
4 Chapter 1: Functions

To find out, we could plot more points. But how would we then connect them? The 
basic question still remains: How do we know for sure what the graph looks like be-
tween the points we plot? Calculus answers this question, as we will see in Chapter 4.
Meanwhile we will have to settle for plotting points and connecting them as best 
we can.

Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula (the area
function) and visually by a graph (Example 2). Another way to represent a function is
numerically, through a table of values. Numerical representations are often used by engi-
neers and scientists. From an appropriate table of values, a graph of the function can be
obtained using the method illustrated in Example 2, possibly with the aid of a computer.
The graph consisting of only the points in the table is called a scatterplot.

EXAMPLE 3 Musical notes are pressure waves in the air. The data in Table 1.1 give
recorded pressure displacement versus time in seconds of a musical note produced by a
tuning fork. The table provides a representation of the pressure function over time. If we
first make a scatterplot and then connect approximately the data points (t, p) from the
table, we obtain the graph shown in Figure 1.6.

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function ƒ can
have only one value for each x in its domain, so no vertical line can intersect the graph
of a function more than once. If a is in the domain of the function ƒ, then the vertical line

will intersect the graph of ƒ at the single point .
A circle cannot be the graph of a function since some vertical lines intersect the circle

twice. The circle in Figure 1.7a, however, does contain the graphs of two functions of x: 

the upper semicircle defined by the function and the lower semicircle 

defined by the function (Figures 1.7b and 1.7c).g (x) = -21 - x2

ƒ(x) = 21 - x2

(a, ƒ(a))x = a

ƒ(x)

TABLE 1.1 Tuning fork data

Time Pressure Time Pressure

0.00091 0.00362 0.217

0.00108 0.200 0.00379 0.480

0.00125 0.480 0.00398 0.681

0.00144 0.693 0.00416 0.810

0.00162 0.816 0.00435 0.827

0.00180 0.844 0.00453 0.749

0.00198 0.771 0.00471 0.581

0.00216 0.603 0.00489 0.346

0.00234 0.368 0.00507 0.077

0.00253 0.099 0.00525

0.00271 0.00543

0.00289 0.00562

0.00307 0.00579

0.00325 0.00598

0.00344 -0.041

-0.035-0.248

-0.248-0.348

-0.354-0.309

-0.320-0.141

-0.164

-0.080

–0.6
–0.4
–0.2

0.2
0.4
0.6
0.8
1.0

t (sec)

p (pressure)

0.001 0.002 0.004 0.0060.003 0.005

Data

FIGURE 1.6 A smooth curve through the plotted points
gives a graph of the pressure function represented by
Table 1.1 (Example 3).

7001_AWLThomas_ch01p001-057.qxd  10/1/09  2:23 PM  Page 4



1.1 Functions and Their Graphs 5

–2 –1 0 1 2

1

2

x

y

y � –x

y � x2

y � 1

y � f (x)

FIGURE 1.9 To graph the
function shown here,
we apply different formulas to
different parts of its domain
(Example 4).

y = ƒsxd

x

y � �x�

y � x
y � –x

y

–3 –2 –1 0 1 2 3

1

2

3

FIGURE 1.8 The absolute value
function has domain 
and range [0, q d .

s - q , q d

–1 10
x

y

(a) x2 � y2 � 1

–1 10
x

y

–1 1

0
x

y

(b) y � �1 � x2 (c) y � –�1 � x2

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper
semicircle is the graph of a function (c) The lower semicircle is the graph of a
function g sxd = -21 - x2 .

ƒsxd = 21 - x2 .

Piecewise-Defined Functions

Sometimes a function is described by using different formulas on different parts of its
domain. One example is the absolute value function

whose graph is given in Figure 1.8. The right-hand side of the equation means that the
function equals x if , and equals if Here are some other examples.

EXAMPLE 4 The function

is defined on the entire real line but has values given by different formulas depending on
the position of x. The values of ƒ are given by when when

and when The function, however, is just one function whose
domain is the entire set of real numbers (Figure 1.9).

EXAMPLE 5 The function whose value at any number x is the greatest integer less
than or equal to x is called the greatest integer function or the integer floor function. 
It is denoted . Figure 1.10 shows the graph. Observe that

EXAMPLE 6 The function whose value at any number x is the smallest integer greater
than or equal to x is called the least integer function or the integer ceiling function. It is
denoted Figure 1.11 shows the graph. For positive values of x, this function might
represent, for example, the cost of parking x hours in a parking lot which charges $1 for
each hour or part of an hour.

<x= .

:2.4; = 2, :1.9; = 1, :0; = 0, : -1.2; = -2,

:2; = 2, :0.2; = 0, : -0.3; = -1 : -2; = -2.

:x;

x 7 1.y = 10 … x … 1,
x 6 0, y = x2y = -x

ƒsxd = •
-x, x 6 0

  x2, 0 … x … 1

  1, x 7 1

x 6 0.-xx Ú 0

ƒ x ƒ = e x, x Ú 0 

-x, x 6 0,

1

–2

2

3

–2 –1 1 2 3

y � x

y � ⎣x⎦

x

y

FIGURE 1.10 The graph of the
greatest integer function 
lies on or below the line so
it provides an integer floor for x
(Example 5).

y = x ,
y = :x;
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The names even and odd come from powers of x. If y is an even power of x, as in
or it is an even function of x because and If y is

an odd power of x, as in or it is an odd function of x because 
and 

The graph of an even function is symmetric about the y-axis. Since a
point (x, y) lies on the graph if and only if the point lies on the graph (Figure 1.12a).
A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since a
point (x, y) lies on the graph if and only if the point lies on the graph (Figure 1.12b).
Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin
leaves the graph unchanged. Notice that the definitions imply that both x and must be
in the domain of ƒ.

EXAMPLE 8

Even function: for all x; symmetry about y-axis.

Even function: for all x; symmetry about y-axis
(Figure 1.13a).

Odd function: for all x; symmetry about the origin.

Not odd: but The two are not
equal.
Not even: for all (Figure 1.13b).x Z 0s -xd + 1 Z x + 1

-ƒsxd = -x - 1.ƒs -xd = -x + 1,ƒsxd = x + 1

s -xd = -xƒsxd = x

s -xd2
+ 1 = x2

+ 1ƒsxd = x2
+ 1

s -xd2
= x2ƒsxd = x2

-x

s -x , -yd
ƒs -xd = -ƒsxd ,

s -x , yd
ƒs -xd = ƒsxd ,

s -xd3
= -x3 .

s -xd1
= -xy = x3 ,y = x

s -xd4
= x4 .s -xd2

= x2y = x4 ,y = x2

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the
function is increasing. If the graph descends or falls as you move from left to right, the
function is decreasing.

6 Chapter 1: Functions

DEFINITIONS Let ƒ be a function defined on an interval I and let and be
any two points in I.

1. If whenever then ƒ is said to be increasing on I.

2. If whenever then ƒ is said to be decreasing on I.x1 6 x2 ,ƒsx2d 6 ƒsx1d
x1 6 x2 ,ƒsx2) 7 ƒsx1d

x2x1
x

y

1–1–2 2 3

–2

–1

1

2

3
y � x

y � ⎡x⎤

FIGURE 1.11 The graph of the
least integer function 
lies on or above the line 
so it provides an integer ceiling
for x (Example 6).

y = x ,
y = <x=

DEFINITIONS A function is an

for every x in the function’s domain.

even function of x if ƒs -xd = ƒsxd,
odd function of x if ƒs -xd = -ƒsxd,

y = ƒsxd

It is important to realize that the definitions of increasing and decreasing functions
must be satisfied for every pair of points and in I with Because we use the
inequality to compare the function values, instead of it is sometimes said that ƒ is
strictly increasing or decreasing on I. The interval I may be finite (also called bounded) or
infinite (unbounded) and by definition never consists of a single point (Appendix 1).

EXAMPLE 7 The function graphed in Figure 1.9 is decreasing on and in-
creasing on [0, 1]. The function is neither increasing nor decreasing on the interval 
because of the strict inequalities used to compare the function values in the definitions.

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry properties.

[1, q d
s - q , 0]

… ,6

x1 6 x2 .x2x1

(a)

(b)

0
x

y

y � x2

(x, y)(–x, y)

0
x

y

y � x3

(x, y)

(–x, –y)

FIGURE 1.12 (a) The graph of 
(an even function) is symmetric about the
y-axis. (b) The graph of (an odd
function) is symmetric about the origin.

y = x3

y = x2
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1.1 Functions and Their Graphs 7

(a) (b)

x

y

0

1

y � x2 � 1

y � x2

x

y

0–1

1

y � x � 1

y � x

FIGURE 1.13 (a) When we add the constant term 1 to the function
the resulting function is still even and its graph is

still symmetric about the y-axis. (b) When we add the constant term 1 to
the function the resulting function is no longer odd.
The symmetry about the origin is lost (Example 8).

y = x + 1y = x ,

y = x2
+ 1y = x2 ,

Common Functions

A variety of important types of functions are frequently encountered in calculus. We iden-
tify and briefly describe them here.

Linear Functions A function of the form for constants m and b, is
called a linear function. Figure 1.14a shows an array of lines where 
so these lines pass through the origin. The function where and is
called the identity function. Constant functions result when the slope (Figure
1.14b). A linear function with positive slope whose graph passes through the origin is
called a proportionality relationship.

m = 0
b = 0m = 1ƒsxd = x

b = 0,ƒsxd = mx
ƒsxd = mx + b ,

x

y

0 1 2

1

2 y � 3
2

(b)

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant function
with slope m = 0.

0 x

y
m � –3 m � 2

m � 1m � –1

y � –3x

y � –x

y � 2x

y � x

y � x
1
2

m �
1
2

(a)

DEFINITION Two variables y and x are proportional (to one another) if one is
always a constant multiple of the other; that is, if for some nonzero
constant k.

y = kx

If the variable y is proportional to the reciprocal then sometimes it is said that y is
inversely proportional to x (because is the multiplicative inverse of x).

Power Functions A function where a is a constant, is called a power func-
tion. There are several important cases to consider.

ƒsxd = xa ,

1>x 1>x,
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(b)

The graphs of the functions and are shown in
Figure 1.16. Both functions are defined for all (you can never divide by zero). The
graph of is the hyperbola , which approaches the coordinate axes far from
the origin. The graph of also approaches the coordinate axes. The graph of the
function ƒ is symmetric about the origin; ƒ is decreasing on the intervals and

. The graph of the function g is symmetric about the y-axis; g is increasing on
and decreasing on .s0, q )s - q , 0)

s0, q )
s - q , 0)

y = 1>x2
xy = 1y = 1>x x Z 0

g sxd = x-2
= 1>x2ƒsxd = x-1

= 1>x
a = -1  or  a = -2.

8 Chapter 1: Functions

–1 0 1

–1

1

x

y y � x2

–1 10

–1

1

x

y y � x

–1 10

–1

1

x

y y � x3

–1 0 1

–1

1

x

y y � x4

–1 0 1

–1

1

x

y y � x5

FIGURE 1.15 Graphs of defined for - q 6 x 6 q .ƒsxd = xn, n = 1, 2, 3, 4, 5,

(a)

The graphs of for 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval and also rise more steeply for

Each curve passes through the point (1, 1) and through the origin. The graphs of
functions with even powers are symmetric about the y-axis; those with odd powers are
symmetric about the origin. The even-powered functions are decreasing on the interval

and increasing on ; the odd-powered functions are increasing over the entire
real line .s - q , q )

[0, q ds - q , 0]

ƒ x ƒ 7 1.
s -1, 1d ,

n = 1,ƒsxd = xn ,

a = n,  a positive integer.

x

y

x

y

0

1

1

0

1

1

y � 1
x y � 1

x2

Domain: x � 0
Range:   y � 0

Domain: x � 0
Range:   y � 0

(a) (b)

FIGURE 1.16 Graphs of the power functions for part (a) 
and for part (b) .a = -2

a = -1ƒsxd = xa

(c)

The functions and are the square root and cube
root functions, respectively. The domain of the square root function is but the
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17
along with the graphs of and (Recall that and

)

Polynomials A function p is a polynomial if

where n is a nonnegative integer and the numbers are real constants
(called the coefficients of the polynomial). All polynomials have domain If thes - q , q d .

a0 , a1 , a2 , Á , an

psxd = an xn
+ an - 1x

n - 1
+

Á
+ a1 x + a0

x2>3
= sx1>3d2 .

x3>2
= sx1>2d3y = x2>3 .y = x3>2

[0, q d ,
g sxd = x1>3

= 23 xƒsxd = x1>2
= 2x

a =
1
2

, 
1
3

, 
3
2

, and 
2
3

.
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1.1 Functions and Their Graphs 9

y

x
0

1

1

y � x3�2

Domain:
Range:

0 � x � 	
0 � y � 	

y

x

Domain:
Range:

–	 � x � 	
0 � y � 	

0

1

1

y � x2�3

x

y

0 1

1

Domain:
Range:

0 � x � 	
0 � y � 	

y � �x  

x

y

Domain:
Range:

–	 � x � 	
–	 � y � 	

1

1

0

3
y � �x 

FIGURE 1.17 Graphs of the power functions for and 
2
3

.a =

1
2

, 
1
3

, 
3
2

,ƒsxd = xa

leading coefficient and then n is called the degree of the polynomial. Linear
functions with are polynomials of degree 1. Polynomials of degree 2, usually written
as are called quadratic functions. Likewise, cubic functions are
polynomials of degree 3. Figure 1.18 shows the graphs of
three polynomials. Techniques to graph polynomials are studied in Chapter 4.

psxd = ax3
+ bx2

+ cx + d
psxd = ax2

+ bx + c ,
m Z 0

n 7 0,an Z 0

x

y

0

y �  �     � 2x � x3

3
x2

2
1
3

(a)

y

x
–1 1 2

2

–2

–4

–6

–8

–10

–12

y � 8x4 � 14x3 � 9x2 � 11x � 1

(b)

–1 0 1 2

–16

16

x

y
y � (x � 2)4(x � 1)3(x � 1)

(c)

–2–4 2 4

–4

–2

2

4

FIGURE 1.18 Graphs of three polynomial functions.

(a) (b) (c)

2 4–4 –2

–2

2

4

–4

x

y

y � 2x2 � 3
7x � 4

0
–2

–4

–6

–8

2–2–4 4 6

2

4

6

8

x

y

y � 11x � 2
2x3 � 1

–5 0

1

2

–1

5 10

–2

x

y

Line y � 5
3

y � 5x2 � 8x � 3
3x2 � 2

NOT TO SCALE

FIGURE 1.19 Graphs of three rational functions. The straight red lines are called asymptotes and are not part
of the graph.

Rational Functions A rational function is a quotient or ratio where p
and q are polynomials. The domain of a rational function is the set of all real x for which

The graphs of several rational functions are shown in Figure 1.19.qsxd Z 0.

ƒ(x) = p(x)>q(x),
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Trigonometric Functions The six basic trigonometric functions are reviewed in Section 1.3.
The graphs of the sine and cosine functions are shown in Figure 1.21.

Exponential Functions Functions of the form where the base is a
positive constant and are called exponential functions. All exponential functions
have domain and range , so an exponential function never assumes the
value 0. We discuss exponential functions in Section 1.5. The graphs of some exponential
functions are shown in Figure 1.22.

s0, q ds - q , q d
a Z 1,

a 7 0ƒsxd = ax ,

10 Chapter 1: Functions

Algebraic Functions Any function constructed from polynomials using algebraic opera-
tions (addition, subtraction, multiplication, division, and taking roots) lies within the class
of algebraic functions. All rational functions are algebraic, but also included are more
complicated functions (such as those satisfying an equation like 
studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

y3
- 9xy + x3

= 0,

(a)

4–1

–3

–2

–1

1

2

3

4

x

y y � x1/3(x � 4)

(b)

0

y

x

y � (x2 � 1)2/33
4

(c)

10

–1

1

x

y

5
7

y � x(1 � x)2/5

FIGURE 1.20 Graphs of three algebraic functions.

y

x

1

–1
� �2

�3

(a)  f (x) � sin x

0

y

x

1

–1
�

2

3
2 2

(b)  f (x) � cos x

0

�

2
– �

–�

5�

FIGURE 1.21 Graphs of the sine and cosine functions.

(a) (b)

y � 2–x

y � 3–x

y � 10–x

–0.5–1 0 0.5 1

2

4

6

8

10

12

y

x

y � 2x

y � 3x

y � 10x

–0.5–1 0 0.5 1

2

4

6

8

10

12

y

x

FIGURE 1.22 Graphs of exponential functions.
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1.1 Functions and Their Graphs 11

Logarithmic Functions These are the functions where the base is
a positive constant. They are the inverse functions of the exponential functions, and we
discuss these functions in Section 1.6. Figure 1.23 shows the graphs of four logarithmic
functions with various bases. In each case the domain is and the range is
s - q , q d .

s0, q d

a Z 1ƒsxd = loga x ,

–1 10

1

x

y

FIGURE 1.24 Graph of a catenary or
hanging cable. (The Latin word catena
means “chain.”)

1

–1

1

0
x

y

y � log3x

y � log10 x

y � log2 x

y � log5x

FIGURE 1.23 Graphs of four logarithmic
functions.

Transcendental Functions These are functions that are not algebraic. They include the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many
other functions as well. A particular example of a transcendental function is a catenary.
Its graph has the shape of a cable, like a telephone line or electric cable, strung from one
support to another and hanging freely under its own weight (Figure 1.24). The function
defining the graph is discussed in Section 7.3.

Exercises 1.1

Functions
In Exercises 1–6, find the domain and range of each function.

1. 2.

3. 4.

5. 6.

In Exercises 7 and 8, which of the graphs are graphs of functions of x,
and which are not? Give reasons for your answers.

7. a. b.

x

y

0
x

y

0

G(t) =

2
t2

- 16
ƒstd =

4
3 - t

g(x) = 2x2
- 3xF(x) = 25x + 10

ƒsxd = 1 - 2xƒsxd = 1 + x2

8. a. b.

Finding Formulas for Functions
9. Express the area and perimeter of an equilateral triangle as a

function of the triangle’s side length x.

10. Express the side length of a square as a function of the length d of
the square’s diagonal. Then express the area as a function of the
diagonal length.

11. Express the edge length of a cube as a function of the cube’s diag-
onal length d. Then express the surface area and volume of the
cube as a function of the diagonal length.

x

y

0
x

y

0
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12. A point P in the first quadrant lies on the graph of the function
Express the coordinates of P as functions of the

slope of the line joining P to the origin.

13. Consider the point lying on the graph of the line
Let L be the distance from the point to the

origin Write L as a function of x.

14. Consider the point lying on the graph of Let
L be the distance between the points and Write L as a
function of y.

Functions and Graphs
Find the domain and graph the functions in Exercises 15–20.

15. 16.

17. 18.

19. 20.

21. Find the domain of 

22. Find the range of 

23. Graph the following equations and explain why they are not
graphs of functions of x.

a. b.

24. Graph the following equations and explain why they are not
graphs of functions of x.

a. b.

Piecewise-Defined Functions
Graph the functions in Exercises 25–28.

25.

26.

27.

28.

Find a formula for each function graphed in Exercises 29–32.

29. a. b.

30. a. b.

–1
x

y

3

21

2

1

–2

–3

–1
(2, –1)

x

y

52

2
(2, 1)

t

y

0

2

41 2 3
x

y

0

1

2

(1, 1)

G sxd = e1>x , x 6 0

x , 0 … x

F sxd = e4 - x2 , x … 1

x2
+ 2x , x 7 1

g sxd = e1 - x , 0 … x … 1

2 - x , 1 6 x … 2

ƒsxd = e x, 0 … x … 1

2 - x, 1 6 x … 2

ƒ x + y ƒ = 1ƒ x ƒ + ƒ y ƒ = 1

y2
= x2

ƒ y ƒ = x

y = 2 +

x2

x2
+ 4

 .

y =

x + 3

4 - 2x2
- 9

 .

G std = 1> ƒ t ƒF std = t> ƒ t ƒ

g sxd = 2-xg sxd = 2ƒ x ƒ

ƒsxd = 1 - 2x - x2ƒsxd = 5 - 2x

(4, 0).(x, y)
2x - 3.y =(x, y)

(0, 0).
(x, y)2x + 4y = 5.

(x, y)

ƒsxd = 2x .

12 Chapter 1: Functions

31. a. b.

32. a. b.

The Greatest and Least Integer Functions
33. For what values of x is

a. b.

34. What real numbers x satisfy the equation 

35. Does for all real x? Give reasons for your answer.

36. Graph the function

Why is ƒ(x) called the integer part of x?

Increasing and Decreasing Functions
Graph the functions in Exercises 37–46. What symmetries, if any, do
the graphs have? Specify the intervals over which the function is in-
creasing and the intervals where it is decreasing.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

Even and Odd Functions
In Exercises 47–58, say whether the function is even, odd, or neither.
Give reasons for your answer.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

Theory and Examples
59. The variable s is proportional to t, and when 

Determine t when s = 60.
t = 75.s = 25

hstd = 2 ƒ t ƒ + 1hstd = 2t + 1

hstd = ƒ t3
ƒhstd =

1
t - 1

gsxd =

x

x2
- 1

gsxd =

1
x2

- 1

gsxd = x4
+ 3x2

- 1gsxd = x3
+ x

ƒsxd = x2
+ xƒsxd = x2

+ 1

ƒsxd = x-5ƒsxd = 3

y = s -xd2>3y = -x3>2
y = -42xy = x3>8
y = 2-xy = 2ƒ x ƒ

y =

1
ƒ x ƒ

y = -

1
x

y = -

1
x2y = -x3

ƒsxd = e :x; , x Ú 0<x= , x 6 0.

< -x= = - :x;
:x; = <x= ?

<x= = 0?:x; = 0?

t

y

0

A

T

–A

T
2

3T
2

2T

x

y

0

1

TT
2

(T, 1)

x

y

1

2

(–2, –1) (3, –1)(1, –1)

x

y

3

1
(–1, 1) (1, 1)
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Triple integrals         التكاملات الثلاثية 

 

Definition: Let 𝐷  be the region defined by the inequalities  𝑎 ≤ 𝑥 ≤ 𝑏  
 ℎ1(𝑥) ≤ 𝑦 ≤ ℎ2(𝑥),    𝑔1(𝑥, 𝑦) ≤ 𝑧 ≤ 𝑔2(𝑥, 𝑦). If 𝑓(𝑥, 𝑦, 𝑧) is 

continuous function of three variables, then the triple integral is 

 

𝑉 =∭𝑓(𝑥,𝑦, 𝑧)𝑑𝑉 =
𝐷

∫ ∫ ∫ 𝑑𝑧 𝑑𝑦𝑑𝑥
𝑔2(𝑥,𝑦)

   𝑔1(𝑥,𝑦)

ℎ2(𝑥)

ℎ1(𝑥)

𝑏

𝑎
 

 

Definition: The volume of a closed, bounded region  𝐷   in space is 

𝑉 =∭𝑑𝑉
𝐷

 

 

 

Example 1: Find the value of triple integral for the function 

 𝑓(𝑥, 𝑦, 𝑧) = 2𝑥𝑦𝑧  and  bounded  by surface   𝑧 = 2 −
1

2
𝑥2  and the 

planes  𝑧 = 0,     𝑦 = 𝑥,    𝑦 = 0. 
 

Solution: 

𝑉 =∭2𝑥𝑦𝑧 𝑑𝑉
𝐷

= ∫ ∫ ∫ 2𝑥𝑦𝑧  𝑑𝑧 𝑑𝑦𝑑𝑥
2−
1
2
𝑥2

0

𝑋

0

2

0
 

= ∫∫𝑥𝑦𝑧2]
0

2−
1
2
𝑥2
dy dx

𝑥

0

2

0

= ∫∫𝑥𝑦(2−
1
2
𝑥2)2dy dx =

𝑥

0

2

0

∫∫𝑥𝑦 [4− 2𝑥2 +
1
4
𝑥4] dydx =

𝑥

0

2

0

 

∫∫[4𝑥𝑦− 2𝑥3𝑦 +
1
4
𝑥5𝑦] dydx = ∫ (2𝑥𝑦2−𝑥3𝑦2 +

1
8
𝑥5𝑦2)]

0

𝑥

𝑑𝑥

2

0

𝑥

0

2

0

 

= ∫[2𝑥3 −𝑥5 +
1
8
𝑥7] 𝑑𝑥 =

2

0

𝑥4

2
−
𝑥6

6
+
1
64
𝑥8]

0

2

= 8−
64
6
+
256
64

=
4
3
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Example 2: Use triple integral to find the volume in the first octant 

of the region that bounded by two surfaces  𝑥2 )الثمن(  + 4𝑦2 = 4𝑧  and   

 𝑥2 + 4𝑦2 = 48 − 8𝑧  . 
 

Solution: 

𝑉 =∭𝑑𝑉
𝐷

= ∫ ∫ ∫   𝑑𝑧 𝑑𝑥𝑑𝑦

48−𝑥2−4𝑦2

8

𝑥2+4𝑦2

4

2√4−𝑦2

0

2

0
 

= ∫ ∫ 𝑧]
𝑥2+4𝑦2

4

48−𝑥2+4𝑦2

8 dx dy = ∫ ∫
3
8
(16 − x2 − 4y2)dx dy

2√4−𝑦2

0

2

0

2√4−𝑦2

0

2

0

 

 

 

Example 3 Use triple integral to find the volume in the first octant  )الثمن(

 of the region that bounded by the surface  2𝑧 = 4 − 𝑥2 − 𝑦2  and the 

plane xy.  

   

Solution: 

𝑉 =∭𝑑𝑉
𝐷

= ∫ ∫ ∫   𝑑𝑧 𝑑𝑦𝑑𝑥

4−𝑥2−𝑦2

2

0

√4−𝑥2

0

2

0
 

 

 

 

Example 4: Let 𝐷  be the solid region that bounded above sphere     

𝑥2   )الكرة( + 𝑦2 + 𝑧2 = 1  and below  𝑧2 = 𝑥2 + 𝑦2,  find the value  

𝑉 =∭ 𝑧𝑑𝑉
𝐷

  . 

 

Solution: 

𝑉 =∭𝑧 𝑑𝑉
𝐷

= ∫ ∫ ∫   𝑧 𝑑𝑧 𝑑𝑦𝑑𝑥
√1−𝑥2−𝑦2

√𝑥2+𝑦2

√1
2
 −𝑥2

−√
1
2
 −𝑥2

√2
2

−
√2
2
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Example 5:  Use triple integral to find the volume the solid within the 

 cylinder  𝑥2 + 𝑦2 = 9  and between the planes   𝑧 = 1  and 𝑥 + 𝑧 = 5 . 

Solution: 

𝑉 =∬ ∫ 𝑑𝑧 𝑑𝐴 = ∫ ∫ ∫ 𝑑𝑧 𝑑𝑥𝑑𝑦
5−𝑥

1

√9−𝑦2

−√9−𝑦2

3

−3

5−𝑥

1𝑅
 

= ∫ ∫ 𝑧]1
5−𝑥dx dy = ∫ ∫ (4 − 𝑥)dx dy = 4∫ ∫ (4 − 𝑥)dx dy =

√9−𝑦2

0

3

0

√9−𝑦2

−√9−𝑦2

3

−3

√9−𝑦2

−√9−𝑦2

3

−3

 

= 4∫(4𝑥 −
𝑥2

2
)]
0

√9−𝑦2

𝑑𝑦

3

0

= 4∫(4√9 − 𝑦2 −
9 − 𝑦2

2
)𝑑𝑦

3

0

 

 

 

Example 6:  Use triple integral to find the volume of the solid enclosed 

between the xy- plane and  3𝑧 = 9 − 𝑥2 − 𝑦2.   

 

Solution: 

∬ ∫ 𝑑𝑧 𝑑𝐴 =

9−𝑥2−𝑦2

3

0𝑅

= ∫ ∫ 𝑧]
0

9−𝑥2−𝑦2

3 dx dy =

√9−𝑦2

−√9−𝑦2

3

−3

 

1

3
∫ ∫ (9− 𝑥2−𝑦2)dx dy

√9−𝑦2

−√9−𝑦2

3

−3

=
4

3
∫ ∫ (9− 𝑥2 −𝑦2)dx dy =

√9−𝑦2

0

3

0

 

We can use polar coordinates  

=
4

3
∫∫(9 − 𝑟2)rdr dθ =

3

0

𝜋
2

0

−
2

3
∫(9 − 𝑟2)2]0

3dθ

𝜋
2

0

= (27)∫ dθ = (27)

𝜋
2

0

 θ]0

𝜋
2

=
𝟐𝟕

𝟐
𝜋 
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Example 7:  Use triple integral to find the volume bounded above 

surfaces  

𝑧 = 8 − 𝑥2 − 𝑦2  and below  𝑧 = 𝑥2 + 3𝑦2   . 
 

Solution: 

8 − 𝑥2 − 𝑦2 = 𝑥2 + 3𝑦2 ⇛  4𝑦2 = 8 − 2𝑥2 ⇛  2𝑦2 = 4 − 𝑥2 ⇛  𝑦 = ±√
4−𝑥2

2
 

∫ ∫ ∫ 𝑑𝑧
8−𝑥2−𝑦2

𝑥2+3𝑦2
 dy dx = ∫ ∫  𝑧]

𝑥2+3𝑦2
8−𝑥2−𝑦2

 dy dx 

√4−𝑥
2

2

−√
4−𝑥2

2

2

−2

√4−𝑥
2

2

−√
4−𝑥2

2

2

−2

 

= ∫ ∫ 8 − 𝑥2 − 𝑦2 − (𝑥2 + 3𝑦2) dy dx 
√4−𝑥

2

2

−√
4−𝑥2

2

2

−2
 = ∫ ∫ (8 − 2𝑥2 + 4𝑦2)dy dx 

√4−𝑥
2

2

−√
4−𝑥2

2

2

−2
 

= ∫(8𝑦 − 2𝑥2𝑦 +
4𝑦3

3
)]
−√
4−𝑥2

2

√4−𝑥
2

2

𝑑𝑥

2

−2

 

= ∫

(

 8√
4 − 𝑥2

2
− 2𝑥2√

4 − 𝑥2

2
+
4(√

4 − 𝑥2

2
)3

3

)

 

2

−2

−

(

 −8√
4 − 𝑥2

2
+ 2𝑥2√

4 − 𝑥2

2
−
4(√

4 − 𝑥2

2
)3

3

)

 𝑑𝑥 = 

∫

(

 
 
16√

4 − 𝑥2

2
− 4𝑥2√

4 − 𝑥2

2
+
8√
4 − 𝑥2

2

3

3

)

 
 
𝑑𝑥 =

2

−2

 

∫

(

 
 
16√

4 − 𝑥2

2
− 4𝑥2√

4 − 𝑥2

2
+
8√
4 − 𝑥2

2

3

3

)

 
 
𝑑𝑥 =

2

−2

4√2

3
∫(4 − 𝑥))

3
2𝑑𝑥 = 8√2𝜋

2

−2
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Triple Integrals in Cylindrical Coordinates 

الاسطوانية  بالإحداثياتالتكاملات الثلاثية   

 

Example 2: By using the cylindrical coordinate,  find the volume of the 

                    spherical (الكرة)  with radius 2,  i.e.,  𝑥2 + 𝑦2 + 𝑧2 = 4. 

Solution: 

𝑥2 + 𝑦2 + 𝑧2 = 4 ⇛  𝑧2 = 4 − 𝑥2 − 𝑦2 ⇛ 𝑧2 = 4 − 𝑟2 ⇛ 𝑧 = ±√4 − 𝑟2 
 

 

∫ ∫∫ 𝑑𝑧
√4−𝑟2

−√4−𝑟2
 rdr dθ = ∫ ∫  𝑧]

−√4−𝑟2
√4−𝑟2  rdr dθ = 

2

0

2𝜋

0

 

2

0

2𝜋

0

 

 

 

= ∫ ∫  √4 − 𝑟2 − [−√4 − 𝑟2]  rdr dθ = ∫ ∫  2√4 − 𝑟2 rdr dθ 

2

0

2𝜋

0

 

2

0

2𝜋

0

 

 

−∫ ∫−2r√4 − 𝑟2  dr dθ = −∫
[4 − 𝑟2]

3
2

3
2

]

0

22𝜋

0

 

2

0

2𝜋

0

dθ = −
2

3
∫ −[4]

3
2

2𝜋

0

 dθ =
16

3
∫ dθ

2𝜋

0

  

16

3
θ]0
2𝜋 =

32𝜋

3
  𝑢𝑛𝑖𝑡3 

 

 

Second method 
 

8∫∫∫ 𝑑𝑧
√4−𝑟2

0

 rdr dθ = 8∫∫  𝑧]0
√4−𝑟2  rdr dθ = 8∫∫  √4 − 𝑟2 rdr dθ = 

2

0

𝜋
2

0

 

2

0

𝜋
2

0

 

2

0

𝜋
2

0

 

 

−4∫
(4 − 𝑟2)

3
2

3
2

]

0

2

  dθ

𝜋
2

0

= −
8

3
∫ [(0)

3
2 − 4

3
2]  dθ = −

8

3
∫−8 dθ =

64

3
θ]0

𝜋
2 =

32

3

𝜋
2

0

𝜋
2

0

𝜋 

 

 

 

 

 

 

 

 

 

x 

y 

z 
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Example 3: By using the cylindrical coordinate, find the volume 

                      bounded by paraboloid  𝑧 = 𝑥2 + 𝑦2 and the plane   𝑧 = 9. 

Solution: 
𝑧 = 𝑥2 + 𝑦2 ⇛   𝑧 = 𝑟2 
 

4∫∫∫ 𝑑𝑧
9

𝑟2
 rdr dθ = 4∫∫  𝑧]𝑟2

9  rdr dθ = 4∫∫  (9 − 𝑟2) rdr dθ 

3

0

𝜋
2

0

 

3

0

𝜋
2

0

 

3

0

𝜋
2

0

 

−2∫∫−2r (9 − 𝑟2) dr dθ 

3

0

𝜋
2

0

 

= −2∫
(9 − 𝑟2)2

2
]
0

3

 dθ = −∫− (9) 2   dθ = 81 θ]0

𝜋
2

𝜋
2

0

=
81

2
𝜋

𝜋
2

0

 

Second method 
  

 

∫ ∫∫ 𝑑𝑧
9

𝑟2
 rdr dθ = ∫ ∫  𝑧]𝑟2

9  rdr dθ = ∫ ∫  (9 − 𝑟2) rdr dθ 

3

0

2𝜋

0

 

3

0

2𝜋

0

 

3

0

2𝜋

0

 

−
1

2
∫ ∫−2r (9 − 𝑟2)dr dθ 

3

0

2𝜋

0

= −
1

2
∫
(9 − 𝑟2)2

2
]
0

3

 dθ =

2𝜋

0

 

 

= −
1

4
∫ − (9) 2 dθ =

81

4
∫ dθ =

81

4
 θ]0

2𝜋

2𝜋

0

=
81

2
𝜋

2𝜋

0

 

 

Example 4:  By using the cylindrical coordinate, find the volume of the 

                      solid region cut from the spherical  (الكرة)  𝑥2 + 𝑦2 + 𝑧2 = 16  

                      by cylindrical   𝑥2 + 𝑦2 = 4 . 

