantaneous rate of gasoline consumption at

Remaining amount (gal)
o0

thetimes ¢t = 1,¢t = 4,and r = 8.

c. Estimate the maximum rate of gasoline consumption and the
specific time at which it occurs.

o 1 2 3 4 5 6 7 8 9 10

Elapsed time (days)

2.2 Limit of a Function and Limit Laws

HISTORICAL ESSAY
Limits

FIGURE 2.7 The graph of f is
identical with the line y = x + 1
except at x = 1, where f is not
defined (Example 1).

In Section 2.1 we saw that limits arise when finding the instantaneous rate of change of a
function or the tangent to a curve. Here we begin with an informal definition of /imit and
show how we can calculate the values of limits. A precise definition is presented in the
next section.

Limits of Function Values

Frequently when studying a function y = f(x), we find ourselves interested in the func-
tion’s behavior near a particular point ¢, but not at c. This might be the case, for instance,
if ¢ is an irrational number, like 7 or /2, whose values can only be approximated by
“close” rational numbers at which we actually evaluate the function instead. Another situ-
ation occurs when trying to evaluate a function at ¢ leads to division by zero, which is
undefined. We encountered this last circumstance when seeking the instantaneous rate of
change in y by considering the quotient function Ay/h for h closer and closer to zero.
Here’s a specific example in which we explore numerically how a function behaves near a
particular point at which we cannot directly evaluate the function.

EXAMPLE 1 How does the function

Xt -1
f(-x)_x_l

behave near x = 1?

Solution The given formula defines f for all real numbers x except x = 1 (we cannot
divide by zero). For any x # 1, we can simplify the formula by factoring the numerator
and canceling common factors:

- Dx+1
f(x)=w=x+l for x # 1.
x — 1
The graph of f is the line y = x + 1 with the point (1, 2) removed. This removed point is
shown as a “hole” in Figure 2.7. Even though f(1) is not defined, it is clear that we can make
the value of f(x) as close as we want to 2 by choosing x close enough to 1 (Table 2.2). |



TABLE 2.2 As x gets closer to
1, f(x) gets closer to 2.
_x*-1
x fx) = 1
0.9 1.9
1.1 2.1
0.99 1.99
1.01 2.01
0.999 1.999
1.001 2.001
0.999999 1.999999
1.000001 2.000001
¥
y =X
Ch————
C X
(a) Identity function
y
k o=k
*
|
|
|
|
L X
0 C

(b) Constant function

FIGURE 2.9 The functions in
Example 3 have limits at all points c.
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Generalizing the idea illustrated in Example 1, suppose f(x) is defined on an open
interval about c, except possibly at c itself. If f(x) is arbitrarily close to the number L (as
close to L as we like) for all x sufficiently close to ¢, we say that f approaches the limit L
as x approaches ¢, and write

lim f(x) = L,

which is read “the limit of f(x) as x approaches c is L.” For instance, in Example 1 we
would say that f(x) approaches the limit 2 as x approaches 1, and write

2

lim f) =2, or lim% =2
xX—>

x—1 X — 1
Essentially, the definition says that the values of f(x) are close to the number L whenever x
is close to ¢ (on either side of ¢).

Our definition here is “informal” because phrases like arbitrarily close and sufficiently close
are imprecise; their meaning depends on the context. (To a machinist manufacturing a piston,
close may mean within a few thousandths of an inch. To an astronomer studying distant galaxies,
close may mean within a few thousand light-years.) Nevertheless, the definition is clear enough to
enable us to recognize and evaluate limits of many specific functions. We will need the precise
definition given in Section 2.3, however, when we set out to prove theorems about limits or study
complicated functions. Here are several more examples exploring the idea of limits.

EXAMPLE 2 The limit value of a function does not depend on how the function
is defined at the point being approached. Consider the three functions in Figure 2.8. The
function f has limit 2 as x — 1 even though f is not defined at x = 1. The function g has
limit 2 as x— 1 even though 2 # g(1). The function & is the only one of the three
functions in Figure 2.8 whose limit as x — 1 equals its value at x = 1. For h, we have
lim,—,; h(x) = h(1). This equality of limit and function value is of special importance, and
we return to it in Section 2.5. |

/
10 e 10 e A1 0 ot

x2—1
—, x#1
@ fiy =21 (b) g(x)—{’“l (© h()=x+1

2 _
x—1
1, x=1

FIGURE 2.8 The limits of f(x), g(x), and A(x) all equal 2 as x approaches 1. However, only A(x)
has the same function value as its limit at x = 1 (Example 2).

EXAMPLE 3
(a) If f is the identity function f(x) = x, then for any value of ¢ (Figure 2.9a),

lim f(x) = lim x = c.
X—>C Pande
(b) If f is the constant function f(x) = k (function with the constant value k), then for
any value of ¢ (Figure 2.9b),
lim f(x) = limk = k.

X—¢ xX—>c
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For instances of each of these rules we have
limx =3 and lim (4) = lim (4) = 4.
x—3 x—>=7 x—2

We prove these rules in Example 3 in Section 2.3. |

A function may not have a limit at a particular point. Some ways that limits can fail to
exist are illustrated in Figure 2.10 and described in the next example.

y= 0, x<0
I, x=0

X

0, x=0
Y=
sin %, x>0

(a) Unit step function U(x) (b) g(x) (©) f(x)

FIGURE 2.10 None of these functions has a limit as x approaches 0 (Example 4).

EXAMPLE 4  Discuss the behavior of the following functions, explaining why they
have no limit as x — 0.

@ Uk = {0, x <0
VYT x=o0
%, x#0
(b gx) =
0, x=20
0, x=0
(© flx) = .
sin;, x>0
Solution

(a) It jumps: The unit step function U(x) has no limit as x — 0 because its values jump
at x = 0. For negative values of x arbitrarily close to zero, U(x) = 0. For positive
values of x arbitrarily close to zero, U(x) = 1. There is no single value L approached
by U(x) as x — 0 (Figure 2.10a).

(b) It grows too “large” to have a limit: g(x) has no limit as x — 0 because the values of
g grow arbitrarily large in absolute value as x — 0 and do not stay close to any fixed
real number (Figure 2.10b). We say the function is not bounded.

(¢) It oscillates too much to have a limit: f(x) has no limit as x — 0 because the func-
tion’s values oscillate between +1 and —1 in every open interval containing 0. The
values do not stay close to any one number as x — 0 (Figure 2.10c). |
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The Limit Laws

To calculate limits of functions that are arithmetic combinations of functions having
known limits, we can use several fundamental rules.

THEOREM 1—Limit Laws If L, M, c, and k are real numbers and
115; fx) =L and )lgr} g(x) = M, then
1. Sum Rule: )lci_)rrz(f(x) +gx)=L+M
2. Difference Rule: iglll(f(x) —gx)=L—-M
3. Constant Multiple Rule: ian(k ‘fx)) = k-L
4. Product Rule: li_)rrz(f(x) cgx) =L-M
5. Quotient Rule: )1(131% - 1%4 M %0
6. Power Rule: 112:[ f(x)]" = L", n apositive integer
7. Root Rule: 1121% =L =1L n a positive integer
(If n is even, we assume that li_)n}f(x) =L>0)

In words, the Sum Rule says that the limit of a sum is the sum of the limits. Similarly, the
next rules say that the limit of a difference is the difference of the limits; the limit of a con-
stant times a function is the constant times the limit of the function; the limit of a product
is the product of the limits; the limit of a quotient is the quotient of the limits (provided
that the limit of the denominator is not 0); the limit of a positive integer power (or root) of
a function is the integer power (or root) of the limit (provided that the root of the limit is a
real number).

It is reasonable that the properties in Theorem 1 are true (although these intuitive
arguments do not constitute proofs). If x is sufficiently close to ¢, then f(x) is close to L
and g(x) is close to M, from our informal definition of a limit. It is then reasonable that
f(x) + g(x) is close to L + M; f(x) — g(x) is close to L — M; kf(x) is close to kL;
f(x)g(x) is close to LM; and f(x)/g(x) is close to L/M if M is not zero. We prove the Sum
Rule in Section 2.3, based on a precise definition of limit. Rules 2—-5 are proved in Appen-
dix 4. Rule 6 is obtained by applying Rule 4 repeatedly. Rule 7 is proved in more advanced
texts. The Sum, Difference, and Product Rules can be extended to any number of func-
tions, not just two.

EXAMPLE 5 Use the observations lim,_,. k = k and lim,_,. x = ¢ (Example 3) and
the fundamental rules of limits to find the following limits.

(a) lim_(x3 + 4x% — 3)

Coxr+xr—1
b) Im————
()xl—>mc x2+5

(¢) lim V4x?2 —3

x——2
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Identifying Common Factors

It can be shown that if Q(x) is a poly-
nomial and Q(c) = 0, then (x — ¢) is
a factor of Q(x). Thus, if the numerator
and denominator of a rational function
of x are both zero at x = ¢, they have
(x — ¢) as a common factor.

-

Solution
(a) lim(x3 + 4x? — 3) = lim x> + lim 4x*> — lim 3 Sum and Difference Rules
xX—>¢ Xx—>c X—>c¢ x—>c¢
=+ 42 -3 Power and Multiple Rules
lm(x* + x> — 1
. x4+x2_1_x—>c( ) )
(b) lim 3 = ; > Quotient Rule
x—c X~ + 5 hm(x + 5)
Xx—>c

lim x* + lim x2 — lim 1

x—c x—>c x—c L
= ; 5 ; Sum and Difference Rules
lim x* + lim 5
xX—c Pande
A+ -1
I Power or Product Rule
cc+5
(¢) lim Vax2 — 3 =V lim (4x2 = 3) Root Rule with n = 2
x——2 x—>—2
= \/lim 4x2 — lim 3 Difference Rule
x—>=2 x—>=2

= 4(—2)2 -3 Product and Multiple Rules
= V16 —3
= VI3

Theorem 1 simplifies the task of calculating limits of polynomials and rational functions.
To evaluate the limit of a polynomial function as x approaches ¢, merely substitute ¢ for x
in the formula for the function. To evaluate the limit of a rational function as x approaches
a point ¢ at which the denominator is not zero, substitute ¢ for x in the formula for the

function. (See Examples 5a and 5b.) We state these results formally as theorems.

THEOREM 2—Limits of Polynomials
If P(x) = a,x* + a,_,x"" ' + --- + q, then

lim P(x) = P(c) = a," + a,_,c" ' + -+ + q
X—>c

THEOREM 3—Limits of Rational Functions

If P(x) and Q(x) are polynomials and Q(c) # 0, then
i P(x)  P(o)
im-_—— = .
x—c Q) 0(0)

EXAMPLE 6  The following calculation illustrates Theorems 2 and 3:

B4 -3 _ D +4-)P -3 0
lim = ==-=0
—-1 x*+5 -1 +5 6

Eliminating Common Factors from Zero Denominators

Theorem 3 applies only if the denominator of the rational function is not zero at the limit
point c. If the denominator is zero, canceling common factors in the numerator and
denominator may reduce the fraction to one whose denominator is no longer zero at c. If

this happens, we can find the limit by substitution in the simplified fraction.



\—'\ of 1
(®)

FIGURE 2.11 The graph of

fx) = (x*+x—2)/(x* —x) in
part (a) is the same as the graph of
g(x) = (x + 2)/x in part (b) except
at x = 1, where f is undefined. The
functions have the same limit as x — 1
(Example 7).
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EXAMPLE 7 Evaluate

. X +x—2
im=—————.

=1 XT — X
Solution  We cannot substitute x = 1 because it makes the denominator zero. We test
the numerator to see if it, too, is zero at x = 1. It is, so it has a factor of (x — 1) in com-
mon with the denominator. Canceling this common factor gives a simpler fraction with the
same values as the original for x # 1:

P4+x—2_ G—=—Dx+2) x+2
2—-x  xx=1 X

, ifx # 1.

Using the simpler fraction, we find the limit of these values as x — | by Theorem 3:

See Figure 2.11. |

Using Calculators and Computers to Estimate Limits

When we cannot use the Quotient Rule in Theorem 1 because the limit of the denominator
is zero, we can try using a calculator or computer to guess the limit numerically as x gets
closer and closer to ¢. We used this approach in Example 1, but calculators and computers
can sometimes give false values and misleading impressions for functions that are unde-
fined at a point or fail to have a limit there. Usually the problem is associated with round-
ing errors, as we now illustrate.

Vx? 4+ 100 — 10

2

EXAMPLE 8 Estimate the value of lirr(l)
x> X

Solution  Table 2.3 lists values of the function obtained on a calculator for several points
approaching x = 0. As x approaches 0 through the points + 1, 0.5, £0.10, and +0.01,
the function seems to approach the number 0.05.

As we take even smaller values of x, =0.0005, +0.0001, £0.00001, and £ 0.000001,
the function appears to approach the number 0.

Is the answer 0.05 or 0, or some other value? We resolve this question in the next
example. |

2 _
TABLE 2.3 Computed values of f(x) = YX 120 10 pearx = 0
x f(x)
+1 0.049876
+0.5 0.049969
hes 0.05?

+0.1 0.049999 [ APPrOAces
+0.01 0.050000
+0.0005 0.050000
+0.0001 0.000000 e

wooroaches 07
+0.00001 0.000000 [ APPTOAcHEs
+£0.000001  0.000000
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I
I
I
I
I
I
I
I
0 c

FIGURE 2.12 The graph of f is sand-
wiched between the graphs of g and /.

Using a computer or calculator may give ambiguous results, as in the last example.
The calculator could not keep track of enough digits to avoid rounding errors in computing
the values of f(x) when x is very small. We cannot substitute x = 0 in the problem, and the
numerator and denominator have no obvious common factors (as they did in Example 7).
Sometimes, however, we can create a common factor algebraically.

EXAMPLE 9 Evaluate
Vx2 + 100 — 10

lim >

x—0 X
Solution  This is the limit we considered in Example 8. We can create a common factor

by multiplying both numerator and denominator by the conjugate radical expression

Vx? + 100 + 10 (obtained by changing the sign after the square root). The preliminary
algebra rationalizes the numerator:

Va2 4+ 100 = 10 _ Va? + 100 — 10 Vx* + 100 + 10
x? x? Va2 + 100 + 10
_ a2+ 100 — 100
x2(Vx* + 100 + 10)

2

X
X2(Vx% + 100 + 10)

Common factor x>

Cancel x? for x # 0.

B 1
Va2 + 100 + 10

Therefore,

. Vx> + 100 — 10 . 1
lim > = lim—F—
x>0 x =0Vx% + 100 + 10
Denominator not 0 at
x = 0; substitute.

_ 1
V0% + 100 + 10

-1 _
=50 = 0.05.
This calculation provides the correct answer, in contrast to the ambiguous computer
results in Example 8. |

We cannot always algebraically resolve the problem of finding the limit of a quotient
where the denominator becomes zero. In some cases the limit might then be found with
the aid of some geometry applied to the problem (see the proof of Theorem 7 in Section 2.4),
or through methods of calculus (illustrated in Section 4.5). The next theorems give helpful
tools by using function comparisons.

The Sandwich Theorem

The following theorem enables us to calculate a variety of limits. It is called the Sandwich
Theorem because it refers to a function f whose values are sandwiched between the val-
ues of two other functions g and / that have the same limit L at a point c. Being trapped
between the values of two functions that approach L, the values of f must also approach L
(Figure 2.12). You will find a proof in Appendix 4.



FIGURE 2.13 Any function u(x)
whose graph lies in the region between
y=1+@*/2andy =1 — (x*/4)
has limit 1 as x — 0 (Example 10).

y
y=10]
L y=sinf
3 0
-7 =
-1F y =16l
(@)

(b)

FIGURE 2.14 The Sandwich Theorem
confirms the limits in Example 11.
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THEOREM 4—The Sandwich Theorem Suppose that g(x) = f(x) = h(x) for
all x in some open interval containing c, except possibly at x = ¢ itself. Suppose
also that

lim g(x) = lim h(x) = L.

Then lim,_,. f(x) = L.

The Sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem.
EXAMPLE 10  Given that

x

2

x?

=5

=ux) =1+ forall x # 0,

find lim,_,( u(x), no matter how complicated u is.

Solution Since

lim(1 = (2/4) =1 and  lim(1 + (/2)) = 1,

the Sandwich Theorem implies that lim, ., u(x) = 1 (Figure 2.13). |

EXAMPLE 11 The Sandwich Theorem helps us establish several important limit rules:
(a) limsinf® =0 (b) lim cos @ =1

0—0 0—0
(¢) For any function f, lim | f(x)| = 0 implies lim fx) =0.

Solution
(a) In Section 1.3 we established that —|6| < sin =< |6| for all 6 (see Figure 2.14a).
Since limy_(—|60]) = limy_ |8] = 0, we have

limsin @ = 0.
6—0
(b) From Section 1.3, 0 =1 — cosf = \0\ for all 0 (see Figure 2.14b), and we have
limg—y (1 — cos ) = 0 or
limcos 6 = 1.
0—0
(¢) Since —\f(x)| = flx) = \f(x)| and —\f(x)| and \f(x)| have limit 0 as x —¢, it
follows that lim,,.f(x) = 0. [ |

Another important property of limits is given by the next theorem. A proof is given in
the next section.

THEOREM 5 If f(x) = g(x) for all x in some open interval containing ¢, except
possibly at x = c itself, and the limits of f and g both exist as x approaches c,
then

lim fx) = lim g(x).

Caution The assertion resulting from replacing the less than or equal to (=) inequality by
the strict less than (<) inequality in Theorem 5 is false. Figure 2.14a shows that for 6§ # 0,
—[6] < sin® < |6].So limy_sin @ = 0 = limy_ 6], not limy_q sin & < limy_|6)|.
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Exercises m

Limits from Graphs
1. For the function g(x) graphed here, find the following limits or
explain why they do not exist.

a. limg(x) b. limgkx) c limgkx) d. lim g(x)
x—1 x—2 x—3 x—2.5

y

y =8
lF——p———A——o

2. For the function f(r) graphed here, find the following limits or
explain why they do not exist.

a. rgn—lz f@® b. rgn_ll f@ e }gré f® d. [iil_na5 £

d. lim f(x) exists at every point ¢ in (—1, 1).
Xx—c

e. lim f(x) exists at every point ¢ in (1, 3).
x—>c

Existence of Limits

In Exercises 5 and 6, explain why the limits do not exist.

5. lim >
x—0 | x‘

6.

lim ——
=1 X =

3. Which of the following statements about the function y = f(x)

7. Suppose that a function f(x) is defined for all real values of x
except x = ¢. Can anything be said about the existence of
lim,_.. f(x)? Give reasons for your answer.

8. Suppose that a function f(x) is defined for all x in [—1, 1]. Can
anything be said about the existence of lim,_.q f(x)? Give reasons
for your answer.

9. If lim,,, f(x) = 5, must f be defined at x = 1?7 If it is, must
f(1) = 5?7 Can we conclude anything about the values of f at
x = 1?7 Explain.

10. If f(1) =5, must lim,—,; f(x) exist? If it does, then must
lim,—, f(x) = 5? Can we conclude anything about lim,_,, f(x)?

graphed here are true, and which are false?
a. lim f(x) exists.
x—0

. lim f(x) =0

x—0
lim f(x) = 1
x—0
. lim f(x) =1

x—1
lin% fx)y=20
—
lim. f(x) exists at every point ¢ in (—1, 1).

=3

=0 a0

g. liml f(x) does not exist.