Solution: 

𝑥2 + 𝑦2 + 𝑧2 = 16 ⇛  𝑧2 = 16 − 𝑥2 − 𝑦2 ⇛ 𝑧 = ±√16 − 𝑟2 
 

8∫∫∫ 𝑑𝑧
√16−𝑟2

0

 rdr dθ = 8∫∫  𝑧]0
√16−𝑟2  rdr dθ = 8∫∫  √16 − 𝑟2 rdr dθ = 

2

0

𝜋
2

0

 

2

0

𝜋
2

0

 

2

0

𝜋
2

0

 

= −4∫
(16 − 𝑟2)

3
2

3
2

]

0

2

  dθ

𝜋
2

0

= −
8

3
∫(12)

3
2 − (16)

3
2 dθ =

𝜋
2

0

 

= −
8

3
(12)

3
2θ − (16)

3
2θ]0

𝜋
2 = −

4

3
[(12)

3
2 − (16)

3
2] 𝜋 
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Example 5: Find the centroid (𝛿 = 1) of the solid enclosed by the  

cylinder ( اسطوانة)  𝑥2 + 𝑦2 = 4, bounded above by the paraboloid ( الجسم(

𝑧  المكافئ الدوراني  = 𝑥2 − 𝑦2 , and bounded below by the 𝑥𝑦 −plane  

 

Solution: 

𝑴 = ∫ ∫∫ 𝛿 𝑑𝑧 𝑟𝑑𝑟 𝑑𝜃
𝑟2

0

2

0

2𝜋

0

= ∫ ∫𝑍|0
𝑟2

2

0

2𝜋

0

 𝑟𝑑𝑟 𝑑𝜃 

= ∫ ∫ 𝑟3
2

0

2𝜋

0
 𝑑𝑟 𝑑𝜃 = ∫

𝑟4

4
]
0

2

 𝑑𝜃
2𝜋

0
= ∫ 4 𝑑𝜃 =  

2𝜋

0
 4𝜃|0

2𝜋 =   8π   mass 

 

𝑴𝒚𝒛 = ∫ ∫∫ 𝒙 𝑑𝑧 𝑟𝑑𝑟 𝑑𝜃
𝑟2

0

2

0

2𝜋

0

= ∫ ∫(𝑟 𝑐𝑜𝑠 𝜃)   𝑍|0
𝑟2

2

0

2𝜋

0

 𝑟𝑑𝑟 𝑑𝜃 

= ∫ ∫(𝑟 𝑐𝑜𝑠 𝜃)

2

0

2𝜋

0

𝑟3 𝑑𝑟 𝑑𝜃 = ∫ ∫𝑐𝑜𝑠 𝜃  

2

0

2𝜋

0

𝑟4 𝑑𝑟 𝑑𝜃 

= ∫ 𝑐𝑜𝑠 𝜃 
𝑟5

5
|
0

22𝜋

0

  𝑑𝜃 =
32

5
∫ 𝑐𝑜𝑠 𝜃
2𝜋

0

 𝑑𝜃 =
32

5
 𝑠𝑖𝑛𝜃]0

2𝜋 = 0,    ∴    𝑀𝑦𝑧 = 0 

 

𝑴𝒙𝒛 = ∫ ∫∫ 𝒚 𝑑𝑧 𝑟𝑑𝑟 𝑑𝜃
𝑟2

0

2

0

2𝜋

0

= ∫ ∫(𝑟 𝑠𝑖𝑛 𝜃)   𝑍|0
𝑟2

2

0

2𝜋

0

 𝑟𝑑𝑟 𝑑𝜃 

= ∫ ∫(𝑟 𝑠𝑖𝑛 𝜃)

2

0

2𝜋

0

𝑟3 𝑑𝑟 𝑑𝜃 = ∫ ∫𝑠𝑖𝑛 𝜃  

2

0

2𝜋

0

𝑟4 𝑑𝑟 𝑑𝜃 

∫ 𝑠𝑖𝑛 𝜃 
𝑟5

5
|
0

22𝜋

0

  𝑑𝜃 =
32

5
∫ 𝑠𝑖𝑛 𝜃
2𝜋

0

 𝑑𝜃 = −
32

5
 𝑐𝑜𝑠𝜃|0

2𝜋 = 0,    ∴    𝑀𝑥𝑧 = 0 

 

𝑴𝒙𝒚 = ∫ ∫∫ 𝒛 𝑑𝑧 𝑟𝑑𝑟 𝑑𝜃
𝑟2

0

2

0

2𝜋

0

= ∫ ∫
𝑧2

2
|
0

𝑟22

0

2𝜋

0

 𝑟𝑑𝑟 𝑑𝜃 =
1

2
∫ ∫𝑟5

2

0

2𝜋

0

 𝑑𝑟 𝑑𝜃 

=
1

2
∫  

𝑟6

6
|
0

22𝜋

0

  𝑑𝜃 =
1

12
∫  64
2𝜋

0

𝑑𝜃 =
64

12
∫ 𝑑𝜃
2𝜋

0

  =
32𝜋 

3
,     ∴    𝑀𝑥𝑦 =

32𝜋 

3
 

Center of mass is  

𝑋̅ =
 𝑀𝒚𝒛

𝑀
=
0

8𝜋
= 0  ,           𝑦̅ =

 𝑀𝒙𝒛
𝑀

=
0

8𝜋
= 0 , 𝒁̅ =

 𝑀𝒙𝒚

𝑀
=

32𝜋 
3
8𝜋

=
4

3
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Q.2: By using the cylindrical coordinate, find the volume of the solid 

       bounded by the cylinder   𝑥2 + 𝑦2 = 4  and the two planes 𝑧 = −2 

        𝑧 = 2 . 

 

Solution:    

𝑉 = ∫ ∫∫ 𝑑𝑧
2

−2

 rdr dθ = ∫ ∫  𝑧]−2
2  rdr dθ 

2

0

2𝜋

0

 

2

0

2𝜋

0

 

∫ ∫  4 rdr dθ = = ∫ 2𝑟2]0
2  dθ

2𝜋

0

= ∫ 8 dθ = 16𝜋  𝑢𝑛𝑖𝑡3 
2𝜋

0

2

0

2𝜋

0

 

 

Second method 
 

𝑉 = 𝟐∫ ∫∫ 𝑑𝑧
2

0

 rdr dθ = 𝟐∫ ∫  𝑧]0
2 r dr dθ = 

2

0

2𝜋

0

 

2

0

2𝜋

0

 

 

= 𝟐∫ ∫  2r dr dθ = 

2

0

2𝜋

0

2∫ 𝑟2]0
2  dθ

2𝜋

0

= 

= 2∫ 4 dθ = (2) 4θ]0
2𝜋 =

2𝜋

0

16𝜋  𝑢𝑛𝑖𝑡3  

 

 

Third method 
 

𝑉 = 2(4)∫∫∫ 𝑑𝑧
2

0

 rdr dθ = 8∫∫  𝑧]0
2 rdr dθ = 

2

0

𝜋
2

0

 

2

0

𝜋
2

0

 

 

= 8∫∫  2r dr dθ = 

2

0

𝜋
2

0

8∫𝑟2]0
2  dθ

𝜋
2

0

= 

8∫ 4 dθ = (8)  4θ]0

𝜋
2 =

𝜋
2

0

16𝜋  𝑢𝑛𝑖𝑡3  

 

 

 
 
 

y 

x 

𝑧 = −2 

𝑧 = 2 
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Triple Integrals in Spherical Coordinates 

حداثيات الكروية التكاملات الثلاثية بالا  
 

Example 1:  Convert the point (8,−
𝜋

3
, −

𝜋

6
) from spherical to rectangular 

 coordinates.  

 

Solution:     (𝜌, ∅, 𝜃) ⟹ (𝑥, 𝑦, 𝑧) 

𝑥 = 𝜌 𝑠𝑖𝑛∅   cos 𝜃    ⇒ 𝑥 = 8 sin (−
𝜋

3
)   cos(−

𝜋

6
) 

⇒ 𝑥 = −8 sin (
𝜋

3
)   cos (

𝜋

6
)      ⇒ 𝑥 = −8  

√3

2
    
√3

2
         ⇒      𝑥 = −6 

 

𝑦 = 𝜌 𝑠𝑖𝑛∅   sin 𝜃      ⇒ 𝑦 = 8 sin (−
𝜋

3
)   sin(−

𝜋

6
) 

⇒ 𝑦 = +8 sin (
𝜋

3
)   sin (

𝜋

6
)      ⇒ 𝑥 = 8  

√3

2
    
1

2
⇒      𝑦 = 2√3 

 

 𝑧 = 𝜌  𝑐𝑜𝑠∅       ⇒ 𝑧 = 8  𝑐𝑜 𝑠 (−
𝜋

3
) ⇒ 𝑧 = 8  (

1

2
)  ⇒    𝑧 = 4 

 

∴ (8,−
𝜋

3
,−
𝜋

6
) ⟹ (−6,   2√3   ,4) 

 

Example 2:  By using the spherical coordinate, find the volume of the 

                      spherical with center origin point and radius equal to 6  

Solution: 

𝑉 = 8∫∫∫ 𝜌2  𝑠𝑖𝑛∅  𝑑𝜌
6

0

 d∅ dθ = 

𝜋
2

0

𝜋
2

0

 

 

       8∫ ∫  
𝜌3

3
]
0

6

 𝑠𝑖𝑛∅ d∅ dθ = 
𝜋

2
0

𝜋

2
0

 

8
(6)3

3
∫−cos∅]0

𝜋
2  dθ = 

𝜋
2

0

 8
(6)3

3
∫  dθ =

𝜋
2

0

 8
(6)3

3

𝜋

2
= 4

(6)3𝜋

3
 

Based on cylindrical coordinates 

8∫∫∫ 𝑑𝑧
√36−𝑟2

0

 rdr dθ = 8∫∫  𝑧]0
√36−𝑟2  rdr dθ = 8∫∫  √36 − 𝑟2 r dr dθ = 

6

0

𝜋
2

0

 

6

0

𝜋
2

0

 

6

0

𝜋
2

0

 

−4∫
(36 − 𝑟2)

3
2

3
2

]

0

6

  dθ

𝜋
2

0

= −
8

3
∫ [(0)

3
2 − (36)

3
2]  dθ =

8(6)
3

3
∫  dθ = 4

(6)
3
𝜋

3

𝜋
2

0

𝜋
2

0

 

x 

y 

z 

6 
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Example 3: By using the spherical coordinate, find the solid volume 

above of the 𝑧 = √𝑥2 + 𝑦2 , below the sphere 𝑥2 + 𝑦2 + 𝑧2 = 16 

Solution:     𝑧 = √𝑥2 + 𝑦2  

𝜌  𝑐𝑜𝑠∅ = √𝜌2 𝑠𝑖𝑛2∅   cos2 𝜃 + 𝜌2 𝑠𝑖𝑛2∅   sin2 𝜃  

𝜌  𝑐𝑜𝑠∅ = √𝜌2 𝑠𝑖𝑛2∅[cos2 𝜃 +  sin2 𝜃 ] 

𝜌  𝑐𝑜𝑠∅ = √𝜌2 𝑠𝑖𝑛2∅ 

𝜌  𝑐𝑜𝑠∅ = 𝜌  𝑠𝑖𝑛 ∅  ⇒    
𝑠𝑖𝑛 ∅

𝑐𝑜𝑠∅
= 1 ⇒ 𝑡𝑎𝑛∅ = 1 

  ∴ ∅ =
𝜋

4
 

 

𝑉 = 4∫∫∫ 𝜌2  𝑠𝑖𝑛∅  𝑑𝜌
4

0

 d∅ dθ = 4∫∫  
𝜌3

3
]
0

4

 𝑠𝑖𝑛∅ d∅ dθ = 

𝜋
4

0

𝜋
2

0

 

𝜋
4

0

𝜋
2

0

 

= 4
(4)3

3
∫−cos∅]0

𝜋
4  dθ = 

𝜋
2

0

− 4
(4)3

3
∫(

1

√2
− 1) dθ =

𝜋
2

0

  

 

 

Example 4:  Find the mas of the  sphere with center origin points and 

radius equal 2, and the density at (𝑥, 𝑦) is 𝛿(𝑥, 𝑦) = 1. 

 
Solution:     𝑥2 + 𝑦2 + 𝑧2 = 4 
 1. Based on rectangular coordinates.  

       

𝑀 = 8∫ ∫ ∫ 𝛿 𝑑𝑧 𝑑𝑦 𝑑𝑥
√4−𝑥2−𝑦2

0

√4−𝑥2

0

2

0

= 

2. Based on cylindrical coordinates.  

       

𝑀 = 8∫∫∫ 𝛿𝑑𝑧
√4−𝑟2

0

 rdr dθ = 

2

0

𝜋
2

0

 

3. Based on spherical coordinates 

 

𝑀 = 8∫∫∫ 𝛿 𝜌2  𝑠𝑖𝑛∅  𝑑𝜌
2

0
 d∅ dθ = 

𝜋
2

0

𝜋
2

0

 

 

x 

y 

z 

2 

x 

y 

z 

4 

∅ =
𝜋

4
 



16 
 

Example 5: By using the spherical coordinate, find the solid volume 

above of the cone (مخروط) 𝑧2 = 𝑥2 + 𝑦2 , below the sphere 

𝑥2 + 𝑦2 + 𝑧2 = 9 

Solution:  

𝜌2 = 𝑥2 + 𝑦2 + 𝑧2 = 9 ⇒       𝜌 = 3    

The intersection of cone  and sphere 

𝑥2 + 𝑦2 + 𝑧2 = 9 ….(1) 

𝑥2 + 𝑦2 = 𝑧2   …(2)   

Substitute Eq.(2) in Eq. (1) we get 

𝑧2 + 𝑧2 = 9 ⇒ 2𝑧2 = 9 ⇒ 𝑧 =
3

√2
    

Since  

 𝑧 = 𝜌 cos∅       ⇒
3

√2
= 3 cos∅ ⇒ cos∅ ⇒

1

√2
 

∴ ∅ =
𝜋

4
 

 

Or 

𝑧2 = 𝑥2 + 𝑦2 

𝜌2  𝑐𝑜𝑠2∅ = 𝜌2 𝑠𝑖𝑛2∅   cos2 𝜃 + 𝜌2 𝑠𝑖𝑛2∅   sin2 𝜃  
𝜌2  𝑐𝑜𝑠2∅ = 𝜌2 𝑠𝑖𝑛2∅[cos2 𝜃 +  sin2 𝜃 ] 
𝜌2  𝑐𝑜𝑠2∅ = 𝜌2 𝑠𝑖𝑛2∅ 

  𝑐𝑜𝑠∅ = 𝑠𝑖𝑛∅ 

    
𝑠𝑖𝑛 ∅

𝑐𝑜𝑠∅
= 1 ⇒ 𝑡𝑎𝑛∅ = 1 

  ∴ ∅ =
𝜋

4
 

 

𝑉 = 4∫∫∫ 𝜌2  𝑠𝑖𝑛∅  𝑑𝜌
3

0

 d∅ dθ = 4∫∫  
𝜌3

3
]
0

4

 𝑠𝑖𝑛∅ d∅ dθ = 

𝜋
4

0

𝜋
2

0

 

𝜋
4

0

𝜋
2

0

 

= 4
(4)3

3
∫−cos∅]0

𝜋
4  dθ = 

𝜋
2

0

− 4
(4)3

3
∫(

1

√2
− 1) dθ =

𝜋
2

0

  

 

 

 

 

 

 

 

 

x 

y 

z 

3 

∅ =
𝜋

4
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Surface Area 

 المساحة السطحية 

    Let 𝑓 and its first derivatives are continuous on the closed region  𝑅  in the 

𝑥𝑦 −plane, then the area of the surface over 𝑅 in given by: 

𝑆 = ∬𝑑𝑆

𝑅

=∬√[𝑓𝑥(𝑥, 𝑦)]
2 + [𝑓𝑦(𝑥, 𝑦)]

2
+ 1    𝑑𝐴

𝑅

 

Or  

𝑆 = ∬
√[𝑓𝑥(𝑥, 𝑦)]

2 + [𝑓𝑦(𝑥, 𝑦)]
2
+ [𝑓𝑧(𝑥, 𝑦)]

2

𝑓𝑧(𝑥, 𝑦)
   𝑑𝐴

𝑅

 

 

Example 1: Find the surface area  ∬𝑥𝑧 𝑑𝑧  for the plane 𝑧 = 1 − 𝑥 − 𝑦. 

 

Solution:     

 𝑑𝑆 = √𝑓𝑥
2 + 𝑓𝑦

2 + 1  𝑑𝐴  

𝑑𝑆 = √(−1)2 + (−1)2 + 1  𝑑𝐴 ⇒ 𝑑𝑆 = √3  𝑑𝐴 

𝑆 = √3∬𝑥(1 − 𝑥 − 𝑦)𝑑𝐴

𝑅

 

𝑆 = √3∫∫ (𝑥 − 𝑥2 − 𝑥𝑦)
1−𝑥

0

1

0

𝑑𝑦 𝑑𝑥 

𝑆 = √3∫ 𝑥𝑦 − 𝑥2𝑦 −
𝑥𝑦2

2
]
0

1−𝑥
1

0
 𝑑𝑥 

𝑆 = √3∫𝑥(1 − 𝑥) − 𝑥2(1 − 𝑥) −
𝑥(1 − 𝑥)

2

2

1

0

 𝑑𝑥 

𝑆 = √3∫𝑥 − 𝑥2 − 𝑥2 + 𝑥3 −
𝑥(1 − 𝑥)

2

2

1

0

 𝑑𝑥 

𝑆 = √3 [
𝑥2

2
−
2𝑥3

3
+
𝑥4

4
−
𝑥(1 − 𝑥)

3

6
]

0

1

 

 

 

(1,0,0) 

(0,0,1) 

(0,1,0) 

x 

y 

z 

(0,1) 

x 
0 

 

1  

y 

1  
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Example 2: Find the surface area of paraboloid  𝑧 = 1 + 𝑥2 + 𝑦2  that 

                    lies above the unit circle i.e., 𝑥2 + 𝑦2 = 1 . 

Solution:     

 𝑑𝑆 = √𝑓𝑥
2 + 𝑓𝑦

2 + 1  𝑑𝐴  

𝑑𝑆 = √(2𝑥)2 + (2𝑦)2 + 1  𝑑𝐴 ⇒ 𝑑𝑆 = √4(𝑥2 + 𝑦2) + 1  𝑑𝐴 

𝑆 = ∬√4(𝑥2 + 𝑦2) + 1 𝑑𝐴

𝑅

 

𝑆 = ∫ ∫ √4𝑟2 + 1
1

0

2𝜋

0

 𝑟𝑑𝑟 𝑑𝜃 

𝑆 =
1

8
∫
(4𝑟2 + 1)

3
2

3
2

]

0

12𝜋

0

 𝑑𝜃 = 

 

Example 3: Find the area of the surface  cut from the bottom )الاسفل) of 

the paraboloid  𝑥2 + 𝑦2 − 𝑧 = 0  by  plane 𝑧 = 4. 

                     

Solution:     

 𝑑𝑆 = √𝑓𝑥
2 + 𝑓𝑦

2 + 1  𝑑𝐴  

𝑑𝑆 = √(2𝑥)2 + (2𝑦)2 + 1  𝑑𝐴 ⇒ 

𝑆 = ∬√4(𝑥2 + 𝑦2) + 1 𝑑𝐴

𝑅

 

𝑆 = ∫ ∫ √4𝑟2 + 1
2

0

2𝜋

0

 𝑟𝑑𝑟 𝑑𝜃 

𝑆 =
1

8
∫
(4𝑟2 + 1)

3
2

3
2

]

0

22𝜋

0

 𝑑𝜃 = 

 

 

 

 

 

(0,0,1) 

𝑥2 + 𝑦2 = 1 

4 
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Example 4: Find the surface area of the portion )الجزء) of the hemisphere 

𝑧  )نصف الكرة) = √25 − 𝑥2 − 𝑦2  that lies above the region 𝑅 bounded by 

the circle with radius  3 . 

Solution:  

𝑧 = √25 − 𝑥2 − 𝑦2   ⇒   𝑥2 + 𝑦2 + 𝑧2 = 25    

  

𝑑𝑆 =
√(2𝑥)2 + (2𝑦)2 + (2𝑧)2

2𝑧
  𝑑𝐴 

𝑑𝑆 =
5

𝑧
  𝑑𝐴 ⇒   𝑑𝑆 =

5

√25 − 𝑥2 − 𝑦2
  𝑑𝐴 

𝑆 = ∬
5

√25 − 𝑥2 − 𝑦2
 𝑑𝐴

𝑅

 

𝑆 = ∫ ∫
5

√25−𝑟2

5

3

2𝜋

0
 𝑟𝑑𝑟 𝑑𝜃 ⇒    𝑆 = −

5

2
∫

(25−𝑟2)
1
2

1

2

]
3

5
2𝜋

0
 𝑑𝜃 = 

 

 

 

Example 5: Find the surface area of the portion )الجزء) of the sphere with 

radius  4 which lies above  𝑧 = 1 , below 𝑧 = 2   

Solution:  

 𝑥2 + 𝑦2 + 𝑧2 = 16    

  

𝑑𝑆 =
√(2𝑥)2 + (2𝑦)2 + (2𝑧)2

2𝑧
  𝑑𝐴 

𝑑𝑆 =
4

𝑧
  𝑑𝐴 ⇒   𝑑𝑆 =

4

√16−𝑥2−𝑦2
  𝑑𝐴 

𝑆 = ∬
4

√16 − 𝑥2 − 𝑦2
 𝑑𝐴

𝑅

 

𝑆 = ∫ ∫
4

√16−𝑟2

√15

√12

2𝜋

0
 𝑟𝑑𝑟 𝑑𝜃 ⇒  

 

 

 

 

 

(0,0,3) 

(0,0,5) 

Z=1 

Z=2 
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a partition of R. A small rectangular piece of width ∆x and height ∆y has area ∆A = ∆x∆y.
If we number the small pieces partitioning R in some order, then their areas are given by 
numbers ∆A1, ∆A2, . . . , ∆An , where ∆Ak is the area of the kth small rectangle.

To form a Riemann sum over R, we choose a point (xk , yk) in the kth small rectangle, 
multiply the value of ƒ at that point by the area ∆Ak , and add together the products:

Sn = a

n

k=1
ƒ(xk , yk)∆Ak .

Depending on how we pick (xk , yk) in the kth small rectangle, we may get different values 
for Sn .

We are interested in what happens to these Riemann sums as the widths and heights of 
all the small rectangles in the partition of R approach zero. The norm of a partition P,
written 7P 7 , is the largest width or height of any rectangle in the partition. If 7P 7 = 0.1 
then all the rectangles in the partition of R have width at most 0.1 and height at most 0.1. 
Sometimes the Riemann sums converge as the norm of P goes to zero, written 7P 7 S 0. 
The resulting limit is then written as

lim
� �P� �S0 a

n

k=1
ƒ(xk , yk)∆Ak .

As 7P 7 S 0 and the rectangles get narrow and short, their number n increases, so we can 
also write this limit as

lim
nSq a

n

k=1
ƒ(xk , yk)∆Ak ,

with the understanding that 7P 7 S 0, and hence ∆Ak S 0, as n S q.
Many choices are involved in a limit of this kind. The collection of small rectangles is 

determined by the grid of vertical and horizontal lines that determine a rectangular parti-
tion of R. In each of the resulting small rectangles there is a choice of an arbitrary point 
(xk, yk) at which ƒ is evaluated. These choices together determine a single Riemann sum. 
To form a limit, we repeat the whole process again and again, choosing partitions whose 
rectangle widths and heights both go to zero and whose number goes to infinity.

When a limit of the sums Sn exists, giving the same limiting value no matter what 
choices are made, then the function ƒ is said to be integrable and the limit is called the 
double integral of ƒ over R, written as

O
R

ƒ(x, y) dA or
O

R

ƒ(x, y) dx dy.

It can be shown that if ƒ(x, y) is a continuous function throughout R, then ƒ is integrable, 
as in the single-variable case discussed in Chapter 5. Many discontinuous functions are 
also integrable, including functions that are discontinuous only on a finite number of 
points or smooth curves. We leave the proof of these facts to a more advanced text.

Double Integrals as Volumes

When ƒ(x, y) is a positive function over a rectangular region R in the xy-plane, we may 
interpret the double integral of ƒ over R as the volume of the 3-dimensional solid region 
over the xy-plane bounded below by R and above by the surface z = ƒ(x, y) (Figure 15.2). 
Each term ƒ(xk , yk)∆Ak in the sum Sn = g ƒ(xk , yk)∆Ak is the volume of a vertical rectan-
gular box that approximates the volume of the portion of the solid that stands directly 
above the base ∆Ak . The sum Sn thus approximates what we want to call the total volume 
of the solid. We define this volume to be

Volume = lim
nSq

Sn =
O

R

ƒ(x, y) dA,

where ∆Ak S 0 as n S q.

z

y
d

b

x
ΔAk

z = f (x, y)

f (xk, yk)

(xk, yk)
R

FIGURE 15.2 Approximating solids 
with rectangular boxes leads us to define 
the volumes of more general solids as 
double integrals. The volume of the solid 
shown here is the double integral of ƒ(x, y)
over the base region R.
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As you might expect, this more general method of calculating volume agrees with the 
methods in Chapter 6, but we do not prove this here. Figure 15.3 shows Riemann sum 
approximations to the volume becoming more accurate as the number n of boxes increases.

(a) n = 16 (b) n = 64 (c) n = 256

FIGURE 15.3 As n increases, the Riemann sum approximations approach the total
volume of the solid shown in Figure 15.2.

Fubini’s Theorem for Calculating Double Integrals

Suppose that we wish to calculate the volume under the plane z = 4 - x - y over the 
rectangular region R: 0 … x … 2, 0 … y … 1 in the xy-plane. If we apply the method of 
slicing from Section 6.1, with slices perpendicular to the x-axis (Figure 15.4), then the 
volume is

L

x=2

x=0
A(x) dx, (1)

where A(x) is the cross-sectional area at x. For each value of x, we may calculate A(x) as 
the integral

A(x) =
L

y=1

y=0
(4 - x - y) dy, (2)

which is the area under the curve z = 4 - x - y in the plane of the cross-section at x. In 
calculating A(x), x is held fixed and the integration takes place with respect to y. Combin-
ing Equations (1) and (2), we see that the volume of the entire solid is

 Volume =
L

x=2

x=0
A(x) dx =

L

x=2

x=0
a
L

y=1

y=0
(4 - x - y) dyb dx

=
L

x=2

x=0
c 4y - xy -

y2

2
d

y=0

y=1

dx =
L

x=2

x=0
a7

2
- xb dx

= c 7
2

x - x2

2
d

0

2

= 5.

If we just wanted to write a formula for the volume, without carrying out any of the 
integrations, we could write

Volume =
L

2

0 L

1

0
(4 - x - y) dydx. (3)

The expression on the right, called an iterated or repeated integral, says that the volume 
is obtained by integrating 4 - x - y with respect to y from y = 0 to y = 1, holding x
fixed, and then integrating the resulting expression in x with respect to x from x = 0 to 
x = 2. The limits of integration 0 and 1 are associated with y, so they are placed on the 
integral closest to dy. The other limits of integration, 0 and 2, are associated with the vari-
able x, so they are placed on the outside integral symbol that is paired with dx.

y

z

x

x
1

2

4

z = 4 − x − y

A(x) = (4 − x − y) dy
y = 1

y = 0L

FIGURE 15.4 To obtain the cross-
sectional area A(x), we hold x fixed and 
integrate with respect to y.
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What would have happened if we had calculated the volume by slicing with planes 
perpendicular to the y-axis (Figure 15.5)? As a function of y, the typical cross-sectional 
area is

A(y) =
L

x=2

x=0
(4 - x - y) dx = c 4x - x2

2
- xy d

x=0

x=2

= 6 - 2y. (4)

The volume of the entire solid is therefore

Volume =
L

y=1

y=0
A( y) dy =

L

y=1

y=0
(6 - 2y) dy = 36y - y240

1 = 5,

in agreement with our earlier calculation.
Again, we may give a formula for the volume as an iterated integral by writing

Volume =
L

1

0 L

2

0
(4 - x - y) dx dy.

The expression on the right says we can find the volume by integrating 4 - x - y with 
respect to x from x = 0 to x = 2 as in Equation (4) and integrating the result with respect 
to y from y = 0 to y = 1. In this iterated integral, the order of integration is first x and 
then y, the reverse of the order in Equation (3).

What do these two volume calculations with iterated integrals have to do with the 
double integral

O
R

(4 - x - y) dA

over the rectangle R: 0 … x … 2, 0 … y … 1? The answer is that both iterated integrals 
give the value of the double integral. This is what we would reasonably expect, since the 
double integral measures the volume of the same region as the two iterated integrals. A theo-
rem published in 1907 by Guido Fubini says that the double integral of any continuous func-
tion over a rectangle can be calculated as an iterated integral in either order of integration. 
(Fubini proved his theorem in greater generality, but this is what it says in our setting.)

y

z

x

y
1

2

4

z = 4 − x − y

A(y) = (4 − x − y) dx
x = 2

x = 0L

FIGURE 15.5 To obtain the cross-
sectional area A(y), we hold y fixed 
and integrate with respect to x.

HISTORICAL BIOGRAPHY

Guido Fubini
(1879–1943)

THEOREM 1—Fubini’s Theorem (First Form) If ƒ(x, y) is continuous 
throughout the rectangular region R: a … x … b, c … y … d, then

O
R

ƒ(x, y) dA =
L

d

c L

b

a
ƒ(x, y) dx dy =

L

b

a L

d

c
ƒ(x, y) dy dx.

Fubini’s Theorem says that double integrals over rectangles can be calculated as iter-
ated integrals. Thus, we can evaluate a double integral by integrating with respect to one 
variable at a time using the Fundamental Theorem of Calculus.

Fubini’s Theorem also says that we may calculate the double integral by integrating in 
either order, a genuine convenience. When we calculate a volume by slicing, we may use 
either planes perpendicular to the x-axis or planes perpendicular to the y-axis.

EXAMPLE 1 Calculate 4R ƒ(x, y) dA for

ƒ(x, y) = 100 - 6x2y and R: 0 … x … 2, -1 … y … 1.



Solution Figure 15.6 displays the volume beneath the surface. By Fubini’s Theorem,

O
R

ƒ(x, y) dA = L
1

-1L
2

0

(100 - 6x2y) dx dy = L
1

-1
c 100x - 2x3y d

x=0

x=2

dy

= L
1

-1
(200 - 16y) dy = c 200y - 8y2 d

-1

1

= 400.

Reversing the order of integration gives the same answer:

L
2

0 L
1

-1

(100 - 6x2y) dy dx = L
2

0
c 100y - 3x2y2 d

y=-1

y=1

dx

= L
2

0
3 (100 - 3x2) - (-100 - 3x2) 4 dx

= L
2

0
200 dx = 400.

EXAMPLE 2  Find the volume of the region bounded above by the elliptical parabo-
loid z = 10 + x2 + 3y2 and below by the rectangle R: 0 … x … 1, 0 … y … 2.

Solution The surface and volume are shown in Figure 15.7. The volume is given by the 
double integral

V = O
R

(10 + x2 + 3y2) dA = L
1

0 L
2

0

(10 + x2 + 3y2) dydx

= L
1

0
c 10y + x2y + y3 d

y=0

y=2

dx

= L
1

0

(20 + 2x2 + 8) dx = c 20x + 2
3x

3 + 8x d
0

1

= 86
3 .

1R
2

1

50

z

x

−1

z = 100 − 6x2y

y

100

FIGURE 15.6 The double integral 

4R ƒ(x, y) dA gives the volume under this 
surface over the rectangular 
region R (Example 1).

y

x

z

R
2

10

1

z = 10 + x2 + 3y2

FIGURE 15.7 The double integral 

4R ƒ(x, y) dA gives the volume under this 
surface over the rectangular 
region R (Example 2).

Evaluating Iterated Integrals
In Exercises 1–14, evaluate the iterated integral.

1. L
2

1 L
4

0
2xy dy dx 2. L

2

0 L
1

-1
(x - y) dy dx

3. L
0

-1L
1

-1
(x + y + 1) dx dy 4. L

1

0 L
1

0
a1 -

x2 + y2

2
b dx dy

5. L
3

0 L
2

0

(4 - y2) dy dx 6. L
3

0 L
0

-2

(x2y - 2xy) dy dx

7. L
1

0 L
1

0

y
1 + xy

dx dy 8. L
4

1 L
4

0
ax

2
+ 2yb dx dy

9. L
ln2

0 L
ln5

1
e2x+y dy dx 10. L

1

0 L
2

1
xyexdydx

11. L
2

-1L
p/2

0
y sin x dx dy 12. L

2p

p L
p

0
(sin x + cos y) dxdy

13. L
4

1 L
e

1

ln x
xy dx dy 14. L

2

-1 L
2

1
x ln y dy dx

Evaluating Double Integrals over Rectangles
In Exercises 15–22, evaluate the double integral over the given 
region R.

15. O
R

(6y2 - 2x) dA, R: 0 … x … 1, 0 … y … 2

16. O
R

a2x
y2 b dA, R: 0 … x … 4, 1 … y … 2

17. O
R

xy cos y dA, R: -1 … x … 1, 0 … y … p

18. O
R

y sin (x + y) dA, R: -p … x … 0, 0 … y … p

Exercises 15.1
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19. O
R

ex-y dA, R: 0 … x … ln 2, 0 … y … ln 2

20. O
R

xyexy
2
dA, R: 0 … x … 2, 0 … y … 1

21. O
R

xy3

x2 + 1
dA, R: 0 … x … 1, 0 … y … 2

22. O
R

y

x2y2 + 1
dA, R: 0 … x … 1, 0 … y … 1

In Exercises 23 and 24, integrate ƒ over the given region.

23. Square ƒ(x, y) = 1>(xy) over the square 1 … x … 2,
1 … y … 2

24. Rectangle ƒ(x, y) = y cos xy over the rectangle 0 … x … p,
0 … y … 1

25. Find the volume of the region bounded above by the paraboloid 
z = x2 + y2 and below by the square R: -1 … x … 1,
-1 … y … 1.

26. Find the volume of the region bounded above by the elliptical 
paraboloid z = 16 - x2 - y2 and below by the square 
R: 0 … x … 2, 0 … y … 2.

27. Find the volume of the region bounded above by the plane 
z = 2 - x - y and below by the square R: 0 … x … 1,
0 … y … 1.

28. Find the volume of the region bounded above by the plane 
z = y>2 and below by the rectangle R: 0 … x … 4, 0 … y … 2.

29. Find the volume of the region bounded above by the surface 
z = 2 sin x cos y and below by the rectangle R: 0 … x … p>2,
0 … y … p>4.

30. Find the volume of the region bounded above by the surface 
z = 4 - y2 and below by the rectangle R: 0 … x … 1,
0 … y … 2.

31. Find a value of the constant k so that L
2

1 L
3

0
kx2y dx dy = 1.

32. EvaluateL
1

-1 L
p/2

0
x sin 2y dy dx.

33. Use Fubini’s Theorem to evaluate

L
2

0 L
1

0

x
1 + xy

dx dy.

34. Use Fubini’s Theorem to evaluate

L
1

0 L
3

0
xexy dx dy.

35. Use a software application to compute the integrals

a. L
1

0 L
2

0

y - x

(x + y)3 dx dy

b. L
2

0 L
1

0

y - x

(x + y)3 dy dx

Explain why your results do not contradict Fubini’s Theorem.

36. If ƒ(x, y) is continuous over R: a … x … b, c … y … d  and 

F(x, y) = L
x

a L
y

c
ƒ(u, y) dy du

  on the interior of R, find the second partial derivatives Fxy and Fyx .

T

15.2 Double Integrals over General Regions

In this section we define and evaluate double integrals over bounded regions in the plane 
which are more general than rectangles. These double integrals are also evaluated as iterated 
integrals, with the main practical problem being that of determining the limits of integration. 
Since the region of integration may have boundaries other than line segments parallel to the 
coordinate axes, the limits of integration often involve variables, not just constants.

Double Integrals over Bounded, Nonrectangular Regions

To define the double integral of a function ƒ(x, y) over a bounded, nonrectangular region 
R, such as the one in Figure 15.8, we again begin by covering R with a grid of small rect-
angular cells whose union contains all points of R. This time, however, we cannot exactly 
fill R with a finite number of rectangles lying inside R, since its boundary is curved, and 
some of the small rectangles in the grid lie partly outside R. A partition of R is formed by 
taking the rectangles that lie completely inside it, not using any that are either partly or 
completely outside. For commonly arising regions, more and more of R is included as the 
norm of a partition (the largest width or height of any rectangle used) approaches zero.

Once we have a partition of R, we number the rectangles in some order from 1 to n
and let ∆Ak be the area of the kth rectangle. We then choose a point (xk , yk) in the kth rect-
angle and form the Riemann sum

Sn = a
n

k=1
ƒ(xk , yk)∆Ak .

R

Δxk

Δyk

ΔAk

(xk, yk)

FIGURE 15.8 A rectangular grid 
partitioning a bounded, nonrectangular 
region into rectangular cells.

15.2  Double Integrals over General Regions 887



888 Chapter 15: Multiple Integrals

As the norm of the partition forming Sn goes to zero, 7P 7 S 0, the width and height of 
each enclosed rectangle goes to zero and their number goes to infinity. If ƒ(x, y) is a con-
tinuous function, then these Riemann sums converge to a limiting value, not dependent on 
any of the choices we made. This limit is called the double integral of ƒ(x, y) over R:

lim
� �P� �S0 a

n

k=1
ƒ(xk , yk)∆Ak =

O
R

ƒ(x, y) dA.

The nature of the boundary of R introduces issues not found in integrals over an interval. 
When R has a curved boundary, the n rectangles of a partition lie inside R but do not cover 
all of R. In order for a partition to approximate R well, the parts of R covered by small 
rectangles lying partly outside R must become negligible as the norm of the partition 
approaches zero. This property of being nearly filled in by a partition of small norm is 
satisfied by all the regions that we will encounter. There is no problem with boundaries 
made from polygons, circles, ellipses, and from continuous graphs over an interval, joined 
end to end. A curve with a “fractal” type of shape would be problematic, but such curves 
arise rarely in most applications. A careful discussion of which type of regions R can be 
used for computing double integrals is left to a more advanced text.

Volumes

If ƒ(x, y) is positive and continuous over R, we define the volume of the solid region 
between R and the surface z = ƒ(x, y) to be 4R ƒ(x, y) dA, as before (Figure 15.9).

If R is a region like the one shown in the xy-plane in Figure 15.10, bounded “above” 
and “below” by the curves y = g2(x) and y = g1(x) and on the sides by the lines 
x = a, x = b, we may again calculate the volume by the method of slicing. We first calcu-
late the cross-sectional area

A(x) =
L

y=g2(x)

y=g1(x)
ƒ(x, y) dy

and then integrate A(x) from x = a to x = b to get the volume as an iterated integral:

V =
L

b

a
A(x) dx =

L

b

a L

g2(x)

g1(x)
ƒ(x, y) dy dx. (1)

z

y

x

R

0

Volume = lim Σ f(xk, yk) ΔAk =∫∫
R

f (x, y) dA

ΔAk(xk, yk)

Height = f(xk, yk)

z = f(x, y)

FIGURE 15.9 We define the volumes of 
solids with curved bases as a limit of 
approximating rectangular boxes.

z

yx

0

R

x
a

b

R

y = g2(x)

y = g1(x)

z = f (x, y)

A(x)

FIGURE 15.10 The area of the vertical 
slice shown here is A(x). To calculate the 
volume of the solid, we integrate this area 
from x = a to x = b:

L

b

a
A(x) dx =

L

b

a L

g2(x)

g1(x)
ƒ(x, y) dy dx.
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Similarly, if R is a region like the one shown in Figure 15.11, bounded by the curves 
x = h2(y) and x = h1(y) and the lines y = c and y = d, then the volume calculated by 
slicing is given by the iterated integral

Volume =
L

d

c L

h2(y)

h1(y)
ƒ(x, y) dx dy. (2)

That the iterated integrals in Equations (1) and (2) both give the volume that we 
defined to be the double integral of ƒ over R is a consequence of the following stronger 
form of Fubini’s Theorem.

z

y

y
d

c

x

z = f (x, y)
A(y)

x = h1(y)

x = h2(y)

FIGURE 15.11 The volume of the solid 
shown here is

L

d

c
A( y) dy =

L

d

c L

h2(y)

h1(y)
ƒ(x, y) dx dy.

For a given solid, Theorem 2 says we can 
calculate the volume as in Figure 15.10, or 
in the way shown here. Both calculations 
have the same result.

THEOREM 2—Fubini’s Theorem (Stronger Form) Let ƒ(x, y) be continuous 
on a region R.

1. If R is defined by a … x … b, g1(x) … y … g2(x), with g1 and g2 continuous 
on 3a, b4 , then

O
R

ƒ(x, y) dA =
L

b

a L

g2(x)

g1(x)
ƒ(x, y) dy dx.

2. If R is defined by c … y … d, h1(y) … x … h2(y), with h1 and h2 continuous 
on 3c, d4 , then

O
R

ƒ(x, y) dA =
L

d

c L

h2(y)

h1(y)
ƒ(x, y) dx dy.

EXAMPLE 1  Find the volume of the prism whose base is the triangle in the xy-plane
bounded by the x-axis and the lines y = x and x = 1 and whose top lies in the plane

z = ƒ(x, y) = 3 - x - y.

Solution See Figure 15.12. For any x between 0 and 1, y may vary from y = 0 to y = x
(Figure 15.12b). Hence,

V =
L

1

0 L

x

0
(3 - x - y) dy dx =

L

1

0
c 3y - xy -

y2

2
d

y=0

y= x

dx

=
L

1

0
a3x - 3x2

2
b dx = c 3x2

2
- x3

2
d

x=0

x=1

= 1.

When the order of integration is reversed (Figure 15.12c), the integral for the volume is

V =
L

1

0 L

1

y
(3 - x - y) dx dy =

L

1

0
c 3x - x2

2
- xy d

x= y

x=1

dy

=
L

1

0
a3 - 1

2
- y - 3y +

y2

2
+ y2b dy

=
L

1

0
a5

2
- 4y + 3

2
y2b dy = c 5

2
y - 2y2 +

y3

2
d

y=0

y=1

= 1.

The two integrals are equal, as they should be.
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Although Fubini’s Theorem assures us that a double integral may be calculated as an 
iterated integral in either order of integration, the value of one integral may be easier to 
find than the value of the other. The next example shows how this can happen.

EXAMPLE 2 Calculate

O
R

sin x
x dA,

where R is the triangle in the xy-plane bounded by the x-axis, the line y = x, and the line 
x = 1.

(a)

y

z

x
R

(3, 0, 0)

(1, 0, 2)

(1, 0, 0) (1, 1, 0)

(1, 1, 1)

y = x

x = 1

z = f(x, y) = 3 − x − y

(c)

y

x
0 1

R

x = 1

y = x

x = y

x = 1

(b)

y

x

R

0 1

y = x

y = x

x = 1

y = 0

FIGURE 15.12 (a) Prism with a triangular base in the xy-plane. The volume of this prism is 
defined as a double integral over R. To evaluate it as an iterated integral, we may integrate first 
with respect to y and then with respect to x, or the other way around (Example 1). (b) Integration 
limits of

L

x=1

x=0 L

y=x

y=0
ƒ(x, y) dy dx .

If we integrate first with respect to y, we integrate along a vertical line through R and then integrate 
from left to right to include all the vertical lines in R. (c) Integration limits of

L

y=1

y=0 L

x=1

x=y
ƒ(x, y) dx dy.

If we integrate first with respect to x, we integrate along a horizontal line through R and then inte-
grate from bottom to top to include all the horizontal lines in R.
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Solution The region of integration is shown in Figure 15.13. If we integrate first with 
respect to y and then with respect to x, we find

L

1

0
a
L

x

0

sin x
x dyb dx =

L

1

0
ay sin x

x d
y=0

y= xb dx =
L

1

0
sin x dx

= -cos (1) + 1 ≈ 0.46.

If we reverse the order of integration and attempt to calculate

L

1

0 L

1

y

sin x
x dx dy,

we run into a problem because 1((sin x)>x) dx cannot be expressed in terms of elemen-
tary functions (there is no simple antiderivative).

There is no general rule for predicting which order of integration will be the good one 
in circumstances like these. If the order you first choose doesn’t work, try the other. Some-
times neither order will work, and then we need to use numerical approximations.

Finding Limits of Integration

We now give a procedure for finding limits of integration that applies for many regions in 
the plane. Regions that are more complicated, and for which this procedure fails, can often 
be split up into pieces on which the procedure works.

Using Vertical Cross-Sections When faced with evaluating 4R ƒ(x, y) dA, integrating 
first with respect to y and then with respect to x, do the following three steps:

1. Sketch. Sketch the region of integration and label the bounding curves (Figure 15.14a).

2. Find the y-limits of integration. Imagine a vertical line L cutting through R in the direc-
tion of increasing y. Mark the y-values where L enters and leaves. These are the y-limits 
of integration and are usually functions of x (instead of constants) (Figure 15.14b).

3. Find the x-limits of integration. Choose x-limits that include all the vertical lines 
through R. The integral shown here (see Figure 15.14c) is

O
R

ƒ(x, y) dA =
L

x=1

x=0 L

y=21-x2

y=1-x
ƒ(x, y) dy dx.

Using Horizontal Cross-Sections To evaluate the same double integral as an iterated 
integral with the order of integration reversed, use horizontal lines instead of vertical lines 
in Steps 2 and 3 (see Figure 15.15). The integral is

O
R

ƒ(x, y) dA =
L

1

0 L

21-y2

1-y
ƒ(x, y) dx dy.

x

y

0 1

R

1 x2 + y2 = 1

x + y = 1

x

y

0 1x

L

1
R

Leaves at
y =

"

1 − x2

Enters at
y = 1 − x

Leaves at
y =

"

1 − x2

Enters at
y = 1 − x

x

y

0 1x

L

1
R

Smallest x
is x = 0

Largest x
is x = 1

(a)

(b)

(c)

R

x

y

0 1

1

x = 1

y = x

FIGURE 15.13 The region of 
integration in Example 2.

FIGURE 15.14 Finding the limits of 
integration when integrating first with 
respect to y and then with respect to x. x

y

Leaves at
x =

"

1 − y2

Enters at
x = 1 − y

0 1

y

1
R

Smallest y
is y = 0

Largest y
is y = 1

FIGURE 15.15 Finding the limits of 
integration when integrating first with 
respect to x and then with respect to y.



892 Chapter 15: Multiple Integrals

EXAMPLE 3  Sketch the region of integration for the integral

L

2

0 L

2x

x2

(4x + 2) dy dx

and write an equivalent integral with the order of integration reversed.

Solution The region of integration is given by the inequalities x2 … y … 2x and 
0 … x … 2. It is therefore the region bounded by the curves y = x2 and y = 2x between 
x = 0 and x = 2 (Figure 15.16a).

To find limits for integrating in the reverse order, we imagine a horizontal line passing 
from left to right through the region. It enters at x = y>2 and leaves at x = 2y. To 
include all such lines, we let y run from y = 0 to y = 4 (Figure 15.16b). The integral is

L

4

0 L

2y

y>2
(4x + 2) dx dy.

The common value of these integrals is 8.

Properties of Double Integrals

Like single integrals, double integrals of continuous functions have algebraic properties 
that are useful in computations and applications.

0 2

(a)

4 (2, 4)

y

x

y = 2x

y = x2

0 2

(b)

4 (2, 4)

y
2

y

x

x =
"

yx =

FIGURE 15.16 Region of 
integration for Example 3.

If ƒ(x, y) and g(x, y) are continuous on the bounded region R, then the following 
properties hold.

1. Constant Multiple: 
O

R

cƒ(x, y) dA = c
O

R

ƒ(x, y) dA (any number c)

2. Sum and Difference:

O
R

(ƒ(x, y) { g(x, y)) dA =
O

R

ƒ(x, y) dA {
O

R

g(x, y) dA

3. Domination:

(a)
O

R

ƒ(x, y) dA Ú 0 if ƒ(x, y) Ú 0 on R

(b)
O

R

ƒ(x, y) dA Ú
O

R

g(x, y) dA if ƒ(x, y) Ú g(x, y) on R

4. Additivity:
O

R

ƒ(x, y) dA =
O

R1

ƒ(x, y) dA +
O

R2

ƒ(x, y) dA

if R is the union of two nonoverlapping regions R1 and R2

Property 4 assumes that the region of integration R is decomposed into nonoverlap-
ping regions R1 and R2 with boundaries consisting of a finite number of line segments or 
smooth curves. Figure 15.17 illustrates an example of this property.

0
x

y

R1

R2

R

R = R1 ∪ R2

LL LL LL
R1

f (x, y) dA = f (x, y) dA +

R2

f (x, y) dA

FIGURE 15.17 The Additivity Property 
for rectangular regions holds for regions 
bounded by smooth curves.
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The idea behind these properties is that integrals behave like sums. If the function ƒ(x, y)
is replaced by its constant multiple cƒ(x, y), then a Riemann sum for ƒ

Sn = a

n

k=1
ƒ(xk , yk)∆Ak

is replaced by a Riemann sum for cƒ

a

n

k=1
cƒ(xk , yk)∆Ak = ca

n

k=1
ƒ(xk , yk)∆Ak = cSn .

Taking limits as n S ∞ shows that c limnS∞Sn = c4R ƒ dA and limnS∞cSn = 4R cƒ dA
are equal. It follows that the Constant Multiple Property carries over from sums to double 
integrals.

The other properties are also easy to verify for Riemann sums, and carry over to dou-
ble integrals for the same reason. While this discussion gives the idea, an actual proof that 
these properties hold requires a more careful analysis of how Riemann sums converge.

EXAMPLE 4  Find the volume of the wedgelike solid that lies beneath the surface z =
16 - x2 - y2 and above the region R bounded by the curve y = 22x, the line 
y = 4x - 2, and the x-axis.

Solution Figure 15.18a shows the surface and the “wedgelike” solid whose volume we 
want to calculate. Figure 15.18b shows the region of integration in the xy-plane. If we inte-
grate in the order dy dx (first with respect to y and then with respect to x), two integrations 
will be required because y varies from y = 0 to y = 21x for 0 … x … 0.5, and then var-
ies from y = 4x - 2 to y = 21x for 0.5 … x … 1. So we choose to integrate in the 
order dx dy, which requires only one double integral whose limits of integration are indi-
cated in Figure 15.18b. The volume is then calculated as the iterated integral:

O
R

(16 - x2 - y2) dA

=
L

2

0 L

(y+2)>4

y2>4
(16 - x2 - y2) dx dy

=
L

2

0
c 16x - x3

3 - xy2 d x= (y+2)>4
x= y2>4

dx

=
L

2

0
c 4(y + 2) -

(y + 2)3

3 # 64
-

(y + 2)y2

4
- 4y2 +

y6

3 # 64
+

y4

4
d dy

= c 191y
24

+
63y2

32
-

145y3

96
-

49y4

768
+

y5

20
+

y7

1344
d 2

0
= 20803

1680
≈ 12.4.

Our development of the double integral has focused on its representation of the vol-
ume of the solid region between R and the surface z = ƒ(x, y) of a positive continuous 
function. Just as we saw with signed area in the case of single integrals, when ƒ(xk , yk) is 
negative, then the product ƒ(xk , yk)∆Ak is the negative of the volume of the rectangular 
box shown in Figure 15.9 that was used to form the approximating Riemann sum. So for 
an arbitrary continuous function ƒ defined over R, the limit of any Riemann sum repre-
sents the signed volume (not the total volume) of the solid region between R and the sur-
face. The double integral has other interpretations as well, and in the next section we will 
see how it is used to calculate the area of a general region in the plane.

16

1

2 y

x

z

y = 4x − 2

z = 16 − x2 − y2

y = 2
"

x

(a)

(b)

0 10.5

(1, 2)2

x

y
y = 4x− 2

y = 2
"

x

R

x =
4
y2

x =
4

y+ 2

FIGURE 15.18 (a) The solid “wedge-
like” region whose volume is found in 
Example 4. (b) The region of integration R
showing the order dx dy.
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Sketching Regions of Integration
In Exercises 1–8, sketch the described regions of integration.

1. 0 … x … 3, 0 … y … 2x

2. -1 … x … 2, x - 1 … y … x2

3. -2 … y … 2, y2 … x … 4

4. 0 … y … 1, y … x … 2y

5. 0 … x … 1, ex … y … e

6. 1 … x … e2, 0 … y … ln x

7. 0 … y … 1, 0 … x … sin-1 y

8. 0 … y … 8,
1
4

y … x … y1>3

Finding Limits of Integration
In Exercises 9–18, write an iterated integral for 4R dA over the 
described region R using (a) vertical cross-sections, (b) horizontal 
cross-sections.

9. 10.

x

y
y = x3

y = 8

x

y

y = 2x

x = 3

11. 12.

x

y

y = x2

y = 3x

x

y

y = 1

x = 2

y = ex

13. Bounded by y = 1x, y = 0, and x = 9

14. Bounded by y = tan x, x = 0, and y = 1

15. Bounded by y = e-x, y = 1, and x = ln 3

16. Bounded by y = 0, x = 0, y = 1, and y = ln x

17. Bounded by y = 3 - 2x, y = x, and x = 0

18. Bounded by y = x2 and y = x + 2

Finding Regions of Integration and Double Integrals
In Exercises 19–24, sketch the region of integration and evaluate the 
integral.

19.
L

p

0 L

x

0
x sin y dy dx 20.

L

p

0 L

sin x

0
y dy dx

21.
L

ln8

1 L

lny

0
ex+y dx dy 22.

L

2

1 L

y2

y
dx dy

23.
L

1

0 L

y2

0
3y3exy dx dy 24.

L

4

1 L

2x

0

3
2

ey>2x dy dx

In Exercises 25–28, integrate ƒ over the given region.

25. Quadrilateral ƒ(x, y) = x>y over the region in the first quad-
rant bounded by the lines y = x, y = 2x, x = 1, and x = 2

26. Triangle ƒ(x, y) = x2 + y2 over the triangular region with ver-
tices (0, 0), (1, 0), and (0, 1)

27. Triangle ƒ(u, y) = y - 2u over the triangular region cut 
from the first quadrant of the uy-plane by the line u + y = 1

28. Curved region ƒ(s, t) = es ln t over the region in the first quad-
rant of the st-plane that lies above the curve s = ln t from t = 1
to t = 2

Each of Exercises 29–32 gives an integral over a region in a Cartesian 
coordinate plane. Sketch the region and evaluate the integral.

29.
L

0

-2L

-y

y

2 dp dy (the py@plane)

30.
L

1

0 L

21- s2

0
8t dt ds (the st@plane)

31.
L

p>3

-p>3L

sec t

0
3 cos t du dt (the tu@plane)

32.
L

3>2

0 L

4-2u

1

4 - 2u
y2 dy du (the uy@plane)

Reversing the Order of Integration
In Exercises 33–46, sketch the region of integration and write an 
equivalent double integral with the order of integration reversed.

33.
L

1

0 L

4-2x

2
dy dx 34.

L

2

0 L

0

y-2
dx dy

35.
L

1

0 L

2y

y
dx dy 36.

L

1

0 L

1-x2

1-x
dy dx

37.
L

1

0 L

ex

1
dy dx 38.

L

ln2

0 L

2

ey

dx dy

39.
L

3>2

0 L

9-4x2

0
16x dy dx 40.

L

2

0 L

4-y2

0
y dx dy

41.
L

1

0 L

21-y2

-21-y2

3y dx dy 42.
L

2

0 L

24-x2

-24-x2

6x dy dx

43.
L

e

1 L

ln x

0
xy dy dx 44.

L

p>6

0 L

1>2

sin x
xy2 dy dx

45.
L

3

0 L

ey

1
(x + y) dx dy 46.

L

13

0 L

tan-1 y

0
2xy dx dy

Exercises 15.2
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In Exercises 67 and 68, sketch the region of integration and the solid 
whose volume is given by the double integral.

67.
L

3

0 L

2-2x>3

0
a1 - 1

3
x - 1

2
yb dy dx

68.
L

4

0 L

216-y2

-216-y2

225 - x2 - y2 dx dy

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to 
improper integrals of one variable. The first iteration of the following 
improper integrals is conducted just as if they were proper integrals. 
One then evaluates an improper integral of a single variable by taking 
appropriate limits, as in Section 8.8. Evaluate the improper integrals 
in Exercises 69–72 as iterated integrals.

69.
L

q

1 L

1

e-x

1
x3y

dy dx 70.
L

1

-1L

1>21-x2

-1>21-x2

(2y + 1) dy dx

71.
L

q

-qL

q

-q

1
(x2 + 1)(y2 + 1)

dx dy

72.
L

q

0 L

q

0
xe-(x+2y) dx dy

Approximating Integrals with Finite Sums
In Exercises 73 and 74, approximate the double integral of ƒ(x, y) over 
the region R partitioned by the given vertical lines x = a and horizon-
tal lines y = c. In each subrectangle, use (xk , yk) as indicated for your 
approximation.

O
R

ƒ(x, y) dA ≈ a

n

k=1
ƒ(xk , yk)∆Ak

73. ƒ(x, y) = x + y over the region R bounded above by the semi-
circle y = 21 - x2 and below by the x-axis, using the partition 
x = -1, -1>2, 0, 1 >4, 1 >2, 1 and y = 0, 1 >2, 1 with (xk , yk) the 
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

74. ƒ(x, y) = x + 2y over the region R inside the circle 
(x - 2)2 + (y - 3)2 = 1 using the partition x = 1, 3 >2, 2, 5 >2,
3 and y = 2, 5 >2, 3, 7 >2, 4 with (xk , yk) the center (centroid) in 
the kth subrectangle (provided the subrectangle lies within R)

Theory and Examples
75. Circular sector Integrate ƒ(x, y) = 24 - x2 over the smaller 

sector cut from the disk x2 + y2 … 4 by the rays u = p>6 and 
u = p>2.

76. Unbounded region Integrate ƒ(x, y) = 1> 3 (x2 - x)( y - 1)2>34
over the infinite rectangle 2 … x 6 q, 0 … y … 2.

77. Noncircular cylinder A solid right (noncircular) cylinder has 
its base R in the xy-plane and is bounded above by the paraboloid 
z = x2 + y2. The cylinder’s volume is

V =
L

1

0 L

y

0

(x2 + y2) dx dy +
L

2

1 L

2-y

0

(x2 + y2) dx dy.

  Sketch the base region R and express the cylinder’s volume as a 
single iterated integral with the order of integration reversed. 
Then evaluate the integral to find the volume.

In Exercises 47–56, sketch the region of integration, reverse the order 
of integration, and evaluate the integral.

47.
L

p

0 L

p

x

sin y
y dy dx 48.

L

2

0 L

2

x
2y2 sin xy dy dx

49.
L

1

0 L

1

y
x2exy dx dy 50.

L

2

0 L

4-x2

0

xe2y

4 - y
dy dx

51.
L

22ln3

0 L

2ln3

y>2
ex2

dx dy

52.
L

3

0 L

1

2x>3
ey3

dy dx

53.
L

1>16

0 L

1>2

y1>4
cos (16px5) dx dy

54.
L

8

0 L

2

23 x

dy dx

y4 + 1

55. Square region 4R ( y - 2x2) dA where R is the region bounded 
by the square � x � + �y � = 1

56. Triangular region 4R xy dA where R is the region bounded by 
the lines y = x, y = 2x, and x + y = 2

Volume Beneath a Surface z = ƒ(x, y)
57. Find the volume of the region bounded above by the paraboloid 

z = x2 + y2 and below by the triangle enclosed by the lines 
y = x, x = 0, and x + y = 2 in the xy-plane.

58. Find the volume of the solid that is bounded above by the cylin-
der z = x2 and below by the region enclosed by the parabola 
y = 2 - x2 and the line y = x in the xy-plane.

59. Find the volume of the solid whose base is the region in the xy-
plane that is bounded by the parabola y = 4 - x2 and the line 
y = 3x, while the top of the solid is bounded by the plane 
z = x + 4.

60. Find the volume of the solid in the first octant bounded by the 
coordinate planes, the cylinder x2 + y2 = 4, and the plane 
z + y = 3.

61. Find the volume of the solid in the first octant bounded by the 
coordinate planes, the plane x = 3, and the parabolic cylinder 
z = 4 - y2.

62. Find the volume of the solid cut from the first octant by the sur-
face z = 4 - x2 - y.

63. Find the volume of the wedge cut from the first octant by the cyl-
inder z = 12 - 3y2 and the plane x + y = 2.

64. Find the volume of the solid cut from the square column 
� x � + �y � … 1 by the planes z = 0 and 3x + z = 3.

65. Find the volume of the solid that is bounded on the front and back 
by the planes x = 2 and x = 1, on the sides by the cylinders 
y = {1>x, and above and below by the planes z = x + 1 and 
z = 0.

66. Find the volume of the solid bounded on the front and back by the 
planes x = {p>3, on the sides by the cylinders y = {secx,
above by the cylinder z = 1 + y2, and below by the xy-plane.



896 Chapter 15: Multiple Integrals

78. Converting to a double integral Evaluate the integral

L

2

0
(tan-1 px - tan-1 x) dx.

  (Hint: Write the integrand as an integral.)

79. Maximizing a double integral What region R in the xy-plane
maximizes the value of

O
R

(4 - x2 - 2y2) dA?

  Give reasons for your answer.

80. Minimizing a double integral What region R in the xy-plane
minimizes the value of

O
R

(x2 + y2 - 9) dA?

  Give reasons for your answer.

81. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers 
depending on the order of integration? Give reasons for your 
answer.

82. How would you evaluate the double integral of a continuous 
function ƒ(x, y) over the region R in the xy-plane enclosed by the 
triangle with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for 
your answer.

83. Unbounded region Prove that

L

q

-qL

q

-q
e-x2-y2

dx dy = lim
bSq L

b

-b L

b

-b
e-x2-y2

dx dy

= 4a
L

q

0
e-x2

dxb2

.

84. Improper double integral Evaluate the improper integral

L

1

0 L

3

0

x2

( y - 1)2>3 dy dx.

COMPUTER EXPLORATIONS
Use a CAS double-integral evaluator to estimate the values of the 
integrals in Exercises 85–88.

85.
L

3

1 L

x

1

1
xy dy dx 86.

L

1

0 L

1

0
e-(x2+y2) dy dx

87.
L

1

0 L

1

0
tan-1 xy dy dx

88.
L

1

-1L

21-x2

0
321 - x2 - y2 dy dx

Use a CAS double-integral evaluator to find the integrals in Exercises 
89–94. Then reverse the order of integration and evaluate, again with 
a CAS.

89.
L

1

0 L

4

2y
ex2

dx dy

90.
L

3

0 L

9

x2

x cos (y2) dy dx

91.
L

2

0 L

422y

y3

(x2y - xy2) dx dy

92.
L

2

0 L

4-y2

0
exy dx dy

93.
L

2

1 L

x2

0

1
x + y dy dx 94.

L

2

1 L

8

y3

1

2x2 + y2
dx dy

15.3 Area by Double Integration

In this section we show how to use double integrals to calculate the areas of bounded 
regions in the plane, and to find the average value of a function of two variables.

Areas of Bounded Regions in the Plane

If we take ƒ(x, y) = 1 in the definition of the double integral over a region R in the preced-
ing section, the Riemann sums reduce to

Sn = a

n

k=1
ƒ(xk , yk)∆Ak = a

n

k=1
∆Ak . (1)

This is simply the sum of the areas of the small rectangles in the partition of R, and approxi-
mates what we would like to call the area of R. As the norm of a partition of R approaches zero, 
the height and width of all rectangles in the partition approach zero, and the coverage of R
becomes increasingly complete (Figure 15.8). We define the area of R to be the limit

lim
� �P� �S0 a

n

k=1
∆Ak =

O
R

dA. (2)



As with the other definitions in this chapter, the definition here applies to a greater 
variety of regions than does the earlier single-variable definition of area, but it agrees with 
the earlier definition on regions to which they both apply. To evaluate the integral in the 
definition of area, we integrate the constant function ƒ(x, y) = 1 over R.

DEFINITION The area of a closed, bounded plane region R is

A = O
R

dA.

(1, 1)

0

y = x

y = x2

y = x 2

1

1

x

y

y = x

FIGURE 15.19 The region in Example 1.
EXAMPLE 1  Find the area of the region R bounded by y = x and y = x2 in the first 
quadrant.

Solution We sketch the region (Figure 15.19), noting where the two curves intersect at 
the origin and (1, 1), and calculate the area as

A = L
1

0 L
x

x2

dy dx = L
1

0
c y d

x2

x

dx

= L
1

0

(x - x2) dx = c x2

2
- x3

3 d 0
1

= 1
6

.

Notice that the single-variable integral 11
0 (x - x2) dx, obtained from evaluating the inside 

iterated integral, is the integral for the area between these two curves using the method of 
Section 5.6.

EXAMPLE 2  Find the area of the region R enclosed by the parabola y = x2 and the 
line y = x + 2.

Solution If we divide R into the regions R1 and R2 shown in Figure 15.20a, we may cal-
culate the area as

A = O
R1

dA + O
R2

dA = L
1

0 L
2y

-2y
dx dy + L

4

1 L
2y

y-2
dx dy.

On the other hand, reversing the order of integration (Figure 15.20b) gives

A = L
2

-1L
x+2

x2

dy dx.

This second result, which requires only one integral, is simpler and is the only one we 
would bother to write down in practice. The area is

A = L
2

-1
c y d

x2

x+2

dx = L
2

-1

(x + 2 - x2) dx = c x2

2
+ 2x - x3

3 d -1

2

= 9
2

.

(2, 4)

y

x
0

(a)

dx dy

(−1, 1)

R1

R2

y = x + 2

y = x 2

1

0

"y

–"y

dx dy
4

1

"y

y – 2

(2, 4)

y

x
0

(b)

y = x + 2

y = x2

dy dx

2

−1

x + 2

x2(−1, 1)

LL

LL

L L

FIGURE 15.20 Calculating this area 
takes (a) two double integrals if the first 
integration is with respect to x, but (b) only 
one if the first integration is with respect 
to y (Example 2).
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EXAMPLE 3  Find the area of the playing field described by

R: - 2 … x … 2, - 1 - 24 - x2 … y … 1 + 24 - x2, using

(a) Fubini’s Theorem (b) Simple geometry.

Solution The region R is shown in Figure 15.21.

(a) From the symmetries observed in the figure, we see that the area of R is 4 times its 
area in the first quadrant. Using Fubini’s Theorem, we have

A = O
R

dA = 4L
2

0 L
1+24-x2

0
dy dx

= 4L
2

0

(1 + 24 - x22 dx
= 4 c x + x

2
24 - x2 + 4

2
sin-1 x

2
d 2

0

Integral Table 

Formula 45

= 4a2 + 0 + 2 # p
2

- 0b = 8 + 4p.

(b) The region R consists of a rectangle mounted on two sides by half disks of radius 2. 
The area can be computed by summing the area of the 4 * 2 rectangle and the area of 
a circle of radius 2, so

A = 8 + p22 = 8 + 4p.

FIGURE 15.21 The playing field 
described by the region R in 
Example 3.

y

x
0 2

2

−2

3

1

−3

Average value of ƒ over R = 1
area of R O

R

ƒ dA. (3)

If ƒ is the temperature of a thin plate covering R, then the double integral of ƒ over R
divided by the area of R is the plate’s average temperature. If ƒ(x, y) is the distance from 
the point (x, y) to a fixed point P, then the average value of ƒ over R is the average distance 
of points in R from P.

Average Value

The average value of an integrable function of one variable on a closed interval is the inte-
gral of the function over the interval divided by the length of the interval. For an integrable 
function of two variables defined on a bounded region in the plane, the average value is the 
integral over the region divided by the area of the region. This can be visualized by think-
ing of the function as giving the height at one instant of some water sloshing around in a 
tank whose vertical walls lie over the boundary of the region. The average height of the 
water in the tank can be found by letting the water settle down to a constant height. The 
height is then equal to the volume of water in the tank divided by the area of R. We are led 
to define the average value of an integrable function ƒ over a region R as follows:

EXAMPLE 4  Find the average value of ƒ(x, y) = x cos xy over the rectangle 
R: 0 … x … p, 0 … y … 1.
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Area by Double Integrals
In Exercises 1–12, sketch the region bounded by the given lines and 
curves. Then express the region’s area as an iterated double integral 
and evaluate the integral.

1. The coordinate axes and the line x + y = 2

2. The lines x = 0, y = 2x, and y = 4

3. The parabola x = -y2 and the line y = x + 2

4. The parabola x = y - y2 and the line y = -x

5. The curve y = ex and the lines y = 0, x = 0, and x = ln 2

6. The curves y = ln x and y = 2 ln x and the line x = e, in the 
first quadrant

7. The parabolas x = y2 and x = 2y - y2

8. The parabolas x = y2 - 1 and x = 2y2 - 2

9. The lines y = x, y = x>3, and y = 2

10. The lines y = 1 - x and y = 2 and the curve y = ex

11. The lines y = 2x, y = x>2, and y = 3 - x

12. The lines y = x - 2 and y = -x and the curve y = 2x

Identifying the Region of Integration
The integrals and sums of integrals in Exercises 13–18 give the areas 
of regions in the xy-plane. Sketch each region, label each bounding 
curve with its equation, and give the coordinates of the points where 
the curves intersect. Then find the area of the region.

13.
L

6

0 L

2y

y2>3
dx dy 14.

L

3

0 L

x(2-x)

-x
dy dx

15.
L

p>4

0 L

cos x

sin x
dy dx 16.

L

2

-1L

y+2

y2

dx dy

17.
L

0

-1L

1-x

-2x
dy dx +

L

2

0 L

1-x

-x>2
dy dx

18.
L

2

0 L

0

x2-4
dy dx +

L

4

0 L

2x

0
dy dx

Finding Average Values
19. Find the average value of ƒ(x, y) = sin (x + y) over

a. the rectangle 0 … x … p, 0 … y … p.

b. the rectangle 0 … x … p, 0 … y … p>2.

20. Which do you think will be larger, the average value of 
ƒ(x, y) = xy over the square 0 … x … 1, 0 … y … 1, or the 

average value of ƒ over the quarter circle x2 + y2 … 1 in the first 
quadrant? Calculate them to find out.

21. Find the average height of the paraboloid z = x2 + y2 over the 
square 0 … x … 2, 0 … y … 2.

22. Find the average value of ƒ(x, y) = 1>(xy) over the square 
ln 2 … x … 2 ln 2, ln 2 … y … 2 ln 2.

Theory and Examples
23. Geometric area Find the area of the region

R: 0 … x … 2, 2 - x … y … 24 - x2,

  using (a) Fubini’s Theorem, (b) simple geometry.

24. Geometric area Find the area of the circular washer with outer 
radius 2 and inner radius 1, using (a) Fubini’s Theorem, (b) simple 
geometry.

25. Bacterium population If ƒ(x, y) = (10,000ey)>(1 + � x � >2)
represents the “population density” of a certain bacterium on the 
xy-plane, where x and y are measured in centimeters, find the total 
population of bacteria within the rectangle -5 … x … 5 and 
-2 … y … 0.

26. Regional population If ƒ(x, y) = 100 ( y + 1) represents the 
population density of a planar region on Earth, where x and y are 
measured in miles, find the number of people in the region 
bounded by the curves x = y2 and x = 2y - y2.

27. Average temperature in Texas According to the Texas Alma-
nac, Texas has 254 counties and a National Weather Service sta-
tion in each county. Assume that at time t0 , each of the 254 weather 
stations recorded the local temperature. Find a formula that would 
give a reasonable approximation of the average temperature in 
Texas at time t0 . Your answer should involve information that you 
would expect to be readily available in the Texas Almanac.

28. If y = ƒ(x) is a nonnegative continuous function over the closed 
interval a … x … b, show that the double integral definition of 
area for the closed plane region bounded by the graph of ƒ, the 
vertical lines x = a and x = b, and the x-axis agrees with the 
definition for area beneath the curve in Section 5.3.

29. Suppose ƒ(x, y) is continuous over a region R in the plane and that 
the area A(R) of the region is defined. If there are constants m and 
M such that m … ƒ(x, y) … M  for all (x, y)∊R, prove that 

mA(R) …
O
R

ƒ(x, y) dA … MA(R).

30. Suppose ƒ(x, y) is continuous and nonnegative over a region R in 
  the plane with a defined area A(R). If 4R ƒ(x, y) dA = 0, prove 
  that ƒ(x, y) = 0 at every point (x, y)∊R.

Exercises 15.3

Solution The value of the integral of ƒ over R is

L

p

0 L

1

0
x cos xy dy dx =

L

p

0
c sin xy d

y=0

y=1

dx
L

x cos xy dy = sin xy + C

=
L

p

0
(sin x - 0) dx = -cos x d

0

p

= 1 + 1 = 2.