4. Which of the following statements about the function y = f(x)
graphed here are true, and which are false?

a. lin% f(x) does not exist.
=

b. lim f(x) =2
x—2

c. lim f(x) does not exist.
x—1

Explain.

Calculating Limits

Find the limits in Exercises 11-22.

11. lim (x> — 13)
x—>=3

13. lim 8 — 5)(t = 7) 14, lim (¢ = 2 + 4x + 8)
— x——
. 2x+5 .
15. )lfl_rg” 0 16. JE)rzr}g(fi 35)(2s — 1)
. . y+2
17. lim 4x(3x + 4)? 18. lim ———
x—=1/2 2 y° + 5y + 6
19. lim (5 = ' 20. lim V2 ~ 10
y—= —
=0N/3h + 1 + 1 =0 h

12.

Lim(—x2 + 5x — 2)
x—2

Limits of quotients Find the limits in Exercises 23—42.

23, lim 22 24. lim —>1T3
x—5x° — 25 x—-3x-+4x + 3
. x>+ 3x—10 .o x2—=Tx+ 10
25 im0 26. Im ™2
L P+ t—=2 . P+ 3t+2
27. im——— 28. 1 —_—
Pl 8 i
—2x — 5y° + 8y?
29, lim 2% 30. lim =

—=2x% + 2x2

im-—————
y—0 3y* — 16y?



31. lim 32. lim
=1 X — x—0 X
4 _ 3 _
3. lim L1 M. lim 25
=1y — 1 =20 — 16
— — 2
35, lim YX =3 36. lim X %
—9 X — 9 x4 — \/‘;
_ 2 —
37, fim—X -1 38, lim X 873
—=I\V/x+3 -2 x——1 x+ 1
2 —
30, jim X t12-4 40. lim —*t2
=2 x =2 =22 + 5 -3
_ 2 __ —
41, fim 2= VX =3 2. lim—F—*
—-3 x+3 =45 —\/x2+9

Limits with trigonometric functions Find the limits in Exercises

43-50.

43. lim(2sinx — 1) 2
x—0

44, lim sin” x

53.

2.2 Limit of a Function and Limit Laws

Suppose lim,_,. f(x) = 5 and lim,_,. g(x) = —2. Find
a. ljm_ fx)gx) b. lim_ 2f(x)g(x)

d. Tim @

e fim(f) + 3¢00) ) — o

54. Suppose lim,_,, f(x) = 0 and lim,_,, g(x) = —3. Find
a. }m (gx) + 3) b. 11_{3 xf(x)
c. Iyt o tim

55. Suppose lim,_,;, f(x) = 7 and lim,,, g(x) = —3. Find
a. lim (f(x) + g(x)) b. lim f(x) - g(x)
¢ lim 4g(x) d. lim f(x)/8(x)

56. Suppose that lim,—, _, p(x) = 4, lim,,_, r(x) = 0, and

lim,,_, s(x) = —3. Find

a. xEn_lz(p(x) + r(x) + s(x))
b. xgn—lz p(x) « r(x) < s(x)

e lim (~4p() + 5r(0) /)

75

x— /4
45. limsec x 46. lim tanx
x—0 x—m/3
47. lim LT Xt sinx 48. lim (2 — 1)(2 — cos x)
=0 3cosx 1—0

49.

lim Vx + 4cos(x + ) 50.

x—=>—m

lim V7 + sec®x

x—0

Limits of Average Rates of Change
Because of their connection with secant lines, tangents, and instanta-
neous rates, limits of the form

Using Limit Rules

51. Suppose lim,—, f(x) =1 and lim,—,g(x) = —5. Name the
rules in Theorem 1 that are used to accomplish steps (a), (b), and
(c) of the following calculation.

2600 — gv) M)~ 8(0)

0 (fe) + DB lim (f(x) + 7)2/3 @

1irr(1) 2f(x) — Iirr(l) gx)
= 27 (b)
<lig(1)(f(x) + 7))

2 }gl(l) fx) — y_r}(l) g(x)

. . 2/3
(1m0 + 1y 7)
QM- 5 _7

(1 + 7)¥3 4

52. Let lim,_,; h(x) = 5,lim,—,; p(x) = 1, and lim,; r(x) = 2.
Name the rules in Theorem 1 that are used to accomplish steps
(a), (b), and (c) of the following calculation.

V5h(x) Lim v Shix)

AP = 00)  lim (0@ — 1) ©
\/lim 510
_ : (b)
(HE} p(x))(li_r>r}(4 - r(x)))
_ : ©

<liﬁrr} p(x))(liir} 4 — 12111 r(x))
55 s

TH@E -2 2

. fOoe+h) = f(x)
lim—————
h—0 h

occur frequently in calculus. In Exercises 57-62, evaluate this limit
for the given value of x and function f.

57. f) =x% x=1

58. f(x) =x%, x=-2

59, f(x) =3x—4, x=2
60. f(x) =1/x, x=-2

6. fo) =V, x=17

62. f()=V3x+1, x=0

Using the Sandwich Theorem

63.

IfV5—22%=f(x) = V5 —x*for—1 = x = 1, find

limAHO f(-x)

64. If 2 — x> = g(x) = 2 cos x for all x, find lim,_.q g(x).
65. a. It can be shown that the inequalities
|- x  _ xsinx

6 2 —2cosx

hold for all values of x close to zero. What, if anything, does

this tell you about

. X sin x
lim =————————?
—02 — 2cosx

Give reasons for your answer.

. Graph y =1 — (x?/6),y = (xsinx)/(2 — 2 cos x),

and

y = 1 together for —2 = x = 2. Comment on the behavior

of the graphs as x — 0.
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66. a. Suppose that the inequalities

2 1 —cosx _1
<L —) < =
x2 2

N[ —
2l

hold for values of x close to zero. (They do, as you will see in
Section 9.9.) What, if anything, does this tell you about

. 1 —cosx
lim———7?
x—0 X~

Give reasons for your answer.

b. Graph the equations y = (1/2) — (x2/24),
vy = (1 — cosx)/x% and y = 1/2 together for =2 =< x =< 2.
Comment on the behavior of the graphs as x — 0.

Estimating Limits

You will find a graphing calculator useful for Exercises 67-76.

67. Let f(x) = (x2 — 9)/(x + 3).
a. Make a table of the values of f at the points x = —3.1,
—3.01, —3.001, and so on as far as your calculator can go.
Then estimate lim,_,_3 f(x). What estimate do you arrive at
if you evaluate f at x = —2.9,—2.99,—-2.999, . .. instead?
b. Support your conclusions in part (a) by graphing f near
¢ = —3 and using Zoom and Trace to estimate y-values on
the graph as x — —3.
c. Find lim,,_3 f(x) algebraically, as in Example 7.
68. Let g(x) = (x*» —2)/(x — V2).
a. Make a table of the values of g at the points x = 1.4, 1.41,
1.414, and so on through successive decimal approximations
of V2. Estimate lim,—3 g(x).
b. Support your conclusion in part (a) by graphing g near
¢c=V2and using Zoom and Trace to estimate y-values on
the graph as x — V2.

c. Find lim,_,\5 g(x) algebraically.
69. Let G(x) = (x + 6)/(x? + 4x — 12).
a. Make a table of the values of G at x = —5.9, —5.99, —5.999,
and so on. Then estimate lim,_,_5 G(x). What estimate do

you arrive at if you evaluate G at x = —6.1,—6.01,
—6.001, . .. instead?

b. Support your conclusions in part (a) by graphing G and using
Zoom and Trace to estimate y-values on the graph as
x— —0.

c. Find lim,_, ¢ G(x) algebraically.

70. Let i(x) = (x*> — 2x — 3)/(x? — 4x + 3).

a. Make a table of the values of & at x = 2.9, 2.99, 2.999, and
so on. Then estimate lim,_,3 /(x). What estimate do you
arrive at if you evaluate s at x = 3.1, 3.01, 3.001, . ..
instead?

b. Support your conclusions in part (a) by graphing / near
¢ = 3 and using Zoom and Trace to estimate y-values on the
graph as x — 3.

c. Find lim,_,; h(x) algebraically.

71. Let f(x) = (x> — 1)/(|]x| — 1).

a. Make tables of the values of f at values of x that approach

¢ = —1 from above and below. Then estimate lim,_, _; f(x).

b. Support your conclusion in part (a) by graphing f near
¢ = —1 and using Zoom and Trace to estimate y-values on
the graph as x —> —1.
c. Find lim,_,_; f(x) algebraically.
72. Let F(x) = (x® + 3x + 2)/(2 — |x]).
a. Make tables of values of F' at values of x that approach
¢ = —2 from above and below. Then estimate lim,_,_, F(x).
b. Support your conclusion in part (a) by graphing F near
¢ = —2 and using Zoom and Trace to estimate y-values on
the graph as x — —2.
c. Find lim,_,_, F(x) algebraically.
73. Let g(0) = (sin 6)/6.
a. Make a table of the values of g at values of 6 that approach
0y = 0 from above and below. Then estimate lim,_,, g(6).
b. Support your conclusion in part (a) by graphing g near
0() = 0.
74. Let G() = (1 — cos )/~
a. Make tables of values of G at values of 7 that approach 7, = 0
from above and below. Then estimate lim,_.q G(f).
b. Support your conclusion in part (a) by graphing G near
tO =0.
75. Let f(x) = x!/079,
a. Make tables of values of f at values of x that approach ¢ = 1
from above and below. Does f appear to have a limit as
x — 1?7 If so, what is it? If not, why not?
b. Support your conclusions in part (a) by graphing f near ¢ = 1.
76. Let f(x) = (3* — 1)/x.
a. Make tables of values of f at values of x that approach ¢ = 0

from above and below. Does f appear to have a limit as
x — 07 If so, what is it? If not, why not?

b. Support your conclusions in part (a) by graphing f near ¢ = 0.

Theory and Examples

77. If x* = f(x) = x> for x in [—1,1] and x* = f(x) =< x* for
x < —1 and x > 1, at what points ¢ do you automatically know
lim,—,. f(x)? What can you say about the value of the limit at
these points?

78. Suppose that g(x) = f(x) = h(x) for all x # 2 and suppose that
lin; glx) = lini h(x) = —5.
Can we conclude anything about the values of f, g, and 4 at

x = 2? Could f(2) = 0? Could lim,—,, f(x) = 0?7 Give reasons
for your answers.

79. 1 m > — 1. find lim f(x)
: x—4 X — 2 ’ x—4 " ’
80. If lim Lf) = 1, find
x—>=2 X
. R AC))
a. xli@z fx) b. xlin—lz X
$1. a. If im 2 > = 3 find lim f()
- If lim=———= =3, find lim f(x).
b, I 1im 2 > — 4 find lim £(x)
: x—2 X — 2 ’ x—2 x)-
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X 4 _
82. 1f im " = 1, find 85. lim *—— 10
=0 x2 =2 X — 2
. 32 _ sy
a. lim F 86. lim T — X —x—3
) x——1 x+ 1)
b §7. tim V1T X1
. X
83. a. Graph g(x) = xsin(1/x) to estimate lim, . g(x), zooming in x>0
on the origin as necessary. 88. lim -9
b. Confirm your estimate in part (a) with a proof. IV +T -4
84. a. Graph h(x) = x?cos(1/x?) to estimate lim,_q h(x), zooming  gg. 1 — cosx

in on the origin as necessary.

1 B
x—0 XSInx

b. Confirm your estimate in part (a) with a proof. 90 2

COMPUTER EXPLORATIONS

Graphical Estimates of Limits

. lim ————
x—03 — 3cosx

In Exercises 85-90, use a CAS to perform the following steps:

a. Plot the function near the point ¢ being approached.

b. From your plot guess the value of the limit.
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y=2x—1
Upper bound:
y=9
9 T
To satisfy e
this e %
5 il
: : Lower bound:
| ] y=35
| ]
| ]
[
0 345
\ﬂ_l
Restrict
to this

FIGURE 2.15 Keeping x within 1 unit

of x = 4 will keep y within 2 units of
y = 7 (Example 1).

We now turn our attention to the precise definition of a limit. We replace vague phrases
like “gets arbitrarily close to” in the informal definition with specific conditions that can
be applied to any particular example. With a precise definition, we can avoid misunder-
standings, prove the limit properties given in the preceding section, and establish many
important limits.

To show that the limit of f(x) as x — ¢ equals the number L, we need to show that the
gap between f(x) and L can be made “as small as we choose” if x is kept “close enough”
to ¢. Let us see what this would require if we specified the size of the gap between f(x)
and L.

EXAMPLE 1 Consider the function y = 2x — 1 near x = 4. Intuitively it appears
that y is close to 7 when x is close to 4, so lim,,,(2x — 1) = 7. However, how close to
x = 4 does x have to be so that y = 2x — 1 differs from 7 by, say, less than 2 units?

Solution  We are asked: For what values of x is [y — 7| < 2? To find the answer we
first express |y — 7| in terms of x:
y =7 =[@ =1 =7 = |2x - 8].

The question then becomes: what values of x satisfy the inequality |2x — 8| < 2? To find
out, we solve the inequality:

|2x — 8] <2
—2<2x—8<2
6 <2x<10
3<x<5
—“1<x—-4<1.

Solve for x.

Solve for x — 4.

Keeping x within 1 unit of x = 4 will keep y within 2 units of y = 7 (Figure 2.15). |
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y
L+ %/\
o f(x)
f(x) lies
L in here
1
L={oY
forall x # ¢
in here
) )
—
¢ > —>x
0 c—86 ¢ cté

FIGURE 2.16 How should we define
6 > 0 so that keeping x within the interval
(c — 8, c + 6) will keep f(x) within the

. 1 1
_ = N )
interval <L 10 L + 10).

L+e7
f(x) lies
L 0_f(x) in here
L—€el
for all x # ¢
in here
8 8
—_—
X
5 L8 - x

FIGURE 2.17 The relation of & and €
in the definition of limit.

In the previous example we determined how close x must be to a particular value ¢ to
ensure that the outputs f(x) of some function lie within a prescribed interval about a limit
value L. To show that the limit of f(x) as x — c actually equals L, we must be able to show
that the gap between f(x) and L can be made less than any prescribed error, no matter how
small, by holding x close enough to c.

Definition of Limit

Suppose we are watching the values of a function f(x) as x approaches ¢ (without taking
on the value of c itself). Certainly we want to be able to say that f(x) stays within one-
tenth of a unit from L as soon as x stays within some distance & of ¢ (Figure 2.16). But that
in itself is not enough, because as x continues on its course toward ¢, what is to prevent
f(x) from jittering about within the interval from L — (1/10) to L + (1/10) without
tending toward L?

We can be told that the error can be no more than 1,/100 or 1/1000 or 1/100,000.
Each time, we find a new d&-interval about ¢ so that keeping x within that interval satisfies
the new error tolerance. And each time the possibility exists that f(x) jitters away from L
at some stage.

The figures on the next page illustrate the problem. You can think of this as a quarrel
between a skeptic and a scholar. The skeptic presents e-challenges to prove that the limit
does not exist or, more precisely, that there is room for doubt. The scholar answers every
challenge with a 8-interval around c that keeps the function values within € of L.

How do we stop this seemingly endless series of challenges and responses? We can
do so by proving that for every error tolerance e that the challenger can produce, we can
present a matching distance & that keeps x “close enough” to ¢ to keep f(x) within that
e-tolerance of L (Figure 2.17). This leads us to the precise definition of a limit.

DEFINITION Let f(x) be defined on an open interval about ¢, except possibly at ¢
itself. We say that the limit of f(x) as x approaches c is the number L, and write

lim f(x) = L,
X—>c¢

if, for every number € > 0, there exists a corresponding number 6 > 0 such
that for all x,

0<|x—c| <86 = |fx—-Ll<e

One way to think about the definition is to suppose we are machining a generator
shaft to a close tolerance. We may try for diameter L, but since nothing is perfect, we must
be satisfied with a diameter f(x) somewhere between L — € and L + €. The 6 is the mea-
sure of how accurate our control setting for x must be to guarantee this degree of accuracy
in the diameter of the shaft. Notice that as the tolerance for error becomes stricter, we may
have to adjust 6. That is, the value of &, how tight our control setting must be, depends on
the value of e, the error tolerance.

Examples: Testing the Definition

The formal definition of limit does not tell how to find the limit of a function, but it
enables us to verify that a conjectured limit value is correct. The following examples show
how the definition can be used to verify limit statements for specific functions. However,
the real purpose of the definition is not to do calculations like this, but rather to prove gen-
eral theorems so that the calculation of specific limits can be simplified, such as the theo-
rems stated in the previous section.
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y :f(x)/ y =[x y=fx)
1
Lt1s 1 1
L+ — L+—

100 100 |
L===777 Li====72 |

|

- L 1 .

A

|
|
|
t
|
|
|
1
c

X
* A v 0 ) of ~ )
¢ = 8110 c+ 810 €= 817100 ¢+ 81100
The challenge: Response: New challenge: Response:
Make |f(x) — L| <€ =1l0 |x —c| <8y (anumber) Make [f(x) — L| <€ ﬂﬁ) lx = e[ <8100
y y
y =) y=f
1 1
L+ To00 L+ To00
— —
_______________ |
Ve ! Ve | i
1 ! . b
L~ 1500 / i L~ 1000 /: P
I | (|
| | | |
/] i x /] bl x
0 ¢ 0 ¢
New challenge: Response:
€ = 1000 [x = ¢l <8000
y y y
y=f) y = f(x)
_ 1 1
L+ 150,000 L 160,000
\ L+ e
; ------- : b —————— == x
1 : L— L / L= E/ |
L~ 100,000 ! 100,000 |
| i
i
/ L / / |
c X X
0 0 c 0 c
New challenge: Response: New challenge:
1
€ = 100,000 [x = ¢l < 811100000 € =

EXAMPLE 2 Show that
l_in} (5x — 3) = 2.
Solution Set ¢ = 1, f(x) = 5x — 3, and L = 2 in the definition of limit. For any given

€ > 0, we have to find a suitable 8 > 0 so that if x # 1 and x is within distance 6 of
¢ = 1, that is, whenever

0<|x—1| <3,
it is true that f(x) is within distance € of L = 2, so

lfr) — 2| < e
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NOT TO SCALE

FIGURE 2.18 1If f(x) = 5x — 3, then
0 < |x — 1] < €/5 guarantees that
lf(x) — 2| < e (Example 2).

y
y=2x
ct+er
c+6
S I /
]
c— 0 :I
[
[
cC— € [
[
[
[
i
L x
0 c—8c c+d

FIGURE 2.19 For the function

f(x) = x, wefindthat 0 < |[x — ¢| < §
will guarantee | f(x) — ¢| < € whenever
6 = € (Example 3a).

y
=k
k+ e Y
k | \ ]
k— € t 1 t
1 | ]
1 | ]
| | ]
| | ]
| | |
| I I
1 1 1 x
0 c—86 ¢ ¢+

FIGURE 2.20 For the function
f(x) = k, we find that |f(x) — k| < €
for any positive 6 (Example 3b).

We find 6 by working backward from the e-inequality:
|(5x —3) — 2| = [5x — 5| <€
5x— 1] <e
lx — 1] < €/5.
Thus, we can take § = €/5 (Figure 2.18).If 0 < |x — 1| < § = €/5, then
|5x —3) — 2| = [5x — 5| =5|x — 1] <5(/5) = ¢,

which proves that lim,,(5x — 3) = 2.

The value of 8 = €/5 is not the only value that will make 0 < |x — 1| < & imply
5x — 5| < e. Any smaller positive & will do as well. The definition does not ask for a
“best” positive J, just one that will work. [ |

EXAMPLE 3 Prove the following results presented graphically in Section 2.2.