The area of R is p. The average value of ƒ over R is 2>p.
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We are interested in what happens as D is partitioned by smaller and smaller cells, so 
that ∆xk , ∆yk , ∆zk , and the norm of the partition 7P 7 , the largest value among ∆xk ,
∆yk , ∆zk , all approach zero. When a single limiting value is attained, no matter how the 
partitions and points (xk , yk , zk) are chosen, we say that F is integrable over D. As before, 
it can be shown that when F is continuous and the bounding surface of D is formed from 
finitely many smooth surfaces joined together along finitely many smooth curves, then F
is integrable. As 7P 7 S 0 and the number of cells n goes to q, the sums Sn approach 
a limit. We call this limit the triple integral of F over D and write

lim
nSq

Sn =
l
D

F(x, y, z) dV or lim
� �P� �S0

Sn =
l
D

F(x, y, z) dx dy dz.

The regions D over which continuous functions are integrable are those having “reason-
ably smooth” boundaries.

Volume of a Region in Space

If F is the constant function whose value is 1, then the sums in Equation (1) reduce to

Sn = a F(xk , yk , zk) ∆Vk = a 1 # ∆Vk = a ∆Vk .

As ∆xk , ∆yk , and ∆zk approach zero, the cells ∆Vk become smaller and more numerous 
and fill up more and more of D. We therefore define the volume of D to be the triple integral

lim
nSq a

n

k=1
∆Vk =

l
D

dV.

DEFINITION The volume of a closed, bounded region D in space is

V =
l
D

dV.

This definition is in agreement with our previous definitions of volume, although we omit 
the verification of this fact. As we see in a moment, this integral enables us to calculate the 
volumes of solids enclosed by curved surfaces. These are more general solids than the 
ones encountered before (Chapter 6 and Section 15.2).

Finding Limits of Integration in the Order dz dy dx

We evaluate a triple integral by applying a three-dimensional version of Fubini’s Theorem 
(Section 15.2) to evaluate it by three repeated single integrations. As with double integrals, 
there is a geometric procedure for finding the limits of integration for these iterated integrals.

To evaluate

l
D

F(x, y, z) dV

over a region D, integrate first with respect to z, then with respect to y, and finally with 
respect to x. (You might choose a different order of integration, but the procedure is simi-
lar, as we illustrate in Example 2.)

1. Sketch. Sketch the region D along with its “shadow” R (vertical projection) in the 
xy-plane. Label the upper and lower bounding surfaces of D and the upper and lower 
bounding curves of R.
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z

y

x

D

Rb

a

z = f2(x, y)

z = f1(x, y)

y = g2(x)

y = g1(x)

2. Find the z-limits of integration. Draw a line M passing through a typical point (x, y) in 
R parallel to the z-axis. As z increases, M enters D at z = ƒ1(x, y) and leaves at 
z = ƒ2(x, y). These are the z-limits of integration.

z

y

x

D

Rb

a

M

y = g2(x)
(x, y)

y = g1(x)

Leaves at
z = f2(x, y)

Enters at
z = f1(x, y)

3. Find the y-limits of integration. Draw a line L through (x, y) parallel to the y-axis. As y
increases, L enters R at y = g1(x) and leaves at y = g2(x). These are the y-limits of 
integration.

y

x

D

R
b

a

M

L

x

z

(x, y)

Enters at
y = g1(x)

Leaves at
y = g2(x)



15.5  Triple Integrals in Rectangular Coordinates 909

4. Find the x-limits of integration. Choose x-limits that include all lines through R paral-
lel to the y-axis (x = a and x = b in the preceding figure). These are the x-limits of 
integration. The integral is

L

x=b

x=a L

y=g2(x)

y=g1(x) L

z=ƒ2(x, y)

z=ƒ1(x, y)
F(x, y, z) dz dy dx.

Follow similar procedures if you change the order of integration. The “shadow” of 
region D lies in the plane of the last two variables with respect to which the iterated 
integration takes place.

The preceding procedure applies whenever a solid region D is bounded above and 
below by a surface, and when the “shadow” region R is bounded by a lower and upper curve. 
It does not apply to regions with complicated holes through them, although sometimes such 
regions can be subdivided into simpler regions for which the procedure does apply.

EXAMPLE 1  Find the volume of the region D enclosed by the surfaces z = x2 + 3y2

and z = 8 - x2 - y2.

Solution The volume is

V =
l
D

dz dy dx,

the integral of F(x, y, z) = 1 over D. To find the limits of integration for evaluating the 
integral, we first sketch the region. The surfaces (Figure 15.31) intersect on the elliptical 
cylinder x2 + 3y2 = 8 - x2 - y2 or x2 + 2y2 = 4, z 7 0. The boundary of the region R,
the projection of D onto the xy-plane, is an ellipse with the same equation: x2 + 2y2 = 4.
The “upper” boundary of R is the curve y = 2(4 - x2) >2. The lower boundary is the 

curve y = -2(4 - x2) >2.
Now we find the z-limits of integration. The line M passing through a typical point 

(x, y) in R parallel to the z-axis enters D at z = x2 + 3y2 and leaves at z = 8 - x2 - y2.

Leaves at
z = 8 − x2 − y2

(2, 0, 4)

(2, 0, 0)
x

z

yL

(−2, 0, 0)

R

x

D

(−2, 0, 4)

The curve of intersection

z = 8 − x2 − y2

x2 + 2y2 = 4

Leaves at
y =

"

(4 − x2)�2

z = x2 + 3y2

M

(x, y)

Enters at
z = x2 + 3y2

Enters at
y = −

"

(4 − x2)/2

FIGURE 15.31 The volume of the region enclosed by two paraboloids, 
calculated in Example 1.
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Next we find the y-limits of integration. The line L through (x, y) parallel to the y-axis
enters R at y = -2(4 - x2)>2 and leaves at y = 2(4 - x2)>2.

Finally we find the x-limits of integration. As L sweeps across R, the value of x varies 
from x = -2 at (-2, 0, 0) to x = 2 at (2, 0, 0). The volume of D is

V =
l
D

dz dy dx

=
L

2

-2 L

2(4-x2)>2

-2(4-x2)>2 L

8-x2-y2

x2+3y2

dz dy dx

=
L

2

-2 L

2(4-x2)>2

-2(4-x2)>2
(8 - 2x2 - 4y2) dy dx

=
L

2

-2
c (8 - 2x2)y - 4

3 y3 d y=2(4- x2)>2
y=- 2(4- x2)>2

dx

=
L

2

-2
a2(8 - 2x2)B

4 - x2

2
- 8

3 a4 - x2

2
b3>2b dx

=
L

2

-2
c 8a4 - x2

2
b3>2

- 8
3 a4 - x2

2
b3>2 d dx = 422

3 L

2

-2

(4 - x2)3>2 dx

= 8p22. After integration with the substitution x = 2 sin u

In the next example, we project D onto the xz-plane instead of the xy-plane, to show 
how to use a different order of integration.

EXAMPLE 2  Set up the limits of integration for evaluating the triple integral of a 
function F(x, y, z) over the tetrahedron D with vertices (0, 0, 0), (1, 1, 0), (0, 1, 0), and 
(0, 1, 1). Use the order of integration dy dz dx.

Solution We sketch D along with its “shadow” R in the xz-plane (Figure 15.32). The 
upper (right-hand) bounding surface of D lies in the plane y = 1. The lower (left-hand) 
bounding surface lies in the plane y = x + z. The upper boundary of R is the line 
z = 1 - x. The lower boundary is the line z = 0.

First we find the y-limits of integration. The line through a typical point (x, z) in R
parallel to the y-axis enters D at y = x + z and leaves at y = 1.

Next we find the z-limits of integration. The line L through (x, z) parallel to the z-axis
enters R at z = 0 and leaves at z = 1 - x.

Finally we find the x-limits of integration. As L sweeps across R, the value of x varies 
from x = 0 to x = 1. The integral is

L

1

0 L

1-x

0 L

1

x+ z
F(x, y, z) dy dz dx.

EXAMPLE 3 Integrate F(x, y, z) = 1 over the tetrahedron D in Example 2 in the 
order dz dy dx, and then integrate in the order dy dz dx.

Solution First we find the z-limits of integration. A line M parallel to the z-axis through 
a typical point (x, y) in the xy-plane “shadow” enters the tetrahedron at z = 0 and exits 
through the upper plane where z = y - x (Figure 15.33).

Next we find the y-limits of integration. On the xy-plane, where z = 0, the sloped side 
of the tetrahedron crosses the plane along the line y = x. A line L through (x, y) parallel to 
the y-axis enters the shadow in the xy-plane at y = x and exits at y = 1 (Figure 15.33).

z

y

x

x

R

D

L

M

(0, 1, 0)

(1, 1, 0)
1

1

(x, z)

Line
x + z = 1

(0, 1, 1)

y = 1

y = x + z

Leaves at
y = 1Enters at

y = x + z

FIGURE 15.32 Finding the limits of 
integration for evaluating the triple integral 
of a function defined over the tetrahedron 
D (Examples 2 and 3).

z

y

x

x

R

D

M

L

(0, 1, 0)

(0, 1, 1)

(1, 1, 0)
1

(x, y)
y = 1

0

y = x

z = y − x

FIGURE 15.33 The tetrahedron in Exam-
ple 3 showing how the limits of integration 
are found for the order dz dy dx.
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Finally we find the x-limits of integration. As the line L parallel to the y-axis in the 
previous step sweeps out the shadow, the value of x varies from x = 0 to x = 1 at the 
point (1, 1, 0) (see Figure 15.33). The integral is

L

1

0 L

1

x L

y-x

0
F(x, y, z) dz dy dx.

For example, if F(x, y, z) = 1, we would find the volume of the tetrahedron to be

V =
L

1

0 L

1

x L

y-x

0
dz dy dx

=
L

1

0 L

1

x
(y - x) dy dx

=
L

1

0
c 1
2

y2 - xy d
y= x

y=1

dx

=
L

1

0
a1

2
- x + 1

2
x2b dx

= c 1
2

x - 1
2

x2 + 1
6

x3 d
0

1

= 1
6

.

We get the same result by integrating with the order dy dz dx. From Example 2,

V =
L

1

0 L

1-x

0 L

1

x+ z
dy dz dx

=
L

1

0 L

1-x

0
(1 - x - z) dz dx

=
L

1

0
c (1 - x)z - 1

2
z2 d z=1- x

z=0
dx

=
L

1

0
c (1 - x)2 - 1

2
(1 - x)2 d dx

= 1
2 L

1

0
(1 - x)2 dx

= - 1
6

(1 - x)3 d 1
0
= 1

6
.

Average Value of a Function in Space

The average value of a function F over a region D in space is defined by the formula

Average value of F over D = 1
volume of Dl

D

F dV. (2)

For example, if F(x, y, z) = 2x2 + y2 + z2, then the average value of F over D is the 
average distance of points in D from the origin. If F(x, y, z) is the temperature at (x, y, z) on 
a solid that occupies a region D in space, then the average value of F over D is the average 
temperature of the solid.
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EXAMPLE 4  Find the average value of F(x, y, z) = xyz throughout the cubical region 
D bounded by the coordinate planes and the planes x = 2, y = 2, and z = 2 in the first 
octant.

Solution We sketch the cube with enough detail to show the limits of integration (Figure 
15.34). We then use Equation (2) to calculate the average value of F over the cube.

The volume of the region D is (2)(2)(2) = 8. The value of the integral of F over the 
cube is

L

2

0 L

2

0 L

2

0
xyz dx dy dz =

L

2

0 L

2

0
c x2

2
yz d

x=0

x=2

dy dz =
L

2

0 L

2

0
2yz dy dz

=
L

2

0
c y2z d

y=0

y=2

dz =
L

2

0
4z dz = c 2z2 d

0

2

= 8.

With these values, Equation (2) gives

Average value of

xyz over the cube
= 1

volumel
cube

xyz dV = a18b (8) = 1.

In evaluating the integral, we chose the order dx dy dz, but any of the other five possible 
orders would have done as well.

Properties of Triple Integrals

Triple integrals have the same algebraic properties as double and single integrals. Simply 
replace the double integrals in the four properties given in Section 15.2, page 892, with 
triple integrals.

z

y

D

2

x

2

2

FIGURE 15.34 The region of 
integration in Example 4.

Triple Integrals in Different Iteration Orders
1. Evaluate the integral in Example 2 taking F(x, y, z) = 1 to find 

the volume of the tetrahedron in the order dz dx dy.

2. Volume of rectangular solid Write six different iterated triple 
integrals for the volume of the rectangular solid in the first octant 
bounded by the coordinate planes and the planes x = 1, y = 2,
and z = 3. Evaluate one of the integrals.

3. Volume of tetrahedron Write six different iterated triple inte-
grals for the volume of the tetrahedron cut from the first octant by 
the plane 6x + 3y + 2z = 6. Evaluate one of the integrals.

4. Volume of solid Write six different iterated triple integrals for 
the volume of the region in the first octant enclosed by the cyl-
inder x2 + z2 = 4 and the plane y = 3. Evaluate one of the 
integrals.

5. Volume enclosed by paraboloids Let D be the region bounded 
by the paraboloids z = 8 - x2 - y2 and z = x2 + y2. Write six 
different triple iterated integrals for the volume of D. Evaluate 
one of the integrals.

6. Volume inside paraboloid beneath a plane Let D be the region 
bounded by the paraboloid z = x2 + y2 and the plane z = 2y.
Write triple iterated integrals in the order dz dx dy and dz dy dx
that give the volume of D. Do not evaluate either integral.

Evaluating Triple Iterated Integrals
Evaluate the integrals in Exercises 7–20.

7.
L

1

0 L

1

0 L

1

0

(x2 + y2 + z2) dz dy dx

8.
L

22

0 L

3y

0 L

8-x2-y2

x2+3y2

dz dx dy 9.
L

e

1 L

e2

1 L

e3

1

1
xyz dx dy dz

10.
L

1

0 L

3-3x

0 L

3-3x-y

0
dz dy dx 11.

L

p>6

0 L

1

0 L

3

-2
y sin z dx dy dz

12.
L

1

-1L

1

0 L

2

0
(x + y + z) dy dx dz

13.
L

3

0 L

29-x2

0 L

29-x2

0
dz dy dx 14.

L

2

0 L

24-y2

-24-y2L

2x+y

0
dz dx dy

15.
L

1

0 L

2-x

0 L

2-x-y

0
dz dy dx 16.

L

1

0 L

1-x2

0 L

4-x2-y

3
x dz dy dx

17.
L

p

0 L

p

0 L

p

0
cos (u + y + w) du dy dw (uyw@space)

18.
L

1

0 L

2e

1 L

e

1
ses ln r

(ln t)2

t dt dr ds (rst@space)

Exercises 15.5
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19.
L

p>4

0 L

ln sec y

0 L

2t

-q
ex dx dt dy (tyx@space)

20.
L

7

0 L

2

0 L

24-q2

0

q
r + 1

dp dq dr (pqr@space)

Finding Equivalent Iterated Integrals
21. Here is the region of integration of the integral

L

1

-1L

1

x2 L

1-y

0
dz dy dx.

11

1

(1, 1, 0)

y

x

z

Top: y + z = 1

(−1, 1, 0)

Side:
y = x2

−1

  Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx  b. dy dx dz 

c. dx dy dz  d. dx dz dy 

e. dz dx dy.

22. Here is the region of integration of the integral

L

1

0 L

0

-1L

y2

0
dz dy dx.

0

z

y

x
1

1

(1, −1, 0)

(1, −1, 1)

(0, −1, 1)

z = y2

  Rewrite the integral as an equivalent iterated integral in the order

a. dy dz dx  b. dy dx dz 

c. dx dy dz  d. dx dz dy 

e. dz dx dy.

Finding Volumes Using Triple Integrals
Find the volumes of the regions in Exercises 23–36.

23. The region between the cylinder z = y2 and the xy-plane that is 
bounded by the planes x = 0, x = 1, y = -1, y = 1

z

x

y

24. The region in the first octant bounded by the coordinate planes 
and the planes x + z = 1, y + 2z = 2

z

y

x

25. The region in the first octant bounded by the coordinate planes, 
the plane y + z = 2, and the cylinder x = 4 - y2

z

y

x

26. The wedge cut from the cylinder x2 + y2 = 1 by the planes 
z = -y and z = 0

z

y

x

27. The tetrahedron in the first octant bounded by the coordinate planes 
and the plane passing through (1, 0, 0), (0, 2, 0), and (0, 0, 3)

z

y

x

(1, 0, 0)

(0, 2, 0)

(0, 0, 3)

28. The region in the first octant bounded by the coordinate planes, 
the plane y = 1 - x, and the surface z = cos (px>2), 0 … x … 1

z

y

x
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29. The region common to the interiors of the cylinders x2 + y2 = 1
and x2 + z2 = 1, one-eighth of which is shown in the accompa-
nying figure

z

y
x

x2 + z2 = 1

x2 + y2 = 1

30. The region in the first octant bounded by the coordinate planes 
and the surface z = 4 - x2 - y

z

y

x

31. The region in the first octant bounded by the coordinate planes, 
the plane x + y = 4, and the cylinder y2 + 4z2 = 16

z

y

x

32. The region cut from the cylinder x2 + y2 = 4 by the plane z = 0
and the plane x + z = 3

z

y

x

33. The region between the planes x + y + 2z = 2 and 2x + 2y +
z = 4 in the first octant

34. The finite region bounded by the planes z = x, x + z = 8, z = y,
y = 8, and z = 0

35. The region cut from the solid elliptical cylinder x2 + 4y2 … 4 by 
the xy-plane and the plane z = x + 2

36. The region bounded in back by the plane x = 0, on the front and 
sides by the parabolic cylinder x = 1 - y2, on the top by the 
paraboloid z = x2 + y2, and on the bottom by the xy-plane

Average Values
In Exercises 37–40, find the average value of F(x, y, z) over the given 
region.

37. F(x, y, z) = x2 + 9 over the cube in the first octant bounded by 
the coordinate planes and the planes x = 2, y = 2, and z = 2

38. F(x, y, z) = x + y - z over the rectangular solid in the first 
octant bounded by the coordinate planes and the planes 
x = 1, y = 1, and z = 2

39. F(x, y, z) = x2 + y2 + z2 over the cube in the first octant 
bounded by the coordinate planes and the planes x = 1, y = 1,
and z = 1

40. F(x, y, z) = xyz over the cube in the first octant bounded by the 
coordinate planes and the planes x = 2, y = 2, and z = 2

Changing the Order of Integration
Evaluate the integrals in Exercises 41–44 by changing the order of 
integration in an appropriate way.

41.
L

4

0 L

1

0 L

2

2y

4 cos (x2)
22z

dx dy dz

42.
L

1

0 L

1

0 L

1

x2

12xzezy2
dy dx dz

43.
L

1

0 L

1

23 zL

ln3

0

pe2x sin py2

y2 dx dy dz

44.
L

2

0 L

4-x2

0 L

x

0

sin 2z
4 - z

dy dz dx

Theory and Examples

45. Finding an upper limit of an iterated integral Solve for a:

L

1

0 L

4-a-x2

0 L

4-x2-y

a
dz dy dx = 4

15
.

46. Ellipsoid For what value of c is the volume of the ellipsoid 
x2 + (y>2)2 + (z>c)2 = 1 equal to 8p?

47. Minimizing a triple integral What domain D in space mini-
mizes the value of the integral

l
D

(4x2 + 4y2 + z2 - 4) dV ?

  Give reasons for your answer.

48. Maximizing a triple integral What domain D in space maxi-
mizes the value of the integral

l
D

(1 - x2 - y2 - z2) dV ?

  Give reasons for your answer.
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we see that it still converges. For a general series with both positive and negative terms, we 
can apply the tests for convergence studied before to the series of absolute values of its 
terms. In doing so, we are led naturally to the following concept.

DEFINITION A series a an converges absolutely (is absolutely convergent) if 
the corresponding series of absolute values, a 0 an 0 , converges.

So the geometric series (1) is absolutely convergent. We observed, too, that it is also con-
vergent. This situation is always true: An absolutely convergent series is convergent as 
well, which we now prove.

THEOREM 12—The Absolute Convergence Test If a

q

n=1
0 an 0  converges, then a

q

n=1
an

converges.

Proof For each n,

- 0 an 0 … an … 0 an 0 , so 0 … an + 0 an 0 … 2 0 an 0.
If Σq

n=1 0 an 0  converges, then Σq
n=1 2 0 an 0  converges and, by the Direct Comparison Test, the 

nonnegative series Σq
n=1 (an + 0 an 0 ) converges. The equality an = (an + 0 an 0 ) - 0 an 0  now 

lets us express Σq
n=1 an as the difference of two convergent series: 

a

q

n=1
an = a

q

n=1
(an + 0 an 0 - 0 an 0 ) = a

q

n=1
(an + 0 an 0 ) - a

q

n=1
0 an 0 .

Therefore, a
q
n=1 an converges.

EXAMPLE 1  This example gives two series that converge absolutely.

(a) For a

q

n=1
(-1)n+1 1

n2 = 1 - 1
4

+ 1
9 - 1

16
+ g, the corresponding series of absolute 

values is the convergent series

a

q

n=1

1
n2 = 1 + 1

4
+ 1

9 + 1
16

+ g.

  The original series converges because it converges absolutely.

(b) For a

q

n=1

sin n
n2 = sin 1

1
+ sin 2

4
+ sin 3

9 + g, which contains both positive and 

negative terms, the corresponding series of absolute values is

a

q

n=1
` sin n

n2 ` = � sin 1 �
1

+
� sin 2 �

4
+ g,

  which converges by comparison with a
q
n=1(1>n2)  because � sin n � … 1 for every n.

The original series converges absolutely; therefore it converges.

Caution Be careful when using Theorem 12. A convergent series need not converge 
absolutely, as you will see in the next section.
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The Ratio Test

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio 
an+1>an . For a geometric series a arn, this rate is a constant ((arn+1)/(arn) = r), and the 
series converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is a 
powerful rule extending that result.

THEOREM 13—The Ratio Test Let a an be any series and suppose that

lim
nSq
` an+1

an
` = r.

Then (a) the series converges absolutely if r 6 1, (b) the series diverges if 
r 7 1 or r is infinite, (c) the test is inconclusive if r = 1.

Proof

(a) R * 1. Let r be a number between r and 1. Then the number P = r - r is positive. 
Since

` an+1
an
` S r,

0 an+1>an 0  must lie within P of r when n is large enough, say, for all n Ú N. In  particular,

` an+1
an
` 6 r + P = r, when n Ú N.

That is,

0 aN+1 0 6 r 0 aN 0 ,
0 aN+2 0 6 r 0 aN+1 0 6 r2 0 aN 0 ,
0 aN+3 0 6 r 0 aN+2 0 6 r3 0 aN 0 ,

f

0 aN+m 0 6 r 0 aN+m-1 0 6 rm 0 aN 0 .
Therefore.

a

q

m=N
0 am 0 = a

q

m=0
0 aN+m 0 … a

q

m=0
0 aN 0 rm = 0 aN 0 a

q

m=0
rm.

The geometric series on the right-hand side converges because 0 6 r 6 1, so the series of 
absolute values a

q
m=N 0 am 0  converges by the Comparison Test. Because adding or delet-

ing finitely many terms in a series does not affect its convergence or divergence property, 
the series a

q
n=1 0 an 0  also converges. That is, the series a an is absolutely convergent.

(b) 1 * R " H. From some index M on,

` an+1
an
` 7 1 and 0 aM 0 6 0 aM+1 0 6 0 aM+2 0 6 g.

The terms of the series do not approach zero as n becomes infinite, and the series diverges 
by the nth-Term Test.

(c) R = 1. The two series

a

q

n=1

1
n and a

q

n=1

1
n2
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  show that some other test for convergence must be used when r = 1.

For a

q

n=1

1
n : ` an+1

an
` = 1>(n + 1)

1>n = n
n + 1

S 1.

For a

q

n=1

1
n2 : ` an+1

an
` = 1>(n + 1)2

1>n2 = a n
n + 1

b2

S 12 = 1.

In both cases, r = 1, yet the first series diverges, whereas the second converges.

The Ratio Test is often effective when the terms of a series contain factorials of 
expressions involving n or expressions raised to a power involving n.

EXAMPLE 2  Investigate the convergence of the following series.

(a) a

q

n=0

2n + 5
3n (b) a

q

n=1

(2n)!
n!n!

(c) a

q

n=1

4nn!n!
(2n)!

Solution We apply the Ratio Test to each series.

(a) For the series a
q
n=0 (2n + 5)/3n,

` an+1
an
` = (2n+1 + 5)>3n+1

(2n + 5)>3n = 1
3
# 2n+1 + 5

2n + 5
= 1

3
# a2 + 5 # 2-n

1 + 5 # 2-nb S 1
3
# 2
1

= 2
3.

The series converges absolutely (and thus converges) because r = 2>3 is less than 1. This 
does not mean that 2>3 is the sum of the series. In fact,

a

q

n=0

2n + 5
3n = a

q

n=0
a23b

n

+ a

q

n=0

5
3n = 1

1 - (2/3)
+ 5

1 - (1/3)
= 21

2
.

(b) If an =
(2n)!
n!n!

, then an+1 =
(2n + 2)!

(n + 1)!(n + 1)!
and

` an+1
an
` = n!n!(2n + 2)(2n + 1)(2n)!

(n + 1)!(n + 1)!(2n)!

=
(2n + 2)(2n + 1)
(n + 1)(n + 1)

= 4n + 2
n + 1

S 4.

  The series diverges because r = 4 is greater than 1.

(c) If an = 4nn!n!/(2n)!, then

` an+1
an
` = 4n+1(n + 1)!(n + 1)!

(2n + 2)(2n + 1)(2n)!
# (2n)!

4nn!n!

=
4(n + 1)(n + 1)
(2n + 2)(2n + 1)

=
2(n + 1)
2n + 1

S 1.

  Because the limit is r = 1, we cannot decide from the Ratio Test whether the series 
converges. When we notice that an+1>an = (2n + 2)>(2n + 1), we conclude that 
an+1 is always greater than an because (2n + 2)>(2n + 1) is always greater than 1. 
Therefore, all terms are greater than or equal to a1 = 2, and the nth term does not 
approach zero as n S q. The series diverges.

The Root Test

The convergence tests we have so far for Σanwork best when the formula for an is rela-
tively simple. However, consider the series with the terms
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an = en>2n , n odd

1>2n , n even.

To investigate convergence we write out several terms of the series:

a

q

n=1
an = 1

21 + 1
22 + 3

23 + 1
24 + 5

25 + 1
26 + 7

27 + g

= 1
2

+ 1
4

+ 3
8 + 1

16
+ 5

32
+ 1

64
+ 7

128
+ g.

Clearly, this is not a geometric series. The nth term approaches zero as n S q, so the nth-
Term Test does not tell us if the series diverges. The Integral Test does not look promising. 
The Ratio Test produces

` an+1
an
` = μ

1
2n

, n odd

n + 1
2

, n even

As n S q, the ratio is alternately small and large and has no limit. However, we will see 
that the following test establishes that the series converges.

THEOREM 14—The Root Test Let a an be any series and suppose that

lim
nSq

= 2n 0 an 0 = r.

Then (a) the series converges absolutely if r 6 1, (b) the series diverges if 
r 7 1 or r is infinite, (c) the test is inconclusive if r = 1.

Proof

(a) R * 1. Choose an P 7 0 so small that r + P 6 1. Since 2n 0 an 0 S r, the terms 
2n 0 an 0  eventually get to within P of r. So there exists an index M  such that

2n 0 an 0 6 r + P when n Ú M.

  Then it is also true that

0 an 0 6 (r + P)n for n Ú M.

  Now, g
q
n=M (r + P)n, a geometric series with ratio (r + P) 6 1, converges. By the 

Comparison Test, g
q
n=M 0 an 0  converges, from which it follows that

a

q

n=1
0 an 0 = 0 a1 0 + g + 0 aM-1 0 + a

q

n=M
0 an 0

  converges. Therefore, gan converges absolutely.

(b) 1 * R " H. For all indices beyond some integer M, we have 2n 0 an 0 7 1, so that 0 an 0 7 1 for n 7 M. The terms of the series do not converge to zero. The series 
diverges by the nth-Term Test.

(c) R = 1. The series g
q
n=1 (1>n) and g

q
n=1 (1>n2) show that the test is not conclusive 

when r = 1. The first series diverges and the second converges, but in both cases 

2n 0 an 0 S 1.

EXAMPLE 3  Consider again the series with terms an = en>2n, n odd

1>2n, n even.

Does gan converge?
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Solution We apply the Root Test, finding that

2n 0 an 0 = e2
n

n>2, n odd

1>2, n even.

Therefore,

1
2

… 2n 0 an 0 … 2
n

n
2

.

Since 2n n S 1 (Section 10.1, Theorem 5), we have limnSq2n 0 an 0 = 1>2 by the Sandwich 
Theorem. The limit is less than 1, so the series converges absolutely by the Root Test.

EXAMPLE 4  Which of the following series converge, and which diverge?

(a) a

q

n=1

n2

2n (b) a

q

n=1

2n

n3 (c) a

q

n=1
a 1

1 + n
bn

Solution We apply the Root Test to each series, noting that each series has positive terms.

(a) a

q

n=1

n2

2n converges because B
n n2

2n = 2
n

n2

2n 2n
=
12n n22

2
S 12

2
6 1.

(b) a

q

n=1

2n

n3 diverges because A
n 2n

n3 = 212n n23 S 2
13 7 1.

(c) a

q

n=1
a 1

1 + n
bn

 converges because B
n a 1

1 + n
bn

= 1
1 + n

S 0 6 1.

Exercises 10.5
Using the Ratio Test
In Exercises 1–8, use the Ratio Test to determine if each series con-
verges absolutely or diverges.

1. a

q

n=1

2n

n!
2. a

q

n=1
(-1)n n + 2

3n

3. a

q

n=1

(n - 1)!

(n + 1)2 4. a

q

n=1

2n+1

n3n-1

5. a

q

n=1

n4

(-4)n 6. a

q

n=2

3n+2

ln n

7. a

q

n=1
(-1)n

n2(n + 2)!

n! 32n 8. a

q

n=1

n5n

(2n + 3) ln (n + 1)

Using the Root Test
In Exercises 9–16, use the Root Test to determine if each series con-
verges absolutely or diverges.

9. a

q

n=1

7
(2n + 5)n 10. a

q

n=1

4n

(3n)n

11. a

q

n=1
a4n + 3

3n - 5
bn

12. a

q

n=1
a- lnae2 + 1

nb b
n+1

13. a

q

n=1

-8
(3 + (1>n))2n 14. a

q

n=1
sinn a 1

2n
b

15. a

q

n=1
(-1)n a1 - 1

nb
n2

  (Hint: lim
nSq

(1 + x>n)n = ex)

16. a

q

n=2

(-1)n

n1+n

Determining Convergence or Divergence
In Exercises 17–44, use any method to determine if the series con-
verges or diverges. Give reasons for your answer.

17. a

q

n=1

n22

2n 18. a

q

n=1
(-1)n n2e-n

19. a

q

n=1
n!(-e)-n 20. a

q

n=1

n!
10n

21. a

q

n=1

n10

10n 22. a

q

n=1
an - 2

n bn
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23. a

q

n=1

2 + (-1)n

1.25n 24. a

q

n=1

(-2)n

3n

25. a

q

n=1
(-1)n a1 - 3

nb
n

26. a

q

n=1
a1 - 1

3n
bn

27. a

q

n=1

ln n
n3 28. a

q

n=1

(- ln n)n

nn

29. a

q

n=1
a1n - 1

n2b 30. a

q

n=1
a1n - 1

n2b
n

31. a

q

n=1

en

ne 32. a

q

n=1

n ln n
(-2)n

33. a

q

n=1

(n + 1)(n + 2)
n!

34. a

q

n=1
e-n(n3)

35. a

q

n=1

(n + 3)!
3!n!3n 36. a

q

n=1

n2n(n + 1)!
3nn!

37. a

q

n=1

n!
(2n + 1)!

38. a

q

n=1

n!
(-n)n

39. a

q

n=2

-n
(ln n)n 40. a

q

n=2

n
(ln n)(n>2)

41. a

q

n=1

n! ln n
n(n + 2)!

42. a

q

n=1

(-3)n

n32n

43. a

q

n=1

(n!)2

(2n)!
44. a

q

n=1

(2n + 3)(2n + 3)
3n + 2

Recursively Defined Terms Which of the series g
q
n=1an defined 

by the formulas in Exercises 45–54 converge, and which diverge? 
Give reasons for your answers.

45. a1 = 2, an+1 = 1 + sin n
n an

46. a1 = 1, an+1 = 1 + tan-1 n
n an

47. a1 = 1
3

, an+1 = 3n - 1
2n + 5

an

48. a1 = 3, an+1 = n
n + 1

an

49. a1 = 2, an+1 = 2
n an

50. a1 = 5, an+1 = 2
n

n
2

an

51. a1 = 1, an+1 = 1 + ln n
n an

52. a1 = 1
2

, an+1 = n + ln n
n + 10

an

53. a1 = 1
3

, an+1 = 2n an

54. a1 = 1
2

, an+1 = (an)n+1

Convergence or Divergence
Which of the series in Exercises 55–62 converge, and which diverge? 
Give reasons for your answers.

55. a

q

n=1

2nn!n!
(2n)!

56. a

q

n=1

(-1)n (3n)!
n!(n + 1)!(n + 2)!

57. a

q

n=1

(n!)n

(nn)2 58. a

q

n=1
(-1)n

(n!)n

n(n2)

59. a

q

n=1

nn

2(n2)
60. a

q

n=1

nn

(2n)2

61. a

q

n=1

1 # 3 # g # (2n - 1)
4n2nn!

62. a

q

n=1

1 # 3 # g # (2n - 1)

32 # 4 # g # (2n)4(3n + 1)

Theory and Examples
63. Neither the Ratio Test nor the Root Test helps with p-series. Try 

them on

a

q

n=1

1
np

  and show that both tests fail to provide information about 
convergence.

64. Show that neither the Ratio Test nor the Root Test provides infor-
mation about the convergence of

a

q

n=2

1
(ln n)p ( p constant).

65. Let an = en>2n, if n is a prime number

1>2n, otherwise.

  Does gan converge? Give reasons for your answer.

66. Show that g
q
n=1 2(n2)>n! diverges. Recall from the Laws of Expo-

nents that 2(n2) = (2n)n.

10.6 Alternating Series and Conditional Convergence

A series in which the terms are alternately positive and negative is an alternating series.
Here are three examples:

1 - 1
2

+ 1
3 - 1

4
+ 1

5
- g +

(-1)n+1

n + g (1)

-2 + 1 - 1
2

+ 1
4

- 1
8 + g +

(-1)n4
2n + g (2)

1 - 2 + 3 - 4 + 5 - 6 + g + (-1)n+1n + g (3)
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b. Find the first four terms of a series for sec x tan x. For what 
values of x should the series converge?

c. Check your result in part (b) by multiplying the series for 
sec x by the series given for tan x in Exercise 57.

59. Uniqueness of convergent power series

a. Show that if two power series g
q
n=0 anxn  and g

q
n=0 bnxn  are 

convergent and equal for all values of x in an open interval 
(-c, c), then an = bn  for every n. (Hint: Let 
ƒ(x) = g

q
n=0 anxn = g

q
n=0 bnxn. Differentiate term by term 

to show that an  and bn  both equal ƒ(n)(0)>(n!).)

b. Show that if g
q
n=0 anxn = 0 for all x in an open interval 

(-c, c), then an = 0 for every n.

60. The sum of the seriesgHn=0 (n2
,2n) To find the sum of this 

series, express 1>(1 - x) as a geometric series, differentiate both 
sides of the resulting equation with respect to x, multiply both 
sides of the result by x, differentiate again, multiply by x again, 
and set x equal to 1 >2. What do you get?

10.8 Taylor and Maclaurin Series

We have seen how geometric series can be used to generate a power series for a few func-
tions having a special form, like ƒ(x) = 1>(1 - x) or g(x) = 3>(x - 2). Now we expand 
our capability to represent a function with a power series. This section shows how func-
tions that are infinitely differentiable generate power series called Taylor series. In many 
cases, these series provide useful polynomial approximations of the generating functions. 
Because they are used routinely by mathematicians and scientists, Taylor series are con-
sidered one of the most important themes of infinite series.

Series Representations

We know from Theorem 21 that within its interval of convergence I the sum of a power 
series is a continuous function with derivatives of all orders. But what about the other way 
around? If a function ƒ(x) has derivatives of all orders on an interval, can it be expressed as 
a power series on at least part of that interval? And if it can, what are its coefficients?

We can answer the last question readily if we assume that ƒ(x) is the sum of a power 
series about x = a,

 ƒ(x) = a

q

n=0
an(x - a)n

= a0 + a1(x - a) + a2(x - a)2 + g + an(x - a)n + g

with a positive radius of convergence. By repeated term-by-term differentiation within the 
interval of convergence I, we obtain

 ƒ′(x) = a1 + 2a2(x - a) + 3a3(x - a)2 + g + nan(x - a)n-1 + g ,

 ƒ″(x) = 1 # 2a2 + 2 # 3a3(x - a) + 3 # 4a4(x - a)2 + g ,

 ƒ‴(x) = 1 # 2 # 3a3 + 2 # 3 # 4a4(x - a) + 3 # 4 # 5a5(x - a)2 + g ,

with the nth derivative, for all n, being

ƒ(n)(x) = n!an + a sum of terms with (x - a) as a factor.

Since these equations all hold at x = a, we have

ƒ′(a) = a1, ƒ″(a) = 1 # 2a2, ƒ‴(a) = 1 # 2 # 3a3,

and, in general,

ƒ(n)(a) = n!an .
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These formulas reveal a pattern in the coefficients of any power series g
q
n=0 an(x - a)n

that converges to the values of ƒ on I (“represents ƒ on I”). If there is such a series (still an 
open question), then there is only one such series, and its nth coefficient is

an =
ƒ(n)(a)

n!
.

If ƒ has a series representation, then the series must be

ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2

+ g +
ƒ(n)(a)

n!
(x - a)n + g. (1)

But if we start with an arbitrary function ƒ that is infinitely differentiable on an interval 
containing x = a and use it to generate the series in Equation (1), will the series then con-
verge to ƒ(x) at each x in the interval of convergence? The answer is maybe—for some 
functions it will but for other functions it will not (as we will see in Example 4).

Taylor and Maclaurin Series

The series on the right-hand side of Equation (1) is the most important and useful series 
we will study in this chapter.

HISTORICAL BIOGRAPHIES

Brook Taylor
(1685–1731)

Colin Maclaurin
(1698–1746)

DEFINITIONS Let ƒ be a function with derivatives of all orders throughout some 
interval containing a as an interior point. Then the Taylor series generated by ƒ
at x = a is

a

q

k=0

ƒ(k)(a)
k!

(x - a)k = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2

+ g +
ƒ(n)(a)

n!
(x - a)n + g.

The Maclaurin series of ƒ is the Taylor series generated by ƒ at x = 0, or

a

q

k=0

ƒ(k)(0)
k!

xk = ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
x2 + g +

ƒ(n)(0)
n!

xn + g.

The Maclaurin series generated by ƒ is often just called the Taylor series of ƒ.

EXAMPLE 1  Find the Taylor series generated by ƒ(x) = 1>x at a = 2. Where, if 
anywhere, does the series converge to 1 >x?

Solution We need to find ƒ(2), ƒ′(2), ƒ″(2),c. Taking derivatives we get

ƒ(x) = x-1, ƒ′(x) = -x-2, ƒ″(x) = 2!x-3, g, ƒ(n)(x) = (-1)nn!x-(n+1),

so that

ƒ(2) = 2-1 = 1
2

, ƒ′(2) = - 1
22 ,

ƒ″(2)
2!

= 2-3 = 1
23 , g,

ƒ(n)(2)
n!

=
(-1)n

2n+1 .

The Taylor series is

ƒ(2) + ƒ′(2)(x - 2) +
ƒ″(2)

2!
(x - 2)2 + g +

ƒ(n)(2)
n!

(x - 2)n + g

= 1
2

-
(x - 2)

22 +
(x - 2)2

23 - g + (-1)n
(x - 2)n

2n+1 + g.
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This is a geometric series with first term 1 >2 and ratio r = -(x - 2)>2. It converges 
absolutely for � x - 2 � 6 2 and its sum is

1>2
1 + (x - 2)>2 = 1

2 + (x - 2)
= 1

x .

In this example the Taylor series generated by ƒ(x) = 1>x at a = 2 converges to 1 >x for 
� x - 2 � 6 2 or 0 6 x 6 4.

Taylor Polynomials

The linearization of a differentiable function ƒ at a point a is the polynomial of degree one 
given by

P1(x) = ƒ(a) + ƒ′(a)(x - a).

In Section 3.11 we used this linearization to approximate ƒ(x) at values of x near a. If ƒ 
has derivatives of higher order at a, then it has higher-order polynomial approximations 
as well, one for each available derivative. These polynomials are called the Taylor polyno-
mials of ƒ.

DEFINITION Let ƒ be a function with derivatives of order k for k = 1, 2, c , N
in some interval containing a as an interior point. Then for any integer n from 0 
through N, the Taylor polynomial of order n generated by ƒ at x = a is the 
polynomial

Pn(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2 + g

+
ƒ(k)(a)

k!
(x - a)k + g +

ƒ(n)(a)
n!

(x - a)n.

We speak of a Taylor polynomial of order n rather than degree n because ƒ(n)(a) may 
be zero. The first two Taylor polynomials of ƒ(x) = cos x at x = 0, for example, are 
P0(x) = 1 and P1(x) = 1. The first-order Taylor polynomial has degree zero, not one.

Just as the linearization of ƒ at x = a provides the best linear approximation of ƒ in 
the neighborhood of a, the higher-order Taylor polynomials provide the “best” polynomial 
approximations of their respective degrees. (See Exercise 40.)

EXAMPLE 2  Find the Taylor series and the Taylor polynomials generated by ƒ(x) = ex

at x = 0.

Solution Since ƒ(n)(x) = ex and ƒ(n)(0) = 1 for every n = 0, 1, 2, c, the Taylor series 
generated by ƒ at x = 0 (see Figure 10.17) is

ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
x2 + g +

ƒ(n)(0)
n!

xn + g

= 1 + x + x2

2
+ g + xn

n!
+ g

= a

q

k=0

xk

k!
.

This is also the Maclaurin series for ex. In the next section we will see that the series con-
verges to ex at every x.

0.5

1.0

y = e x

0 0.5

1.5

2.0

2.5

3.0
y = P3(x)

y = P2(x)

y = P1(x)

1.0

x

y

−0.5

FIGURE 10.17 The graph of ƒ(x) = ex

and its Taylor polynomials

P1(x) = 1 + x

P2(x) = 1 + x + (x2>2!)
P3(x) = 1 + x + (x2>2!) + (x3>3!).

Notice the very close agreement near the 
center x = 0 (Example 2).
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The Taylor polynomial of order n at x = 0 is

Pn(x) = 1 + x + x2

2
+ g + xn

n!
.

EXAMPLE 3  Find the Taylor series and Taylor polynomials generated by ƒ(x) = cos x
at x = 0.

Solution The cosine and its derivatives are

ƒ(x) = cos x, ƒ′(x) = -sin x,

ƒ″(x) = -cos x, ƒ(3)(x) = sin x,

f f

ƒ(2n)(x) = (-1)n cos x, ƒ(2n+1)(x) = (-1)n+1 sin x.

At x = 0, the cosines are 1 and the sines are 0, so

ƒ(2n)(0) = (-1)n, ƒ(2n+1)(0) = 0.

The Taylor series generated by ƒ at 0 is

ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
x2 +

ƒ‴(0)
3!

x3 + g +
ƒ(n)(0)

n!
xn + g

= 1 + 0 # x - x2

2!
+ 0 # x3 + x4

4!
+ g + (-1)n x2n

(2n)!
+ g

= a

q

k=0

(-1)kx2k

(2k)!
.

This is also the Maclaurin series for cos x. Notice that only even powers of x occur in the 
Taylor series generated by the cosine function, which is consistent with the fact that it is an 
even function. In Section 10.9, we will see that the series converges to cos x at every x.

Because ƒ(2n+1)(0) = 0, the Taylor polynomials of orders 2n and 2n + 1 are identical:

P2n(x) = P2n+1(x) = 1 - x2

2!
+ x4

4!
- g + (-1)n x2n

(2n)!
.

Figure 10.18 shows how well these polynomials approximate ƒ(x) = cos x near x = 0.
Only the right-hand portions of the graphs are given because the graphs are symmetric 
about the y-axis.

0 1

1
y = cos x

2

−1

−2

2 3 4 5 6 7 9

P0
P4 P8 P12 P16

P2 P6 P10 P14 P18

8
x

y

FIGURE 10.18 The polynomials

P2n(x) = a

n

k=0

(-1)kx2k

(2k)!

converge to cos x as n S q. We can deduce the behavior of
cos x arbitrarily far away solely from knowing the values of the 
cosine and its derivatives at x = 0 (Example 3).
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EXAMPLE 4  It can be shown (though not easily) that

ƒ(x) = e0, x = 0

e-1>x2
, x ≠ 0

(Figure 10.19) has derivatives of all orders at x = 0 and that ƒ(n)(0) = 0 for all n. This 
means that the Taylor series generated by ƒ at x = 0 is

ƒ(0) + ƒ′(0)x +
ƒ″(0)

2!
x2 + g +

ƒ(n)(0)
n!

xn + g

= 0 + 0 # x + 0 # x2 + g + 0 # xn + g

= 0 + 0 + g + 0 + g.

The series converges for every x (its sum is 0) but converges to ƒ(x) only at x = 0. That is, 
the Taylor series generated by ƒ(x) in this example is not equal to the function ƒ(x) over 
the entire interval of convergence.

Two questions still remain.

1. For what values of x can we normally expect a Taylor series to converge to its generat-
ing function?

2. How accurately do a function’s Taylor polynomials approximate the function on a 
given interval?

The answers are provided by a theorem of Taylor in the next section.

0 1 2

1

−1−2

e−1�x2
, x ≠ 0

 0 , x = 0
y =

x

y

FIGURE 10.19 The graph of the con-
tinuous extension of y = e-1>x2

 is so flat 
at the origin that all of its derivatives there 
are zero (Example 4). Therefore its Taylor 
series, which is zero everywhere, is not the 
function itself.

Exercises 10.8
Finding Taylor Polynomials
In Exercises 1–10, find the Taylor polynomials of orders 0, 1, 2, and 3 
generated by ƒ at a.

1. ƒ(x) = e2x, a = 0 2. ƒ(x) = sin x, a = 0

3. ƒ(x) = ln x, a = 1 4. ƒ(x) = ln (1 + x), a = 0

5. ƒ(x) = 1>x, a = 2 6. ƒ(x) = 1>(x + 2), a = 0

7. ƒ(x) = sin x, a = p>4 8. ƒ(x) = tan x, a = p>4
9. ƒ(x) = 2x, a = 4 10. ƒ(x) = 21 - x, a = 0

Finding Taylor Series at x = 0 (Maclaurin Series)
Find the Maclaurin series for the functions in Exercises 11–22.

11. e-x 12. xex

13. 1
1 + x

14.
2 + x
1 - x

15. sin 3x 16. sin
x
2

17. 7 cos (-x) 18. 5 cos px

19. cosh x = ex + e-x

2
20. sinh x = ex - e-x

2

21. x4 - 2x3 - 5x + 4 22.
x2

x + 1

Finding Taylor and Maclaurin Series
In Exercises 23–32, find the Taylor series generated by ƒ at x = a.

23. ƒ(x) = x3 - 2x + 4, a = 2

24. ƒ(x) = 2x3 + x2 + 3x - 8, a = 1

25. ƒ(x) = x4 + x2 + 1, a = -2

26. ƒ(x) = 3x5 - x4 + 2x3 + x2 - 2, a = -1

27. ƒ(x) = 1>x2, a = 1

28. ƒ(x) = 1>(1 - x)3, a = 0

29. ƒ(x) = ex, a = 2

30. ƒ(x) = 2x, a = 1

31. ƒ(x) = cos (2x + (p>2)), a = p>4
32. ƒ(x) = 2x + 1, a = 0

In Exercises 33–36, find the first three nonzero terms of the Maclaurin 
series for each function and the values of x for which the series con-
verges absolutely.

33. ƒ(x) = cos x - (2>(1 - x))

34. ƒ(x) = (1 - x + x2)ex

35. ƒ(x) = (sin x) ln (1 + x)

36. ƒ(x) = x sin2 x

Theory and Examples
37. Use the Taylor series generated by ex at x = a to show that

ex = ea c 1 + (x - a) +
(x - a)2

2!
+ g d .

38. (Continuation of Exercise 37.) Find the Taylor series generated by 
ex at x = 1. Compare your answer with the formula in Exercise 37.

39. Let ƒ(x) have derivatives through order n at x = a. Show that the 
Taylor polynomial of order n and its first n derivatives have the 
same values that ƒ and its first n derivatives have at x = a.
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40. Approximation properties of Taylor polynomials Suppose 
that ƒ(x) is differentiable on an interval centered at x = a and that 
g(x) = b0 + b1(x - a) + g + bn(x - a)n is a polynomial of 
degree n with constant coefficients b0, . . . , bn. Let E(x) =
ƒ(x) - g(x). Show that if we impose on g the conditions

i) E(a) = 0 The approximation error is zero at x = a.

ii) lim
xSa

E(x)
(x - a)n = 0,

The error is negligible when 
compared to (x - a)n.

then

g(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
 (x - a)2 + g

+
ƒ(n)(a)

n!
 (x - a)n.

Thus, the Taylor polynomial Pn(x) is the only polynomial of 
degree less than or equal to n whose error is both zero at 
x = a and negligible when compared with (x - a)n.

Quadratic Approximations The Taylor polynomial of order 2 gen-
erated by a twice-differentiable function ƒ(x) at x = a is called the 
quadratic approximation of ƒ at x = a. In Exercises 41–46, find the 
(a) linearization (Taylor polynomial of order 1) and (b) quadratic 
approximation of ƒ at x = 0.

41. ƒ(x) = ln (cos x) 42. ƒ(x) = esin x

43. ƒ(x) = 1>21 - x2 44. ƒ(x) = cosh x

45. ƒ(x) = sin x 46. ƒ(x) = tan x

10.9 Convergence of Taylor Series

In the last section we asked when a Taylor series for a function can be expected to con-
verge to that (generating) function. We answer the question in this section with the follow-
ing theorem.

THEOREM 23—Taylor’s Theorem If ƒ and its first n derivatives ƒ′, ƒ″,c , ƒ(n)

are continuous on the closed interval between a and b, and ƒ(n) is differentiable 
on the open interval between a and b, then there exists a number c between a and 
b such that

 ƒ(b) = ƒ(a) + ƒ′(a)(b - a) +
ƒ″(a)

2!
 (b - a)2 + g

+
ƒ(n)(a)

n!
 (b - a)n +

ƒ(n+1)(c)
(n + 1)!

 (b - a)n+1.

Taylor’s Theorem is a generalization of the Mean Value Theorem (Exercise 45). There is a 
proof of Taylor’s Theorem at the end of this section.

When we apply Taylor’s Theorem, we usually want to hold a fixed and treat b as an 
independent variable. Taylor’s formula is easier to use in circumstances like these if we 
change b to x. Here is a version of the theorem with this change.

Taylor’s Formula
If ƒ has derivatives of all orders in an open interval I containing a, then for each 
positive integer n and for each x in I,

 ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
 (x - a)2 + g

+
ƒ(n)(a)

n!
 (x - a)n + Rn(x), (1)

where

Rn(x) =
ƒ(n+1)(c)
(n + 1)!

(x - a)n+1 for some c between a and x. (2)
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When we state Taylor’s theorem this way, it says that for each x∊I,

ƒ(x) = Pn(x) + Rn(x).

The function Rn(x) is determined by the value of the (n + 1)st derivative ƒ(n+1) at a point 
c that depends on both a and x, and that lies somewhere between them. For any value of n
we want, the equation gives both a polynomial approximation of ƒ of that order and a for-
mula for the error involved in using that approximation over the interval I.

Equation (1) is called Taylor’s formula. The function Rn(x) is called the remainder 
of order n or the error term for the approximation of ƒ by Pn(x) over I.

If Rn(x) S 0 as n S q for all x∊I, we say that the Taylor series generated by ƒ
at x = a converges to ƒ on I, and we write

ƒ(x) = a

q

k=0

ƒ(k)(a)
k!

(x - a)k.

Often we can estimate Rn without knowing the value of c, as the following example illustrates.

EXAMPLE 1  Show that the Taylor series generated by ƒ(x) = ex at x = 0 converges 
to ƒ(x) for every real value of x.

Solution The function has derivatives of all orders throughout the interval I = (-q, q).
Equations (1) and (2) with ƒ(x) = ex and a = 0 give

ex = 1 + x + x2

2!
+ g + xn

n!
+ Rn(x)

Polynomial from 
Section 10.8, Example 2

and

Rn(x) = ec

(n + 1)!
xn+1 for some c between 0 and x.

Since ex is an increasing function of x, ec lies between e0 = 1 and ex. When x is negative, 
so is c, and ec 6 1. When x is zero, ex = 1 so that Rn(x) = 0. When x is positive, so is c,
and ec 6 ex. Thus, for Rn(x) given as above,

�Rn(x) � …
� x � n+1

(n + 1)!
when x … 0,  ec 6 1

and

�Rn(x) � 6 ex xn+1

(n + 1)!
when x 7 0. ec 6 ex

Finally, because

lim
nSq

xn+1

(n + 1)!
= 0 for every x, Section 10.1, Theorem 5

lim
nSq

Rn(x) = 0, and the series converges to ex for every x. Thus,

ex = a

q

k=0

xk

k!
= 1 + x + x2

2!
+ g + xk

k!
+ g. (3)

We can use the result of Example 1 with x = 1 to write

e = 1 + 1 + 1
2!

+ g + 1
n!

+ Rn(1),

The Number e as a Series

e = a

q

n=0

1
n!
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where for some c between 0 and 1,

Rn(1) = ec 1
(n + 1)!

6 3
(n + 1)!

. ec 6 e1 6 3

Estimating the Remainder

It is often possible to estimate Rn(x) as we did in Example 1. This method of estimation is 
so convenient that we state it as a theorem for future reference.

THEOREM 24—The Remainder Estimation Theorem If there is a positive con-
stant M such that � ƒ(n+1)(t) � … M  for all t between x and a, inclusive, then the 
remainder term Rn(x) in Taylor’s Theorem satisfies the inequality

�Rn(x) � … M
� x - a � n+1

(n + 1)!
.

If this inequality holds for every n and the other conditions of Taylor’s Theorem 
are satisfied by ƒ, then the series converges to ƒ(x).

The next two examples use Theorem 24 to show that the Taylor series generated by 
the sine and cosine functions do in fact converge to the functions themselves.

EXAMPLE 2  Show that the Taylor series for sin x at x = 0 converges for all x.

Solution The function and its derivatives are

ƒ(x) = sin x, ƒ′(x) = cos x,

ƒ″(x) = -sin x, ƒ‴(x) = -cos x,

f f

ƒ(2k)(x) = (-1)k sin x, ƒ(2k+1)(x) = (-1)k cos x,

so

f (2k)(0) = 0 and f (2k+1)(0) = (-1)k.

The series has only odd-powered terms and, for n = 2k + 1, Taylor’s Theorem gives

sin x = x - x3

3!
+ x5

5!
- g +

(-1)kx2k+1

(2k + 1)!
+ R2k+1(x).

All the derivatives of sin x have absolute values less than or equal to 1, so we can apply the 
Remainder Estimation Theorem with M = 1 to obtain

�R2k+1(x) � … 1 # � x � 2k+2

(2k + 2)!
.

From Theorem 5, Rule 6, we have ( � x � 2k+2>(2k + 2)!) S 0 as k S q, whatever the value 
of x, so R2k+1(x) S 0 and the Maclaurin series for sin x converges to sin x for every x.
Thus,

sin x = a

q

k=0

(-1)kx2k+1

(2k + 1)!
= x - x3

3!
+ x5

5!
- x7

7!
+ g. (4)
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EXAMPLE 3  Show that the Taylor series for cos x at x = 0 converges to cos x for 
every value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section 10.8, 
Example 3) to obtain Taylor’s formula for cos x with n = 2k:

cos x = 1 - x2

2!
+ x4

4!
- g + (-1)k x2k

(2k)!
+ R2k(x).

Because the derivatives of the cosine have absolute value less than or equal to 1, the 
Remainder Estimation Theorem with M = 1  gives

�R2k(x) � … 1 # � x � 2k+1

(2k + 1)!
.

For every value of x, R2k(x) S 0 as k S q. Therefore, the series converges to cos x for 
every value of x. Thus,

cos x = a

q

k=0

(-1)kx2k

(2k)!
= 1 - x2

2!
+ x4

4!
- x6

6!
+ g. (5)

Using Taylor Series

Since every Taylor series is a power series, the operations of adding, subtracting, and mul-
tiplying Taylor series are all valid on the intersection of their intervals of convergence.

EXAMPLE 4  Using known series, find the first few terms of the Taylor series for the 
given function using power series operations.

(a) 1
3 (2x + x cos x) (b) ex cos x

Solution

(a) 1
3 (2x + x cos x) = 2

3 x + 1
3 x a1 - x2

2!
+ x4

4!
- g + (-1)k x2k

(2k)!
+ gb

= 2
3 x + 1

3 x - x3

3!
+ x5

3 # 4!
- g = x - x3

6
+ x5

72
- g

(b) ex cos x = a1 + x + x2

2!
+ x3

3!
+ x4

4!
+ gb # a1 - x2

2!
+ x4

4!
- gb

= a1 + x + x2

2!
+ x3

3!
+ x4

4!
+ gb - ax2

2!
+ x3

2!
+ x4

2!2!
+ x5

2!3!
+ gb

+ ax4

4!
+ x5

4!
+ x6

2!4!
+ gb + g

= 1 + x - x3

3 - x4

6
+ g

By Theorem 20, we can use the Taylor series of the function ƒ to find the Taylor series 
of ƒ(u(x)) where u(x) is any continuous function. The Taylor series resulting from this 
substitution will converge for all x such that u(x) lies within the interval of convergence of 

Multiply the first 
series by each term 
of the second series.
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the Taylor series of ƒ. For instance, we can find the Taylor series for cos 2x by substituting 
2x for x in the Taylor series for cos x:

cos 2x = a

q

k=0

(-1)k(2x)2k

(2k)!
= 1 -

(2x)2

2!
+

(2x)4

4!
-

(2x)6

6!
+ g  Eq. (5) with 2x for x

= 1 - 22x2

2!
+ 24x4

4!
- 26x6

6!
+ g

= a

q

k=0
(-1)k 22kx2k

(2k)!
.

EXAMPLE 5  For what values of x can we replace sin x by x - (x3>3!)  with an error 
of magnitude no greater than 3 * 10-4?

Solution Here we can take advantage of the fact that the Taylor series for sin x is an 
alternating series for every nonzero value of x. According to the Alternating Series Estima-
tion Theorem (Section 10.6), the error in truncating

sin x = x - x3

3!
+ x5

5!
- g

after (x3>3!)  is no greater than

` x5

5!
` = � x � 5

120
.

Therefore the error will be less than or equal to 3 * 10-4 if

� x � 5

120
6 3 * 10-4 or � x � 6 25 360 * 10-4 ≈ 0.514.

Rounded down, 
to be safe

The Alternating Series Estimation Theorem tells us something that the Remainder 
Estimation Theorem does not: namely, that the estimate x - (x3>3!)  for sin x is an under-
estimate when x is positive, because then x5>120 is positive.

Figure 10.20 shows the graph of sin x, along with the graphs of a number of its 
approximating Taylor polynomials. The graph of P3(x) = x - (x3>3!)  is almost indistin-
guishable from the sine curve when 0 … x … 1.

1

y = sin x

2 3 4 8 9

P1 P5

P3 P7 P11 P15 P19

P9 P13 P17

5 6 70

1

2

−1

−2

x

y

FIGURE 10.20 The polynomials

P2n+1(x) = a

n

k=0

(-1)kx2k+1

(2k + 1)!

converge to sin x as n S q. Notice how closely P3(x) approxi-
mates the sine curve for x … 1 (Example 5).
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A Proof of Taylor’s Theorem

We prove Taylor’s theorem assuming a 6 b. The proof for a 7 b is nearly the same.
The Taylor polynomial

Pn(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(a)

2!
(x - a)2 + g +

f (n)(a)
n!

(x - a)n

and its first n derivatives match the function ƒ and its first n derivatives at x = a. We do 
not disturb that matching if we add another term of the form K(x - a)n+1, where K is any 
constant, because such a term and its first n derivatives are all equal to zero at x = a. The 
new function

fn(x) = Pn(x) + K(x - a)n+1

and its first n derivatives still agree with ƒ and its first n derivatives at x = a.
We now choose the particular value of K that makes the curve y = fn(x) agree with 

the original curve y = ƒ(x) at x = b. In symbols,

ƒ(b) = Pn(b) + K(b - a)n+1, or K =
ƒ(b) - Pn(b)

(b - a)n+1 . (6)

With K defined by Equation (6), the function

F(x) = ƒ(x) - fn(x)

measures the difference between the original function ƒ and the approximating function 
fn for each x in 3a, b4 .

We now use Rolle’s Theorem (Section 4.2). First, because F(a) = F(b) = 0 and both 
F and F′ are continuous on 3a, b4 , we know that

F′(c1) = 0 for some c1 in (a, b).

Next, because F′(a) = F′(c1) = 0 and both F′ and F″ are continuous on 3a, c14 , we know 
that

F″(c2) = 0 for some c2 in (a, c1).

Rolle’s Theorem, applied successively to F″, F‴, . . . , F (n-1), implies the existence of

c3 in (a, c2) such that F‴(c3) = 0,

c4 in (a, c3) such that F (4)(c4) = 0,

f

cn in (a, cn-1) such that F (n)(cn) = 0.

Finally, because F (n) is continuous on 3a, cn4  and differentiable on (a, cn), and 
F (n)(a) = F (n)(cn) = 0, Rolle’s Theorem implies that there is a number cn+1 in (a, cn) such 
that

F (n+1)(cn+1) = 0. (7)

If we differentiate F(x) = ƒ(x) - Pn(x) - K(x - a)n+1 a total of n + 1 times, we get

F (n+1)(x) = ƒ(n+1)(x) - 0 - (n + 1)!K. (8)

Equations (7) and (8) together give

K =
ƒ(n+1)(c)
(n + 1)!

for some number c = cn+1 in (a, b). (9)
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Equations (6) and (9) give

ƒ(b) = Pn(b) +
ƒ(n+1)(c)
(n + 1)!

(b - a)n+1.

This concludes the proof.

Exercises 10.9
38. If cos x is replaced by 1 - (x2>2)  and � x � 6 0.5, what estimate 

can be made of the error? Does 1 - (x2>2)  tend to be too large, 
or too small? Give reasons for your answer.

39. How close is the approximation sin x = x when � x � 6 10-3 ?
For which of these values of x is x 6 sin x?

40. The estimate 21 + x = 1 + (x>2) is used when x is small. Esti-
mate the error when � x � 6 0.01.

41. The approximation ex = 1 + x + (x2>2)  is used when x is small. 
Use the Remainder Estimation Theorem to estimate the error 
when � x � 6 0.1.

42. (Continuation of Exercise 41.) When x 6 0, the series for ex is 
an alternating series. Use the Alternating Series Estimation Theo-
rem to estimate the error that results from replacing ex by 
1 + x + (x2>2) when -0.1 6 x 6 0. Compare your estimate 
with the one you obtained in Exercise 41.

Theory and Examples
43. Use the identity sin2 x = (1 - cos 2x)>2 to obtain the Maclaurin 

series for sin2 x. Then differentiate this series to obtain the 
Maclaurin series for 2 sin x cos x. Check that this is the series for 
sin 2x.

44. (Continuation of Exercise 43.) Use the identity cos2 x =
cos 2x + sin2 x to obtain a power series for cos2 x.

45. Taylor’s Theorem and the Mean Value Theorem Explain
how the Mean Value Theorem (Section 4.2, Theorem 4) is a spe-
cial case of Taylor’s Theorem.

46. Linearizations at inflection points Show that if the graph of a 
twice-differentiable function ƒ(x) has an inflection point at 
x = a, then the linearization of ƒ at x = a is also the quadratic 
approximation of ƒ at x = a. This explains why tangent lines fit 
so well at inflection points.

47. The (second) second derivative test Use the equation

ƒ(x) = ƒ(a) + ƒ′(a)(x - a) +
ƒ″(c2)

2
(x - a)2

  to establish the following test.
Let ƒ have continuous first and second derivatives and sup-

pose that ƒ′(a) = 0. Then

a. ƒ has a local maximum at a if ƒ″ … 0 throughout an interval 
whose interior contains a;

b. ƒ has a local minimum at a if ƒ″ Ú 0 throughout an interval 
whose interior contains a.

Finding Taylor Series
Use substitution (as in Example 4) to find the Taylor series at x = 0
of the functions in Exercises 1–10.

4. sin apx
2
b 5. cos 5x2 6. cos 1x2>3>222

7. ln (1 + x2) 8. tan-1 (3x4) 9. 1

1 + 3
4 x3

1. e-5x 2. e-x>2 3. 5 sin (-x)

10. 1
2 - x

Use power series operations to find the Taylor series at x = 0 for the 
functions in Exercises 11–28.

11. xex 12. x2 sin x 13.
x2

2
- 1 + cos x

14. sin x - x + x3

3!
15. x cos px 16. x2 cos (x2)

17. cos2 x (Hint: cos2 x = (1 + cos 2x)>2.)

18. sin2 x 19.
x2

1 - 2x
20. x ln (1 + 2x)

21. 1
(1 - x)2 22. 2

(1 - x)3 23. x tan-1 x2

24. sin x # cos x 25. ex + 1
1 + x

26. cos x - sin x

27.
x
3

ln (1 + x2) 28. ln (1 + x) - ln (1 - x)

Find the first four nonzero terms in the Maclaurin series for the func-
tions in Exercises 29–34.

29. ex sin x 30.
ln (1 + x)

1 - x
31. (tan-1 x)2

32. cos2 x # sin x 33. esin x 34. sin (tan-1 x)

Error Estimates
35. Estimate the error if P3(x) = x - (x3>6)  is used to estimate the 

value of sin x at x = 0.1.

36. Estimate the error if P4(x) = 1 + x + (x2>2) + (x3>6) + (x4>24)
is used to estimate the value of ex at x = 1>2.

37. For approximately what values of x can you replace sin x by 
x - (x3>6)  with an error of magnitude no greater than 5 * 10-4 ?
Give reasons for your answer.
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The first two of these equations uniquely determine the Cartesian coordinates x and y
given the polar coordinates r and u. On the other hand, if x and y are given, the third 
equation gives two possible choices for r (a positive and a negative value). For each 
(x, y) ≠ (0, 0), there is a unique u∊ 30, 2p) satisfying the first two equations, each then 
giving a polar coordinate representation of the Cartesian point (x, y). The other polar coor-
dinate representations for the point can be determined from these two, as in Example 1.

Equations Relating Polar and Cartesian Coordinates

x = r cos u, y = r sin u, r2 = x2 + y2, tan u =
y
x

x

y

Common
origin

0 Initial rayx

y
r

P(x, y) = P(r, u)

u = 0, r ≥ 0u

Ray u = p
2

FIGURE 11.25 The usual way to relate 
polar and Cartesian coordinates.

becomes the positive y-axis (Figure 11.25). The two coordinate systems are then related 
by the following equations.

EXAMPLE 4  Here are some plane curves expressed in terms of both polar coordinate 
and Cartesian coordinate equations.

Polar equation Cartesian equivalent

r cos u = 2 x = 2

r2 cos u sin u = 4 xy = 4

r2 cos2u - r2 sin2u = 1 x2 - y2 = 1

r = 1 + 2r cos u y2 - 3x2 - 4x - 1 = 0

r = 1 - cos u x4 + y4 + 2x2y2 + 2x3 + 2xy2 - y2 = 0

Some curves are more simply expressed with polar coordinates; others are not.

EXAMPLE 5  Find a polar equation for the circle x2 + (y - 3)2 = 9 (Figure 11.26).

Solution We apply the equations relating polar and Cartesian coordinates:

x2 + (y - 3)2 = 9

x2 + y2 - 6y + 9 = 9 Expand ( y - 3)2.

x2 + y2 - 6y = 0 Cancelation

r2 - 6r sin u = 0 x2 + y2 = r2, y = r sin u

r = 0 or r - 6 sin u = 0

r = 6 sin u Includes both possibilities

EXAMPLE 6  Replace the following polar equations by equivalent Cartesian equa-
tions and identify their graphs.

(a) r cos u = -4

(b) r2 = 4r cos u

(c) r = 4
2 cos u - sin u

Solution We use the substitutions r cos u = x, r sin u = y, and r2 = x2 + y2.

(a) r cos u = -4

The Cartesian equation: r cos u = -4

x = -4 Substitution

The graph: Vertical line through x = -4 on the x@axis

x

y

(0, 3)

0

x2 + ( y − 3)2 = 9
or

r = 6 sin u

FIGURE 11.26 The circle in Example 5.
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(b) r2 = 4r cos u

The Cartesian equation: r2 = 4r cos u

x2 + y2 = 4x

x2 - 4x + y2 = 0

x2 - 4x + 4 + y2 = 4

(x - 2)2 + y2 = 4

Substitution

Completing the square

Factoring

The graph: Circle, radius 2, center (h, k) = (2, 0)

(c) r = 4
2 cos u - sin u

The Cartesian equation: r(2 cos u - sin u) = 4

2r cos u - r sin u = 4

2x - y = 4

y = 2x - 4

Multiplying by r

Substitution

Solve for y.

The graph: Line, slope m = 2, y@intercept b = -4

Polar Coordinates
1. Which polar coordinate pairs label the same point?

  a. (3, 0) b. (-3, 0) c. (2, 2p>3)

  d. (2, 7p>3) e. (-3, p) f. (2, p>3)

  g. (-3, 2p) h. (-2, -p>3)

2. Which polar coordinate pairs label the same point?

  a. (-2, p>3) b. (2, -p>3) c. (r, u)

  d. (r, u + p) e. (-r, u) f. (2, -2p>3)

  g. (-r, u + p) h. (-2, 2p>3)

3. Plot the following points (given in polar coordinates). Then find 
all the polar coordinates of each point.

  a. (2, p>2) b. (2, 0)

  c. (-2, p>2) d. (-2, 0)

4. Plot the following points (given in polar coordinates). Then find 
all the polar coordinates of each point.

  a. (3, p>4) b. (-3, p>4)

  c. (3, -p>4) d. (-3, -p>4)

Polar to Cartesian Coordinates
5. Find the Cartesian coordinates of the points in Exercise 1.

6. Find the Cartesian coordinates of the following points (given in 
polar coordinates).

  a. 122, p>42 b. (1, 0)

  c. (0, p>2) d. 1-22, p>42

  e. (-3, 5p>6) f. (5, tan-1(4>3))

  g. (-1, 7p) h. 1223, 2p>32
Cartesian to Polar Coordinates
7. Find the polar coordinates, 0 … u 6 2p and r Ú 0, of the fol-

lowing points given in Cartesian coordinates.

a. (1, 1) b. (-3, 0)

  c. 123, -12 d. (-3, 4)

8. Find the polar coordinates, -p … u 6 p and r Ú 0, of the fol-
lowing points given in Cartesian coordinates.

  a. (-2, -2) b. (0, 3)

c. 1-23, 12 d. (5, -12)

9. Find the polar coordinates, 0 … u 6 2p and r … 0, of the fol-
lowing points given in Cartesian coordinates.

  a. (3, 3) b. (-1, 0)

  c. 1-1, 232 d. (4, -3)

10. Find the polar coordinates, -p … u 6 2p and r … 0, of the fol-
lowing points given in Cartesian coordinates.

  a. (-2, 0) b. (1, 0)

  c. (0, -3) d. a23
2

,
1
2
b

Graphing Sets of Polar Coordinate Points
Graph the sets of points whose polar coordinates satisfy the equations 
and inequalities in Exercises 11–26.