(a) limx=c¢

xX—>c

(b) 1imk k  (k constant)

Solution
(a) Let e > 0 be given. We must find 6 > 0 such that for all x
0<|x—c| <& implies |x—c|<e
The implication will hold if 8 equals € or any smaller positive number (Figure 2.19).
This proves that lim,_,.x = c.
(b) Let € > 0 be given. We must find 6 > 0 such that for all x

0<|x—rc| <& implies [k—k|l <e.

Since k — k = 0, we can use any positive number for 6 and the implication will hold
(Figure 2.20). This proves that lim,_.. k = k. |

Finding Deltas Algebraically for Given Epsilons

In Examples 2 and 3, the interval of values about ¢ for which \ flx) — L| was less than €
was symmetric about ¢ and we could take 6 to be half the length of that interval. When
such symmetry is absent, as it usually is, we can take 6 to be the distance from c to the
interval’s nearer endpoint.

EXAMPLE 4 For the limit lim,_,s\Vx — 1 = 2, find a § > 0 that works for € = 1.
That is, find a & > 0 such that for all x

0<|x—-5<5s = [Vx—1-2] <1
Solution  We organize the search into two steps.

1. Solve the inequality |\V/x — 1 — 2| < 1 to find an interval containing x =5 on
which the inequality holds for all x # 5.

Vx—1-2| <1
“1<Vx—-1-2<1
1<Vx—-1<3
1<x—-1<9
2<x<10
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FIGURE 2.21 An open interval of ra-
dius 3 about x = 5 will lie inside the open
interval (2, 10).
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FIGURE 2.22 The function and inter-
vals in Example 4.
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FIGURE 2.23 An interval containing
x = 2 so that the function in Example 5
satisfies [ f(x) — 4| < e.
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The inequality holds for all x in the open interval (2, 10), so it holds for all x # 5 in
this interval as well.

. Find a value of 6 > 0 to place the centered interval 5 — 6 < x < 5 + & (centered

at x = 5) inside the interval (2, 10). The distance from 5 to the nearer endpoint of
(2, 10) is 3 (Figure 2.21). If we take 6 = 3 or any smaller positive number, then the
inequality 0 < |x — 5| < & will automatically place x between 2 and 10 to make

|Vx — 1 — 2| < 1 (Figure 2.22):

0<|x—35<3 = Vx—1-2] <1 [ |

How to Find Algebraically a 6 for a Given f, L,c,and € > 0
The process of finding a & > 0 such that for all x
0<|x—c| <8 = lf(x) — L] <€
can be accomplished in two steps.
1. Solve the inequality | fx) — L| < € to find an open interval (a, b) contain-
ing ¢ on which the inequality holds for all x # c.

2. Find a value of & > 0 that places the open interval (¢ — 8, ¢ + &) centered
at ¢ inside the interval (a, b). The inequality |f(x) — L| < € will hold for all
x # cin this §-interval.

EXAMPLE 5 Prove that lim,,, f(x) = 4 if

{xz, x#2
=1 -2

Solution  Our task is to show that given € > 0 there exists a § > 0 such that for all x

0<|x—2]<é = If(x) — 4] < e

1. Solve the inequality |f(x) — 4| < € to find an open interval containing x = 2 on

which the inequality holds for all x # 2.
For x # ¢ = 2, we have f(x) = x?, and the inequality to solve is [x*> — 4| < e:
X2 —4| <e
—e<x*—4<e
4—e<x?*<4+ce€
V4 — e < |x| < V4 + € Assumes € < 4; see below.
\/m <x< \/m An open interval about x = 2

that solves the inequality

The inequality |f(x) — 4| < € holds for all x # 2 in the open interval (V4 — e,
V4 + €) (Figure 2.23).

. Find a value of 8 > 0 that places the centered interval (2 — 8,2 + 0) inside the

interval (V4 — e, V4 + €).

Take & to be the distance from x = 2 to the nearer endpoint of (V4 — €, V4 + €).
In other words, take 6 = min {2 - V4 —€, V4 + € — 2}, the minimum (the
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smaller) of the two numbers 2 — V4 — € and V4 + € — 2. If § has this or any
smaller positive value, the inequality 0 < \x - 2] < & will automatically place x
between V4 — € and V4 + € to make |f(x) — 4| < €. Forall x,

0<|x-2/<8 = lf) — 4] < e

This completes the proof for € < 4.
If € = 4, then we take § to be the distance from x = 2 to the nearer endpoint of

the interval (0, V4 + €). In other words, take § = min {2, V4 + e — 2}. (See
Figure 2.23.) |

Using the Definition to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such as
those in the preceding examples. Rather, we appeal to general theorems about limits, in
particular the theorems of Section 2.2. The definition is used to prove these theorems
(Appendix 5). As an example, we prove part 1 of Theorem 1, the Sum Rule.

EXAMPLE 6 Given that lim,,. f(x) = L and lim,_,. g(x) = M, prove that
)lci_)nz(f(x) +g) =L+ M.
Solution Let € > 0 be given. We want to find a positive number & such that for all x
0<|x—c|l<§ = |f(x) + gx) — (L + M)| < e.
Regrouping terms, we get

|f(x) + gx) — (L + M)

|(f(x) = L)+ (gx) — M)| Triangle Inequality:
F) = L| + |g@) — M. la+ bl =ldl + o

IA

Since lim,,. f(x) = L, there exists a number ; > 0 such that for all x
0<|x—c| <§ = lf(x) — L| < €/2.
Similarly, since lim,_,. g(x) = M, there exists a number 6, > 0 such that for all x
0<|x—c| <8 = lg(x) — M| < €/2.
Let 8§ = min {8, 8,}, the smaller of 8, and §,. If 0 < |x — ¢| < & then |x — ¢| < &,
so |f(x) — L| < €/2,and |x — ¢| < §,, s0 |g(x) — M| < €/2. Therefore
) + g — L+ M) <5+ 5 =e
This shows that lim,,.(f(x) + g(x)) = L + M. |

Next we prove Theorem 5 of Section 2.2.

EXAMPLE 7 Given that lim,_,. f(x) = L and lim,_,, g(x) = M, and that f(x) < g(x)
for all x in an open interval containing ¢ (except possibly c itself), prove that L = M.

Solution  We use the method of proof by contradiction. Suppose, on the contrary, that
L > M. Then by the limit of a difference property in Theorem 1,

lim (g(x) = f(x)) = M — L.



Exercises m

Centering Intervals About a Point

In Exercises 1-6, sketch the interval (a, b) on the x-axis with the
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Therefore, for any € > 0, there exists § > 0 such that
l(gx) — f@) — M — L)| < € whenever 0 < |[x — ¢| < §&.

Since L — M > 0 by hypothesis, we take € = L — M in particular and we have a num-
ber & > 0 such that

l(gx) — fx)) — M — L)) <L —-M  whenever 0 < |x —c| <§é.
Since a < |a| for any number a, we have
(g¥) — f(x)) —(M — L) <L—M  whenever 0 < |x—c|] <38
which simplifies to
gln) < f(x) whenever 0 < |x - c| < 8.

But this contradicts f(x) = g(x). Thus the inequality L > M must be false. Therefore
L=M. |

point ¢ inside. Then find a value of 6 > 0 such that for all i f (xzz}/} X fo =2+ 1
L0<|x—¢c| <8 = a<x<bh A L=1 Te=3
La=1 b=7 c¢=5 s e=7 y=\a
2.a=1, b=7 ¢c=2 Y |
3 a=-7/2, b=-1/2, ¢=-3 N
4. a=-7/2, b=—-1/2, ¢=-3/2 4 b |
I I I
5.a=4/9, b=4/7, c=1/2 ! ! !
| | |
6. a =27591, b=32391, ¢=3 0 9 1 25 x
16 16
Finding Deltas Graphically -1o 261 3 341
In Exercises 7—14, use the graphs to find a § > 0 such that for all x NOTTOSCALE
O<|x—c|<6:>|f(x)—L|<e. 11. 12.
7. 8.
y
" f) =
y=2x—4 c=2
L=4
62F——-—-—-——- fx)=2x—4 e=1
6F————-- c=
58—----/11 L=6¢ =x? Spm——---
: : €e=02 7.65 y=x 5 |
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Ll 7.35 ) I 1 I
0 75N ! L1 Lo
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—3.1 —-29 \ i i
X
NOT TO SCALE _ﬁ _l_ﬂ 0
2 2

NOT TO SCALE



84 Chapter 2: Limits and Continuity

13. 14.
y y
_ 1
f&x) =3
2,01 f—-- L3
e =0.01
2_.___
|
I
I
1.99f--—+d-
|::
[
o
b
e
[
Fl
h
il
11
Pl
[ X
ool SNy
201 > 199

NOT TO SCALE

Finding Deltas Algebraically

Each of Exercises 15-30 gives a function f(x) and numbers L, ¢, and
€ > 0. Ineach case, find an open interval about ¢ on which the inequal-
ity |f(x) — L| < € holds. Then give a value for 8 > 0 such that for
all x satisfying 0 < |x — ¢| < § the inequality |f(x) — L| < €
holds.

15 fo)=x+1, L=5 c¢=4 €=00l
16. f) =2x—2, L=-6, c¢=-2, €=002
17. f))=Vx+1, L=1, ¢=0 e=01
18. fo) = Vx, L=1/2, c¢=1/4 e=01
19. fO=V19—x, L=3 ¢=10, e=1
20. f&O)=Vx—7, L=4, =23  e=1
21, f)=1/x, L=1/4 c¢=4  €=005

2. fo)=x% L=3  ¢=\3 €e=01

23. f(x) = 1%, L =4, c=-2, e =05

24. f)=1/x, L=-—1,
25. f(x) = x> — 5, L=11, c =4, e =1
26. f(x) = 120/x, L =35, c = 24, e=1

27. fx) =mx, m>0, L=2m, c=2, €=0.03
28. f(x) = mux, m > 0, L = 3m, c=3 €e=c¢c>0
29. f(x) = mx + b, m > 0, L = (m/2) + b,

c=1/2, e=c>0

30. f(x) = mx + b,
e = 0.05

m >0, L=m+b, c=1,

Using the Formal Definition

Each of Exercises 31-36 gives a function f(x), a point ¢, and a posi-
tive number €. Find L = 11m f(x). Then find a number 6 > 0 such
that for all x

0<|x—cl <8 = [f) — L] < e.
31. f(x) =3 — 2x, c =3, e = 0.02
32, f(x) = —3x— 2, c=-1, e = 0.03
_x*—4 _ _
33. f(x) = P c=2, e = 0.05
XX+ 6x+5 _ _
34. fix) = Y is5 c=-5, e = 0.05
35. f(x) = V1 — 5x, c=-3, e =05

36. f(x) = 4/x, c=2, € =04

Prove the limit statements in Exercises 37-50.
37. lin}l(9 —x) =5 38. lin£(3x -7 =2
x> x—3

39.1ir%\/x—5=2 40.1ir%\/4—x=2
x> x>

ot =1 =TT

42. lim f0) =4 if f) = {’1‘ x ¢_—22
43. {gr})lc -1 44. L“{}gé :%
SN = N =
s i
s =0 = {7120

49. lim xsin & = 0
x—0




50.

lim x? sin}; =0

x—0

|
0

Theory and Examples

51.

52

53.

54.

55.

56.

Define what it means to say that hrr(l) g(x) = k.

Prove that lim f(x) = L if and only if %in(l) fth +c¢)=L.
x—>c 1>

A wrong statement about limits Show by example that the
following statement is wrong.

The number L is the limit of f(x) as x approaches ¢
if f(x) gets closer to L as x approaches c.

Explain why the function in your example does not have the
given value of L as a limit as x — c.
Another wrong statement about limits Show by example that

the following statement is wrong.

The number L is the limit of f(x) as x approaches c if, given any
€ > 0, there exists a value of x for which | f(x) — L| < e.

Explain why the function in your example does not have the
given value of L as a limit as x — c.

Grinding engine cylinders Before contracting to grind engine
cylinders to a cross-sectional area of 9 in?, you need to know how
much deviation from the ideal cylinder diameter of ¢ = 3.385 in.
you can allow and still have the area come within 0.01 in” of the
required 9 in. To find out, you let A = 7r(x/2)? and look for the
interval in which you must hold x to make |A — 9] = 0.01.
What interval do you find?

Manufacturing electrical resistors Ohm’s law for electrical
circuits like the one shown in the accompanying figure states that
V = RI. In this equation, V is a constant voltage, I is the current
in amperes, and R is the resistance in ohms. Your firm has been
asked to supply the resistors for a circuit in which V will be 120
volts and /is to be 5 £ 0.1 amp. In what interval does R have to
lie for I to be within 0.1 amp of the value [, = 5?

4 L
TV
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When Is a Number L Not the Limit of f(x) as x— ¢?
Showing L is not a limit We can prove that lim,_,. f(x) # L by
providing an € > 0 such that no possible 6 > 0 satisfies the condition

forallx, 0<|x—¢/ <86 = lf) — L| < e.

We accomplish this for our candidate € by showing that for each
6 > 0 there exists a value of x such that

0<|x—c|l<§ and lfx) — L| = e.
y
y =)

L+ e

rd

i |

L | |

I ]

I ]

L—e€ : :

) §— i

— il

0| c— 6 c ct+éd *

a value of x for which
0<|x—c| <& and|flx) —L|=¢€

x <1

X.
57. Let =47
etf®) {x+1, x> 1

y=x+1

y =/

a. Let € = 1/2. Show that no possible § > 0 satisfies the fol-
lowing condition:

Forallx, 0 <|x—1] <8 = [fx)—2| <1/2.

That is, for each 6 > 0 show that there is a value of x such
that

0<|x—1/<8§& and [f¥) —2|=1/2.

This will show that lim,—,; f(x) # 2.

b. Show that lim,_,; f(x) # 1.
c. Show that lim,_,; f(x) # 1.5.
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x <2

58. Leth(x) =43, x=2

2, x> 2.
y
4l v = h(x)
— [ )
y=2
2+ o—_
- y=x?
L X
0 2
Show that
a.

b.

C.

lirr% h(x) # 4
lin% h(x) # 3
lirr% h(x) # 2

59. For the function graphed here, explain why

a.
b.

C.

lim f(x) # 4
lim f(x) # 4.8
x—3

lim f(x) # 3

I

48
4+ °
y=f
3+ O\
|
0 3

24 One-Sided Limits

66. f(x) =

60. a. For the function graphed here, show that lim,_,_; g(x) # 2.

b. Does lim,_,_; g(x) appear to exist? If so, what is the value of
the limit? If not, why not?

y =g /

X
/—1 0

COMPUTER EXPLORATIONS
In Exercises 61-66, you will further explore finding deltas graphi-
cally. Use a CAS to perform the following steps:

a. Plot the function y = f(x) near the point ¢ being approached.

b. Guess the value of the limit L and then evaluate the limit sym-
bolically to see if you guessed correctly.

c. Using the value € = 0.2, graph the banding lines y, = L — €
and y, = L + € together with the function f near c.

d. From your graph in part (c), estimate a 6 > 0 such that for all x
0<|x—cl <8 = lfo) — L| < e

Test your estimate by plotting f, y;, and y, over the interval

0 < |x — ¢| < 8. For your viewing window use ¢ — 28 <

xX=c+20and L — 2e =y = L + 2e. If any function val-

ues lie outside the interval [L — €, L + €], your choice of &
was too large. Try again with a smaller estimate.

e. Repeat parts (c) and (d) successively for e = 0.1, 0.05, and 0.001.

_x*-381 _ 5% 4 9x? _
61.f(x)fx_3, c=3 62.f(x)772x5+3x2, c=0

_sin2x _xlzcosn)
63. f(x) = 3 c=0 64. f(x) = P — c=0

3 —

65. f(x):%, c=1

32— (Tx+ DVx+5

a— , c=1

In this section we extend the limit concept to one-sided limits, which are limits as x
approaches the number ¢ from the left-hand side (where x < ¢) or the right-hand side

(x > c¢) only.

Approaching a Limit from One Side

To have a limit L as x approaches ¢, a function f must be defined on both sides of ¢ and its
values f(x) must approach L as x approaches c from either side. That is, f must be defined
in some open interval about ¢, but not necessarily at c¢. Because of this, ordinary limits are

called two-sided.



FIGURE 2.24 Different right-hand and
left-hand limits at the origin.

L4 X

—2 0 2

FIGURE 2.26 The function

f(x) = V4 — x? has right-hand limit 0
at x = —2 and left-hand limit O at x = 2
(Example 1).
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If f fails to have a two-sided limit at ¢, it may still have a one-sided limit, that is, a
limit if the approach is only from one side. If the approach is from the right, the limit is a
right-hand limit. From the left, it is a left-hand limit.

The function f(x) = x/|x| (Figure 2.24) has limit 1 as x approaches 0 from the right,
and limit —1 as x approaches 0 from the left. Since these one-sided limit values are not the
same, there is no single number that f(x) approaches as x approaches 0. So f(x) does not
have a (two-sided) limit at 0.

Intuitively, if f(x) is defined on an interval (¢, b), where ¢ < b, and approaches arbi-
trarily close to L as x approaches ¢ from within that interval, then f has right-hand limit
L at c. We write

lim f(x) = L.

The symbol “x — ¢"” means that we consider only values of x greater than c.

Similarly, if f(x) is defined on an interval (a, c), where a < ¢ and approaches arbi-
trarily close to M as x approaches ¢ from within that interval, then f has left-hand limit M
at c. We write

+ 99

lim f(x) = M.

The symbol “x — ¢~ means that we consider only x-values less than c.
These informal definitions of one-sided limits are illustrated in Figure 2.25. For the
function f(x) = x/|x| in Figure 2.24 we have

lim f() =1 and  lim f() = 1.

y y
—
L ) fx) M
0 C g X . 0 X x
(@ lim_ f(x) =L (b) lim_ f(x) =M

FIGURE 2.25 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x
approaches c.

EXAMPLE 1 The domain of f(x) = V4 — x*is [—2,2]; its graph is the semicircle
in Figure 2.26. We have

lim V4 —x2=0 and lim V4 — x> = 0.

x——=2" x—2
The function does not have a left-hand limit at x = —2 or a right-hand limit at x = 2. It
does not have a two-sided limit at either —2 or 2 because each point does not belong to an
open interval over which f is defined. |

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The right-hand
limit of the sum of two functions is the sum of their right-hand limits, and so on. The theorems
for limits of polynomials and rational functions hold with one-sided limits, as do the Sandwich
Theorem and Theorem 5. One-sided limits are related to limits in the following way.