11. r = 2 12. 0 … r … 2

13. r Ú 1 14. 1 … r … 2

Exercises 11.3
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15. 0 … u … p>6, r Ú 0 16. u = 2p>3, r … -2

17. u = p>3, -1 … r … 3 18. u = 11p>4, r Ú -1

19. u = p>2, r Ú 0 20. u = p>2, r … 0

21. 0 … u … p, r = 1 22. 0 … u … p, r = -1

23. p>4 … u … 3p>4, 0 … r … 1

24. -p>4 … u … p>4, -1 … r … 1

25. -p>2 … u … p>2, 1 … r … 2

26. 0 … u … p>2, 1 … � r � … 2

Polar to Cartesian Equations
Replace the polar equations in Exercises 27–52 with equivalent Carte-
sian equations. Then describe or identify the graph.

27. r cos u = 2 28. r sin u = -1

29. r sin u = 0 30. r cos u = 0

31. r = 4 csc u 32. r = -3 sec u

33. r cos u + r sin u = 1 34. r sin u = r cos u

35. r2 = 1 36. r2 = 4r sin u

37. r = 5
sin u - 2 cos u

38. r2 sin 2u = 2

39. r = cot u csc u 40. r = 4 tan u sec u

41. r = csc u er cos u 42. r sin u = ln r + ln cos u

43. r2 + 2r2 cos u sin u = 1 44. cos2u = sin2u

45. r2 = -4r cos u 46. r2 = -6r sin u

47. r = 8 sin u 48. r = 3 cos u

49. r = 2 cos u + 2 sin u 50. r = 2 cos u - sin u

51. r sin au + p
6
b = 2 52. r sin a2p

3
- ub = 5

Cartesian to Polar Equations
Replace the Cartesian equations in Exercises 53–66 with equivalent 
polar equations.

53. x = 7 54. y = 1 55. x = y

56. x - y = 3 57. x2 + y2 = 4 58. x2 - y2 = 1

59.
x2

9
+

y2

4
= 1 60. xy = 2

61. y2 = 4x 62. x2 + xy + y2 = 1

63. x2 + (y - 2)2 = 4 64. (x - 5)2 + y2 = 25

65. (x - 3)2 + (y + 1)2 = 4 66. (x + 2)2 + (y - 5)2 = 16

67. Find all polar coordinates of the origin.

68. Vertical and horizontal lines

  a. Show that every vertical line in the xy-plane has a polar equa-
tion of the form r = a sec u.

  b. Find the analogous polar equation for horizontal lines in the 
xy-plane.

11.4 Graphing Polar Coordinate Equations

It is often helpful to graph an equation expressed in polar coordinates in the Cartesian xy-
plane. This section describes some techniques for graphing these equations using symme-
tries and tangents to the graph.

Symmetry

Figure 11.27 illustrates the standard polar coordinate tests for symmetry. The following 
summary says how the symmetric points are related.

Symmetry Tests for Polar Graphs in the Cartesian xy-Plane

1. Symmetry about the x-axis: If the point (r, u) lies on the graph, then the point 
(r, -u) or (-r, p - u) lies on the graph (Figure 11.27a).

2. Symmetry about the y-axis: If the point (r, u) lies on the graph, then the point 
(r, p - u) or (-r, -u) lies on the graph (Figure 11.27b).

3. Symmetry about the origin: If the point (r, u) lies on the graph, then the point 
(-r, u) or (r, u + p) lies on the graph (Figure 11.27c).
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Slope of the Curve r = ƒ(U) in the Cartesian xy-Plane

dy
dx
`
(r, u)

=
ƒ′(u) sin u + ƒ(u) cos u
ƒ′(u) cos u - ƒ(u) sin u

provided dx>du ≠ 0 at (r, u).

If the curve r = ƒ(u) passes through the origin at u = u0, then ƒ(u0) = 0, and the slope 
equation gives

dy
dx
`
(0, u0)

=
ƒ′(u0) sin u0
ƒ′(u0) cos u0

= tan u0.

If the graph of r = ƒ(u) passes through the origin at the value u = u0, the slope of the 
curve there is tan u0. The reason we say “slope at (0, u0)” and not just “slope at the origin” 
is that a polar curve may pass through the origin (or any point) more than once, with dif-
ferent slopes at different u@values. This is not the case in our first example, however.

Slope

The slope of a polar curve r = ƒ(u) in the xy-plane is still given by dy >dx, which is not 
r′ = dƒ>du. To see why, think of the graph of ƒ as the graph of the parametric equations

x = r cos u = ƒ(u) cos u, y = r sin u = ƒ(u) sin u.

If ƒ is a differentiable function of u, then so are x and y and, when dx>du ≠ 0, we can 
calculate dy >dx from the parametric formula

dy
dx

=
dy>du
dx>du

Section 11.2, Eq. (1) 
with t = u

=

d
du

(ƒ(u) # sin u)

d
du

(ƒ(u) # cos u)

=

df
du

sin u + ƒ(u) cos u

df
du

cos u - ƒ(u) sin u
Product Rule for derivatives

Therefore we see that dy>dx is not the same as dƒ>du.

x

y

(r, u)

(r, −u)
or (−r, p − u)

0

(a) About the x-axis

x

y

0

0

(b) About the y-axis

(r, p − u)
or (−r, −u) (r, u)

x

y

(−r, u) or (r, u + p)

(c) About the origin

(r, u)

FIGURE 11.27 Three tests for 
symmetry in polar coordinates.

EXAMPLE 1  Graph the curve r = 1 - cos u in the Cartesian xy-plane.

Solution The curve is symmetric about the x-axis because

(r, u) on the graph 1 r = 1 - cos u

1 r = 1 - cos (-u) cos u = cos (-u)

1 (r, -u) on the graph.
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As u increases from 0 to p, cos u decreases from 1 to -1, and r = 1 - cos u increases 
from a minimum value of 0 to a maximum value of 2. As u continues on from p to 
2p, cos u increases from -1 back to 1 and r decreases from 2 back to 0. The curve starts 
to repeat when u = 2p because the cosine has period 2p.

The curve leaves the origin with slope tan (0) = 0 and returns to the origin with slope 
tan (2p) = 0.

We make a table of values from u = 0 to u = p, plot the points, draw a smooth curve 
through them with a horizontal tangent at the origin, and reflect the curve across the x-axis
to complete the graph (Figure 11.28). The curve is called a cardioid because of its heart 
shape.

(b)

x

y
r2 = 4 cos u

2 2
0

Loop for r = −2
"

cos u,

≤ u ≤ p
2

p
2

− ≤ u ≤ p
2

p
2

−

Loop for r = 2
"

cos u,

FIGURE 11.29 The graph of r2 = 4 cos u. The arrows show the direction of increas-
ing u. The values of r in the table are rounded (Example 2).

U cos U r = t22cos U

0 1 {2

{
p
6
23
2

≈{1.9

{
p
4

1

22
≈{1.7

{
p
3

1
2

≈{1.4

{
p
2

0 0

(a)

U r = 1 − cos U

0 0

p
3

1
2

p
2

1

2p
3

3
2

p 2

EXAMPLE 2  Graph the curve r2 = 4 cos u in the Cartesian xy-plane.

Solution The equation r2 = 4 cos u requires cos u Ú 0, so we get the entire graph by 
running u from -p>2 to p>2. The curve is symmetric about the x-axis because

(r, u) on the graph 1 r2 = 4 cos u

1 r2 = 4 cos (-u)      cos u = cos (-u)

1 (r, -u) on the graph.

The curve is also symmetric about the origin because

(r, u) on the graph 1 r2 = 4 cos u

1 (-r)2 = 4 cos u

1 (-r, u) on the graph.

Together, these two symmetries imply symmetry about the y-axis.
The curve passes through the origin when u = -p>2 and u = p>2. It has a vertical 

tangent both times because tan u is infinite.
For each value of u in the interval between -p>2 and p>2, the formula r2 = 4 cos u

gives two values of r:

r = {22cos u.

We make a short table of values, plot the corresponding points, and use information 
about symmetry and tangents to guide us in connecting the points with a smooth curve 
(Figure 11.29).

(a)

(p, 2)

(p, 2)

3
2

(b)

x

y

02

1

(c)

y

x
02

1

r = 1 − cos u

2p
3

3
2

,

1, p2

p
3

1
2

,

2p
3

3
2

,

4p
3

3
2

,

1, p
2

1, 3p
2

p
3

1
2

,

5p
3

1
2

,

a b

a b

a b

a b

a b

a b

a b

a b

a b

FIGURE 11.28 The steps in graphing the 
cardioid r = 1 - cos u (Example 1). The 
arrow shows the direction of increasing u.
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Converting a Graph from the rU- to xy-Plane

One way to graph a polar equation r = ƒ(u) in the xy-plane is to make a table of 
(r, u)@values, plot the corresponding points there, and connect them in order of increasing 
u. This can work well if enough points have been plotted to reveal all the loops and dim-
ples in the graph. Another method of graphing is to

1. first graph the function r = ƒ(u) in the Cartesian ru@plane,

2. then use that Cartesian graph as a “table” and guide to sketch the polar coordinate 
graph in the xy-plane.

This method is sometimes better than simple point plotting because the first Cartesian 
graph, even when hastily drawn, shows at a glance where r is positive, negative, and non-
existent, as well as where r is increasing and decreasing. Here’s an example.

USING TECHNOLOGY Graphing Polar Curves Parametrically
For complicated polar curves we may need to use a graphing calculator or computer to 
graph the curve. If the device does not plot polar graphs directly, we can convert r = ƒ(u)
into parametric form using the equations

x = r cos u = ƒ(u) cos u, y = r sin u = ƒ(u) sin u.

Then we use the device to draw a parametrized curve in the Cartesian xy-plane. It may be 
necessary to use the parameter t rather than u for the graphing device.

EXAMPLE 3  Graph the lemniscate curve r2 = sin 2u in the Cartesian xy-plane.

Solution Here we begin by plotting r2 (not r) as a function of u in the Cartesian 
r2u@plane. See Figure 11.30a. We pass from there to the graph of r = {2sin 2u in the 
ru@plane (Figure 11.30b), and then draw the polar graph (Figure 11.30c). The graph in 
Figure 11.30b “covers” the final polar graph in Figure 11.30c twice. We could have man-
aged with either loop alone, with the two upper halves, or with the two lower halves. The 
double covering does no harm, however, and we actually learn a little more about the 
behavior of the function this way.

Symmetries and Polar Graphs
Identify the symmetries of the curves in Exercises 1–12. Then sketch 
the curves in the xy-plane.

1. r = 1 + cos u 2. r = 2 - 2 cos u

3. r = 1 - sin u 4. r = 1 + sin u

5. r = 2 + sin u 6. r = 1 + 2 sin u

7. r = sin (u>2) 8. r = cos (u>2)

9. r2 = cos u 10. r2 = sin u

11. r2 = -sin u 12. r2 = -cos u

Graph the lemniscates in Exercises 13–16. What symmetries do these 
curves have?

13. r2 = 4 cos 2u 14. r2 = 4 sin 2u

15. r2 = -sin 2u 16. r2 = -cos 2u

Slopes of Polar Curves in the xy-Plane
Find the slopes of the curves in Exercises 17–20 at the given points. 
Sketch the curves along with their tangents at these points.

17. Cardioid r = -1 + cos u; u = {p>2
18. Cardioid r = -1 + sin u; u = 0, p

19. Four-leaved rose r = sin 2u; u = {p>4, {3p>4
20. Four-leaved rose r = cos 2u; u = 0, {p>2, p

Exercises 11.4

−1

0

1

3p
2p2

p
4

p

p

2

r2 = sin 2u

(a)

(b)

(c)

−1

1

0

r = +
"

sin 2u

r = −
"

sin 2u

p p
2

3p
2

r2

u

u

r

No square roots of
negative numbers

± parts from
square roots

x

y

r2 = sin 2u

0

FIGURE 11.30 To plot r = ƒ(u) in 
the Cartesian ru@plane in (b), we first 
plot r2 = sin 2u in the r2u@plane in (a) 
and then ignore the values of u for which 
sin 2u is negative. The radii from the 
sketch in (b) cover the polar graph of the 
lemniscate in (c) twice (Example 3).
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Graphing Limaçons
Graph the limaçons in Exercises 21–24. Limaçon (“lee-ma-sahn”) is 
Old French for “snail.” You will understand the name when you graph 
the limaçons in Exercise 21. Equations for limaçons have the form 
r = a { b cos u or r = a { b sin u. There are four basic shapes.

21. Limaçons with an inner loop

  a. r = 1
2

+ cos u b. r = 1
2

+ sin u

22. Cardioids

  a. r = 1 - cos u b. r = -1 + sin u

23. Dimpled limaçons

  a. r = 3
2

+ cos u b. r = 3
2

- sin u

24. Oval limaçons

  a. r = 2 + cos u b. r = -2 + sin u

Graphing Polar Regions and Curves in the xy-Plane
25. Sketch the region defined by the inequalities -1 … r … 2 and 

-p>2 … u … p>2.

26. Sketch the region defined by the inequalities 0 … r … 2 sec u
and -p>4 … u … p>4.

In Exercises 27 and 28, sketch the region defined by the inequality.

27. 0 … r … 2 - 2 cos u 28. 0 … r2 … cos u

29. Which of the following has the same graph as r = 1 - cos u?

  a. r = -1 - cos u b. r = 1 + cos u

  Confirm your answer with algebra.

T

30. Which of the following has the same graph as r = cos 2u?

  a. r = -sin (2u + p>2) b. r = -cos (u>2)

  Confirm your answer with algebra.
31. A rose within a rose Graph the equation r = 1 - 2 sin 3u.

32. The nephroid of Freeth Graph the nephroid of Freeth:

r = 1 + 2 sin
u

2
.

33. Roses Graph the roses r = cos mu for m = 1>3, 2, 3, and 7.

34. Spirals Polar coordinates are just the thing for defining spirals. 
Graph the following spirals.

  a. r = u
b. r = -u

  c. A logarithmic spiral: r = eu>10

  d. A hyperbolic spiral: r = 8>u
e. An equilateral hyperbola: r = {10>2u

  (Use different colors for the two branches.)

35. Graph the equation r = sin18
7 u2 for 0 … u … 14p.

36. Graph the equation

r = sin2 (2.3u) + cos4 (2.3u)

  for 0 … u … 10p.

T

T

T

T

T

T

T

11.5 Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions and lengths of curves in polar 
coordinates. The defining ideas are the same as before, but the formulas are different in 
polar versus Cartesian coordinates.

Area in the Plane

The region OTS in Figure 11.31 is bounded by the rays u = a and u = b and the curve 
r = ƒ(u). We approximate the region with n nonoverlapping fan-shaped circular sec-
tors based on a partition P of angle TOS. The typical sector has radius rk = ƒ(uk) and 
central angle of radian measure ∆uk. Its area is ∆uk>2p times the area of a circle of 
radius rk , or

Ak = 1
2

rk
2 ∆uk = 1

2
1ƒ(uk)22 ∆uk.

The area of region OTS is approximately

a

n

k=1
Ak = a

n

k=1

1
2
1ƒ(uk)22 ∆uk.

If ƒ is continuous, we expect the approximations to improve as the norm of the parti-
tion P goes to zero, where the norm of P is the largest value of ∆uk. We are then led to the 
following formula defining the region’s area:

x

y

O

S rn

rk

u = b

u = ar1

r2

uk

r = f (u)

( f (uk), uk)

Δuk

T

FIGURE 11.31 To derive a formula for 
the area of region OTS, we approximate 
the region with fan-shaped circular sectors.
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A = lim
‘P‘S0 a

n

k=1

1
2
1ƒ(uk)22 ∆uk

=
L

b

a

1
2
1ƒ(u)22 du.

Area of the Fan-Shaped Region Between the Origin and the Curve r = ƒ(U) ,
A " U " B

A =
L

b

a

1
2

r2 du

This is the integral of the area differential (Figure 11.32)

dA = 1
2

r2 du = 1
2
1ƒ(u)22 du.

O
x

y

P(r, u)

du

u

r

dA =    r 2du1
2

FIGURE 11.32 The area differential dA
for the curve r = ƒ(u).

EXAMPLE 1  Find the area of the region in the xy-plane enclosed by the cardioid 
r = 2(1 + cos u).

Solution We graph the cardioid (Figure 11.33) and determine that the radius OP sweeps 
out the region exactly once as u runs from 0 to 2p. The area is therefore

L

u=2p

u=0

1
2

r2 du =
L

2p

0

1
2
# 4(1 + cos u)2 du

=
L

2p

0
2(1 + 2 cos u + cos2u) du

=
L

2p

0
a2 + 4 cos u + 2 # 1 + cos 2u

2
b du

=
L

2p

0
(3 + 4 cos u + cos 2u) du

= c 3u + 4 sin u + sin 2u
2
d

0

2p

= 6p - 0 = 6p.

To find the area of a region like the one in Figure 11.34, which lies between two polar 
curves r1 = r1(u) and r2 = r2(u) from u = a to u = b, we subtract the integral of 
(1>2)r1

2 du from the integral of (1>2)r2
2 du. This leads to the following formula.

x

y

0 4

r

r = 2(1 + cos u)

u = 0, 2p

P(r, u)2

−2

FIGURE 11.33 The cardioid in Example 1.

y

x
0

u = b

u = a

r2

r1

FIGURE 11.34 The area of the shaded 
region is calculated by subtracting the area 
of the region between r1 and the origin 
from the area of the region between r2 and 
the origin.

Area of the Region 0 " r1(U) " r " r2(U), A " U " B

A =
L

b

a

1
2

r2
2 du -

L

b

a

1
2

r1
2 du =

L

b

a

1
2
1r2

2 - r1
22 du (1)

EXAMPLE 2  Find the area of the region that lies inside the circle r = 1 and outside 
the cardioid r = 1 - cos u.

Solution We sketch the region to determine its boundaries and find the limits of integra-
tion (Figure 11.35). The outer curve is r2 = 1, the inner curve is r1 = 1 - cos u, and u
runs from -p>2 to p>2. The area, from Equation (1), is

x

y

0

r2 = 1

r1 = 1 − cos u

Upper limit
u = p
2

Lower limit
u = −p
2

u

FIGURE 11.35 The region and limits of 
integration in Example 2.
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A =
L

p>2

-p>2
1
2
1r2

2 - r1
22 du

= 2
L

p>2

0

1
2
1r2

2 - r1
22 du Symmetry

=
L

p>2

0
(1 - (1 - 2 cos u + cos2u)) du Square r1.

=
L

p>2

0
(2 cos u - cos2u) du =

L

p>2

0
a2 cos u - 1 + cos 2u

2
b du

= c 2 sin u - u
2

- sin 2u
4
d

0

p>2
= 2 - p

4
.

The fact that we can represent a point in different ways in polar coordinates requires extra 
care in deciding when a point lies on the graph of a polar equation and in determining the 
points in which polar graphs intersect. (We needed intersection points in Example 2.) In 
Cartesian coordinates, we can always find the points where two curves cross by solving 
their equations simultaneously. In polar coordinates, the story is different. Simultaneous 
solution may reveal some intersection points without revealing others, so it is sometimes 
difficult to find all points of intersection of two polar curves. One way to identify all the 
points of intersection is to graph the equations.

Length of a Polar Curve

We can obtain a polar coordinate formula for the length of a curve r = ƒ(u), a … u … b,
by parametrizing the curve as

x = r cos u = ƒ(u) cos u, y = r sin u = ƒ(u) sin u, a … u … b. (2)

The parametric length formula, Equation (3) from Section 11.2, then gives the length as

L =
L

b

a B a
dx
du
b2

+ ady
du
b2

du.

This equation becomes

L =
L

b

a Br2 + adr
du
b2

du

when Equations (2) are substituted for x and y (Exercise 29).

Length of a Polar Curve

If r = ƒ(u) has a continuous first derivative for a … u … b and if the point 
P(r, u) traces the curve r = ƒ(u) exactly once as u runs from a to b, then the 
length of the curve is

L =
L

b

a Br2 + adr
du
b2

du. (3)

EXAMPLE 3  Find the length of the cardioid r = 1 - cos u.

Solution We sketch the cardioid to determine the limits of integration (Figure 11.36). 
The point P(r, u) traces the curve once, counterclockwise as u runs from 0 to 2p, so these 
are the values we take for a and b.

0

1

2

r

x

y

u

r = 1 − cos u
P(r, u)

FIGURE 11.36 Calculating the length 
of a cardioid (Example 3).
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With

r = 1 - cos u,
dr
du

= sin u,

we have

r2 + adr
du
b2

= (1 - cos u)2 + (sin u)2

= 1 - 2 cos u + cos2 u + sin2 u = 2 - 2 cos u(++)++*
1

and

L =
L

b

a Br2 + adr
du
b2

du =
L

2p

0
22 - 2 cos u du

=
L

2p

0 A4 sin2 u
2

du 1 - cos u = 2 sin2 (u>2)

=
L

2p

0
2 ` sin

u
2
` du

=
L

2p

0
2 sin

u
2

du       sin (u>2) Ú 0 for 0 … u … 2p

= c-4 cos
u
2
d

0

2p

= 4 + 4 = 8.

Finding Polar Areas
Find the areas of the regions in Exercises 1–8.

1. Bounded by the spiral r = u for 0 … u … p

x

y

0

r = u
p
2
p
2

,

(p, p)

a b

2. Bounded by the circle r = 2 sin u for p>4 … u … p>2

x

y

0

r = 2 sin u

2
p
2

,

u = p
4

a b

3. Inside the oval limaçon r = 4 + 2 cos u

4. Inside the cardioid r = a(1 + cos u), a 7 0

5. Inside one leaf of the four-leaved rose r = cos 2u

6. Inside one leaf of the three-leaved rose r = cos 3u

x

y

1

r = cos 3u

7. Inside one loop of the lemniscate r2 = 4 sin 2u

8. Inside the six-leaved rose r2 = 2 sin 3u

Find the areas of the regions in Exercises 9–18.

9. Shared by the circles r = 2 cos u and r = 2 sin u

10. Shared by the circles r = 1 and r = 2 sin u

11. Shared by the circle r = 2 and the cardioid r = 2(1 - cos u)

12. Shared by the cardioids r = 2(1 + cos u) and r = 2(1 - cos u)

13. Inside the lemniscate r2 = 6 cos 2u and outside the circle r = 23

Exercises 11.5
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14. Inside the circle r = 3a cos u and outside the cardioid 
r = a(1 + cos u), a 7 0

15. Inside the circle r = -2 cos u and outside the circle r = 1

16. Inside the circle r = 6 above the line r = 3 csc u

17. Inside the circle r = 4 cos u and to the right of the vertical line 
r = sec u

18. Inside the circle r = 4 sin u and below the horizontal line 
r = 3 csc u

19. a. Find the area of the shaded region in the accompanying figure.

x

y

0 1−1

(1, p
4)

r = tan u
< u < p

2
p
2

–

r = (
"

2
2) csc u

b. It looks as if the graph of r = tan u, -p>2 6 u 6 p>2, could 
be asymptotic to the lines x = 1 and x = -1. Is it? Give 
reasons for your answer.

20. The area of the region that lies inside the cardioid curve 
r = cos u + 1 and outside the circle r = cos u is not

1
2L

2p

0
3(cos u + 1)2 - cos2u4 du = p.

  Why not? What is the area? Give reasons for your answers.

Finding Lengths of Polar Curves
Find the lengths of the curves in Exercises 21–28.

21. The spiral r = u2, 0 … u … 25

22. The spiral r = eu>22, 0 … u … p
23. The cardioid r = 1 + cos u

24. The curve r = a sin2 (u>2), 0 … u … p, a 7 0

25. The parabolic segment r = 6>(1 + cos u), 0 … u … p>2
26. The parabolic segment r = 2>(1 - cos u), p>2 … u … p

27. The curve r = cos3 (u>3), 0 … u … p>4
28. The curve r = 21 + sin 2u, 0 … u … p22

29. The length of the curve r = ƒ(U) , A … U … B Assuming
that the necessary derivatives are continuous, show how the sub-
stitutions

x = ƒ(u) cos u, y = ƒ(u) sin u

  (Equations 2 in the text) transform

L =
L

b

a B a
dx
du
b2

+ ady
du
b2

du

  into

L =
L

b

a Br2 + adr
du
b2

du.

30. Circumferences of circles As usual, when faced with a new 
formula, it is a good idea to try it on familiar objects to be sure it 
gives results consistent with past experience. Use the length for-
mula in Equation (3) to calculate the circumferences of the fol-
lowing circles (a 7 0).

  a. r = a b. r = a cos u c. r = a sin u

Theory and Examples
31. Average value If ƒ is continuous, the average value of the polar 

coordinate r over the curve r = ƒ(u), a … u … b, with respect to 
u is given by the formula

rav = 1
b - aL

b

a

ƒ(u) du.

  Use this formula to find the average value of r with respect to u
over the following curves (a 7 0).

  a. The cardioid r = a(1 - cos u)

  b. The circle r = a

  c. The circle r = a cos u, -p>2 … u … p>2
32. r = ƒ(U) vs. r = 2ƒ(U) Can anything be said about the rela-

tive lengths of the curves r = ƒ(u), a … u … b, and r = 2ƒ(u),
a … u … b? Give reasons for your answer.

11.6 Conic Sections

In this section we define and review parabolas, ellipses, and hyperbolas geometrically and 
derive their standard Cartesian equations. These curves are called conic sections or conics
because they are formed by cutting a double cone with a plane (Figure 11.37). This geom-
etry method was the only way they could be described by Greek mathematicians who did 
not have our tools of Cartesian or polar coordinates. In the next section we express the 
conics in polar coordinates.

Parabolas

DEFINITIONS A set that consists of all the points in a plane equidistant from a 
given fixed point and a given fixed line in the plane is a parabola. The fixed 
point is the focus of the parabola. The fixed line is the directrix.
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AREA IN POLAR COORDINATES
We begin our investigation of area in polar coordinates with a simple case.

R

r =  f (u)

u =  b u =  a

that satisfy the condition
α < β ≤ α + 2π

and suppose that f(θ) is continuous and nonnegative for α ≤ θ ≤ β. Find the area
of the region R enclosed by the polar curve r = f(θ) and the rays θ = α and θ = β

In rectangular coordinates we obtained areas under curves by dividing the region into
an increasing number of vertical strips, approximating the strips by rectangles, and taking
a limit. In polar coordinates rectangles are clumsy to work with, and it is better to partition
the region into wedges by using rays

θ = θ1, θ = θ2, . . . , θ = θn−1

such that
α < θ1 < θ2 < · · · < θn−1 < β

1, A2, . . . , An and central angles 
θ1, 
θ2, . . . , 
θn. The area of the entire region
can be written as

A = A1 + A2 + · · · + An =
n∑

k=1

Ak (4)

u = b

u = un−1

u =  u2

u =  u1

u =  a
Δu2

Δu1

Δun

A1

A2
An

.. ...

If 
θk is small, then we can approximate the area Ak of the kth wedge by the area of
a sector with central angle 
θk and radius f(θ∗

k ), where θ = θ∗
k

u*k

Δuk

r = f (u)

u = u*k

a sector, we obtain
A =

n∑
k=1

Ak ≈
n∑

k=1

1
2 [f(θ∗

k )]2
θk (5)

If we now increase n in such a way that max 
θk →0, then the sectors will become better

A = lim
max 
θk →0

n∑
k=1

1
2 [f(θ∗

k )]2
θk =
∫ β

α

1
2 [f(θ)]2 dθ

Note that the discussion above can easily be adapted to the case where f(θ) is nonpositive
for α ≤ θ ≤ β. We summarize this result below.

u = b u = a

and if f(θ) is continuous and either nonnegative or nonpositive for α ≤ θ ≤ β, then the
area A of the region R enclosed by the polar curve r = f(θ) (α ≤ θ ≤ β) and the lines
θ = α and θ = β is

A =
∫ β

α

1
2 [f(θ)]2 dθ =

∫ β

α

1
2 r2 dθ (6)

(Figure 7).
Figure 7

        (Figure 8). As shown in that figure, the rays divide the region R into n wedges with
areas A

Figure 8

is any ray that lies in the
kth wedge      (Figure 9). Thus, from (4) and Formula (5) of Appendix B for the area of

Figure 9

and better approximations of the wedges and it is reasonable to expect that (5) will approach
the exact value of the area A (Figure 10); that is,

Figure 10

area problem in polar coordinates  Suppose that α and β are angles

area in polar coordinates If α and β are angles that satisfy the condition

α < β ≤α + 2π

Chapter Two / Parametric and Polar Curves
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The hardest part of applying (6) is determining the limits of integration. This can be
done as follows:

Area in Polar Coordinates: Limits of Integration

Step 1. Sketch the region R whose area is to be determined.

Step 2. Draw an arbitrary “radial line” from the pole to the boundary curve r = f(θ).

Step 3. Ask, “Over what interval of values must θ vary in order for the radial line to
sweep out the region R?”

Step 4. Your answer in Step 3 will determine the lower and upper limits of integration.

Example 6 Find the area of the region in the first quadrant that is within the cardioid
r = 1 − cos θ .

/2. Thus, from (6) with α = 0 and
β = π/2, we obtain

A =
∫ π/2

0

1

2
r2 dθ = 1

2

∫ π/2

0
(1 − cos θ)2 dθ = 1

2

∫ π/2

0
(1 − 2 cos θ + cos2 θ) dθ

With the help of the identity cos2 θ = 1
2 (1 + cos 2θ), this can be rewritten as

A = 1

2

∫ π/2

0

(
3

2
− 2 cos θ + 1

2
cos 2θ

)
dθ = 1

2

[
3

2
θ − 2 sin θ + 1

4
sin 2θ

]π/2

0

= 3

8
π − 1

r = 1 − cos u c/2

0

The shaded region is swept
out by the radial line as u
varies from 0 to c/2.

Example 7 Find the entire area within the cardioid of Example 6.

Solution. For the radial line to sweep out the entire cardioid, θ must vary from 0 to 2π.
Thus, from (6) with α = 0 and β = 2π,

A =
∫ 2π

0

1

2
r2 dθ = 1

2

∫ 2π

0
(1 − cos θ)2 dθ

If we proceed as in Example 6, this reduces to

A = 1

2

∫ 2π

0

(
3

2
− 2 cos θ + 1

2
cos 2θ

)
dθ = 3π

2

Alternative Solution. Since the cardioid is symmetric about the x-axis, we can calculate
the portion of the area above the x-axis and double the result. In the portion of the cardioid
above the x-axis, θ ranges from 0 to π, so that

A = 2
∫ π

0

1

2
r2 dθ =

∫ π

0
(1 − cos θ)2 dθ = 3π

2

Figure 11

Solution. The region and a typical radial line are shown in Figure 11. For the radial line
to sweep out the region, θ must vary from 0 to π
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USING SYMMETRY
Although Formula (6) is applicable if r = f(θ) is negative, area computations can some-
times be simplified by using symmetry to restrict the limits of integration to intervals where
r ≥ 0. This is illustrated in the next example.

Example 8 Find the area of the region enclosed by the rose curve r = cos 2θ .

/4 is one-eighth of the total area inside the rose. Thus, from
Formula (6)

A = 8
∫ π/4

0

1

2
r2 dθ = 4

∫ π/4

0
cos2 2θ dθ

= 4
∫ π/4

0

1

2
(1 + cos 4θ) dθ = 2

∫ π/4

0
(1 + cos 4θ) dθ

= 2θ + 1

2
sin 4θ

]π/4

0

= π

2

Sometimes the most natural way to satisfy the restriction α < β ≤ α + 2π required by

information is needed for the limits of integration. To find the points of intersection, we
can equate the two expressions for r. This yields

4 + 4 cos θ = 6 or cos θ = 1

2

which is satisfied by the positive angles

θ = π

3
and θ = 5π

3

π/3 ≤ θ ≤ 5π/3. There are two ways to circumvent this problem—one is to take advantage
of the symmetry by integrating over the interval 0 ≤ θ ≤ π/3 and doubling the result, and
the second is to use a negative lower limit of integration and integrate over the interval
−π/3 ≤ θ ≤ π/

r = 4 + 4 cos u

r = 6

(a)

u = 4

u = $
(d)

u = 4

u = $
(c)

u = 4

u =  k
(b)

u = 4

u = $
(e)

c/2

0

c/2

0

c/2

0

c/2

0

c/2

0

However, there is a problem here because the radial lines to the circle and cardioid do not
sweep through the shaded region shown in Figure 12.b as θ varies over the interval

Formula (6) is to use a negative value for α. For example, suppose that we are interested
in finding the area of the shaded region in Figure 12a .The  first  step  would  be  
todetermine the intersections of the cardioid r = 4 + 4 cos θ and the circle r = 6, since

this

3 (Figure 12c). The two methods are illustrated in the next example.

Figure 12
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Solution. Referring to Figure 10.2.13 and using symmetry, the area in the first quadrant
that is swept out for 0 ≤ θ ≤ π
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Example 9 Find the area of the region that is inside of the cardioid r = 4 + 4 cos θ

and outside of the circle r = 6.

A =
∫ π/3

−π/3

1

2
(4 + 4 cos θ)2 dθ −

∫ π/3

−π/3

1

2
(6)2 dθ Area inside cardioid

minus area inside circle.

=
∫ π/3

−π/3

1

2
[(4 + 4 cos θ)2 − 36] dθ =

∫ π/3

−π/3
(16 cos θ + 8 cos2 θ − 10) dθ

= [
16 sin θ + (4θ + 2 sin 2θ) − 10 θ

]π/3
−π/3 = 18

√
3 − 4π

Solution Using Symmetry. Using symmetry, we can calculate the area above the polar
axis and double it. This yields (verify)

A = 2
∫ π/3

0

1

2
[(4 + 4 cos θ)2 − 36] dθ = 2(9

√
3 − 2π) = 18

√
3 − 4π

which agrees with the preceding result.

SolutionUsing aNegativeAngle. The area of the region can be obtained by subtracting
the areas in Figures 12d and 12e:
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■ Plane Curves and Parametric Equations

PlaNE CurvEs aND ParaMETriC EquaTioNs

If f and g are functions defined on an interval I, then the set of points 
1f 1 t 2 , g1 t 22  is a plane curve. The equations

x  f 1 t 2   y  g1 t 2
where t  I, are parametric equations for the curve, with parameter t.

ExaMPlE 1 ■ sketching a Plane Curve
Sketch the curve defined by the parametric equations

x  t2  3t   y  t  1

soluTioN  For every value of t we get a point on the curve. For example, if t  0, 
then x  0 and y  1, so the corresponding point is 10, 1 2 . In Figure 1 we plot 
the points 1x, y 2  determined by the values of t shown in the following table.

t=_2

t=5

t=_1
t=0

t=4
t=3

t=2

t=1

y

x
1

5 10

FiGurE 1

t x y

2 10 3
1 4 2

0 0 1
1 2 0
2 2 1
3 0 2
4 4 3
5 10 4

As t increases, a particle whose position is given by the parametric equations 
moves along the curve in the direction of the arrows.

■ Plane Curves and Parametric Equations ■ Eliminating the Parameter 
■ Finding  Parametric Equations for a Curve 

3.1 PlaNE CurvEs aND ParaMETriC EquaTioNs
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We can think of a curve as the path of a point moving in the plane; the x- and  
y-coordinates of the point are then functions of time. This idea leads to the following 
definition.