THEOREM 6 A function f(x) has a limit as x approaches c if and only if it has
left-hand and right-hand limits there and these one-sided limits are equal:

lim for) = L < lim fo) =L  and  lim f(x) = L.
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y EXAMPLE 2 For the function graphed in Figure 2.27,
,L . y=f Atx = O: lim, o f(¥) = 1,

_/\ lim, o f(x) and lim,_, f(x) do not exist. The function is not de-
1¢ fined to the left of x = 0.
\ | | T At x

=1 lim,— - f(x) = 0 even though f(1) = 1,
0 1 2 3 4 * lim, .+ f(x) = 1,
FIGURE 2.27 Graph of the function lim,_,; f(x) does not exist. The right- and left-hand limits are not
in Example 2. equal.
Atx = 2: lim, - f(x) = 1,
lil’nx—>24r f(-x) =1,
lim,,, f(x) = 1 even though f(2) = 2.
y At x = 3: lim, 3 f(x) = lim,3 f(x) = lim,3 f(x) = f(3) = 2.
At x = 4 lim,4 f(x) = 1 even though f(4) # 1,
lim, 4+ f(x) and lim,_,, f(x) do not exist. The function is not
defined to the right of x = 4.
L+ep At every other point ¢ in [0, 4], f(x) has limit f(c). [ ]
o f(x)
Jx) lies . - . .
L in here Precise Definitions of One-Sided Limits
L—ed The formal definition of the limit in Section 2.3 is readily modified for one-sided
limits.
forall x # ¢
in here
8, DEFINITIONS We say that f(x) has right-hand limit L at ¢, and write
PY A
0 ° 1 * Jlim f(x) = L (see Figure 2.28)
FIGURE 2.28 Intervals associated with if for every number € > 0 there exists a corresponding number 6 > 0 such that
the definition of right-hand limit. for all x
c<x<c+8§ = lfo) — L| <.
We say that f has left-hand limit L at ¢, and write
Y lim f(x) =L (see Figure 2.29)
x—c
if for every number € > 0 there exists a corresponding number & > 0 such that
for all x
c—8<x<c = lfx) — L| <e.
L+e
o f(x)
L f(x) lies
in here EXAMPLE 3 Prove that
L—el lim \/.; =0.
x—0"
forall x # ¢
in here Solution Let € > 0 be given. Here ¢ = 0 and L = 0, so we want to find a § > 0 such
s that for all x
3 . 0<x<d8 = |Va-0/<e
0 c— 38 c

or
FIGURE 2.29 Intervals associated with

the definition of left-hand limit. 0<x<3d = \/;C <€



FIGURE 2.30 lirg Vx = 0 in Example 3.
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Squaring both sides of this last inequality gives
x < é if 0<x<é.
If we choose 8 = €2 we have
0<x<dé=¢ = Vx<e
or
0<x<e = |[Va-0l<e
According to the definition, this shows that limx_)0+\/); = 0 (Figure 2.30). |
The functions examined so far have had some kind of limit at each point of interest. In

general, that need not be the case.

EXAMPLE 4 Show that y = sin(1/x) has no limit as x approaches zero from either
side (Figure 2.31).

_l_

FIGURE 2.31 The function y = sin(1/x) has neither a right-
hand nor a left-hand limit as x approaches zero (Example 4). The
graph here omits values very near the y-axis.

Solution  As x approaches zero, its reciprocal, 1/x, grows without bound and the values
of sin (1/x) cycle repeatedly from —1 to 1. There is no single number L that the function’s
values stay increasingly close to as x approaches zero. This is true even if we restrict x to
positive values or to negative values. The function has neither a right-hand limit nor a left-
hand limit at x = 0. |

Limits Involving (sin 0)/6

A central fact about (sin 6)/6 is that in radian measure its limit as § — 0 is 1. We can see
this in Figure 2.32 and confirm it algebraically using the Sandwich Theorem. You will see
the importance of this limit in Section 3.5, where instantaneous rates of change of the
trigonometric functions are studied.

y = # (radians)

IAI IAI
37 2~ r T 2 3
NOT TO SCALE

FIGURE 2.32 The graph of f() = (sin 6)/6 suggests that the right-
and left-hand limits as 6 approaches 0 are both 1.
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y

T
1

\P

tan 6
1
sin 0
0 coso = n

Q A1, 0)

Y

1

FIGURE 2.33 The figure for the proof of
Theorem 7. By definition, TA/OA = tan 6,
but OA = 1,s0 TA = tan 6.

Equation (2) is where radian measure
comes in: The area of sector OAP is 6/2

only if 6 is measured in radians.

THEOREM 7—Limit of the Ratio sin 6/60 as 6 -0
lim sinf _
—0 0

1 (6 in radians) (D)

Proof The plan is to show that the right-hand and left-hand limits are both 1. Then we
will know that the two-sided limit is 1 as well.

To show that the right-hand limit is 1, we begin with positive values of 6 less than
7 /2 (Figure 2.33). Notice that

Area AOAP < area sector OAP < area AOAT.

We can express these areas in terms of 6 as follows:

Area AOAP = lbase X height = %(1)(sin 0) = %sin 0

2
Area sector OAP = lr219 = l(1)20 _0 2)

2 2 2

_ 1 . 1 _ 1

Area AOAT = Ebase X height = E(l)(tan 0) = itan 0.
Thus,
1 . 1 1
2sm0 < 20 < 2tan(‘).

This last inequality goes the same way if we divide all three terms by the number
(1/2) sin®, which is positive, since 0 < 0§ < /2:
0 1

1<sin0<cos0'

Taking reciprocals reverses the inequalities:

l>¥>cos0.

Since limy_,ycosf® = 1 (Example 11b, Section 2.2), the Sandwich Theorem gives

. sinf
| = 1.
=0~ 6

To consider the left-hand limit, we recall that sin 6 and 6 are both odd functions (Sec-
tion 1.1). Therefore, f(6) =(sin 0)/6 is an even function, with a graph symmetric about
the y-axis (see Figure 2.32). This symmetry implies that the left-hand limit at O exists and
has the same value as the right-hand limit:

lim sinf _ | = sin 6
9—0- 0 g—0t 0
so limy—( (sin 6)/60 = 1 by Theorem 6. |
EXAMPLE 5  Show that (a) im 2= 1 = 0 and (b) lim 322* = 2.
h—0 h x—0 Sx 5
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Solution
(a) Using the half-angle formula cos # = 1 — 2 sin® (h/2), we calculate

. cosh — 1 . 25in2(h/2)
lim—————=1lm — ———

h—0  h h—0 h
= —lim Sin7‘9sin 0 Let§ = h/2
6—0 0 -
= —(1)(0) = 0. Eq. (1) and Example 11a

in Section 2.2

(b) Equation (1) does not apply to the original fraction. We need a 2x in the denominator,
not a 5x. We produce it by multiplying numerator and denominator by 2/5:

sin2x _ . (2/5)+ sin 2x

i
<20 5x o'y (2/5) - 5x

=2 li sin 2x Now, Eq. (1) applies

B g!(EI(I) 2x with 6 = 2x.

_ 242

EXAMPLE 6  Find li%w.

Solution  From the definition of tan ¢ and sec 2z, we have

limtantseth _ iml_l.sint. 1
—0 3t —03 1 COSI cos2t
_ llimsmt- 11
3/—>0 [ COSI cos?2t

1 _1
= 3 = 3.

Eq. (1) and Example 11b
in Section 2.2

Exercises m

Finding Limits Graphically y

1. Which of the following statements about the function y = f(x) y =1
graphed here are true, and which are false?
2+ °
y
y =/
1 1F *—o——9o
1 1 1 1
= o $ 4> x ~1T 0 1 2 3 *
a xEIPﬁf(x) =1 . Xan(}_ fo) =10 a. liml fx) =1 b. lim f(x) does not exist.
. _ . _ x—=1" x—2
¢ lim =1 d. lim fx) = lim, $6) e lim f() =2 d. lim f(0) =2
. . . _ x> x—1
e lim f(x) exists. £ lim f() =0 e lim f(v) =1 f.lim f(x) does not exist.
g limf) =1 h. lim f0o) =1 g lim f() = lim f(9)
* PE} f) =0 J- xlglzl* f =2 h. lim f(x) exists at every ¢ in the open interval (=1, 1).
k. lim f()doesnotexist. L lim f(x) =0 . e
x——1" x—2F .

lim f(x) exists at every c in the open interval (1, 3).
2. Which of the following statements about the function y = f(x) e

graphed here are true, and which are false? J- xll}llr fe =0 k. leIIsl* J(x) does not exist.
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3—x x<2
3. Let f(x) = x

2+1, x> 2.
y
3
1 1 1 1 1 x
0 2

Find lim,_,»+ f(x) and lim,_»- f(x).
Does lim,_,, f(x) exist? If so, what is it? If not, why not?
Find lim, 4 f(x) and lim,_4 f(x).
Does lim,_,4 f(x) exist? If so, what is it? If not, why not?

& o g P

3—x x<2
2, x=2

x
> x > 2.

4. Let f(x) =

3
- [ J
_x
- y—2
|

X
-2 0 2
a. Find lim,_,,+ f(x), lim,_,- f(x), and f(2).
b. Does lim,_,, f(x) exist? If so, what is it? If not, why not?
c. Find lim,—,_;- f(x) and lim,, _;+ f(x).
d. Does lim,_,_; f(x) exist? If so, what is it? If not, why not?
0, x=0
5. Let f(x) = 1
sin;, x> 0.
y
1+
0 X
0, x=0
YTV 1
siny, x> 0
_1 -

a. Does lim,_,+ f(x) exist? If so, what is it? If not, why not?
b. Does lim,_,(- f(x) exist? If so, what is it? If not, why not?

c. Does lim,_,, f(x) exist? If so, what is it? If not, why not?

6. Let g(x) = \/)Esin(l/x).

y
1+

y=Vx

y=\/;sin)—16

=

A

b=k

a. Does lim,_,y+ g(x) exist? If so, what is it? If not, why not?
b. Does lim,_,- g(x) exist? If so, what is it? If not, why not?

¢. Does lim,_,( g(x) exist? If so, what is it? If not, why not?

S x A1
7. a. Graph f(x) = {" *
0, x = 1.

b. Find lim,, - f(x) and lim,_, - f(x).

c. Does lim,_,; f(x) exist? If so, what is it? If not, why not?

1 — X% # 1
8. a. Graph f(x) = {2 * * ]
, x =1

b. Find lim,_, f(x) and lim,_,- f(x).

¢. Does lim,_,; f(x) exist? If so, what is it? If not, why not?

Graph the functions in Exercises 9 and 10. Then answer these questions.

a. What are the domain and range of f?

b. At what points c, if any, does lim,_,, f(x) exist?

¢. At what points does only the left-hand limit exist?
d. At what points does only the right-hand limit exist?

V1i—x% 0=x<1

9. fx)y =41, 1=x<2

2, x=2

x, —1=x<0, or 0<x=1
10. f(x) =4 1, x=0

0, x<—1 or x>1

Finding One-Sided Limits Algebraically
Find the limits in Exercises 11-18.

. x+ 2 . x— 1
L W 1 i\

. X 2x+ 5
13. xgg(x T 1><x2 n x)

. 1 x+6\/3—x
14. L‘?(x ¥ 1)( x )( 7 )

2 —
15, L VPt 4+ Vs

h—0" h




V6 — V51 + 11h + 6

16. li
6 hl—>n(}_ h
_ |x + 2| ) |x + 2]
17. a. Jim (x +3)"—— b lim (x +3)" =
Vox(x — 1) V- 1)
18. a. _— b. lim —————
x—1" |X — 1‘ x—=1" |x — l|

Use the graph of the greatest integer function y = | x|, Figure 1.10 in
Section 1.1, to help you find the limits in Exercises 19 and 20.

[o] 6]

19. a. Ban}'T b. 01251*7
20. a. lim(r — [z]) b. lim( — 1))
—4" —4
Using lim sinb _ 1

6—-0

Find the limits in Exercises 21-42.
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41, tim 200 42. fim —0cot40

6—0 6% cot 30 6—0 sin” O cot® 20

Theory and Examples

43. Once you know lim,_,, f(x) and lim,_,,- f(x) at an interior point
of the domain of f, do you then know lim,_,, f(x)? Give reasons
for your answer.

44. If you know that lim,—,. f(x) exists, can you find its value by cal-
culating lim,_,+ f(x)? Give reasons for your answer.

45. Suppose that f is an odd function of x. Does knowing that
lim, g f(x) = 3 tell you anything about lim,_, (- f(x)? Give rea-
sons for your answer.

46. Suppose that f is an even function of x. Does knowing that
lim,—»- f(x) = 7 tell you anything about either lim,_, _»- f(x) or
lim,—, »+ f(x)? Give reasons for your answer.

Formal Definitions of One-Sided Limits
47. Given € > 0, find an interval / = (5,5 + &), 6 > 0, such that if

_ sin V26 . sin x lies in 7, then Vx — 5 < e. What limit is being verified and
21 éi%w 22. 1121(1) (k constant) what is its value?
. sin 3y ) 48. Given € > 0, find an interval I = (4 — §,4), 6 > 0, such that if
23 lim =4 24. lim == x lies in 7, then V4 — x < €. What limit is being verified and
tan 2x 2 what is its value?
25. lim 26. lim — L . .
=0 X —0 tan 7 Use the definitions of right-hand and left-hand limits to prove the
. xcese 2x . ) limit statements in Exercises 49 and 50.
27. lim=————— 28. lim 6x~(cot x)(csc 2x)
x—0 COS 5x =0 49. lim =~ = .oox =2
9 2 — + si ) ana'm__] 50. x]LHZ]*‘x—Z‘ =1
29, Jim XL 2C0SX 30, Jim =0
X720 ST COS X =0 51. Greatest integer function Find (a) lim, .40 | x| and (b)
31. liml_.ﬂ 32. lim=~ - );COS X lim, 400~ | x |; then use limit definitions to verify your findings.
0=0 ) sin 20 =0 ' sm. 3x (c) Based on your conclusions in parts (a) and (b), can you say
33, lim sin(l — cos ) 34, im0 (sin h) anything about lim,_, | x |? Give reasons for your answer.
=0 1 —cost " h—0 sinh
sin 0 sin 5x 52. One-sided limits Let f(x) {xz sin(1/x), x <0
s : S . -si imi et f(x) =
35, lim Gin 26 36 lm i dx Vi, x> 0.
37. im0 cos 0 38. limsin 0 cot 20 Find (a) lim, (- f(x) and (b) lim,¢- f(x); then use limit defini-
=0 =0 tions to verify your findings. (¢) Based on your conclusions in
39, Jim A0 3x 40. Hmw parts (a) and (b), can you say anything about lim,_,, f(x)? Give
x>0 sin 8x y=0  ycotdy reasons for your answer.
2 . 5 Continuity
y When we plot function values generated in a laboratory or collected in the field, we often
500 connect the plotted points with an unbroken curve to show what the function’s values are
o likely to have been at the points we did not measure (Figure 2.34). In doing so, we are
375 95 assuming that we are working with a continuous function, so its outputs vary regularly and

250 0

Distance fallen (m)

0 5 10
Elapsed time (sec)

FIGURE 2.34 Connecting plotted points
by an unbroken curve from experimental
data Qy, 0>, O3, . .. for a falling object.

Continuity at a Point

consistently with the inputs, and do not jump abruptly from one value to another without
taking on the values in between. Intuitively, any function y = f(x) whose graph can be
125 o sketched over its domain in one unbroken motion is an example of a continuous function.
Such functions play an important role in the study of calculus and its applications.

To understand continuity, it helps to consider a function like that in Figure 2.35, whose
limits we investigated in Example 2 in the last section.
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0

FIGURE 2.35 The function is not
continuousat x = 1, x = 2, and x = 4
(Example 1).

Continuity
from the right

Two-sided

continuity Continuity

o> from the left
m

y =/

[ PSS —

I
I I
| |
| |
| |
1 1
c b

FIGURE 2.36 Continuity at points a, b,

and c.

EXAMPLE 1 At which numbers does the function f in Figure 2.35 appear to be not
continuous? Explain why. What occurs at other numbers in the domain?

Solution  First we observe that the domain of the function is the closed interval [0, 4 ],
so we will be considering the numbers x within that interval. From the figure, we notice
right away that there are breaks in the graph at the numbers x = 1, x = 2, and x = 4. The
breaks appear as jumps, which we identify later as “jump discontinuities.” These are num-
bers for which the function is not continuous, and we discuss each in turn.

Numbers at which the graph of f has breaks:

At x = 1, the function fails to have a limit. It does have both a left-hand limit,
lim,—, - f(x) = 0, as well as a right-hand limit, lim,_,,+ f(x) = 1, but the limit values are
different, resulting in a jump in the graph. The function is not continuous at x = 1.

At x = 2, the function does have a limit, lim,_,, f(x) = 1, but the value of the func-
tion is f(2) = 2. The limit and function values are not the same, so there is a break in the
graph and f is not continuous at x = 2.

Atx = 4, the function does have a left-hand limit at this right endpoint, lim,_, - f(x) = 1,
but again the value of the function f(4) = % differs from the value of the limit. We see
again a break in the graph of the function at this endpoint and the function is not continu-
ous from the left.

Numbers at which the graph of f has no breaks:

At x = 0, the function has a right-hand limit at this left endpoint, lim,_,y f(x) = 1,
and the value of the function is the same, f(0) = 1. So no break occurs in the graph of the
function at this endpoint, and the function is continuous from the right at x = 0.

At x = 3, the function has a limit, lim,_,; f(x) = 2. Moreover, the limit is the same
value as the function there, f(3) = 2. No break occurs in the graph and the function is
continuous at x = 3.

At all other numbers x = ¢ in the domain, which we have not considered, the func-
tion has a limit equal to the value of the function at the point, so lim,_,. f(x) = f(c). For
example, lim,,s5,, f(x) = f (%) = % No breaks appear in the graph of the function at any
of these remaining numbers and the function is continuous at each of them. |

The following definitions capture the continuity ideas we observed in Example 1.

DEFINITIONS Let ¢ be a real number on the x-axis.

The function f is continuous at ¢ if
lim £() = £(0).

The function f is right-continuous at ¢ (or continuous from the right) if
lim f(x) = f(c).

The function f is left-continuous at ¢ (or continuous from the left) if

lim £() = £().

From Theorem 6, it follows immediately that a function f is continuous at an interior
point ¢ of its domain if and only if it is both right-continuous and left-continuous at ¢ (Fig-
ure 2.36). We say that a function is continuous over a closed interval | a, b] if it is right-
continuous at a, left-continuous at b, and continuous at all interior points of the interval.
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FIGURE 2.37 A function that
is continuous over its domain
(Example 2).

or

FIGURE 2.38 A function
that has a jump discontinuity
at the origin (Example 3).

4 *~—
3 *——o0
y =1z
2 —o0
1 e—o
1 1 1 1 X
—1 1 2 3 4
~—
—_— —2F

FIGURE 2.39 The greatest integer
function is continuous at every noninte-
ger point. It is right-continuous, but not
left-continuous, at every integer point
(Example 4).
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This definition applies to the infinite closed intervals [ a, 00) and (—09, b ] as well, but only
one endpoint is involved. If a function is not continuous at an interior point ¢ of its domain,
we say that f is discontinuous at ¢, and that c is a point of discontinuity of f. Note that a
function f can be continuous, right-continuous, or left-continuous only at a point ¢ for
which f(c) is defined.

EXAMPLE 2  The function f(x) = V4 — x? is continuous over its domain [—2, 2]
(Figure 2.37). It is right-continuous at x = —2, and left-continuous at x = 2. |

EXAMPLE 3 The unit step function U(x), graphed in Figure 2.38, is right-continuous
at x = 0, but is neither left-continuous nor continuous there. It has a jump discontinuity at
x=0. |

We summarize continuity at an interior point in the form of a test.

Continuity Test

A function f(x) is continuous at a point x = ¢ if and only if it meets the follow-
ing three conditions.

1. f(c) exists (c lies in the domain of f).
2. lim,_,, f(x) exists (f has a limit as x — ¢).
3. lim,—,, f(x) = f(c) (the limit equals the function value).

For one-sided continuity and continuity at an endpoint of an interval, the limits in
parts 2 and 3 of the test should be replaced by the appropriate one-sided limits.

EXAMPLE 4 The function y = | x| introduced in Section 1.1 is graphed in Figure 2.39.
It is discontinuous at every integer because the left-hand and right-hand limits are not
equal as x — n:

lim x| =n—-1 and lim, x| =n.

x—n x—>n
Since | n| = n, the greatest integer function is right-continuous at every integer n (but not
left-continuous).

The greatest integer function is continuous at every real number other than the inte-

gers. For example,

lim [x] =1=1[15].

x—1.5
In general, if n — 1 < ¢ < n, n an integer, then
lim|x|=n—1=|c|. |
Pade

Figure 2.40 displays several common types of discontinuities. The function in Figure
2.40a is continuous at x = 0. The function in Figure 2.40b would be continuous if it had
f(0) = 1. The function in Figure 2.40c would be continuous if f(0) were I instead of 2.
The discontinuity in Figure 2.40c is removable. The function has a limit as x — 0, and we
can remove the discontinuity by setting f(0) equal to this limit.

The discontinuities in Figure 2.40d through f are more serious: lim,_,, f(x) does not
exist, and there is no way to improve the situation by changing f at 0. The step function in
Figure 2.40d has a jump discontinuity: The one-sided limits exist but have different val-
ues. The function f(x) = 1/x? in Figure 2.40e has an infinite discontinuity. The function
in Figure 2.40f has an oscillating discontinuity: It oscillates too much to have a limit as
x—0.
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e = f(x)

(e) )

FIGURE 2.40 The function in (a) is continuous at x = 0; the functions in (b) through (f) are not.

Continuous Functions

Generally, we want to describe the continuity behavior of a function throughout its entire
domain, not only at a single point. We know how to do that if the domain is a closed interval.
In the same way, we define a continuous function as one that is continuous at every point in
its domain. This is a property of the function. A function always has a specified domain, so if
we change the domain, we change the function, and this may change its continuity property
as well. If a function is discontinuous at one or more points of its domain, we say it is a
discontinuous function.

EXAMPLE 5

(a) The function y = 1/x (Figure 2.41) is a continuous function because it is continuous
at every point of its domain. It has a point of discontinuity at x = 0, however, because
it is not defined there; that is, it is discontinuous on any interval containing x = 0.

(b) The identity function f(x) = x and constant functions are continuous everywhere by
Example 3, Section 2.3. u

Algebraic combinations of continuous functions are continuous wherever they are defined.

0

THEOREM 8—Properties of Continuous Functions If the functions f and g are
continuous at x = ¢, then the following algebraic combinations are continuous
at x = c.
1. Sums: ftg

FIGURE 2.41 The function y = 1/x 2. Differences: f—g

' contm.uous over s 'nat.ural domalr}. ,It 3. Constant multiples: k- f, for any number k

has a point of discontinuity at the origin,

so it is discontinuous on any interval 4. Products: f-g

containing x = 0 (Example 5). 5. Quotients: f/g, provided g(c) # 0
6. Powers: f",  napositive integer
7. Roots: \"/f, provided it is defined on an open interval

containing ¢, where n is a positive integer
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Most of the results in Theorem 8 follow from the limit rules in Theorem 1, Section 2.2.
For instance, to prove the sum property we have

lim(f + () = lim(f(x) + g(x))

= lim fx) + lim g(x) Sum Rule, Theorem 1
xX—>C xX—>C
= f(c) + g(o) Continuity of f, g at ¢
=(f + g)0).
This shows that f + g is continuous.
EXAMPLE 6
(a) Every polynomial P(x) = a,x" + a,_x"~' + --- 4+ a, is continuous because
lim P(x) = P(c) by Theorem 2, Section 2.2.
xX—c

(b) If P(x) and Q(x) are polynomials, then the rational function P(x)/Q(x) is continuous
wherever it is defined (Q(c) # 0) by Theorem 3, Section 2.2. |

EXAMPLE 7 The function f(x) = |x| is continuous. If x > 0, we have f(x) = x,
a polynomial. If x < 0, we have f(x) = —x, another polynomial. Finally, at the origin,
lim, [x] = 0 = |0]. [

The functions y = sinx and y = cos x are continuous at x = 0 by Example 11 of
Section 2.2. Both functions are, in fact, continuous everywhere (see Exercise 70). It fol-
lows from Theorem 8§ that all six trigonometric functions are then continuous wherever
they are defined. For example, y = tanx is continuous on --- U (—=7/2,7/2) U
(m)2,37/2) U -+,

Inverse Functions and Continuity

The inverse function of any function continuous on an interval is continuous over its
domain. This result is suggested by the observation that the graph of f~', being the reflec-
tion of the graph of f across the line y = x, cannot have any breaks in it when the graph of
f has no breaks. A rigorous proof that f~! is continuous whenever f is continuous on an
interval is given in more advanced texts. It follows that the inverse trigonometric functions
are all continuous over their domains.

We defined the exponential function y = a@* in Section 1.5 informally by its graph.
Recall that the graph was obtained from the graph of y = a* for x a rational number by
“filling in the holes” at the irrational points x, so the function y = a* was defined to be
continuous over the entire real line. The inverse function y = log,x is also continuous. In
particular, the natural exponential function y = ¢* and the natural logarithm function
y = Inx are both continuous over their domains.

Composites

All composites of continuous functions are continuous. The idea is that if f(x) is continuous
at x = c and g(x) is continuous at x = f(c), then g © f is continuous at x = ¢ (Figure 2.42).
In this case, the limit as x — ¢ is g(f(c)).

gof

Continuous at ¢

f g
atc N at f(c) >
c 1o g(f(©)

FIGURE 2.42 Composites of continuous functions are continuous.
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041

=27 - 0 T 2

FIGURE 2.43 The graph suggests that
y = |(xsinx)/(x* + 2)| is continuous
(Example 8d).

THEOREM 9—Composite of Continuous Functions If f is continuous at ¢ and
g is continuous at f(c), then the composite g © f is continuous at c.

Intuitively, Theorem 9 is reasonable because if x is close to ¢, then f(x) is close to
f(c), and since g is continuous at f(c), it follows that g(f(x)) is close to g(f(c)).

The continuity of composites holds for any finite number of functions. The only
requirement is that each function be continuous where it is applied. For an outline of a
proof of Theorem 9, see Exercise 6 in Appendix 4.

EXAMPLE 8 Show that the following functions are continuous on their natural
domains.

N/ — X3
@ y=Vx —2x—5 (b)y=1+x4

o x =2 _ |xsinx
© y= x2—2’ @y= |21
Solution

(a) The square root function is continuous on [0, ©0) because it is a root of the continu-
ous identity function f(x) = x (Part 7, Theorem 8). The given function is then the
composite of the polynomial f(x) = x> — 2x — 5 with the square root function
g(n = \/t, and is continuous on its natural domain.

(b) The numerator is the cube root of the identity function squared; the denominator is an
everywhere-positive polynomial. Therefore, the quotient is continuous.

(¢) The quotient (x — 2)/(x> — 2) is continuous for all x # + \6, and the function
is the composition of this quotient with the continuous absolute value function
(Example 7).

(d) Because the sine function is everywhere-continuous (Exercise 70), the numerator term
X sin x is the product of continuous functions, and the denominator term x> + 2 is an
everywhere-positive polynomial. The given function is the composite of a quotient of
continuous functions with the continuous absolute value function (Figure 2.43). |

Theorem 9 is actually a consequence of a more general result, which we now state
and prove.

THEOREM 10—Limits of Continuous Functions If g is continuous at the point b
and lim,,. f(x) = b, then

lim,.. g(f(x)) = g(b) = g(lim, . f(x)).

Proof Let € > 0 be given. Since g is continuous at b, there exists a number §; > 0
such that

lg(v) — gb)| < € whenever 0 < |y — b| < §,.

Since lim,_,. f(x) = b, there exists a & > 0 such that

f(x) — b| <8, whenever 0 < |x —¢| <.
If we let y = f(x), we then have that
ly = b| <& whenever 0 < |x —c| <38,

which implies from the first statement that ] g(y) — g(b)\ = ] g(fx) — g(b)\ < € whenever
0 < |x — ¢| < 8. From the definition of limit, this proves that lim,_,. g(f(x)) = g(b). H



We sometimes denote ¢* by exp u
when u is a complicated mathematical

expression.

3+ *—— 9o
b
1k
& ! 1 1 X
0 1 2 3 4

FIGURE 2.44 The function
_{2x—2, 1=x<2

f® =13, 2=x=4

does not take on all values between

f(1) = 0 and f(4) = 3; it misses all the

values between 2 and 3.
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EXAMPLE 9 As an application of Theorem 10, we have the following calculations.

(a) lim cos{ 2x + sin 3m + x cos{ lim 2x + lim sin 3 + x
x— /2 2 x— /2 x— /2 2

= cos (7 + sin27w) = cosm = —1.
.41 —x .1l —x
(b) lim sin 1 5 | = sin T lim 2 Arcsine is continuous.
x—1 1 — x —11 —x
_ 1 . .
= Sin lim Cancel common factor (1 — x).
(Xﬁl 1+ x) ( )
—sinli=T
2 6
(¢ lim Vx + 1 Y = Jim Vx + l-exp lim tan x Exponential is continuous.
x—0 x—0 x—0
=1 =1 [ |

Intermediate Value Theorem for Continuous Functions

Functions that are continuous on intervals have properties that make them particularly use-
ful in mathematics and its applications. One of these is the Intermediate Value Property. A
function is said to have the Intermediate Value Property if whenever it takes on two
values, it also takes on all the values in between.

THEOREM 11—The Intermediate Value Theorem for Continuous Functions If f is
a continuous function on a closed interval [ a, b |, and if yj is any value between
f(a) and f(b), then y, = f(c) for some cin [a, b].

y

Jb)

Yo

Sl@)

Theorem 11 says that continuous functions over finite closed intervals have the Inter-
mediate Value Property. Geometrically, the Intermediate Value Theorem says that any
horizontal line y = y, crossing the y-axis between the numbers f(a) and f(b) will cross
the curve y = f(x) at least once over the interval [a, b].

The proof of the Intermediate Value Theorem depends on the completeness property
of the real number system (Appendix 7) and can be found in more advanced texts.

The continuity of f on the interval is essential to Theorem 11. If f is discontinuous at
even one point of the interval, the theorem’s conclusion may fail, as it does for the func-
tion graphed in Figure 2.44 (choose y, as any number between 2 and 3).

A Consequence for Graphing: Connectedness Theorem 11 implies that the graph of a
function continuous on an interval cannot have any breaks over the interval. It will be
connected—a single, unbroken curve. It will not have jumps like the graph of the greatest
integer function (Figure 2.39), or separate branches like the graph of 1 /x (Figure 2.41).
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y=4-4x?
/;-

|
|
|
|
|
|
|
|
c

FIGURE 2.46 The curves
y=V2x+5andy =4 —x?
have the same value at x = ¢ where

V2x + 5 = 4 — x* (Example 11).

A Consequence for Root Finding We call a solution of the equation f(x) = 0 a root of
the equation or zero of the function f. The Intermediate Value Theorem tells us that if f is
continuous, then any interval on which f changes sign contains a zero of the function.

In practical terms, when we see the graph of a continuous function cross the horizon-
tal axis on a computer screen, we know it is not stepping across. There really is a point
where the function’s value is zero.

EXAMPLE 10  Show that there is a root of the equation x> — x — 1 = 0 between 1 and 2.

Solution Let f(x) = x> —x — 1. Since f1)=1—1—-1=—-1<0 and f2) =
22 —2—1=5>0, we see that y, = 0 is a value between f(1) and f(2). Since f is
continuous, the Intermediate Value Theorem says there is a zero of f between 1| and 2.

Figure 2.45 shows the result of zooming in to locate the root near x = 1.32. |
5 1
1 ’: I I I / 1.6
—1l I I I L1 |2 i/
-2 -1
(@) (b)
0.02 0.003
1.320 ’:\// 111.330 1.3240 llé//' 1.3248
—0.02 —0.003

(© (d)

FIGURE 2.45 Zooming in on a zero of the function f(x) = x* — x — 1. The zero is near
x = 1.3247 (Example 10).

EXAMPLE 11 Use the Intermediate Value Theorem to prove that the equation

V2x +5=4—x2
has a solution (Figure 2.46).

Solution  We rewrite the equation as

V2x +5 + x2 =4,

and set f(x) = V2x + 5 + x%. Now g(x) = V2x + 5 is continuous on the interval
[—5/2, c0) since it is the composite of the square root function with the nonnegative linear
function y = 2x + 5. Then f is the sum of the function g and the quadratic function y = x2,
and the quadratic function is continuous for all values of x. It follows that f(x) = V2x + 5
+ x? is continuous on the interval [—5/2, 0o). By trial and error, we find the function values
fO) = V5 = 2.24 and f@ = V9 + 4= 7, and note that f is also continuous on the
finite closed interval [0,2] C [—5/2, c0). Since the value y, = 4 is between the numbers
2.24 and 7, by the Intermediate Value Theorem there is a number ¢ €[0,2] such that
f(c) = 4. That is, the number c solves the original equation. |



(b)

FIGURE 2.48 (a) The graph
of f(x) and (b) the graph of
its continuous extension F(x)

(Example 12).
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Continuous Extension to a Point

Sometimes the formula that describes a function f does not make sense at a point x = c.
It might nevertheless be possible to extend the domain of f, to include x = ¢, creating a
new function that is continuous at x = ¢. For example, the function y = f(x) = (sinx)/x
is continuous at every point except x = 0, since the origin is not in its domain. Since
y = (sinx)/x has a finite limit as x — 0 (Theorem 7), we can extend the function’s
domain to include the point x = 0 in such a way that the extended function is continuous
at x = 0. We define the new function

Slgx, x#0
Fx) =
1, x=0.

The function F(x) is continuous at x = 0 because
. sinx
lim —— = F(0),
lim = 0)

so it meets the requirements for continuity (Figure 2.47).

(@) (b)

FIGURE 2.47 The graph (a) of f(x) = (sinx)/x for =7 /2 = x = /2 does not include
the point (0, 1) because the function is not defined at x = 0. (b) We can remove the discon-
tinuity from the graph by defining the new function F(x) with F(0) = 1 and F(x) = f(x)
everywhere else. Note that F(0) = lim,_,, f(x).

More generally, a function (such as a rational function) may have a limit at a point
where it is not defined. If f(c) is not defined, but lim,_,. f(x) = L exists, we can define a
new function F(x) by the rule

fx), if x is in the domain of f
F(x) = .
L, ifx = c.

The function F is continuous at x = c. It is called the continuous extension of f to
x = c. For rational functions f, continuous extensions are often found by canceling com-
mon factors in the numerator and denominator.

EXAMPLE 12 Show that

XX+x—6
== = - ;,52
() 22

has a continuous extension to x = 2, and find that extension.

Solution  Although f(2) is not defined, if x # 2 we have

X2+ x—6_ =2 +3) x+3
= T T a2 xt2

The new function

x+3
x+2

Fx) =
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is equal to f(x) for x # 2, but is continuous at x = 2, having there the value of 5/4. Thus
F is the continuous extension of f to x = 2, and

. XX +x—6_ . _5

lim T = lm 0 = 5

The graph of f is shown in Figure 2.48. The continuous extension F has the same graph
except with no hole at (2, 5/4). Effectively, F is the function f with its point of disconti-

nuity at x = 2 removed. |
Exercises m
Continuity from Graphs 5. a. Does f(—1) exist?
In Exercises 1-4, say whether the function graphed is continuous on b. Does lim,_._, f(x) exist?
[—1, 3]. If not, where does it fail to be continuous and why? o
1 5 ¢. Does lim,, ;- f(x) = f(—1)?
) ) d. Is f continuous at x = —1?
X X 6. a. Does f(1) exist?
y =1 y = g(x) b. Does lim,,; f(x) exist?
’ ;\/ ’ /\Q ¢. Does lim,; f(x) = f(1)?
L i =1?
/ /- d. Is f continuous at x = 17
| | | | | | | | 7. a. Is f defined at x = 2? (Look at the definition of f.)
X
-1 0 1 2 3 -1 0 1 2 3 0 b. Is f continuous at x = 2?
3. 4. 8. At what values of x is f continuous?
9. What value should be assigned to f(2) to make the extended
Y x function continuous at x = 2?
y = h(x) y = k(x) 10. To what new value should f(1) be changed to remove the discon-
0\2—\/—~ 2 tinuity?
1 1 7/Q . -
/ Applying the Continuity Test
L L L Loy & Y | L 55 At which points do the functions in Exercises 11 and 12 fail to be con-
-1 0 1 2 3 -1 0 1 2 3 tinuous? At which points, if any, are the discontinuities removable?
Not removable? Give reasons for your answers.
Exercises 5-10 refer to the function 11. Exercise 1, Section 2.4 12. Exercise 2, Section 2.4
¥-1 -1=x<0 At what points are the functions in Exercises 13-30 continuous?
2x, 0<x<l1 1 1
fr) = 1, x=1 13.y=x_2—3x 14.y=m+4
—2x + 4, 1<x<?2
0, 2<x<3 15. __x+ 1l 16. - x*+3
YT 4 +3 M ST
raphed in the accompanying figure. 2
grap pamyme g 17. y = |x — 1| + sinx 18 y=—1 -
x| +1 2
y
y =1 19, y = S 20, y=1%2
2 s
y = 2x 21. y = csc 2x 22, y = tan%
Vat +
A 23, y=)c2tam)c 24, y= X : 21
= 0 x x>+ 1 1 + sin”x
. . 25. y=V2x +3 26. y = V3x — 1
y=x"—1
27. y=(@2x — D 28. y=(2 —x'"

The graph for Exercises 5-10.



. X # 3
29. g(x) = x—=3
5, x=3
3
Xz i x # 2, x # =2
30. f(x) = 3. c=2
4, x=-2

Limits Involving Trigonometric Functions
Find the limits in Exercises 31-38. Are the functions continuous at the
point being approached?

31. lim sin(x — sin x) 32.

™

lim sin( cos (tan t)>
—0 2

47.

48.
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For what values of a and b is

-2, x = -1
fx)y=<qax—b, —1<x<I1
3, x =1

continuous at every x?

For what values of a and b is

ax + 2b, x=0
gx)=4x>+3a—b, 0<x=2
3x — 5, x> 2

continuous at every x?

In Exercises 49-52, graph the function f to see whether it appears to

33. lirr} sec (ysec’y — tan’>y — 1)
y—
st [ T e (in 13
34. lim tdn( cos (sin x )>
x—0 4
35. lim cos <7” ) 36. lim VescZx + 5V3 tan x
=0 V19 — 3 sec 2t x—=>7l6
37. lim sin <z eV?) 38. lim cos™ (In V)
x—0" 2 x—1

Continuous Extensions

39.

40.

41.

42.

43.

44,

Define g(3) in a way that extends g(x) = (x> — 9)/(x — 3) to be
continuous at x = 3.

Define /(2) in a way that extends A(f) = (> + 3t — 10)/(t — 2)
to be continuous at t = 2.

Define f(1) in a way that extends f(s) = (s> — 1)/(s> — 1) tobe
continuous at s = 1.

Define g(4) in a way that extends
g) = (> —16)/(x* = 3x — 4)
to be continuous at x = 4.

For what value of ¢ is

fo) = {’“

2ax, x=3

21

=
A
w

i

continuous at every x?

For what value of b is

X x < -2
g(x)={

bx?, x = -2

continuous at every x?