If we replace t by t in Example 1, we obtain the parametric equations

x  t2  3t   y  t  1

The graph of these parametric equations (see Figure 2) is the same as the curve in Fig-
ure 1 but traced out in the opposite direction. On the other hand, if we replace t by 2t 
in Example 1, we obtain the parametric equations

x  4t2  6t   y  2t  1

The graph of these parametric equations (see Figure 3) is again the same but is traced 
out “twice as fast.” Thus a parametrization contains more information than just the 
shape of the curve; it also indicates how the curve is being traced out.

t=2

t=_5

t=1
t=0

t=_4
t=_3

t=_2

t=_1

y

x
1

5 10

FiGurE 2 x  t2  3t, y  t  1

t=_1

t=0

t=2

t=1

y

x
1

5 10

FiGurE 3 x  4t2  6t, y  2t  1

ExaMPlE 2 ■ Eliminating the Parameter

x  t2  3t  1y  1 2 2  31y  1 2  y2  y  2

Thus the curve in Example 1 has the rectangular equation x  y2  y  2, so it is a 
parabola.
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Eliminate the parameter in the parametric equations of Example 1.

soluTioN  First we solve for t in the simpler equation, then we substitute into the 
other equation. From the equation y  t  1 we get t  y  1. Substituting into the 
equation for x, we get

■ Eliminating the Parameter
Often a curve given by parametric equations can also be represented by a single rect-
angular equation in x and y. The process of finding this equation is called eliminating 
the parameter. One way to do this is to solve for t in one equation, then substitute into 
the other.



ExaMPlE 3 

The following parametric equations model the position of a moving object at time t 
(in seconds): 

x  cos t   y  sin t   t  0

Describe and graph the path of the object.

soluTioN  To identify the curve, we eliminate the parameter. Since cos2t  sin2t  1 
and since x  cos t and y  sin t for every point 1x, y 2  on the curve, we have

x2  y2  1cos t 2 2  1sin t 2 2  1

This means that all points on the curve satisfy the equation x2  y2  1, so the graph is 
a circle of radius 1 centered at the origin. As t increases from 0 to 2p, the point given 
by the parametric equations starts at 11, 0 2  and moves counterclockwise once around 
the circle, as shown in Figure 4. So the object completes one revolution around the cir-
cle in 2p seconds. Notice that the parameter t can be interpreted as the angle shown in 
the figure.

FiGurE 4

3π
2t=

π
2t=

0
t

t=0

(1, 0)

(ç t, ß t)

t=2π

t=π
x

y

ExaMPlE 4 ■ sketching a Parametric Curve
Eliminate the parameter, and sketch the graph of the parametric equations

x  sin t   y  2  cos2 t

soluTioN  To eliminate the parameter, we first use the trigonometric identity  
cos2t  1  sin2t to change the second equation:

y  2  cos2 t  2  11  sin2t 2  1  sin2 t

Now we can substitute sin t  x from the first equation to get

y  1  x2

so the point 1x, y 2  moves along the parabola y  1  x2. However, since  
1  sin t  1, we have 1  x  1, so the parametric equations represent only  
the part of the parabola between x  1 and x  1. Since sin t is periodic, the point 
1x, y 2  1sin t, 2  cos2 t 2  moves back and forth infinitely often along the parabola 

x0

y
(1, 2)(_1, 2)
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■ Modeling Circular Motion

FiGurE 5 between the points 11, 2 2  and 11, 2 2 , as shown in Figure 5.



It is often possible to find parametric equations for a curve by using some geometric 
properties that define the curve, as in the next two examples.

ExaMPlE 5 ■ Finding Parametric Equations for a Graph
Find parametric equations for the line of slope 3 that passes through the point 12, 6 2 .
soluTioN  Let’s start at the point 12, 6 2  and move up and to the right along this 
line. Because the line has slope 3, for every 1 unit we move to the right, we must 
move up 3 units. In other words, if we increase the x-coordinate by t units, we must 
correspondingly increase the y-coordinate by 3t units. This leads to the parametric 
equations

x  2  t   y  6  3t

To confirm that these equations give the desired line, we eliminate the parameter. We 
solve for t in the first equation and substitute into the second to get

y  6  31x  2 2  3x

Thus the slope-intercept form of the equation of this line is y  3x, which is a line of 
slope 3 that does pass through 12, 6 2  as required. The graph is shown in Figure 6.

FiGurE 6

y

x
0

6 t

3t

2
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■ Finding Parametric Equations for a Curve



374 Chapter 6: Applications of Definite Integrals

63. Consider the region R bounded by the graphs of 
and (see accomanying figure). If

the volume of the solid formed by revolving R about the x-axis is
and the volume of the solid formed by revolving R about the

line is find the area of R.

x

y

0 b

R

a

y 5 f (x)

8p,y = -1
4p,

y = 0x = b 7 a,x = a 7 0,
y = ƒ(x) 7 0, 64. Consider the region R given in Exercise 63. If the volume of the

solid formed by revolving R around the x-axis is and the vol-
ume of the solid formed by revolving R around the line is

find the area of R.10p,
y = -2

6p,

6.2 Volumes Using Cylindrical Shells

In Section 6.1 we defined the volume of a solid as the definite integral 
where A(x) is an integrable cross-sectional area of the solid from to . The area
A(x) was obtained by slicing through the solid with a plane perpendicular to the x-axis.
However, this method of slicing is sometimes awkward to apply, as we will illustrate in our
first example. To overcome this difficulty, we use the same integral definition for volume,
but obtain the area by slicing through the solid in a different way.

Slicing with Cylinders

Suppose we slice through the solid using circular cylinders of increasing radii, like cookie
cutters. We slice straight down through the solid so that the axis of each cylinder is paral-
lel to the y-axis. The vertical axis of each cylinder is the same line, but the radii of the
cylinders increase with each slice. In this way the solid is sliced up into thin cylindrical
shells of constant thickness that grow outward from their common axis, like circular tree
rings. Unrolling a cylindrical shell shows that its volume is approximately that of a rectan-
gular slab with area A(x) and thickness . This slab interpretation allows us to apply the
same integral definition for volume as before. The following example provides some in-
sight before we derive the general method.

EXAMPLE 1 The region enclosed by the x-axis and the parabola 
is revolved about the vertical line to generate a solid (Figure 6.16). Find the volume
of the solid.

Solution Using the washer method from Section 6.1 would be awkward here because
we would need to express the x-values of the left and right sides of the parabola in Fig-
ure 6.16a in terms of y. (These x-values are the inner and outer radii for a typical washer,
requiring us to solve for x, which leads to complicated formulas.) Instead
of rotating a horizontal strip of thickness we rotate a vertical strip of thickness 
This rotation produces a cylindrical shell of height above a point within the base of
the vertical strip and of thickness An example of a cylindrical shell is shown as the
orange-shaded region in Figure 6.17. We can think of the cylindrical shell shown in the
figure as approximating a slice of the solid obtained by cutting straight down through
it, parallel to the axis of revolution, all the way around close to the inside hole. We
then cut another cylindrical slice around the enlarged hole, then another, and so on,
obtaining n cylinders. The radii of the cylinders gradually increase, and the heights of

¢x .
xkyk

¢x .¢y ,
y = 3x - x2

x = -1
y = ƒsxd = 3x - x2

¢x

x = bx = a
V = 1

b
a  Asxd dx,
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the cylinders follow the contour of the parabola: shorter to taller, then back to shorter
(Figure 6.16a).

Each slice is sitting over a subinterval of the x-axis of length (width) Its radius is
approximately and its height is approximately If we unroll the cylin-
der at and flatten it out, it becomes (approximately) a rectangular slab with thickness 
(Figure 6.18). The outer circumference of the kth cylinder is 
and this is the length of the rolled-out rectangular slab. Its volume is approximated by that
of a rectangular solid,

Summing together the volumes of the individual cylindrical shells over the interval
[0, 3] gives the Riemann sum

a

n

k = 1
¢Vk = a

n

k = 1
2psxk + 1d A3xk - xk 

2B ¢xk.

¢Vk

 = 2ps1 + xkd # A3xk - xk 
2B #

¢xk.

 ¢Vk = circumference * height * thickness

2p # radius = 2ps1 + xkd,
¢xkxk

3xk - xk 
2.s1 + xkd,

¢xk .

6.2 Volumes Using Cylindrical Shells 375

y

x
3

Axis of
revolution

 x � –1

(b)

x

y � 3x � x2

y

1 2 3–2 –1 0

–1

–2

1

2

Axis of
revolution

x � –1

(a)

0

FIGURE 6.16 (a) The graph of the region in Example 1, before revolution.
(b) The solid formed when the region in part (a) is revolved about the
axis of revolution x = -1.

323

y

x
0 xk

yk

x 5 –1

FIGURE 6.17 A cylindrical shell of
height obtained by rotating a vertical
strip of thickness about the line

The outer radius of the cylinder
occurs at where the height of the
parabola is (Example 1).yk = 3xk - xk

2
xk ,

x = -1.
¢xk

yk

Radius 5 1 1 xk

Outer circumference 5 2p ⋅ radius 5 2p(1 1 xk)
Δxk

 Δxk 5 thickness

l 5 2p (1 1 xk)

h 5 (3xk 2 xk
2)

(3xk 2 xk
2)

FIGURE 6.18 Cutting and unrolling a cylindrical shell gives a
nearly rectangular solid (Example 1).
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376 Chapter 6: Applications of Definite Integrals

Taking the limit as the thickness gives the volume integral

We now generalize the procedure used in Example 1.

The Shell Method

Suppose the region bounded by the graph of a nonnegative continuous function
and the x-axis over the finite closed interval [a, b] lies to the right of the vertical

line (Figure 6.19a). We assume so the vertical line may touch the region,
but not pass through it. We generate a solid S by rotating this region about the vertical
line L.

Let P be a partition of the interval [a, b] by the points 
and let be the midpoint of the kth subinterval We approximate the region in
Figure 6.19a with rectangles based on this partition of [a, b]. A typical approximating rec-
tangle has height and width If this rectangle is rotated about the
vertical line then a shell is swept out, as in Figure 6.19b. A formula from geometry
tells us that the volume of the shell swept out by the rectangle is

 = 2p # sck - Ld # ƒsckd #
¢xk .

 ¢Vk = 2p * average shell radius * shell height * thickness

x = L,
¢xk = xk - xk - 1 .ƒsckd

[xk - 1, xk] .ck

a = x0 6 x1 6
Á

6  xn = b,

a Ú L,x = L
y = ƒsxd

 = 2p c2
3

 x3
+

3
2

 x2
-

1
4

 x4 d
0

3

 =
45p

2
.

 = 2p
L

3

0
 s2x2

+ 3x - x3d dx

 =

L

3

0
 2ps3x2

+ 3x - x3
- x2d dx

 =

L

3

0
 2psx + 1ds3x - x2d dx

V = lim
n: q

 a

n

k = 1
 2psxk + 1d A3xk - xk

2 B  ¢xk

¢xk : 0 and n : q

y 5 f (x)

x 5 L

a ck
xkxk21

b

(a)

Vertical axis
of revolution

x

x

b

Rectangle
height 5 f (ck)

ck

xk

y 5 f (x)

xk21

Δxk

a

(b)

Vertical axis
of revolution

Δxk

FIGURE 6.19 When the region shown in (a) is revolved about the vertical line
a solid is produced which can be sliced into cylindrical shells. A typical

shell is shown in (b).
x = L,

The volume of a cylindrical shell of 
height h with inner radius r and outer
radius R is

pR2h - pr2h = 2p aR + r
2
b (h)(R - r)
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We approximate the volume of the solid S by summing the volumes of the shells swept out
by the n rectangles based on P:

The limit of this Riemann sum as each gives the volume of the
solid as a definite integral:

We refer to the variable of integration, here x, as the thickness variable. We use the
first integral, rather than the second containing a formula for the integrand, to empha-
size the process of the shell method. This will allow for rotations about a horizontal
line L as well.

 =

L

b

a
 2psx - Ldƒsxd dx.

 
L

b

a
 2psshell radiusdsshell heightd dx.V = lim

n:q 
a

n

k = 1
¢Vk =

¢xk : 0 and n : q

V L a

n

k = 1
¢Vk.
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EXAMPLE 2 The region bounded by the curve the x-axis, and the line 
is revolved about the y-axis to generate a solid. Find the volume of the solid.

Solution Sketch the region and draw a line segment across it parallel to the axis of
revolution (Figure 6.20a). Label the segment’s height (shell height) and distance from
the axis of revolution (shell radius). (We drew the shell in Figure 6.20b, but you need
not do that.)

x = 4y = 2x,

Shell Formula for Revolution About a Vertical Line
The volume of the solid generated by revolving the region between the x-axis and
the graph of a continuous function about a ver-
tical line is

V =

L

b

a
 2p a shell

radius
b a shell

height
b  dx.

x = L
y = ƒsxd Ú 0, L … a … x … b,

Interval of
integration

y

x

(4, 2)

4

x

Shell radius

0
x

(b)

x

y

0 4

2

Shell radius

Interval of integration

x

Shell
height

y � �x

(a)

2

y � �x

f (x) � �x

x

–4

�x = Shell height

FIGURE 6.20 (a) The region, shell dimensions, and interval of integration in Example 2. (b) The shell
swept out by the vertical segment in part (a) with a width ¢x.
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378 Chapter 6: Applications of Definite Integrals

The shell thickness variable is x, so the limits of integration for the shell formula are
and (Figure 6.20). The volume is then

So far, we have used vertical axes of revolution. For horizontal axes, we replace the x’s
with y’s.

EXAMPLE 3 The region bounded by the curve the x-axis, and the line 
is revolved about the x-axis to generate a solid. Find the volume of the solid by the shell
method.

Solution This is the solid whose volume was found by the disk method in Example 4 of
Section 6.1. Now we find its volume by the shell method. First, sketch the region and draw a
line segment across it parallel to the axis of revolution (Figure 6.21a). Label the segment’s
length (shell height) and distance from the axis of revolution (shell radius). (We drew the
shell in Figure 6.21b, but you need not do that.)

In this case, the shell thickness variable is y, so the limits of integration for the shell
formula method are and (along the y-axis in Figure 6.21). The volume of
the solid is

 = 2p c2y2
-

y4

4
d

0

2

= 8p.

 = 2p
L

2

0
s4y - y3d dy

 =

L

2

0
 2ps yds4 - y2d dy

 V =

L

b

a
 2p a shell

radius
b a shell

height
b  dy

b = 2a = 0

x = 4y = 2x,

 = 2p
L

4

0
 x3>2 dx = 2p c25 x5>2 d

0

4

=
128p

5 .

 =

L

4

0
 2psxd A2x B  dx

 V =

L

b

a
 2p a shell

radius
b a shell

height
b  dx

b = 4a = 0

Shell height
y

y  (4, 2)

2

0

4

Shell
radius

y � �x

(b)

x

y

0 4

2

y

(4, 2)

Shell radiusIn
te

rv
al

 o
f

in
te

gr
at

io
n

4 � y2

Shell height

x � y2

(a)

x

4 � y2

y

y

FIGURE 6.21 (a) The region, shell dimensions, and interval of integration in Example 3.
(b) The shell swept out by the horizontal segment in part (a) with a width ¢y.
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The shell method gives the same answer as the washer method when both are used to
calculate the volume of a region. We do not prove that result here, but it is illustrated in
Exercises 37 and 38. (Exercise 45 outlines a proof.) Both volume formulas are actually
special cases of a general volume formula we will look at when studying double and triple
integrals in Chapter 15. That general formula also allows for computing volumes of solids
other than those swept out by regions of revolution.

6.2 Volumes Using Cylindrical Shells 379

Exercises 6.2

Revolution About the Axes
In Exercises 1–6, use the shell method to find the volumes of the
solids generated by revolving the shaded region about the indicated
axis.

1. 2.

3. 4.

x

y

0 3

x � 3 � y2

y � �3
�3

x

y

0 2

x � y2

y � �2
�2

x

y

0 2

2
y � 2 � x2

4

x

y

0 2

1

y � 1 � x2

4

5. The y-axis 6. The y-axis

Revolution About the y-Axis
Use the shell method to find the volumes of the solids generated by re-
volving the regions bounded by the curves and lines in Exercises 7–12
about the y-axis.

7.

8.

9.

10.

11.

12. y = 3> A22x B , y = 0, x = 1, x = 4

y = 2x - 1, y = 2x, x = 0

y = 2 - x2, y = x2, x = 0

y = x2, y = 2 - x, x = 0,  for x Ú 0

y = 2x, y = x>2, x = 1

y = x, y = -x>2, x = 2

x

y

0

 

3

5 �x3 � 9

9xy � 

x

y

0

1

2

x � �3

�3

y � �x2 � 1

Summary of the Shell Method
Regardless of the position of the axis of revolution (horizontal or vertical), the
steps for implementing the shell method are these.

1. Draw the region and sketch a line segment across it parallel to the axis of rev-
olution. Label the segment’s height or length (shell height) and distance from
the axis of revolution (shell radius).

2. Find the limits of integration for the thickness variable.

3. Integrate the product (shell radius) (shell height) with respect to the thick-
ness variable (x or y) to find the volume.

2p
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380 Chapter 6: Applications of Definite Integrals

13. Let 

a. Show that 

b. Find the volume of the solid generated by revolving the shaded
region about the y-axis in the accompanying figure.

14. Let 

a. Show that 

b. Find the volume of the solid generated by revolving the
shaded region about the y-axis in the accompanying figure.

Revolution About the x-Axis
Use the shell method to find the volumes of the solids generated by re-
volving the regions bounded by the curves and lines in Exercises
15–22 about the x-axis.

15.

16.

17. 18.

19. 20.

21.

22.

Revolution About Horizontal and Vertical Lines
In Exercises 23–26, use the shell method to find the volumes of the
solids generated by revolving the regions bounded by the given curves
about the given lines.

23.

a. The y-axis b. The line 

c. The line d. The 

e. The line f. The line 

24.

a. The y-axis b. The line 

c. The line d. The 

e. The line f. The line 

25.

a. The line b. The line 

c. The d. The line y = 4x-axis

x = -1x = 2

y = x + 2,  y = x2

y = -1y = 8

x-axisx = -2

x = 3

y = x3,  y = 8,  x = 0

y = -2y = 7

x-axisx = -1

x = 4

y = 3x,  y = 0,  x = 2

y = 2x, y = 0, y = 2 - x

y = 2x, y = 0, y = x - 2

y = x, y = 2x, y = 2y = ƒ x ƒ , y = 1

x = 2y - y2, x = yx = 2y - y2, x = 0

x = y2, x = -y, y = 2, y Ú 0

x = 2y, x = -y, y = 2

x

y

0

y �
⎧
⎨
⎩ 0, x � 0

,  0 � x  � 
tan2 x

x
�
4

�
4

�
4

x g sxd = stan xd2, 0 … x … p>4.

g sxd = e stan xd2>x, 0 6 x … p>4
0, x = 0

x

y

0 �

1

y �
⎧
⎨
⎩ 1, x � 0

,  0 � x  � �sin x
x

x ƒsxd = sin x, 0 … x … p.

ƒsxd = e ssin xd>x, 0 6 x … p

1, x = 0

26.

a. The line c. The 

In Exercises 27 and 28, use the shell method to find the volumes of the
solids generated by revolving the shaded regions about the indicated axes.

27. a. The x-axis b. The line 

c. The line d. The line 

28. a. The x-axis b. The line 

c. The line d. The line 

Choosing the Washer Method or Shell Method
For some regions, both the washer and shell methods work well for the
solid generated by revolving the region about the coordinate axes, but
this is not always the case. When a region is revolved about the y-axis,
for example, and washers are used, we must integrate with respect to y.
It may not be possible, however, to express the integrand in terms of y.
In such a case, the shell method allows us to integrate with respect to x
instead. Exercises 29 and 30 provide some insight.

29. Compute the volume of the solid generated by revolving the region
bounded by and about each coordinate axis using

a. the shell method. b. the washer method.

30. Compute the volume of the solid generated by revolving the trian-
gular region bounded by the lines and 
about

a. the x-axis using the washer method.

b. the y-axis using the shell method.

c. the line using the shell method.

d. the line using the washer method.

In Exercises 31–36, find the volumes of the solids generated by re-
volving the regions about the given axes. If you think it would be bet-
ter to use washers in any given instance, feel free to do so.

y = 8

x = 4

x = 02y = x + 4, y = x,

y = x2y = x

x

y

 

2

(2, 2)

10

2
x

x �
y2

2

x �      �
y4

4
y2

2

y = -5>8y = 5

y = 2

x

y

0

1

1

x � 12(y2 � y3)

y = -2>5y = 8>5
y = 1

x-axisx = 1

y = x4,  y = 4 - 3x2
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6.2 Volumes Using Cylindrical Shells 381

31. The triangle with vertices (1, 1), (1, 2), and (2, 2) about

a. the x-axis b. the y-axis

c. the line d. the line 

32. The region bounded by about

a. the x-axis b. the y-axis

c. the line d. the line 

33. The region in the first quadrant bounded by the curve 
and the y-axis about

a. the x-axis b. the line 

34. The region in the first quadrant bounded by 
and about

a. the x-axis b. the y-axis

c. the line d. the line 

35. The region bounded by and about

a. the x-axis b. the y-axis

36. The region bounded by and about

a. the y-axis b. the line 

37. The region in the first quadrant that is bounded above by the
curve on the left by the line and below by
the line is revolved about the x-axis to generate a solid.
Find the volume of the solid by

a. the washer method. b. the shell method.

38. The region in the first quadrant that is bounded above by the
curve on the left by the line and below by
the line is revolved about the y-axis to generate a solid.
Find the volume of the solid by

a. the washer method. b. the shell method.

Theory and Examples
39. The region shown here is to be revolved about the x-axis to gener-

ate a solid. Which of the methods (disk, washer, shell) could you
use to find the volume of the solid? How many integrals would be
required in each case? Explain.

40. The region shown here is to be revolved about the y-axis to gener-
ate a solid. Which of the methods (disk, washer, shell) could you
use to find the volume of the solid? How many integrals would be
required in each case? Give reasons for your answers.

x

y

1

1

–1

0

y � x2

y � –x4

x

y

0 1

1
(1, 1)

–2

x � y2
x � 3y2 � 2

y = 1
x = 1>4,y = 1>2x,

y = 1
x = 1>16,y = 1>x1>4 ,

x = 1

y = xy = 2x - x2

y = x2>8y = 2x

y = 1x = 1

y = 1
x = y - y3, x = 1,

y = 1

x = y - y3

y = 2x = 4

y = 2x, y = 2, x = 0

y = 1x = 10>3
41. A bead is formed from a sphere of radius 5 by drilling through a

diameter of the sphere with a drill bit of radius 3.

a. Find the volume of the bead.

b. Find the volume of the removed portion of the sphere.

42. A Bundt cake, well known for having a ringed shape, is 
formed by revolving around the y-axis the region bounded by 
the graph of and the x-axis over the interval

Find the volume of the cake.

43. Derive the formula for the volume of a right circular cone of
height h and radius r using an appropriate solid of revolution.

44. Derive the equation for the volume of a sphere of radius r using
the shell method.

45. Equivalence of the washer and shell methods for finding vol-
ume Let ƒ be differentiable and increasing on the interval

with and suppose that ƒ has a differentiable
inverse, Revolve about the y-axis the region bounded by the
graph of ƒ and the lines and to generate a solid.
Then the values of the integrals given by the washer and shell
methods for the volume have identical values:

To prove this equality, define

Then show that the functions W and S agree at a point of [a, b]
and have identical derivatives on [a, b]. As you saw in Section 4.8,
Exercise 128, this will guarantee for all t in [a, b]. In
particular, (Source: “Disks and Shells Revisited,”
by Walter Carlip, American Mathematical Monthly, Vol. 98, No. 2,
Feb. 1991, pp. 154–156.)

46. The region between the curve and the x-axis from
to (shown here) is revolved about the y-axis to gen-

erate a solid. Find the volume of the solid.

47. Find the volume of the solid generated by revolving the region en-
closed by the graphs of , and about
the y-axis.

48. Find the volume of the solid generated by revolving the region en-
closed by the graphs of , and about the
x-axis.

x = ln 3y = ex>2, y = 1

x = 1y = e - x 2

, y = 0, x = 0

y � sec–1 x

x

y

210

�
3

x = 2x = 1
y = sec-1 x

Wsbd = Ssbd.
Wstd = Sstd

 Sstd =

L

t

a
 2pxsƒstd - ƒsxdd dx.

 Wstd =

L

ƒstd

ƒsad
pssƒ -1sydd2

- a2d dy

L

ƒsbd

ƒsad
p ssƒ -1sydd2

- a2d dy =

L

b

a
 2pxsƒsbd - ƒsxdd dx.

y = ƒsbdx = a
ƒ -1 .

a 7 0,a … x … b,

11 + p.1 … x …

y = sin (x2
- 1)
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The values of x, y, r, and u in rectangular and cylindrical coordinates are related by 
the usual equations.

Equations Relating Rectangular (x, y, z) and Cylindrical (r, U, z)  Coordinates

x = r cos u, y = r sin u, z = z,

r2 = x2 + y2, tan u = y>x

In cylindrical coordinates, the equation r = a describes not just a circle in the xy-plane 
but an entire cylinder about the z-axis (Figure 15.44). The z-axis is given by r = 0. The 
equation u = u0 describes the plane that contains the z-axis and makes an angle u0 with 
the positive x-axis. And, just as in rectangular coordinates, the equation z = z0 describes a 
plane perpendicular to the z-axis.

Cylindrical coordinates are good for describing cylinders whose axes run along the 
z-axis and planes that either contain the z-axis or lie perpendicular to the z-axis. Surfaces 
like these have equations of constant coordinate value:

r = 4 Cylinder, radius 4, axis the z-axis

u = p
3 Plane containing the z-axis

z = 2. Plane perpendicular to the z-axis

When computing triple integrals over a region D in cylindrical coordinates, we parti-
tion the region into n small cylindrical wedges, rather than into rectangular boxes. In the 
kth cylindrical wedge, r, u and z change by ∆rk , ∆uk , and ∆zk , and the largest of these 
numbers among all the cylindrical wedges is called the norm of the partition. We define 
the triple integral as a limit of Riemann sums using these wedges. The volume of such a 
cylindrical wedge ∆Vk is obtained by taking the area ∆Ak of its base in the ru@plane and 
multiplying by the height ∆z (Figure 15.45).

For a point (rk , uk , zk) in the center of the kth wedge, we calculated in polar coordi-
nates that ∆Ak = rk ∆rk ∆uk . So ∆Vk = ∆zk rk ∆rk ∆uk and a Riemann sum for ƒ over D
has the form

Sn = a

n

k=1
ƒ(rk , uk , zk) ∆zk rk ∆rk ∆uk .

The triple integral of a function ƒ over D is obtained by taking a limit of such Riemann 
sums with partitions whose norms approach zero:

z

y

x

0

a

r = a,
u and z vary

z = z0,
r and u vary

u = u0,
r and z vary

z0

u0

FIGURE 15.44 Constant-coordinate
equations in cylindrical coordinates yield 
cylinders and planes.

Volume Differential in Cylindrical 
Coordinates

dV = dz r dr du

lim
nSq

Sn =
l
D

ƒ dV =
l
D

ƒ dz r dr du.

Triple integrals in cylindrical coordinates are then evaluated as iterated integrals, as in the 
following example. Although the definition of cylindrical coordinates makes sense with-
out any restrictions on u, in most situations when integrating, we will need to restrict u to 
an interval of length 2p. So we impose the requirement that a … u … b, where 
0 … b - a … 2p.

Δz

r Δu
r Δr Δu

r

z

Δr

Δu

FIGURE 15.45 In cylindrical coordi-
nates the volume of the wedge is approxi-
mated by the product ∆V = ∆z r∆r∆u.
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The region is sketched in Figure 15.46.
We find the limits of integration, starting with the z-limits. A line M through a typical 

point (r, u) in R parallel to the z-axis enters D at z = 0 and leaves at z = x2 + y2 = r2.
Next we find the r-limits of integration. A ray L through (r, u) from the origin enters 

R at r = 0 and leaves at r = 2 sin u.
Finally we find the u@limits of integration. As L sweeps across R, the angle u it makes 

with the positive x-axis runs from u = 0 to u = p. The integral is

EXAMPLE 1  Find the limits of integration in cylindrical coordinates for integrating a 
function ƒ(r, u, z) over the region D bounded below by the plane z = 0, laterally by the 
circular cylinder x2 + (y - 1)2 = 1, and above by the paraboloid z = x2 + y2.

Solution The base of D is also the region’s projection R on the xy-plane. The boundary 
of R is the circle x2 + (y - 1)2 = 1. Its polar coordinate equation is

x2 + (y - 1)2 = 1

x2 + y2 - 2y + 1 = 1

r2 - 2r sin u = 0

r = 2 sin u.

l
D

ƒ(r, u, z) dV =
L

p

0 L

2 sin u

0 L

r2

0
ƒ(r, u, z) dz r dr du.

Example 1 illustrates a good procedure for finding limits of integration in cylindrical 
coordinates. The procedure is summarized as follows.

How to Integrate in Cylindrical Coordinates

To evaluate

l
D

ƒ(r, u, z) dV

over a region D in space in cylindrical coordinates, integrating first with respect to z, then 
with respect to r, and finally with respect to u, take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the sur-
faces and curves that bound D and R.

y

x
R

r = h2(u)

D

r = h1(u) z = g1(r, u)

z = g2(r, u)

z

x

y

z

M D

2

R L

Cartesian: x2 + ( y − 1)2 = 1
Polar: r = 2 sin u

(r, u)
u

Top
Cartesian: z = x2 + y2

Cylindrical: z = r2

FIGURE 15.46 Finding the limits of 
integration for evaluating an integral in 
cylindrical coordinates (Example 1).
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2. Find the z-limits of integration. Draw a line M through a typical point (r, u) of R  paral-
lel to the z-axis. As z increases, M enters D at z = g1(r, u) and leaves at z = g2(r, u).
These are the z-limits of integration.

y

z = g1(r, u)

x R

r = h2(u)

(r, u)

z = g2(r, u)

D

r = h1(u)

z

M

3. Find the r-limits of integration. Draw a ray L through (r, u) from the origin. The ray 
enters R at r = h1(u) and leaves at r = h2(u). These are the r-limits of integration.

L

u = a u = b

r = h2(u)

y

z = g1(r, u)

z = g2(r, u)

x

r = h1(u)

D

z
M

(r, u)

u

a b

R

4. Find the u@limits of integration. As L sweeps across R, the angle u it makes with the 
positive x-axis runs from u = a to u = b. These are the u@limits of integration. The 
integral is

l
D

ƒ(r, u, z) dV =
L

u=b

u=a L

r=h2(u)

r=h1(u) L

z=g2(r, u)

z=g1(r, u)
ƒ(r, u, z) dz r dr du.

EXAMPLE 2  Find the centroid (d = 1) of the solid enclosed by the cylinder 
x2 + y2 = 4, bounded above by the paraboloid z = x2 + y2, and bounded below by the 
xy-plane.

Solution We sketch the solid, bounded above by the paraboloid z = r2 and below by the 
plane z = 0 (Figure 15.47). Its base R is the disk 0 … r … 2 in the xy-plane.

z

M4

L

x y

x2 + y2 = 4
r = 2

z = x2 + y2

= r2

u

(r, u)

FIGURE 15.47 Example 2 shows how 
to find the centroid of this solid.
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The solid’s centroid (x, y, z) lies on its axis of symmetry, here the z-axis. This makes 
x = y = 0. To find z, we divide the first moment Mxy by the mass M.

To find the limits of integration for the mass and moment integrals, we continue with 
the four basic steps. We completed our initial sketch. The remaining steps give the limits 
of integration.

The z-limits. A line M through a typical point (r, u) in the base parallel to the z-axis
enters the solid at z = 0 and leaves at z = r2.

The r-limits. A ray L through (r, u) from the origin enters R at r = 0 and leaves at 
r = 2.

The u@limits. As L sweeps over the base like a clock hand, the angle u it makes with 
the positive x-axis runs from u = 0 to u = 2p. The value of Mxy is

Mxy =
L

2p

0 L

2

0 L

r2

0
z dz r dr du =

L

2p

0 L

2

0
c z2

2
d

0

r2

r dr du

=
L

2p

0 L

2

0

r5

2
dr du =

L

2p

0
c r6

12
d

0

2

du =
L

2p

0

16
3 du = 32p

3 .

The value of M is

M =
L

2p

0 L

2

0 L

r2

0
dz r dr du =

L

2p

0 L

2

0
c z d

0

r2

r dr du

=
L

2p

0 L

2

0
r3 dr du =

L

2p

0
c r4

4
d

0

2

du =
L

2p

0
4 du = 8p.

Therefore,

z =
Mxy

M = 32p
3

1
8p = 4

3,

and the centroid is (0, 0, 4 >3). Notice that the centroid lies on the z-axis, outside the solid.

Spherical Coordinates and Integration

Spherical coordinates locate points in space with two angles and one distance, as shown in 
Figure 15.48. The first coordinate, r = � rOP � , is the point’s distance from the origin and 
is never negative. The second coordinate, f, is the angle rOP makes with the positive 
z-axis. It is required to lie in the interval 30, p4 . The third coordinate is the angle u as 
measured in cylindrical coordinates.

DEFINITION Spherical coordinates represent a point P in space by ordered 
triples (r, f, u) in which

1. r is the distance from P to the origin (r Ú 0).

2. f is the angle rOP makes with the positive z-axis (0 … f … p).

3. u is the angle from cylindrical coordinates.

On maps of the earth, u is related to the meridian of a point on the earth and f to its 
latitude, while r is related to elevation above the earth’s surface.

The equation r = a describes the sphere of radius a centered at the origin (Figure 15.49). 
The equation f = f0 describes a single cone whose vertex lies at the origin and whose 
axis lies along the z-axis. (We broaden our interpretation to include the xy-plane as the 
cone f = p>2.) If f0 is greater than p>2, the cone f = f0 opens downward. The equa-
tion u = u0 describes the half-plane that contains the z-axis and makes an angle u0 with 
the positive x-axis.

y

z

0

r

x

x

y

P(r, f, u)

z = r cos f

f

u

r

FIGURE 15.48 The spherical coordinates
r, f, and u and their relation to x, y, z, and r.

r = a,
f and u vary

u = u0,
r and f vary

x

y

P(a, f0, u0)
f0

z

f = f0,
r and u vary

u0

FIGURE 15.49 Constant-coordinate
equations in spherical coordinates yield 
spheres, single cones, and half-planes.
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Equations Relating Spherical Coordinates to Cartesian
and Cylindrical Coordinates

r = r sin f,  x = r cos u = r sin f cos u,

z = r cos f, y = r sin u = r sin f sin u, (1)

r = 2x2 + y2 + z2 = 2r2 + z2.

EXAMPLE 3  Find a spherical coordinate equation for the sphere x2 + y2 +
(z - 1)2 = 1.

Solution We use Equations (1) to substitute for x, y, and z:

x2 + y2 + (z - 1)2 = 1

r2 sin2 f cos2u + r2 sin2 f sin2u + (r cos f - 1)2 = 1 Eqs. (1)

r2 sin2f(cos2u + sin2u) + r2 cos2f - 2r cos f + 1 = 1
(+++)+++*

1

r2(sin2f + cos2f) = 2r cos f
(+++)+++*

1

r2 = 2r cos f

r = 2 cos f. r 7 0

The angle f varies from 0 at the north pole of the sphere to p>2 at the south pole; the 
angle u does not appear in the expression for r, reflecting the symmetry about the z-axis
(see Figure 15.50).

EXAMPLE 4  Find a spherical coordinate equation for the cone z = 2x2 + y2.

Solution 1 Use geometry. The cone is symmetric with respect to the z-axis and cuts the 
first quadrant of the yz-plane along the line z = y. The angle between the cone and the 
positive z-axis is therefore p>4 radians. The cone consists of the points whose spherical 
coordinates have f equal to p>4, so its equation is f = p>4. (See Figure 15.51.)