45. For what values of a is
ax —2a, x=2
o = {12, x<2
continuous at every x?
46. For what value of b is
- b, x<0
gx) = + 1
24+ b, x>0

continuous at every x?

have a continuous extension to the origin. If it does, use Trace and Zoom
to find a good candidate for the extended function’s value at x = 0. If
the function does not appear to have a continuous extension, can it be
extended to be continuous at the origin from the right or from the left? If
so, what do you think the extended function’s value(s) should be?

. sl _
29. foy = 101 50. foy = 91

51, fQr) = S0X

52, f(x) = (1 + 2x)'/x
x|

Theory and Examples

53. A continuous function y = f(x) is known to be negative at
x = 0 and positive at x = 1. Why does the equation f(x) = 0
have at least one solution between x = 0 and x = 1? Illustrate
with a sketch.

54. Explain why the equation cosx = x has at least one solution.

55. Roots of a cubic Show that the equation x* — 15x + 1 =0
has three solutions in the interval [—4, 4].

56. A function value Show that the function F(x) = (x — a)*-
(x — b)*> + x takes on the value (a + b)/2 for some value of x.

57. Solving an equation If f(x) = x> — 8x + 10, show that there
are values ¢ for which f(c) equals (a) 7; (b) —\/§; (c) 5,000,000.

58. Explain why the following five statements ask for the same infor-
mation.

a. Find the roots of f(x) = x> — 3x — 1.

b. Find the x-coordinates of the points where the curve y = x*
crosses the line y = 3x + 1.

c. Find all the values of x for which x> — 3x = 1.

d. Find the x-coordinates of the points where the cubic curve
y = x> — 3x crosses the line y = 1.

e. Solve the equation x> — 3x — 1 = 0.

59. Removable discontinuity Give an example of a function f(x)
that is continuous for all values of x except x = 2, where it has
a removable discontinuity. Explain how you know that f is dis-
continuous at x = 2, and how you know the discontinuity is
removable.

60. Nonremovable discontinuity Give an example of a function
g(x) that is continuous for all values of x except x = —1, where it
has a nonremovable discontinuity. Explain how you know that g
is discontinuous there and why the discontinuity is not removable.
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61.

62.
63.

64.

65.

66.

67.

26 Limits
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A function discontinuous at every point

a. Use the fact that every nonempty interval of real numbers
contains both rational and irrational numbers to show that the
function

) = {l, if x is rational
Y7\, ifxis irrational

is discontinuous at every point.
b. Is f right-continuous or left-continuous at any point?

If functions f(x) and g(x) are continuous for 0 = x = 1, could
f(x)/g(x) possibly be discontinuous at a point of [0, 1]? Give
reasons for your answer.

If the product function h(x) = f(x) - g(x) is continuous at x = 0,
must f(x) and g(x) be continuous at x = 0? Give reasons for
your answer.

Discontinuous composite of continuous functions Give an
example of functions f and g, both continuous at x = 0, for
which the composite f e g is discontinuous at x = 0. Does this
contradict Theorem 9? Give reasons for your answer.

Never-zero continuous functions Is it true that a continuous
function that is never zero on an interval never changes sign on
that interval? Give reasons for your answer.

Stretching a rubber band Is it true that if you stretch a rubber
band by moving one end to the right and the other to the left,
some point of the band will end up in its original position? Give
reasons for your answer.

A fixed point theorem Suppose that a function f is continuous
on the closed interval [0, 1] and that 0 = f(x) = 1 for every x
in [0, 1]. Show that there must exist a number ¢ in [0, 1] such
that f(c) = c (cis called a fixed point of f).

68.

69.

70.

The sign-preserving property of continuous functions Let f
be defined on an interval (a, b) and suppose that f(c) # O at
some ¢ where f is continuous. Show that there is an interval
(¢ — 8, ¢ + 8) about ¢ where f has the same sign as f(c).

Prove that f is continuous at c if and only if
lim f(c + 1) = f(©).
Use Exercise 69 together with the identities
sin(h + ¢) =sinhcos c + cos hsinc,
cos(h + ¢) = coshcosc — sinhsinc

to prove that both f(x) = sinx and g(x) = cos x are continuous
at every point x = c.

Solving Equations Graphically

Use the Intermediate Value Theorem in Exercises 71-78 to prove that

each equation has a solution. Then use a graphing calculator or com-
puter grapher to solve the equations.

71.
72.
73.
74.
75.
76.
71.
78.

X =3x—1=0

23 =2 —2x+1=0

x(x — 1)> =1 (one root)
xr=2

Vi+Vi+x=4

x> —15x + 1 =0 (three roots)

cosx = x (one root). Make sure you are using radian mode.

2sinx = x (three roots). Make sure you are using radian
mode.

Involving Infinity; Asymptotes of Graphs

y In this section we investigate the behavior of a function when the magnitude of the inde-

FIGURE 2.49 The graphof y = 1/x
approaches 0 as x — 00 or x — —00.

Finite Limits as x— * o0

pendent variable x becomes increasingly large, or x — *£00. We further extend the con-
cept of limit to infinite limits, which are not limits as before, but rather a new use of the
term limit. Infinite limits provide useful symbols and language for describing the behavior
of functions whose values become arbitrarily large in magnitude. We use these limit ideas
to analyze the graphs of functions having horizontal or vertical asymptotes.

The symbol for infinity (00) does not represent a real number. We use o© to describe the
behavior of a function when the values in its domain or range outgrow all finite bounds.
- For example, the function f(x) = 1/x is defined for all x # 0 (Figure 2.49). When x is
positive and becomes increasingly large, 1/x becomes increasingly small. When x is
negative and its magnitude becomes increasingly large, 1/x again becomes small. We

summarize these observations by saying that f(x) = 1/x has limit 0 as x—0o0 or

cise definitions.

x—> —00, or that 0 is a limit of f(x) = 1/x at infinity and negative infinity. Here are pre-



No matter what
positive number € is,
the graph enters

this band atx = ¢
and stays.

No matter what
positive number € is,
the graph enters

this band atx = —2
and stays.

FIGURE 2.50 The geometry behind the
argument in Example 1.
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DEFINITIONS
1. We say that f(x) has the limit L as x approaches infinity and write

lim f(x) = L
x—>00
if, for every number € > 0, there exists a corresponding number M such that
for all x
x>M = lf(x) — L| < e
2. We say that f(x) has the limit L as x approaches minus infinity and write
lim f(x) =L
x—>—00

if, for every number € > 0, there exists a corresponding number N such that
for all x

x <N = |f) — L| <e.

Intuitively, lim,—o f(x) = L if, as x moves increasingly far from the origin in the positive
direction, f(x) gets arbitrarily close to L. Similarly, lim,, « f(x) = L if, as x moves
increasingly far from the origin in the negative direction, f(x) gets arbitrarily close to L.
The strategy for calculating limits of functions as x — £ 00 is similar to the one for
finite limits in Section 2.2. There we first found the limits of the constant and identity
functions y = k and y = x. We then extended these results to other functions by applying
Theorem 1 on limits of algebraic combinations. Here we do the same thing, except that the
starting functions are y = kand y = 1/x instead of y = k and y = x.
The basic facts to be verified by applying the formal definition are
lim k =k and Iim - = 0. (D)

x—too x— 100

We prove the second result in Example 1, and leave the first to Exercises 87 and 88.

EXAMPLE 1 Show that

@ lim =0 ) lim 1=o0,
Solution
(a) Let e > 0 be given. We must find a number M such that for all x
1 11
x>M = X 0 X < €.

The implication will hold if M = 1/e or any larger positive number (Figure 2.50).
This proves lim, o (1/x) = 0.
(b) Let € > 0 be given. We must find a number N such that for all x

x <N = =—=0 %<e.

The implication will hold if N = —1/e or any number less than —1 /€ (Figure 2.50).
This proves lim,—,_o (1/x) = 0. |

Limits at infinity have properties similar to those of finite limits.

THEOREM 12 All the Limit Laws in Theorem 1 are true when we replace
lim,—,. by lim,, & or lim,_,_«. That is, the variable x may approach a finite
number ¢ or 100,
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y y:5x2+8x—3
3x2+2
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ney = 3
\ 1 Llney—3
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FIGURE 2.51 The graph of the func-
tion in Example 3a. The graph approaches
the line y = 5/3 as |x| increases.

FIGURE 2.52 The graph of the
function in Example 3b. The graph
approaches the x-axis as |x| increases.

EXAMPLE 2 The properties in Theorem 12 are used to calculate limits in the same
way as when x approaches a finite number c.
. 1y _ .. .1
(a) lim|5 + x| = lim 5 + lim X Sum Rule
=5+0=S5 Known limits
(b) lim = lim 77'\/§'l'l
x—>—00 x2 xX—>—00 A X
= lim «V3- lim % lim )17 Product Rule
Xx—>— x—>—00 x—>—00
=7V3:0-0=0 Known limits |

Limits at Infinity of Rational Functions

To determine the limit of a rational function as x — 00, we first divide the numerator
and denominator by the highest power of x in the denominator. The result then depends on
the degrees of the polynomials involved.

EXAMPLE 3 These examples illustrate what happens when the degree of the numera-
tor is less than or equal to the degree of the denominator.

5>+ 8 —3 5+ (8/x) — (3/)62) Divide numerator and
(@) XIL)IEOW T oo 3 4+ (2/x2) denominator by x?.
_5+0—-0_5 -
= ﬁ = g See Fig. 2.51.
. 1lx+2 _ (11/x) + (2/x) Divide numerator and
(b) XBIPOO 23 — 1 N X_I)IPDO 2 — (1/)C3) denominator by x.
= (2) J_r 8 =0 See Fig. 2.52. m

Cases for which the degree of the numerator is greater than the degree of the denomi-
nator are illustrated in Examples 10 and 14.

Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a
point on the graph moves increasingly far from the origin, we say that the graph approaches
the line asymptotically and that the line is an asymptote of the graph.

Looking at f(x) = 1/x (see Figure 2.49), we observe that the x-axis is an asymptote
of the curve on the right because

.1
A =0
and on the left because
. 1
Jim 3= 0

We say that the x-axis is a horizontal asymptote of the graph of f(x) = 1/x.

DEFINITION A line y = b is a horizontal asymptote of the graph of a func-
tion y = f(x) if either

lilrolO f&x)=0b or liIPoo fx) = b.




2_
y=1
I I |/X
0
y=-1 /
_ =2
\_zﬁ(x)— |x|3+1

FIGURE 2.53 The graph of the
function in Example 4 has two
horizontal asymptotes.

—

N=1Ine

FIGURE 2.54 The graph of y = ¢*
approaches the x-axis as x — —00
(Example 5).
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The graph of the function

sketched in Figure 2.51 (Example 3a) has the line y = 5/3 as a horizontal asymptote on
both the right and the left because

lim f(x) = g and lim f(x) = %

EXAMPLE 4 Find the horizontal asymptotes of the graph of

Solution We calculate the limits as x — t o0,

R ) B =2 1=
Forx =0 lim =2 = fim ~ =2 = |jm — /) _
orx =0 oo x[F 4 1 ameex® + 1 xooo 4 (1/29)
X =2 X =2 o 1=(2/0)

Forx < 0: lim ———— = lim = lim = —1.
x ooy 1 oo (—x)d + 1 a1 + (1/)

The horizontal asymptotes are y = —1 and y = 1. The graph is displayed in Figure
2.53. Notice that the graph crosses the horizontal asymptote y = —1 for a positive value
of x. |

EXAMPLE 5 The x-axis (the line y = 0) is a horizontal asymptote of the graph of
y = ¢* because

lim ¢ = 0.

Xx—>—00

To see this, we use the definition of a limit as x approaches —00. So let € > 0 be given,
but arbitrary. We must find a constant N such that for all x,

x<N = |e&f—0]<e.
Now |e* — 0] = ¢, so the condition that needs to be satisfied whenever x < N is
e <e

Let x = N be the number where ¢* = €. Since ¢* is an increasing function, if x < N,
then ¢* < e. We find N by taking the natural logarithm of both sides of the equation
eV = €,50 N = In € (see Figure 2.54). With this value of N the condition is satisfied, and
we conclude that lim,—,_«e* = 0. |

EXAMPLE 6 Find (a) lirrgosin(l/x) and (b) liIPoox sin(1/x).

Solution
(a) We introduce the new variable # = 1/x. From Example 1, we know that t— 0" as
x — 0 (see Figure 2.49). Therefore,

. .1 ..
lim siny: = lim sint = 0.
—0*

Xx—>00



108 Chapter 2: Limits and Continuity

SEEEAVLY |

FIGURE 2.55 Theliney = lisa
horizontal asymptote of the function
graphed here (Example 6b).

FIGURE 2.56 The graph of y = ¢!'/*
for x < 0 shows lim,_,q '/ =

(Example 7).
y
_ sin x
/Y =2+ =
———— 2 T~
g N—
1 -
I I I I I I
=37 27 -7 0 T 2w 3

FIGURE 2.57 A curve may cross one of
its asymptotes infinitely often (Example 8).

(b) We calculate the limits as x — 00 and x — —09:

lim xsint = im S0 = 1 and  lim xsint = lim S0 = 1,
x—>00 X t—0t t x——00 X —0" t

The graph is shown in Figure 2.55, and we see that the line y = 1 is a horizontal

asymptote. |

Likewise, we can investigate the behavior of y = f(1/x) as x — 0 by investigating
y = f(r) as t — £ 0o, where t = 1/x.

EXAMPLE 7  Find lim '/~

x—0"

Solution We let = 1/x. From Figure 2.49, we can see that t — —00 as x — 07. (We
make this idea more precise further on.) Therefore,

lime'* = lim ¢ = 0 Example 5
X0 ——00

(Figure 2.56). |

The Sandwich Theorem also holds for limits as x — 1 00. You must be sure, though,
that the function whose limit you are trying to find stays between the bounding functions
at very large values of x in magnitude consistent with whether x — 00 or x — —00.

EXAMPLE 8 Using the Sandwich Theorem, find the horizontal asymptote of the curve

_ sin x
y=2+ =5

Solution We are interested in the behavior as x — F oo, Since

sin x

0=|=

1
X

and lim, 100 |1/x| = 0, we have lim,_, 1o (sin x)/x = 0 by the Sandwich Theorem.
Hence,
lim <2+SI§C”C)=2+0=2,
x—too
and the line y = 2 is a horizontal asymptote of the curve on both left and right (Figure 2.57).
This example illustrates that a curve may cross one of its horizontal asymptotes many
times. |

EXAMPLE 9 Find lim (x — Va2 + 16).

Solution  Both of the terms x and Vx? + 16 approach infinity as x — 00, so what hap-
pens to the difference in the limit is unclear (we cannot subtract 00 from 00 because the
symbol does not represent a real number). In this situation we can multiply the numerator
and the denominator by the conjugate radical expression to obtain an equivalent algebraic
result:

. X2 — (¥ + 16) . —16
= lim =1

= lim .
=00y + Va2 + 16 —ox + Va2 4+ 16




The vertical distance
between curve and
line goes to zero as x — %

Oblique
asymptote

FIGURE 2.58 The graph of the function

in Example 10 has an oblique asymptote.

y

Be

You can get as high
as you want by
taking x close enough
to 0. No matter how
high B is, the graph
goes higher.

You can get as low a%o —B

you want by taking
x close enough to 0.

= ——
-
Il

==

No matter how
low —Bis, the
graph goes lower.

FIGURE 2.59 One-sided infinite limits:

limL=00 and

=0
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As x — 00, the denominator in this last expression becomes arbitrarily large, so we see that
the limit is 0. We can also obtain this result by a direct calculation using the Limit Laws:

16
lim——6 X 0 -0
=y + \/x2 + 16 a0 6 1+V1i+0

1+

k‘k
[SIREN)
+
=
S
|

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the
denominator, the graph has an oblique or slant line asymptote. We find an equation for
the asymptote by dividing numerator by denominator to express f as a linear function plus
a remainder that goes to zero as x —> 100,

EXAMPLE 10 Find the oblique asymptote of the graph of
_x*-=3
J@ =54
in Figure 2.58.

Solution We are interested in the behavior as x— T oo. We divide (2x — 4) into
% — 3):

S+
2% — 42 - 3
x2 — 2x
2x — 3
2x — 4
1
This tells us that
2 _
f(x)=;x_i= <;+ 1>+ <2x1—4>'
—_—— —_—
linear g(x) remainder

As x—> 00, the remainder, whose magnitude gives the vertical distance between the
graphs of f and g, goes to zero, making the slanted line

g =5+ 1

an asymptote of the graph of f (Figure 2.58). The line y = g(x) is an asymptote both to the
right and to the left. The next subsection will confirm that the function f(x) grows arbitrarily
large in absolute value as x — 2 (where the denominator is zero), as shown in the graph. M

Notice in Example 10 that if the degree of the numerator in a rational function is greater
than the degree of the denominator, then the limit as |x| becomes large is +00 or —09,
depending on the signs assumed by the numerator and denominator.

Infinite Limits

Let us look again at the function f(x) = 1/x. As x— 0%, the values of f grow without
bound, eventually reaching and surpassing every positive real number. That is, given any
positive real number B, however large, the values of f become larger still (Figure 2.59).
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FIGURE 2.60 Near x = 1, the func-
tion y = 1/(x — 1) behaves the way the
function y = 1/x behaves near x = 0. Its
graph is the graph of y = 1/x shifted

1 unit to the right (Example 11).

No matter how
B¢ high B is, the graph
goes higher.

oy =L

FIGURE 2.61 The graph of f(x) in
Example 12 approaches infinity as x — 0.

H@———

0

Thus, f has no limit as x — 0", It is nevertheless convenient to describe the behavior of f
by saying that f(x) approaches 00 as x — 0. We write
hm fx) = 11m+% = 00.
In writing this equation, we are not saying that the limit exists. Nor are we saying that there
is a real number oo, for there is no such number. Rather, we are saying that lim,_,q+ (1/x)
does not exist because 1/x becomes arbitrarily large and positive as x — 07,
As x— 07, the values of f(x) = 1/x become arbitrarily large and negative. Given

any negative real number —B, the values of f eventually lie below —B. (See Figure 2.59.)
We write

. .1
lim f(x) = lim £ = —o0.
x—=0" f( ) x>0
Again, we are not saying that the limit exists and equals the number —00. There is no real

number —00. We are describing the behavior of a function whose limit as x — 0~ does not
exist because its values become arbitrarily large and negative.

EXAMPLE 11 Find lim —— and lim
—1rx — 1 =1 X —

Geometric Solution The graph of y = 1/(x — 1) is the graph of y = 1/x shifted 1

unit to the right (Figure 2.60). Therefore, y = 1/(x — 1) behaves near 1 exactly the way

vy = 1/x behaves near 0:

lim =00 and lim S = —00,
—rx =1 —1x — 1

Analytic Solution Think about the number x — 1 and its reciprocal. As x — 1%, we
have (x — 1)—>0" and 1/(x — 1)—>00. As x— 17, we have (x — 1)— 0" and
1/(x — 1) — —o0. u

EXAMPLE 12 Discuss the behavior of
=% a x-o0.
X

Solution  As x approaches zero from either side, the values of 1/x? are positive and
become arbitrarily large (Figure 2.61). This means that

1
1 = lim = = o0,
im flx) = lim =3
The function y = 1/x shows no consistent behavior as x — 0. We have 1/x — 00 if
x—0" but 1/x——00 if x— 0. All we can say about lim,,, (1/x) is that it does not
exist. The function y = 1/x? is different. Its values approach infinity as x approaches zero
from either side, so we can say that lim,_,, (1/x?) = oo, |

EXAMPLE 13 These examples illustrate that rational functions can behave in various
ways near zeros of the denominator.

) (x_z)z_ (x —2)? x—2
@ lim - =M e ar 2~ imy3 5 =0
x—2 2 1

® lim = }Lni(x—Z)(anz) lim 21



FIGURE 2.62 Forc — 86 <x<c¢ + 8,
the graph of f(x) lies above the line y = B.

\\ o o

Y= fx)

R S

—_—
—_—

FIGURE 2.63 Forc — 6 <x <c + 4,
the graph of f(x) lies below the line
y =—B.

2.6 Limits Involving Infinity; Asymptotes of Graphs 111

li x—3 li x—3 The values are negative

[ im 5>——=lim —————~ = — R,

(© =22 — 4 - (X — 2)()C + 2) for x > 2, x near 2.
x—3 The values are positive

.ox—=3 .. _
@ lm = im a2~ ™

for x < 2, x near 2.

© lim~ =3 — jjm -~ 3
x—2 x2 — 4 x—2 ()C - 2)()( + 2)

does not exist. See parts (¢) and (d).

_ —(x -2 _
@ lim =X = Jim —«-2 3) = lim——L =~
=2 (x — 2) =2 (x — 2) =2 (x — 2)*
In parts (a) and (b) the effect of the zero in the denominator at x = 2 is canceled

because the numerator is zero there also. Thus a finite limit exists. This is not true in part
(f), where cancellation still leaves a zero factor in the denominator. |

EXAMPLE 14  Find lm 22—+ 1
x—>-00 3x” +x — 7

Solution We are asked to find the limit of a rational function as x — —0c0, so we divide
the numerator and denominator by x2, the highest power of x in the denominator:

20 —6xt+1 . 2 — 6x% + x2
== = lim &>V ———
x>0 33+ x — 7 x——00 3 + x71 — 7x72
o2 —3) + x2

= lim =

x——00 3 + x 1 — Tx

= —00, X"—0, x — 3——00

because the numerator tends to —00 while the denominator approaches 3 as x ——00. W

Precise Definitions of Infinite Limits

Instead of requiring f(x) to lie arbitrarily close to a finite number L for all x sufficiently
close to ¢, the definitions of infinite limits require f(x) to lie arbitrarily far from zero.
Except for this change, the language is very similar to what we have seen before. Figures 2.62
and 2.63 accompany these definitions.

DEFINITIONS
1. We say that f(x) approaches infinity as x approaches c, and write

lim £(x) = o0,
if for every positive real number B there exists a corresponding 6 > 0 such
that for all x

0<’x—c|<5 = f(x) > B.
2. We say that f(x) approaches minus infinity as x approaches c, and write

lim f(x) = —00,

Xx—c

if for every negative real number — B there exists a corresponding 6 > 0
such that for all x

0<|x—cl <8 = f(x) < —B.

The precise definitions of one-sided infinite limits at ¢ are similar and are stated in the
exercises.
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Vertical asymptote

Horizontal 1
asymptote

0 1 Horizontal
asymptote,
y=0

Vertical asymptote,
x=0

FIGURE 2.64 The coordinate axes are
asymptotes of both branches of the hyper-
bolay = 1/x.

EXAMPLE 15  Prove that lim - = oo,

0Xx

Solution  Given B > 0, we want to find 8 > 0 such that

0<|x—0] <& implies — > B.
X

Now,

Lo B ifandonlyif i<

L
x? B

or, equivalently,

| < -

VB

Thus, choosing 6 = 1/ VB (or any smaller positive number), we see that

11

< & implies > = B.
x| plies 5> 5
Therefore, by definition,
L _
lim = = oo, |
x—0 X

Vertical Asymptotes

Notice that the distance between a point on the graph of f(x) = 1/x and the y-axis
approaches zero as the point moves vertically along the graph and away from the origin
(Figure 2.64). The function f(x) = 1/x is unbounded as x approaches 0 because

.1 .1
xli{g*; - and xli)t{)l’} -
We say that the line x = 0 (the y-axis) is a vertical asymptote of the graph of f(x) = 1/x.
Observe that the denominator is zero at x = 0 and the function is undefined there.

DEFINITION A line x = a is a vertical asymptote of the graph of a function
y = f(x) if either

lim f(x) = £oo or lim f(x) = %o

EXAMPLE 16 Find the horizontal and vertical asymptotes of the curve

:x+3
YT YT+ 2

Solution We are interested in the behavior as x — *00 and the behavior as x — —2,
where the denominator is zero.

The asymptotes are quickly revealed if we recast the rational function as a polynomial
with a remainder, by dividing (x + 2) into (x + 3):

1
x+2x+3
x+2
1
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Vertical
asymptote, 6
x=-2 5F _x+3
4l M)
1+
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FIGURE 2.65 Thelines y = 1 and
x = —2 are asymptotes of the curve in
Example 16.

y=— 8
x2—4
Vertical
Vertical asymptote, x = 2
asymptote, Horizontal
x=-2

asymptote, y = 0

| — | | | A x

FIGURE 2.66 Graph of the function
in Example 17. Notice that the curve
approaches the x-axis from only one side.
Asymptotes do not have to be two-sided.

y y=e*
4t 7
d
3k 7
//
2 L7 y=Inx
7/
1F 7
7
1 Z 1 1 1 X
—1,//1 2 3 4
/_]_

FIGURE 2.67 Theline x = Oisa
vertical asymptote of the natural logarithm
function (Example 18).
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This result enables us to rewrite y as:

y=1+ P
As x — 100, the curve approaches the horizontal asymptote y = 1; as x ——2, the curve
approaches the vertical asymptote x = —2. We see that the curve in question is the graph
of f(x) = 1/x shifted 1 unit up and 2 units left (Figure 2.65). The asymptotes, instead of
being the coordinate axes, are now the lines y = 1 and x = —2. |

EXAMPLE 17 Find the horizontal and vertical asymptotes of the graph of

8
x2 =4

f) =-

Solution We are interested in the behavior as x — =00 and as x — * 2, where the
denominator is zero. Notice that f is an even function of x, so its graph is symmetric with
respect to the y-axis.

(a) The behavior as x — 100, Since lim, .o f(x) = 0, the line y = 0 is a horizontal
asymptote of the graph to the right. By symmetry it is an asymptote to the left as well
(Figure 2.66). Notice that the curve approaches the x-axis from only the negative side
(or from below). Also, f(0) = 2.

(b) The behavior as x — 2. Since

lim f(x) = —00 and lim f(x) = oo,

x—2" x—2
the line x = 2 is a vertical asymptote both from the right and from the left. By sym-
metry, the line x = —2 is also a vertical asymptote.
There are no other asymptotes because f has a finite limit at all other points. |

EXAMPLE 18 The graph of the natural logarithm function has the y-axis (the line
x = 0) as a vertical asymptote. We see this from the graph sketched in Figure 2.67 (which
is the reflection of the graph of the natural exponential function across the line y = x) and
the fact that the x-axis is a horizontal asymptote of y = ¢* (Example 5). Thus,

lim Inx = —o0.
x—0"
The same result is true for y = log, x whenever a > 1. |
EXAMPLE 19 The curves
o 1 _ _sinx
Y = SeCX = o5y and y =tanx = oo

both have vertical asymptotes at odd-integer multiples of 7 /2, where cos x = 0 (Figure 2.68).

Dominant Terms

In Example 10 we saw that by long division we could rewrite the function

_x* -3
W =53
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y
20
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5
| |
-2 -1 0
_5 —
(a)
y
500,000
300,000 -
100,000 -
| | 1 |
-20 —10 0 10 20
—100,000 -

(b)

FIGURE 2.69 The graphs of f and
g are (a) distinct for |x| small, and

(b) nearly identical for |x| large

(Example 20).

y = secx y=tanx

—_
T

=)
3
IE}
W
B}
3
S
S
To
=
3
W
IE]

FIGURE 2.68 The graphs of sec x and tan x have infinitely many vertical asymptotes
(Example 19). [ |

as a linear function plus a remainder term:

oo = <§+ ]> - <2x1—4)'

This tells us immediately that

is near 0.

fo) =7+ 1 -

For |x| large,
2

0 = 55

For x near 2, this term is very large in absolute value.

If we want to know how f behaves, this is the way to find out. It behaves like
y = (x/2) + 1 when || is large and the contribution of 1/(2x — 4) to the total value of f
is insignificant. It behaves like 1/(2x — 4) when x is so close to 2 that 1/(2x — 4) makes
the dominant contribution.

We say that (x/2) + | dominates when x is numerically large, and we say that
1/(2x — 4) dominates when x is near 2. Dominant terms like these help us predict a
function’s behavior.

EXAMPLE 20  Let f(x) = 3x* — 2x + 3x> — 5x + 6 and g(x) = 3x* Show that
although f and g are quite different for numerically small values of x, they are virtually
identical for |x| very large, in the sense that their ratios approach 1 as x — 00 or x — —00.

Solution  The graphs of f and g behave quite differently near the origin (Figure 2.69a),
but appear as virtually identical on a larger scale (Figure 2.69b).

We can test that the term 3x* in f, represented graphically by g, dominates the poly-
nomial f for numerically large values of x by examining the ratio of the two functions as
x— oo, We find that

o f L =23 + 32— 5+ 6
lim —— = lim 1
=10 g(X)  x—too 3x
- _2,1_ 5 .2
B Xll)TOO<1 aw h x> 3% * x4)
= 1’
which means that f and g appear nearly identical when |x| is large. |

Summary

In this chapter we presented several important calculus ideas that are made meaningful and
precise by the concept of the limit. These include the three ideas of the exact rate of change of
a function, the slope of the graph of a function at a point, and the continuity of a function. The
primary methods used for calculating limits of many functions are captured in the algebraic
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Limit Laws of Theorem 1 and in the Sandwich Theorem, all of which are proved from the pre-
cise definition of the limit. We saw that these computational rules also apply to one-sided limits
and to limits at infinity. Moreover, we can sometimes apply these rules when calculating limits
of simple transcendental functions, as illustrated by our examples or in cases like the following:

limg—th—hm 1 1 zl
M M E-DE+rD) e+l 1+1 2

However, calculating more complicated limits involving transcendental functions such as
) X . Inx . 1\
lim ————, lim ==, and lim|1 + &

2 — x—0 X )c‘)()( )C)

requires more than simple algebraic techniques. The derivative is exactly the tool we need
to calculate limits such as these (see Section 4.5), and this notion is the main subject of our

next chapter.

Exercises m

Finding Limits
1. For the function f whose graph is given, determine the following
limits.
a. 1imzf(x) b. limv fx) c. lim%_f(x)
d. lim3 fx) e. 1i1})1+ fx) f. lilgi fx)
g. lim f(x) h. lim f(x) i. lim f(x)
x—0 xX—>00 x—>—00

B
—6—5—4—7/_2\/2 345 6

—3

2. For the function f whose graph is given, determine the following

limits.

a. ll_lg fx) b. xl_i)n} fx) C. xl_i)nz[ fx)
d. ii_)n%f(x) e. 'YEI_Ig+f(X) f. J(_lir_ny fx)
g. xl_i)rgsf(X) h. xl_ig)g fx) i. Xl_i)lg,f(X)
Jo - lim f(x) k. lim £(x) L lim f(x)

f

3
2
1 k

1 2/3 45 6

In Exercises 3-8, find the limit of each function (a) as x — 00 and
(b) as x— —0o0. (You may wish to visualize your answer with a
graphing calculator or computer.)

2
3. fx) = 7—3 4. f(x):w—;
5 x) = ; 6 (x) — ;
8 T Y C YT s 5/
=5+ (7/x) 3 -2/
7. h(x) = —————> 8. hix) = —— -
3= (1/x) 4+ (V2/x3)
Find the limits in Exercises 9—-12.
. sin 2x . cosf
9 lim = 10.- Iim 3
1. lim 2 LFsint 12. lim — L sinr

—>-oc0 ¢+ cost =00 2r + 7 — 5sinr

Limits of Rational Functions
In Exercises 13-22, find the limit of each rational function (a) as
x—> 0 and (b) as x — —0o0,

13. f()_iiig 14.f(x):%
15 fo = 2L 16 0 =57
Vo= s 8=
19. glx) = w 20. g(x) = w

X —x+1
2 = I gy < 2D

Limits as x—> o0 or x— —

The process by which we determine limits of rational functions applies
equally well to ratios containing noninteger or negative powers of x:
Divide numerator and denominator by the highest power of x in the
denominator and proceed from there. Find the limits in Exercises 23-36.

2 _ 2 A 1/3
23, lim , 22 =3 24. lim *ti*l)
x—00 \ 2x% + x x—>-0\ 8x° — 3
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_ 3\ 7 . ox2=3x+2
25. lim (L% 26. lim |- % §7. lim™——=— 5= as
==\ x> + Tx —oo\ x4+ x —2 X X
+ +
27, gim 2VE R R al -
g T Ty — o -
. . . . N
- Vi - s - R e. V;’hat, 31f z:r_ly;hmg, can be said about the limit as x — 07?
T oo Wy + Vi C ooy 2 — x73 58. 1im% as
X — 4ax
5/3 _ 1/3 Y —
St gim 20T gy Vo Se3 ut a. x—2" b. x——2*
x=00 x8/5 4 3x + \V/x x—=002x + x23 — 4 c. x—0 d. x—1"
. X+ 1 VP + I e. What, if anything, can be said about the limit as x — 0?
33, lim ———— 34. lim ————
X‘)O(Jx_‘_] x~>—oo.x+1 . .
s Find the limits in Exercises 59-62.
. x—3 .4 —3x
35. xllpc}ox /432 + 25 36. XEIPOO\/XG +9 59. lim<2 - %) as
a. 1—07 b. 1—0"
Infinite Limits
Find the limits in Exercises 37—48. 60. mn(% + 7) as
1/
. 1 .
37. lim 3 38. lim o a. 10" b. 1—0
39. lim =75 40. Tim 3 61. lim( 2 3> as
x2/ x — DY
41. lim 2. lim —2X + .
T xoegrx + 8 T o5 20+ 10 a x—0 b. x—0
_ + -
43, lim —+— 44, lim ——— ¢ x>l d =1
=7 (x = 7)? =0 xXx + 1)
5 5 62 1im(L - +> as
45. a. lim —— b. lim —— ) PO RN DLeV A
Pt 3xl/3 =0~ 3X1/3
a. x—0" b. x—0"
46. a. lim - lim —2- N -
s 0 x1/5 c. x—1 d. x—1
.4 . . . . .
47. IE)I(l) s 48. lg)r(l) =7 Graphing Simple Rational Functions
T A Graph the rational functions in Exercises 63-68. Include the graphs
. L . and equations of the asymptotes and dominant terms.
Find the limits in Exercises 49-52.
- : 63. y = — 64, y= —
49. x_}g/lz)_tanx 50. x_)}g;l/zy sec x YT I YT 1
. . 1 -3
51. lim (1 + csc 6 52. lim (2 — cotf = ) =
()ﬁo-( ) oﬁo( ) 65. ¥ x4 66. y —
x+3 2x
Find the limits in Exercises 53-58. 67. y =175 68. y=_"7
53. lim— as . .
x*—4 Inventing Graphs and Functions
a. x—2" b. x—2~ In Exercises 69-72, sketch the graph of a function y = f(x) that satis-
c x—> —2F d x— -2 fies the given conditions. No formulas are required—just label the
) coordinate axes and sketch an appropriate graph. (The answers are not
54. lim 21 ® unique, so your graphs may not be exactly like those in the answer
a. x— 17 b. x— 1~ section.)
c. x——1F d x——1" 69. f(0) =0, f(1) =2, f=1) =-2, lim f(x) =—1, and
x—>—00
2 lim f(x) =1
55. lim (* - ;) as oo ) )
2 70. f(0) = 0. lim_fGx) = 0. lim f(x) = 2, and
a. x—0" b. x— 0" 11%1 £(x) I, *
3 _ x—0"
e x=V2 dox—-l 7L f(0) = 0, lim f() =0, lim f() = lim f() = oo,
oxr -1 li ;a__gg d i TN = _OOXH_
56. hm2x T8 Jim, fx) »and lim_ )
a x—>-2" b. x—-2 72 1) = 1,71 = 0, Ji, 09 = 0, lig, £ = o0,
c. x—1* d r—0 lim f(x) = —00,and lim f(x) = 1
x—0" x—>—00



In Exercises 73-76, find a function that satisfies the given conditions
and sketch its graph. (The answers here are not unique. Any function
that satisfies the conditions is acceptable. Feel free to use formulas
defined in pieces if that will help.)

73. lim_f() = 0. lim f(x) = 0, and lim f(x) = o0

74. lim g(x) = 0, lim g(x) = —o0, and lim_g(x) = o©
x—> 100 x—3 x—3*
75. lim h(x) = —1, lim A(x) = 1, lim A(x) = —1, and
x—>—00 Xx—00 x—0
lir{)1+ h(x) =1
76. lirp00 k(x) =1, linll k(x) = 00, and lirrlli k(x) = —00

77. Suppose that f(x) and g(x) are polynomials in x and that
lim, o (f(x)/g(x)) = 2. Can you conclude anything about
lim,—, _ (f(x)/g(x))? Give reasons for your answer.

78. Suppose that f(x) and g(x) are polynomials in x. Can the graph of
f(x)/g(x) have an asymptote if g(x) is never zero? Give reasons
for your answer.

79. How many horizontal asymptotes can the graph of a given ratio-
nal function have? Give reasons for your answer.

Finding Limits of Differences When x— * o0
Find the limits in Exercises 80-86.

80. g(x/ﬁ— Vx +4)
81. XILH;C(sz +25—-Vxi—1)
82. Xmo(\/m +x)

83. lim (2¢+ Vdx® +3x —2)
84. 1113&(%— 3x)

8s. xlirrgc(sz +3x — Va? — 2x)
86. Xlggc(\/m— Va2 = x)

Using the Formal Definitions
Use the formal definitions of limits as x — & 00 to establish the limits
in Exercises 87 and 88.

87. If f has the constant value f(x) = k, then lim f(x) = k.
X—00

88. If f has the constant value f(x) = k, then lim f(x) = k.
Xx—>—00

Use formal definitions to prove the limit statements in Exercises 89-92.

89. lim —& = —o0 90. lim - = oo
x—0 X x—0 |x‘
) -2 . 1 _
91. lim— 2 = —c0 92. lim — 1 = oo

=3 (x — 3)? x—=5(x + 5)°

93. Here is the definition of infinite right-hand limit.

We say that f(x) approaches infinity as x approaches ¢ from the
right, and write

lim_f(x) = o0,

x—ct
if, for every positive real number B, there exists a correspond-
ing number 6 > 0 such that for all x

c<x<c+3$é = f(x) > B.
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Modify the definition to cover the following cases.

a. lim f(x) = o0

b. lim f(x) = -0
c. lim f(x) = —o0
X—>C

Use the formal definitions from Exercise 93 to prove the limit state-
ments in Exercises 94-98.

94. lim ; = o0

x—0"

95. lim - = —o©

96. lim

97. lim —— = o

Oblique Asymptotes
Graph the rational functions in Exercises 99-104. Include the graphs
and equations of the asymptotes.

2

2
99'y:x—l
2
100.y:’;_+11
2 _
101.}*=H
2 =1
102 v =+
-1
103. y =
3
104. y =2 F1
2

Additional Graphing Exercises

Graph the curves in Exercises 105-108. Explain the relationship

between the curve’s formula and what you see.
X

105 y= —%
/e
-1
106, y = ———
i V4 — x?
107 y = 20 + L

e

108. y = sin{ 5
08. y 31n(x2+])

Graph the functions in Exercises 109 and 110. Then answer the follow-

ing questions.
a. How does the graph behave as x — 07?7
b. How does the graph behave as x — 1 00?

c¢. How does the graph behave near x = 1 and x = —1?

2/3
110. y = %(X - 1)

Give reasons for your answers.

2/3
109, y = %(x - )17)
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Chapter m Questions to Guide Your Review

1.

10.

What is the average rate of change of the function g(7) over the
interval from ¢ = a to t = b? How is it related to a secant line?

. What limit must be calculated to find the rate of change of a func-

tion g(7) at t = 1,7

. Give an informal or intuitive definition of the limit

lim f(x) = L.

Why is the definition “informal”? Give examples.

. Does the existence and value of the limit of a function f(x) as x

approaches ¢ ever depend on what happens at x = ¢? Explain
and give examples.

. What function behaviors might occur for which the limit may fail

to exist? Give examples.

. What theorems are available for calculating limits? Give exam-

ples of how the theorems are used.

. How are one-sided limits related to limits? How can this relation-

ship sometimes be used to calculate a limit or prove it does not
exist? Give examples.

. What is the value of lim,_, ((sin 6)/6)? Does it matter whether 6

is measured in degrees or radians? Explain.

. What exactly does lim,_,. f(x) = L mean? Give an example in

which you find a 6 > 0 for a given f, L, ¢, and € > 0 in the pre-
cise definition of limit.

Give precise definitions of the following statements.
a. lim, - f(x) =5 b. lim,,,: f(x) =5

¢ lim,, f(x) = 00 d. lim,_, f(x) = —00

Chapterm Practice Exercises

Limits and Continuity

1.

2.

Graph the function

=-1
x <0
0
x <1
1.

5o
|
—_ =
A

K—h
=
=
<
Il
|
= -
o =
VoA

Then discuss, in detail, limits, one-sided limits, continuity, and
one-sided continuity of f at x = —1,0, and 1. Are any of the
discontinuities removable? Explain.

Repeat the instructions of Exercise 1 for

0, x=-1
) = 1/x, 0<|xf <1
* 0, x=1

1, x> 1.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. What conditions must be satisfied by a function if it is to be con-
tinuous at an interior point of its domain? At an endpoint?

How can looking at the graph of a function help you tell where
the function is continuous?

What does it mean for a function to be right-continuous at a
point? Left-continuous? How are continuity and one-sided conti-
nuity related?

What does it mean for a function to be continuous on an interval?
Give examples to illustrate the fact that a function that is not con-
tinuous on its entire domain may still be continuous on selected
intervals within the domain.

What are the basic types of discontinuity? Give an example of
each. What is a removable discontinuity? Give an example.

What does it mean for a function to have the Intermediate Value
Property? What conditions guarantee that a function has this
property over an interval? What are the consequences for graph-
ing and solving the equation f(x) = 0?

Under what circumstances can you extend a function f(x) to be
continuous at a point x = ¢? Give an example.

What exactly do lim, .« f(x) = L and lim,_, _« f(x) = L mean?
Give examples.

What are lim,_, o k (k a constant) and lim,_, 1 (1/x)? How do
you extend these results to other functions? Give examples.

How do you find the limit of a rational function as x — £ 00?
Give examples.

What are horizontal and vertical asymptotes? Give examples.

. Suppose that f(¢) and f(r) are defined for all ¢ and that lim,,
f() = =7 and lim,,, g(t) = 0. Find the limit as t — ¢, of the
following functions.

a. 3f(f) b. (f(1))?
f@
¢ f(0)- g d -7
e. cos(g(1) £ £
g fo + g h. 1/f()

. Suppose the functions f(x) and g(x) are defined for all x and that
lim, o f(x) = 1/2 and lim,( g(x) = V2. Find the limits as
x — 0 of the following functions.

a. —g(x) b. gx) - f(x)

¢ f(x) + gx) d. 1/f(x)
e. x + f(x) f. f();).%



In Exercises 5 and 6, find the value that lim,_,, g(x) must have if the
given limit statements hold.

(4~ gW) . .
5. lim| ———) =1 6. lim | xlimgkx) | =2
x—0 x——4 x—0

7. On what intervals are the following functions continuous?
a. f(x) =x'/3 b. gx) = x3/*
¢ h(x) =x?3 d. k(x) = x71/°

8. On what intervals are the following functions continuous?

a. f(x) = tanx b. g(x) = cscx

e h(x) = o d. ko =25
Finding Limits
In Exercises 9-28, find the limit or explain why it does not exist.
2 _
9, hmw
x’ + S5x= — 14x
a. asx—0 b. as x—?2
. X2+ x
10. lim—————
S o 1 0
a. asx—0 b. asx— —1
_ 2 _ 2
10, fim LY 12. lim<—2
-1 1 —x —a ot — ot
C(x+h)? =X C(x+ h)? =X
13. llim———— 14. lim
h—0 h x—0 h
11 X
2+ -8
15. lim 2% 2 16. lim >
x—0 x—0
13 _ 23 _
17. fim*——1 18. lim *~——16
=IVx — 1 =64 \/x — 8
tan (2x) )
19. lim 20. lim cscx
+—0 tan (mx) P
21. lim sin <£ + sin x) 22. lim cos® (x — tan x)
x> 2 x—
23. lim % — 24, limSx 1
x—03sinx — x x—0  SInx
25. lim In (1 = 3) 26. lim 2In(2 = Vi)
—3* t—

. 2e'/2
lim
=0 ez + 1

27. lim \/ge 7/ 28.

In Exercises 29-32, find the limit of g(x) as x approaches the indi-
cated value.

. i 1
13 — o
29. lim (4g(0)'" =2 30 i e 2
, _ 2
31. lim W1 0 32. lim o
Ll e =72 V)

Roots

33, Let f(x) = x> —x — 1.
a. Use the Intermediate Value Theorem to show that f has a
zero between —1 and 2.

b. Solve the equation f(x) = 0 graphically with an error of
magnitude at most 1078,
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¢. It can be shown that the exact value of the solution in part (b) is

(128" (48"

2 18 27 18

Evaluate this exact answer and compare it with the value you
found in part (b).

34. Let f(0) = 6° — 260 + 2.

a. Use the Intermediate Value Theorem to show that f has a
zero between —2 and 0.

b. Solve the equation f(#) = 0 graphically with an error of
magnitude at most 107%,

¢. It can be shown that the exact value of the solution in part (b) is

19 173 19 173
<ﬁ—1> -y t1) -

Evaluate this exact answer and compare it with the value you
found in part (b).

Continuous Extension

35. Can f(x) = x> — 1)/|2®> — 1] be extended to be continuous at
x =1 or —1? Give reasons for your answers. (Graph the func-
tion—you will find the graph interesting.)

36. Explain why the function f(x) = sin(1/x) has no continuous
extension to x = 0.

In Exercises 37-40, graph the function to see whether it appears to have

a continuous extension to the given point a. If it does, use Trace and
Zoom to find a good candidate for the extended function’s value at a. If
the function does not appear to have a continuous extension, can it be
extended to be continuous from the right or left? If so, what do you
think the extended function’s value should be?

x — 1
37 f) = ———~,
x— Vax
38. g(0) = %, a=m)2

39. k() = (1 + |V, a=0

a=1

p— 'x‘ —
40. k(x) = [ _ o a=0

Limits at Infinity
Find the limits in Exercises 41-54.

. 2x+ 3 . 232+ 3
4L Xll)rrgo 5x + 7 4. lelloo 5x2 + 7
2 _
43, qim Yo F8 4. lim — L+
=00 3x3 a—oox? — Tx + 1
2 4 3
45. lim 7 46. lim > tTX

x—-00 x + 1 x—o0 12x3 + 128

sin x (If you have a grapher, try graphing the function

47. lim
¥—=>00 [xJ for—5 =x =15)
cosg — 1 (f you have a grapher, try graphing
8.l ST f(x) = x(cos (1/x) — 1) near the origin to
— 00

“see” the limit at infinity.)

x4 sinx +2Vx x4 !
49, lim———F—— 50. lim ————F——
r—oo X + sinx =00 23 4 cos?x

51. lim €'/ cos - 52. limin(1+ 1
x—>00 X {— 00 t
53. lim tan'x 54. lim ¥ sin_ll

x—>—00 {—>—00
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Horizontal and Vertical Asymptotes

55.

Use limits to determine the equations for all vertical asymptotes.

_xr+4 _xXP—-x—=2
a y="—"73 b.f(x)fxz_zxJrl

_xX+tx—6

YT i -3

56. Use limits to determine the equations for all horizontal asymptotes.

a ,:1_x2 bf(x)=M
SR ‘ Vit
X2+ 4 x>+ 9

e g) =—F— d. y= o 1 1

Chapterm Additional and Advanced Exercises

1.

Assigning a value to 0° The rules of exponents tell us that
a” = 1 if a is any number different from zero. They also tell us
that 0" = 0 if n is any positive number.

If we tried to extend these rules to include the case 0°, we
would get conflicting results. The first rule would say 0° = 1,
whereas the second would say 0° = 0.

We are not dealing with a question of right or wrong here.
Neither rule applies as it stands, so there is no contradiction. We
could, in fact, define 0° to have any value we wanted as long as
we could persuade others to agree.

What value would you like 0° to have? Here is an example
that might help you to decide. (See Exercise 2 below for another
example.)

a. Calculate x* for x = 0.1, 0.01, 0.001, and so on as far as
your calculator can go. Record the values you get. What
pattern do you see?

b. Graph the function y = x* for 0 < x = 1. Even though the
function is not defined for x = 0, the graph will approach
the y-axis from the right. Toward what y-value does it seem
to be headed? Zoom in to further support your idea.

. A reason you might want 0° to be something other than 0 or 1

As the number x increases through positive values, the numbers
1/x and 1/(In x) both approach zero. What happens to the number

1/(Inx)
) = G)

as x increases? Here are two ways to find out.

a. Evaluate f for x = 10, 100, 1000, and so on as far as your
calculator can reasonably go. What pattern do you see?

b. Graph f in a variety of graphing windows, including win-
dows that contain the origin. What do you see? Trace the
y-values along the graph. What do you find?

. Lorentz contraction In relativity theory, the length of an

object, say a rocket, appears to an observer to depend on the
speed at which the object is traveling with respect to the observer.
If the observer measures the rocket’s length as L at rest, then at
speed v the length will appear to be

[N)

v
L=1Ly/1—-—.
0 C2
This equation is the Lorentz contraction formula. Here, ¢ is the
speed of light in a vacuum, about 3 X 10% m/sec. What happens
to L as v increases? Find lim,_,~ L. Why was the left-hand limit
needed?

4. Controlling the flow from a draining tank Torricelli’s law
says that if you drain a tank like the one in the figure shown, the
rate y at which water runs out is a constant times the square root
of the water’s depth x. The constant depends on the size and
shape of the exit valve.

Exit rate y ft3/min l

Suppose that y = \/);/ 2 for a certain tank. You are trying to
maintain a fairly constant exit rate by adding water to the tank
with a hose from time to time. How deep must you keep the water
if you want to maintain the exit rate

a. within 0.2 f}/min of the rate y, = 1 ft’/min?
b. within 0.1 f}/min of the rate y, = 1 ft}/min?

5. Thermal expansion in precise equipment As you may know,
most metals expand when heated and contract when cooled. The
dimensions of a piece of laboratory equipment are sometimes so
critical that the shop where the equipment is made must be held
at the same temperature as the laboratory where the equipment is

to be used. A typical aluminum bar that is 10 cm wide at 70°F
will be

y =10+ (t — 70) X 107

centimeters wide at a nearby temperature . Suppose that you are
using a bar like this in a gravity wave detector, where its width
must stay within 0.0005 cm of the ideal 10 cm. How close to
fy, = 70°F must you maintain the temperature to ensure that this
tolerance is not exceeded?

6. Stripes on a measuring cup The interior of a typical 1-L mea-
suring cup is a right circular cylinder of radius 6 cm (see accom-
panying figure). The volume of water we put in the cup is there-
fore a function of the level & to which the cup is filled, the
formula being

V = w6%h = 36mh.

How closely must we measure /& to measure out 1 L of water
(1000 cm?) with an error of no more than 1% (10 cm?)?



Stripes
about
1 mm
wide

r=6cm
—1l
r KJ Liquid volume
h| SEEE==—= 'V = 36mh

\//

A 1-L measuring cup (a), modeled as a right circular cylinder (b)
of radius r = 6 cm

Precise Definition of Limit
In Exercises 7-10, use the formal definition of limit to prove that the
function is continuous at c.

7. f)y=x*—7, c=1 8 g)=1/2x), c=1/4
9. hix) = V2x =3, ¢=2 10. Fx) = V9 —x, ¢=5
11. Uniqueness of limits Show that a function cannot have two dif-
ferent limits at the same point. That is, if lim,,. f(x) = L, and
lim,—,. f(x) = L,, then L; = L,.
12. Prove the limit Constant Multiple Rule:
1im_ kf(x) = k lim. f(x) for any constant .

13. One-sided limits If lim, .o f(x) = A and lim, f(x) = B
find
a. lim, g f(3 — x) b. lim, 4 f(x* — x)
e lim,_o f(x* — x% d. lim,_y f(> — x4

14. Limits and continuity Which of the following statements are

true, and which are false? If true, say whys; if false, give a counter-
example (that is, an example confirming the falsehood).

a. If lim,_,. f(x) exists but lim,_,. g(x) does not exist, then
lim, ., (f(x) + g(x)) does not exist.

b. If neither lim,_,,. f(x) nor lim,_,. g(x) exists, then
lim,—,. (f(x) + g(x)) does not exist.

c. If f is continuous at x, then so is |f|

d. If | f| is continuous at ¢, then so is f.
In Exercises 15 and 16, use the formal definition of limit to prove that
the function has a continuous extension to the given value of x.

=1 _ X2 —2x—3
T x=-1 16. g(x)772X_6 s

15. f(x) =

x=3
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17. A function continuous at only one point Let

x, if xis rational
f) = e
0, if xis irrational.

a. Show that f is continuous at x = 0.

b. Use the fact that every nonempty open interval of real num-
bers contains both rational and irrational numbers to show
that f is not continuous at any nonzero value of x.

. The Dirichlet ruler function If x is a rational number, then x

can be written in a unique way as a quotient of integers m/n
where n > 0 and m and n have no common factors greater than
1. (We say that such a fraction is in lowest terms. For example,
6/4 written in lowest terms is 3/2.) Let f(x) be defined for all x
in the interval [0, 1] b

1/n, ifx = m/nis arational number in lowest terms
flx) = e
0, if x is irrational.

Forinstance, f(0) = f(1) = 1, f(1/2) = 1/2, f(1/3) = f(2/3) =

1/3, f(1/4) = f(3/4) = 1/4, and so on.

a. Show that f is discontinuous at every rational numberin [0, 1 ].

b. Show that f is continuous at every irrational numberin [0, 1].
(Hint: If € is a given positive number, show that there are only
finitely many rational numbers rin [0, 1] such that f(r) = €.)

c. Sketch the graph of f. Why do you think f is called the
“ruler function”?

. Antipodal points Is there any reason to believe that there is

always a pair of antipodal (diametrically opposite) points on
Earth’s equator where the temperatures are the same? Explain.

. Iflim, ., (f(0) + g(x)) = 3and lim,_. (f(x) — g(x)) = —1, find

lim,—,. f(x)g(x).

. Roots of a quadratic equation that is almost linear The equa-

tion ax? + 2x — 1 = 0, where « is a constant, has two roots if
a > —1and a # 0, one positive and one negative:

-1+ VI +a -1 - VI +a

rfa@) = ———; ra) = ———;
a. What happens to r(a) as a — 0? As a —>—1%?
b. What happens to r_(a) as a —0? As a—>—1%?

¢. Support your conclusions by graphing r.(a) and r_(a) as
functions of a. Describe what you see.

d. For added support, graph f(x) = ax?> + 2x — | simultane-
ously for @ = 1,0.5, 0.2, 0.1, and 0.05.

. Root of an equation Show that the equation x + 2 cosx = 0

has at least one solution.

. Bounded functions A real-valued function f is bounded from

above on a set D if there exists a number N such that f(x) = N
for all x in D. We call N, when it exists, an upper bound for f on
D and say that f is bounded from above by N. In a similar man-
ner, we say that f is bounded from below on D if there exists a
number M such that f(x) = M for all x in D. We call M, when it
exists, a lower bound for f on D and say that f is bounded from
below by M. We say that f is bounded on D if it is bounded from
both above and below.

a. Show that f is bounded on D if and only if there exists a
number B such that | f(x)| = B for all x in D.
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b. Suppose that f is bounded from above by N. Show that if
lim, . f(x) = L, then L = N.

c. Suppose that f is bounded from below by M. Show that if
lim, . f(x) = L, then L = M.

24. Max {a,b} and min {a,b}
a. Show that the expression
at+b la—0b]
2 T2
equals a if @ = b and equals b if b = a. In other words,
max {a, b} gives the larger of the two numbers a and b.

max {a,b} =

b. Find a similar expression for min {a, b}, the smaller of a
and b.

sin 6

Generalized Limits Involving

The formula limy_,(sinf)/6 = 1 can be generalized. If lim,_,
f(x) = 0 and f(x) is never zero in an open interval containing the
point x = ¢, except possibly c itself, then

. sin f(x)
im =
e f(x)
Here are several examples.
2
. sinx
a. lim—— =1
x—0 X
2 2
.S .osinx®.. X
b. lim =1 > lim¥ =1-0=0
x—0 x—0 x° x—0

sin(x> —x —2)

sin(x> —x — 2)

« xlin—ll x+1 T (2 —x-2)
. (xQ—x—Z)_ et Dx—=2)
Xl_lp_]l x+ 1 =1 xl—l>n_]1 x+1 =3
sm(l—\/;) sin(l—\/;r)l_\/;
d. lim = lim =
x—1 x— 1 =l — Vx x— 1
(1= Vx)(1+ Vi) 1— 1
1-1lim = lim =—=

== D1+ Va)

Find the limits in Exercises 25-30.

sin(l — cos x)

»rl—>1(x—1)(1+\/}c) 2

. . sin x

25, lim—————— 26. 1

> 20 * 6 xgg*sin\/);
 sin(sinx) o sin(x® + x)

27. lim———— 28. fim———
x—0 x—0
sin(x2 — 4) sin(Va = 3)

29, lm————— 30. im——

x—2 x—2

Oblique Asymptotes

x—9 x—9

Find all possible oblique asymptotes in Exercises 31-34.

=2x3/2+2x—3
Vi + 1
3B.oy=Va Tl 34,

3.y 32.

Chapterm Technology Application Projects

Mathematica/Maple Modules:

Take It to the Limit

Part I

Part II (Zero Raised to the Power Zero: What Does It Mean?)
Part IIT (One-Sided Limits)

Visualize and interpret the limit concept through graphical and numerical explorations.

Part IV (What a Difference a Power Makes)

See how sensitive limits can be with various powers of x.
Going to Infinity

Part I (Exploring Function Behavior as x — o or x = — )

This module provides four examples to explore the behavior of a function as x — 00 or x — —00.

Part II (Rates of Growth)

y=x+xsin%
y = Vx? + 2

Observe graphs that appear to be continuous, yet the function is not continuous. Several issues of continuity are explored to obtain results that you

may find surprising.