Solution 2 Use algebra. If we use Equations (1) to substitute for x, y, and z we obtain 
the same result:

z = 2x2 + y2

r cos f = 2r2 sin2f Example 3

r cos f = r sin f r 7 0, sinf Ú 0

cosf = sinf

f = p
4

. 0 … f … p

Spherical coordinates are useful for describing spheres centered at the origin, half-planes 
hinged along the z-axis, and cones whose vertices lie at the origin and whose axes lie 
along the z-axis. Surfaces like these have equations of constant coordinate value:

r = 4 Sphere, radius 4, center at origin

f = p
3

Cone opening up from the origin, making an 
angle of p>3 radians with the positive z-axis

u = p
3 . Half-plane, hinged along the z-axis, making an 

angle of p>3 radians with the positive x-axis

When computing triple integrals over a region D in spherical coordinates, we partition 
the region into n spherical wedges. The size of the kth spherical wedge, which contains a 

y

x

z

2

1

r

f

x2 + y2 + (z − 1)2 = 1
r = 2 cos f

FIGURE 15.50 The sphere in Example 3.

y

z

x

p
4

f =

p
4

f =

z = "x2 + y2

FIGURE 15.51 The cone in Example 4.
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point (rk , fk , uk), is given by the changes ∆rk , ∆fk , and ∆uk in r, f, and u. Such a 
spherical wedge has one edge a circular arc of length rk ∆fk , another edge a circular arc 
of length rk sin fk ∆uk, and thickness ∆rk . The spherical wedge closely approximates a 
cube of these dimensions when ∆rk , ∆fk , and ∆uk are all small (Figure 15.52). It can be 
shown that the volume of this spherical wedge ∆Vk is ∆Vk = rk

2 sin fk ∆rk ∆fk ∆uk for 
(rk , fk , uk), a point chosen inside the wedge.

The corresponding Riemann sum for a function ƒ(r, f, u) is

Sn = a

n

k=1
ƒ(rk , fk , uk) rk

2 sin fk ∆rk ∆fk ∆uk .

As the norm of a partition approaches zero, and the spherical wedges get smaller, the 
Riemann sums have a limit when ƒ is continuous:

lim
nSq

Sn =
l
D

ƒ(r, f, u) dV =
l
D

ƒ(r, f, u) r2 sin f dr df du.

To evaluate integrals in spherical coordinates, we usually integrate first with respect 
to r. The procedure for finding the limits of integration is as follows. We restrict our atten-
tion to integrating over domains that are solids of revolution about the z-axis (or portions 
thereof) and for which the limits for u and f are constant. As with cylindrical coordinates, 
we restrict u in the form a … u … b and 0 … b - a … 2p.

How to Integrate in Spherical Coordinates

To evaluate

l
D

ƒ(r, f, u) dV

over a region D in space in spherical coordinates, integrating first with respect to r, then 
with respect to f, and finally with respect to u, take the following steps.

1. Sketch. Sketch the region D along with its projection R on the xy-plane. Label the sur-
faces that bound D.

x

y

z

R

D

L

M

r = g2(f, u)

r = g1(f, u)

u = a
u = b

fmax

fmin
f

u

x

yR

r = g1(f, u)

D

z

r = g2(f, u)

O
r

f

r sin f

r sin f Δu

Δr

u

u + Δu

rΔf

y

z

x

FIGURE 15.52 In spherical coordinates 
we use the volume of a spherical wedge, 
which closely approximates that of a cube.

Volume Differential in Spherical 
Coordinates

dV = r2 sin f dr df du
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2. Find the r@limits of integration. Draw a ray M from the origin through D, making an 
angle f with the positive z-axis. Also draw the projection of M on the xy-plane (call 
the projection L). The ray L makes an angle u with the positive x-axis. As r increases, 
M enters D at r = g1(f, u) and leaves at r = g2(f, u). These are the r@limits of 
integration shown in the above figure.

3. Find the f@limits of integration. For any given u, the angle f that M makes with the 
z-axis runs from f = fmin to f = fmax. These are the f @limits of integration.

4. Find the u@limits of integration. The ray L sweeps over R as u runs from a to b. These 
are the u@limits of integration. The integral is

l
D

ƒ(r, f, u) dV =
L

u=b

u=a L

f=fmax

f=fmin L

r=g2(f, u)

r=g1(f, u)
ƒ(r, f, u) r2 sin f dr df du.

EXAMPLE 5  Find the volume of the “ice cream cone” D cut from the solid sphere 
r … 1 by the cone f = p>3.

Solution The volume is V = 7D r2 sin f dr df du, the integral of ƒ(r, f, u) = 1
over D.

To find the limits of integration for evaluating the integral, we begin by sketching D
and its projection R on the xy-plane (Figure 15.53).

The r@limits of integration. We draw a ray M from the origin through D, making an 
angle f with the positive z-axis. We also draw L, the projection of M on the xy-plane,
along with the angle u that L makes with the positive x-axis. Ray M enters D at r = 0 and 
leaves at r = 1.

The f@limits of integration. The cone f = p>3 makes an angle of p>3 with the 
positive z-axis. For any given u, the angle f can run from f = 0 to f = p>3.

The u@limits of integration. The ray L sweeps over R as u runs from 0 to 2p. The 
volume is

V =
l
D

r2 sin f dr df du =
L

2p

0 L

p>3

0 L

1

0
r2 sin f dr df du

=
L

2p

0 L

p>3

0
cr3

3 d 0
1

sin f df du =
L

2p

0 L

p>3

0

1
3 sin f df du

=
L

2p

0
c- 1

3 cos f d
0

p>3
du =

L

2p

0
a- 1

6
+ 1

3b du = 1
6

(2p) = p
3 .

EXAMPLE 6  A solid of constant density d = 1 occupies the region D in Example 5. 
Find the solid’s moment of inertia about the z-axis.

Solution In rectangular coordinates, the moment is

Iz =
l
D

(x2 + y2) dV.

In spherical coordinates, x2 + y2 = (r sin f cos u)2 + (r sin f sin u)2 = r2 sin2f.
Hence,

Iz =
l
D

(r2 sin2f) r2 sin f dr df du =
l
D

r4 sin3f dr df du.

x y

z

R

L

M

D

u

f
Sphere r = 1

Cone f = p
3

FIGURE 15.53 The ice cream cone in 
Example 5.
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For the region D in Example 5, this becomes

Iz =
L

2p

0 L

p>3

0 L

1

0
r4 sin3f dr df du =

L

2p

0 L

p>3

0
cr5

5
d

0

1

sin3f df du

= 1
5L

2p

0 L

p>3

0

(1 - cos2f) sin f df du = 1
5L

2p

0
c-cosf +

cos3f

3 d
0

p>3
du

= 1
5L

2p

0
a- 1

2
+ 1 + 1

24
- 1

3b du = 1
5L

2p

0

5
24

du = 1
24

(2p) = p
12

.

Coordinate Conversion Formulas 

Cylindrical to Spherical to Spherical to
Rectangular Rectangular Cylindrical

x = r cos u x = r sin f cos u r = r sin f

y = r sin u y = r sin f sin u z = r cos f

z = z z = r cos f u = u

Corresponding formulas for dV in triple integrals:

dV = dx dy dz

= dz r dr du

= r2 sin f dr df du

In the next section we offer a more general procedure for determining dV in cylindri-
cal and spherical coordinates. The results, of course, will be the same.

Evaluating Integrals in Cylindrical Coordinates
Evaluate the cylindrical coordinate integrals in Exercises 1–6.

1.
L

2p

0 L

1

0 L

22- r2

r
dz r dr du 2.

L

2p

0 L

3

0 L

218- r2

r2>3
dz r dr du

3.
L

2p

0 L

u>2p

0 L

3+24r2

0
dz r dr du 4.

L

p

0 L

u>p

0 L

324- r2

-24- r2

z dz r dr du

5.
L

2p

0 L

1

0 L

1>22- r2

r
3 dz r dr du

6.
L

2p

0 L

1

0 L

1>2

-1>2
(r2 sin2 u + z2) dz r dr du

Changing the Order of Integration in Cylindrical Coordinates
The integrals we have seen so far suggest that there are preferred 
orders of integration for cylindrical coordinates, but other orders usu-
ally work well and are occasionally easier to evaluate. Evaluate the 
integrals in Exercises 7–10.

7.
L

2p

0 L

3

0 L

z>3

0
r3 dr dz du 8.

L

1

-1L

2p

0 L

1+cosu

0
4r dr du dz

9.
L

1

0 L

2z

0 L

2p

0

(r2 cos2 u + z2) r du dr dz

10.
L

2

0 L

24- r2

r-2 L

2p

0
(r sin u + 1) r du dz dr

11. Let D be the region bounded below by the plane z = 0, above by 
the sphere x2 + y2 + z2 = 4, and on the sides by the cylinder 
x2 + y2 = 1. Set up the triple integrals in cylindrical coordinates 
that give the volume of D using the following orders of integration.

a. dz dr du b. dr dz du c. du dz dr

12. Let D be the region bounded below by the cone z = 2x2 + y2

and above by the paraboloid z = 2 - x2 - y2. Set up the triple 
integrals in cylindrical coordinates that give the volume of D
using the following orders of integration.

a. dz dr du b. dr dz du c. du dz dr

Finding Iterated Integrals in Cylindrical Coordinates
13. Give the limits of integration for evaluating the integral

l
ƒ(r, u, z) dz r dr du

Exercises 15.7
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  as an iterated integral over the region that is bounded below by 
the plane z = 0, on the side by the cylinder r = cos u, and on top 
by the paraboloid z = 3r2.

14. Convert the integral

L

1

-1L

21-y2

0 L

x

0

(x2 + y2) dz dx dy

  to an equivalent integral in cylindrical coordinates and evaluate 
the result.

In Exercises 15–20, set up the iterated integral for evaluating 

7D ƒ(r, u, z) dz r dr du over the given region D.

15. D is the right circular cylinder whose base is the circle r = 2 sin u

in the xy-plane and whose top lies in the plane z = 4 - y.

z

y

x

z = 4 − y

r = 2 sin u

16. D is the right circular cylinder whose base is the circle r = 3 cos u
and whose top lies in the plane z = 5 - x.

x

r = 3 cos u

y

z = 5 − x

z

17. D is the solid right cylinder whose base is the region in the xy-
plane that lies inside the cardioid r = 1 + cos u and outside the 
circle r = 1 and whose top lies in the plane z = 4.

z

y

x

4

r = 1 + cos u

r = 1

18. D is the solid right cylinder whose base is the region between the 
circles r = cos u and r = 2 cos u and whose top lies in the plane 
z = 3 - y.

z

y

x

r = 2 cos u

r = cos u

z = 3 − y

19. D is the prism whose base is the triangle in the xy-plane bounded 
by the x-axis and the lines y = x and x = 1 and whose top lies in 
the plane z = 2 - y.

y

z

x

2

1
y = x

z = 2 − y

20. D is the prism whose base is the triangle in the xy-plane bounded 
by the y-axis and the lines y = x and y = 1 and whose top lies in 
the plane z = 2 - x.

y

z

x

2

1

y = x

z = 2 − x

Evaluating Integrals in Spherical Coordinates
Evaluate the spherical coordinate integrals in Exercises 21–26.

21.
L

p

0 L

p

0 L

2 sin f

0
r2 sin f dr df du

22.
L

2p

0 L

p>4

0 L

2

0
(r cos f) r2 sin f dr df du

23.
L

2p

0 L

p

0 L

(1-cosf)>2

0
r2 sin f dr df du

24.
L

3p>2

0 L

p

0 L

1

0
5r3 sin3f dr df du

25.
L

2p

0 L

p>3

0 L

2

secf
3r2 sin f dr df du
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26.
L

2p

0 L

p>4

0 L

secf

0
(r cos f) r2 sin f dr df du

Changing the Order of Integration in Spherical Coordinates
The previous integrals suggest there are preferred orders of integra-
tion for spherical coordinates, but other orders give the same value 
and are occasionally easier to evaluate. Evaluate the integrals in Exer-
cises 27–30.

27.
L

2

0 L

0

-pL

p>2

p>4
r3 sin 2f df du dr

28.
L

p>3

p>6 L

2 cscf

cscf L

2p

0
r2 sin f du dr df

29.
L

1

0 L

p

0 L

p>4

0
12r sin3f df du dr

30.
L

p>2

p>6 L

p/2

-p/2 L

2

cscf
5r4 sin3f dr du df

31. Let D be the region in Exercise 11. Set up the triple integrals in 
spherical coordinates that give the volume of D using the follow-
ing orders of integration.

  a. dr df du b. df dr du

32. Let D be the region bounded below by the cone z = 2x2 + y2

and above by the plane z = 1. Set up the triple integrals in spher-
ical coordinates that give the volume of D using the following 
orders of integration.

a. dr df du b. df dr du

Finding Iterated Integrals in Spherical Coordinates
In Exercises 33–38, (a) find the spherical coordinate limits for the 
integral that calculates the volume of the given solid and then 
(b) evaluate the integral.

33. The solid between the sphere r = cosf and the hemisphere 
r = 2, z Ú 0

yx 2 2

2 r = 2r = cos f

z

34. The solid bounded below by the hemisphere r = 1, z Ú 0, and 
above by the cardioid of revolution r = 1 + cosf

yx

r = 1
r = 1 + cos f

z

35. The solid enclosed by the cardioid of revolution r = 1 - cosf

36. The upper portion cut from the solid in Exercise 35 by the xy-plane

37. The solid bounded below by the sphere r = 2 cos f and above 
by the cone z = 2x2 + y2

yx

r = 2 cos f

z = "x2 + y2z

38. The solid bounded below by the xy-plane, on the sides by the 
sphere r = 2, and above by the cone f = p>3

yx

f =
p
3

r = 2

z

Finding Triple Integrals
39. Set up triple integrals for the volume of the sphere r = 2 in 

(a) spherical, (b) cylindrical, and (c) rectangular coordinates.

40. Let D be the region in the first octant that is bounded below by 
the cone f = p>4 and above by the sphere r = 3. Express the 
volume of D as an iterated triple integral in (a) cylindrical and 
(b) spherical coordinates. Then (c) find V.

41. Let D be the smaller cap cut from a solid ball of radius 2 units by 
a plane 1 unit from the center of the sphere. Express the volume 
of D as an iterated triple integral in (a) spherical, (b) cylindrical, 
and (c) rectangular coordinates. Then (d) find the volume by 
evaluating one of the three triple integrals.

42. Express the moment of inertia Iz of the solid hemisphere 
x2 + y2 + z2 … 1, z Ú 0, as an iterated integral in (a) cylindri-
cal and (b) spherical coordinates. Then (c) find Iz .

Volumes
Find the volumes of the solids in Exercises 43–48.

43. 44.

z

yx

z = 4 − 4 (x2 + y2)

z = (x2 + y2)2 −1

z

yx
1

–1

1

z = 1 − r

z = −"1 − r2

–1

45. z

y

x

r = 3 cos u

z =−y
46. z

yx

z = "x2 + y2

r = −3 cos u
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47.  48.
z

y
x

z = "1 − x2 − y2

r = sin u   r = cos u

z = 3"1 − x2 − y2

yx

z

49. Sphere and cones Find the volume of the portion of the solid 
sphere r … a that lies between the cones f = p>3 and 
f = 2p>3.

50. Sphere and half-planes Find the volume of the region cut from 
the solid sphere r … a by the half-planes u = 0 and u = p>6 in 
the first octant.

51. Sphere and plane Find the volume of the smaller region cut 
from the solid sphere r … 2 by the plane z = 1.

52. Cone and planes Find the volume of the solid enclosed by the 
cone z = 2x2 + y2 between the planes z = 1 and z = 2.

53. Cylinder and paraboloid Find the volume of the region 
bounded below by the plane z = 0, laterally by the cylinder 
x2 + y2 = 1, and above by the paraboloid z = x2 + y2.

54. Cylinder and paraboloids Find the volume of the region 
bounded below by the paraboloid z = x2 + y2, laterally by the 
cylinder x2 + y2 = 1, and above by the paraboloid z =
x2 + y2 + 1.

55. Cylinder and cones Find the volume of the solid cut from the 
thick-walled cylinder 1 … x2 + y2 … 2 by the cones z =
{2x2 + y2.

56. Sphere and cylinder Find the volume of the region that lies 
inside the sphere x2 + y2 + z2 = 2 and outside the cylinder 
x2 + y2 = 1.

57. Cylinder and planes Find the volume of the region enclosed 
by the cylinder x2 + y2 = 4 and the planes z = 0 and y + z = 4.

58. Cylinder and planes Find the volume of the region enclosed 
by the cylinder x2 + y2 = 4 and the planes z = 0 and 
x + y + z = 4.

59. Region trapped by paraboloids Find the volume of the region 
bounded above by the paraboloid z = 5 - x2 - y2 and below by 
the paraboloid z = 4x2 + 4y2.

60. Paraboloid and cylinder Find the volume of the region 
bounded above by the paraboloid z = 9 - x2 - y2, below by the 
xy-plane, and lying outside the cylinder x2 + y2 = 1.

61. Cylinder and sphere Find the volume of the region cut from 
the solid cylinder x2 + y2 … 1 by the sphere x2 + y2 + z2 = 4.

62. Sphere and paraboloid Find the volume of the region bounded 
above by the sphere x2 + y2 + z2 = 2 and below by the parabo-
loid z = x2 + y2.

Average Values
63. Find the average value of the function ƒ(r, u, z) = r over the 

region bounded by the cylinder r = 1 between the planes z = -1
and z = 1.

64. Find the average value of the function ƒ(r, u, z) = r over the 
solid ball bounded by the sphere r2 + z2 = 1. (This is the sphere 
x2 + y2 + z2 = 1.)

65. Find the average value of the function ƒ(r, f, u) = r over the 
solid ball r … 1.

66. Find the average value of the function ƒ(r, f, u) = r cos f over 
the solid upper ball r … 1, 0 … f … p>2.

Masses, Moments, and Centroids
67. Center of mass A solid of constant density is bounded below 

by the plane z = 0, above by the cone z = r, r Ú 0, and on the 
sides by the cylinder r = 1. Find the center of mass.

68. Centroid Find the centroid of the region in the first octant that is 
bounded above by the cone z = 2x2 + y2, below by the plane 
z = 0, and on the sides by the cylinder x2 + y2 = 4 and the planes 
x = 0 and y = 0.

69. Centroid Find the centroid of the solid in Exercise 38.

70. Centroid Find the centroid of the solid bounded above by the 
sphere r = a and below by the cone f = p>4.

71. Centroid Find the centroid of the region that is bounded above 
by the surface z = 2r, on the sides by the cylinder r = 4, and 
below by the xy-plane.

72. Centroid Find the centroid of the region cut from the solid ball 
r2 + z2 … 1 by the half-planes u = -p>3, r Ú 0, and u = p>3,
r Ú 0.

73. Moment of inertia of solid cone Find the moment of inertia of 
a right circular cone of base radius 1 and height 1 about an axis 
through the vertex parallel to the base. (Take d = 1.)

74. Moment of inertia of solid sphere Find the moment of inertia 
of a solid sphere of radius a about a diameter. (Take d = 1.)

75. Moment of inertia of solid cone Find the moment of inertia of 
a right circular cone of base radius a and height h about its axis. 
(Hint: Place the cone with its vertex at the origin and its axis 
along the z-axis.)

76. Variable density A solid is bounded on the top by the parabo-
loid z = r2, on the bottom by the plane z = 0, and on the sides 
by the cylinder r = 1. Find the center of mass and the moment of 
inertia about the z-axis if the density is

a. d(r, u, z) = z b. d(r, u, z) = r.

77. Variable density A solid is bounded below by the cone 
z = 2x2 + y2 and above by the plane z = 1. Find the center of 
mass and the moment of inertia about the z-axis if the density is

a. d(r, u, z) = z b. d(r, u, z) = z2.

78. Variable density A solid ball is bounded by the sphere r = a.
Find the moment of inertia about the z-axis if the density is

a. d(r, f, u) = r2 b. d(r, f, u) = r = r sin f.

79. Centroid of solid semiellipsoid Show that the centroid of the 
solid semiellipsoid of revolution (r2>a2) + (z2>h2) … 1, z Ú 0,
lies on the z-axis three-eighths of the way from the base to the 
top. The special case h = a gives a solid hemisphere. Thus, the 
centroid of a solid hemisphere lies on the axis of symmetry three-
eighths of the way from the base to the top.

80. Centroid of solid cone Show that the centroid of a solid right 
circular cone is one-fourth of the way from the base to the vertex. 
(In general, the centroid of a solid cone or pyramid is one-fourth 
of the way from the centroid of the base to the vertex.)

81. Density of center of a planet A planet is in the shape of a sphere 
of radius R and total mass M with spherically symmetric density 
distribution that increases linearly as one approaches its center. 
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y-coordinate and the points in a plane perpendicular to the z-axis have a common z-coordi-
nate. To write equations for these planes, we name the common coordinate’s value. The 
plane x = 2 is the plane perpendicular to the x-axis at x = 2. The plane y = 3 is the 
plane perpendicular to the y-axis at y = 3. The plane z = 5 is the plane perpendicular to 
the z-axis at z = 5. Figure 12.3 shows the planes x = 2, y = 3, and z = 5, together with 
their intersection point (2, 3, 5).

The planes x = 2 and y = 3 in Figure 12.3 intersect in a line parallel to the z-axis.
This line is described by the pair of equations x = 2, y = 3. A point (x, y, z) lies on the 
line if and only if x = 2 and y = 3. Similarly, the line of intersection of the planes y = 3
and z = 5 is described by the equation pair y = 3, z = 5. This line runs parallel to the 
x-axis. The line of intersection of the planes x = 2 and z = 5, parallel to the y-axis, is 
described by the equation pair x = 2, z = 5.

In the following examples, we match coordinate equations and inequalities with the 
sets of points they define in space.

EXAMPLE 1  We interpret these equations and inequalities geometrically.

(a) z Ú 0 The half-space consisting of the points on and above 
the xy-plane.

(b) x = -3 The plane perpendicular to the x-axis at x = -3. This 
plane lies parallel to the yz-plane and 3 units behind it.

(c) z = 0, x … 0, y Ú 0 The second quadrant of the xy-plane.

(d) x Ú 0, y Ú 0, z Ú 0 The first octant.

(e) -1 … y … 1 The slab between the planes y = -1 and y = 1
(planes included).

(f) y = -2, z = 2 The line in which the planes y = -2 and z = 2 inter-
sect. Alternatively, the line through the point (0, -2, 2)
parallel to the x-axis.

EXAMPLE 2  What points P(x, y, z) satisfy the equations

x2 + y2 = 4 and z = 3?

Solution The points lie in the horizontal plane z = 3 and, in this plane, make up the 
circle x2 + y2 = 4. We call this set of points “the circle x2 + y2 = 4 in the plane z = 3”
or, more simply, “the circle x2 + y2 = 4, z = 3” (Figure 12.4).

z

yz-plane: x = 0

xz-plane: y = 0

xy-plane: z = 0

y

x

(0, 0, 0)

Origin

FIGURE 12.2 The planes x = 0, y = 0, and z = 0 divide 
space into eight octants.

y

z

x

(0, 0, 5) (2, 3, 5)

(0, 3, 0)
(2, 0, 0)

0

Line y = 3, z = 5

Line x = 2, z = 5

Plane y = 3

Line x = 2, y = 3

Plane z = 5

Plane x = 2

FIGURE 12.3 The planes x = 2, y = 3, and 
z = 5 determine three lines through the point (2, 3, 5).

x

z

(0, 2, 0)

y(2, 0, 0)

(0, 2, 3)

The circle
x2 + y2 = 4, z = 3

The plane
z = 3

x2 + y2 = 4, z = 0

(2, 0, 3)

FIGURE 12.4 The circle x2 + y2 = 4
in the plane z = 3 (Example 2).
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Distance and Spheres in Space

The formula for the distance between two points in the xy-plane extends to points in space.

The Distance Between P1(x1, y1, z1)  and P2(x2, y2, z2)

0P1P2 0 = 2(x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2

Proof  We construct a rectangular box with faces parallel to the coordinate planes and 
the points P1 and P2 at opposite corners of the box (Figure 12.5). If A(x2, y1, z1) and 
B(x2, y2, z1) are the vertices of the box indicated in the figure, then the three box edges 
P1A, AB, and BP2 have lengths

0P1A 0 = 0 x2 - x1 0 , 0AB 0 = 0 y2 - y1 0 , 0BP2 0 = 0 z2 - z1 0 .
Because triangles P1BP2 and P1AB are both right-angled, two applications of the Pythago-
rean theorem give

0P1P2 0 2 = 0P1B 0 2 + 0BP2 0 2 and 0P1B 0 2 = 0P1A 0 2 + 0AB 0 2
(see Figure 12.5). So

0P1P2 0 2 = 0P1B 0 2 + 0BP2 0 2
= 0P1A 0 2 + 0AB 0 2 + 0BP2 0 2 Substitute0P1B 0 2 = 0P1A 0 2 + 0AB 0 2.
= 0 x2 - x1 0 2 + 0 y2 - y1 0 2 + 0 z2 - z1 0 2
= (x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2 .

Therefore

0P1P2 0 = 2(x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2.

EXAMPLE 3  The distance between P1(2, 1, 5) and P2(-2, 3, 0) is

0P1P2 0 = 2(-2 - 2)2 + (3 - 1)2 + (0 - 5)2

= 216 + 4 + 25

= 245 ≈ 6.708.

We can use the distance formula to write equations for spheres in space (Figure 12.6). 
A point P(x, y, z) lies on the sphere of radius a centered at P0(x0, y0, z0) precisely when 0P0P 0 = a or

(x - x0)2 + (y - y0)2 + (z - z0)2 = a2.

x

z

y

0

P1(x1, y1, z1)

A(x2, y1, z1)

P2(x2, y2, z2)

B(x2, y2, z1)

FIGURE 12.5 We find the distance 
between P1 and P2 by applying the
Pythagorean theorem to the right
triangles P1AB and P1BP2.

P0(x0, y0, z0)
P(x, y, z)

a

y

z

0

x

FIGURE 12.6 The sphere of radius a
centered at the point (x0, y0, z0).

The Standard Equation for the Sphere of Radius a and Center (x0, y0, z0)

(x - x0)2 + (y - y0)2 + (z - z0)2 = a2

EXAMPLE 4  Find the center and radius of the sphere

x2 + y2 + z2 + 3x - 4z + 1 = 0.

Solution We find the center and radius of a sphere the way we find the center and radius 
of a circle: Complete the squares on the x-, y-, and z-terms as necessary and write each 
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quadratic as a squared linear expression. Then, from the equation in standard form, read 
off the center and radius. For the sphere here, we have

x2 + y2 + z2 + 3x - 4z + 1 = 0

(x2 + 3x) + y2 + (z2 - 4z) = -1

ax2 + 3x + a3
2
b2b + y2 + az2 - 4z + a-4

2
b2b = -1 + a3

2
b2

+ a-4
2
b2

ax + 3
2
b2

+ y2 + (z - 2)2 = -1 + 9
4

+ 4 = 21
4

.

From this standard form, we read that x0 = -3>2, y0 = 0, z0 = 2, and a = 221>2. The 

center is (-3>2, 0, 2). The radius is 221>2.

EXAMPLE 5  Here are some geometric interpretations of inequalities and equations 
involving spheres.

(a) x2 + y2 + z2 6 4 The interior of the sphere x2 + y2 + z2 = 4.

(b) x2 + y2 + z2 … 4 The solid ball bounded by the sphere x2 + y2 +
z2 = 4. Alternatively, the sphere x2 + y2 + z2 =
4 together with its interior.

(c) x2 + y2 + z2 7 4 The exterior of the sphere x2 + y2 + z2 = 4.

(d) x2 + y2 + z2 = 4, z … 0  The lower hemisphere cut from the sphere x2 +
y2 + z2 = 4 by the xy-plane (the plane z = 0).

Just as polar coordinates give another way to locate points in the xy-plane (Section 
11.3), alternative coordinate systems, different from the Cartesian coordinate system 
developed here, exist for three-dimensional space. We examine two of these coordinate 
systems in Section 15.7.

Geometric Interpretations of Equations
In Exercises 1–16, give a geometric description of the set of points in 
space whose coordinates satisfy the given pairs of equations.

1. x = 2, y = 3 2. x = -1, z = 0

3. y = 0, z = 0 4. x = 1, y = 0

5. x2 + y2 = 4, z = 0 6. x2 + y2 = 4, z = -2

7. x2 + z2 = 4, y = 0 8. y2 + z2 = 1, x = 0

9. x2 + y2 + z2 = 1, x = 0

10. x2 + y2 + z2 = 25, y = -4

11. x2 + y2 + (z + 3)2 = 25, z = 0

12. x2 + (y - 1)2 + z2 = 4, y = 0

13. x2 + y2 = 4, z = y

14. x2 + y2 + z2 = 4, y = x

15. y = x2, z = 0

16. z = y2, x = 1

Geometric Interpretations of Inequalities and Equations
In Exercises 17–24, describe the sets of points in space whose coordi-
nates satisfy the given inequalities or combinations of equations and 
inequalities.

17. a. x Ú 0, y Ú 0, z = 0 b. x Ú 0, y … 0, z = 0

18. a. 0 … x … 1 b. 0 … x … 1, 0 … y … 1

c. 0 … x … 1, 0 … y … 1, 0 … z … 1

19. a. x2 + y2 + z2 … 1 b. x2 + y2 + z2 7 1

20. a. x2 + y2 … 1, z = 0 b. x2 + y2 … 1, z = 3

c. x2 + y2 … 1, no restriction on z

21. a. 1 … x2 + y2 + z2 … 4

b. x2 + y2 + z2 … 1, z Ú 0

22. a. x = y, z = 0 b. x = y, no restriction on z

23. a. y Ú x2, z Ú 0 b. x … y2, 0 … z … 2

24. a. z = 1 - y, no restriction on x

b. z = y3, x = 2

Exercises 12.1
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44. P1(3, 4, 5), P2(2, 3, 4)

45. P1(0, 0, 0), P2(2, -2, -2)

46. P1(5, 3, -2), P2(0, 0, 0)

Spheres
Find the centers and radii of the spheres in Exercises 47–50.

47. (x + 2)2 + y2 + (z - 2)2 = 8

48. (x - 1)2 + ay + 1
2
b2

+ (z + 3)2 = 25

49. 1x - 2222 + 1y - 2222 + 1z + 2222 = 2

50. x2 + ay + 1
3
b2

+ az - 1
3
b2

= 16
9

Find equations for the spheres whose centers and radii are given in 
Exercises 51–54.

  Center Radius

51. (1, 2, 3) 214

52. (0, -1, 5) 2

53. a-1,
1
2

, - 2
3
b 4

9

54. (0, -7, 0) 7

Find the centers and radii of the spheres in Exercises 55–58.

55. x2 + y2 + z2 + 4x - 4z = 0

56. x2 + y2 + z2 - 6y + 8z = 0

57. 2x2 + 2y2 + 2z2 + x + y + z = 9

58. 3x2 + 3y2 + 3z2 + 2y - 2z = 9

Theory and Examples
59. Find a formula for the distance from the point P(x, y, z) to the

a. x-axis. b. y-axis. c. z-axis.

60. Find a formula for the distance from the point P(x, y, z) to the

a. xy-plane. b. yz-plane. c. xz-plane.

61. Find the perimeter of the triangle with vertices A(-1, 2, 1),
B(1, -1, 3), and C(3, 4, 5).

62. Show that the point P(3, 1, 2) is equidistant from the points 
A(2, -1, 3) and B(4, 3, 1).

63. Find an equation for the set of all points equidistant from the 
planes y = 3 and y = -1.

64. Find an equation for the set of all points equidistant from the 
point (0, 0, 2) and the xy-plane.

65. Find the point on the sphere x2 + (y - 3)2 + (z + 5)2 = 4
nearest

a. the xy-plane. b. the point (0, 7, -5).

66. Find the point equidistant from the points (0, 0, 0), (0, 4, 0), 
(3, 0, 0), and (2, 2, -3).

In Exercises 25–34, describe the given set with a single equation or 
with a pair of equations.

25. The plane perpendicular to the

a. x-axis at (3, 0, 0) b. y-axis at (0, -1, 0)

c. z-axis at (0, 0, -2)

26. The plane through the point (3, -1, 2) perpendicular to the

a. x-axis b. y-axis c. z-axis

27. The plane through the point (3, -1, 1) parallel to the

a. xy-plane b. yz-plane c. xz-plane

28. The circle of radius 2 centered at (0, 0, 0) and lying in the

a. xy-plane b. yz-plane c. xz-plane

29. The circle of radius 2 centered at (0, 2, 0) and lying in the

a. xy-plane b. yz-plane c. plane y = 2

30. The circle of radius 1 centered at (-3, 4, 1) and lying in a plane 
parallel to the

a. xy-plane b. yz-plane c. xz-plane

31. The line through the point (1, 3, -1) parallel to the

a. x-axis b. y-axis c. z-axis

32. The set of points in space equidistant from the origin and the 
point (0, 2, 0)

33. The circle in which the plane through the point (1, 1, 3) perpen-
dicular to the z-axis meets the sphere of radius 5 centered at the 
origin

34. The set of points in space that lie 2 units from the point (0, 0, 1) 
and, at the same time, 2 units from the point (0, 0, -1)

Inequalities to Describe Sets of Points
Write inequalities to describe the sets in Exercises 35–40.

35. The slab bounded by the planes z = 0 and z = 1 (planes 
included)

36. The solid cube in the first octant bounded by the coordinate 
planes and the planes x = 2, y = 2, and z = 2

37. The half-space consisting of the points on and below the xy-plane

38. The upper hemisphere of the sphere of radius 1 centered at the 
origin

39. The (a) interior and (b) exterior of the sphere of radius 1 centered 
at the point (1, 1, 1)

40. The closed region bounded by the spheres of radius 1 and radius 2 
centered at the origin. (Closed means the spheres are to be 
included. Had we wanted the spheres left out, we would have 
asked for the open region bounded by the spheres. This is analo-
gous to the way we use closed and open to describe intervals: 
closed means endpoints included, open means endpoints left out. 
Closed sets include boundaries; open sets leave them out.)

Distance
In Exercises 41–46, find the distance between points P1 and P2.

41. P1(1, 1, 1), P2(3, 3, 0)

42. P1(-1, 1, 5), P2(2, 5, 0)

43. P1(1, 4, 5), P2(4, -2, 7)
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12.2 Vectors

Some of the things we measure are determined simply by their magnitudes. To record 
mass, length, or time, for example, we need only write down a number and name an appro-
priate unit of measure. We need more information to describe a force, displacement, or 
velocity. To describe a force, we need to record the direction in which it acts as well as 
how large it is. To describe a body’s displacement, we have to say in what direction it 
moved as well as how far. To describe a body’s velocity, we have to know where the body 
is headed as well as how fast it is going. In this section we show how to represent things 
that have both magnitude and direction in the plane or in space.

Component Form

A quantity such as force, displacement, or velocity is called a vector and is represented by 
a directed line segment (Figure 12.7). The arrow points in the direction of the action and 
its length gives the magnitude of the action in terms of a suitably chosen unit. For exam-
ple, a force vector points in the direction in which the force acts and its length is a measure 
of the force’s strength; a velocity vector points in the direction of motion and its length is 
the speed of the moving object. Figure 12.8 displays the velocity vector v at a specific  
location for a particle moving along a path in the plane or in space. (This application of 
vectors is studied in Chapter 13.)

Initial
point

Terminal
point

A

B

AB

FIGURE 12.7 The directed line 
segment rAB  is called a vector.

x

y

y

z

0
0

x

v v

(a)  two dimensions (b)  three dimensions

FIGURE 12.8 The velocity vector of a particle moving along a path 
(a) in the plane (b) in space. The arrowhead on the path indicates the 
direction of motion of the particle.

The arrows we use when we draw vectors are understood to represent the same vector 
if they have the same length, are parallel, and point in the same direction (Figure 12.9) 
regardless of the initial point.

In textbooks, vectors are usually written in lowercase, boldface letters, for example u,
v, and w. Sometimes we use uppercase boldface letters, such as F, to denote a force vector. 
In handwritten form, it is customary to draw small arrows above the letters, for example us,
ys, ws, and Fs.

We need a way to represent vectors algebraically so that we can be more precise about 
the direction of a vector. Let v = rPQ. There is one directed line segment equal to rPQ
whose initial point is the origin (Figure 12.10). It is the representative of v in standard
position and is the vector we normally use to represent v. We can specify v by writing the 

DEFINITIONS The vector represented by the directed line segment rAB has 
initial point A and terminal point B and its length is denoted by 0rAB 0 . Two 
vectors are equal if they have the same length and direction.

x

y

O

A

P

D

C

F

E

B

FIGURE 12.9 The four arrows in the 
plane (directed line segments) shown here 
have the same length and direction. They 
therefore represent the same vector, and 
we write rAB = rCD = rOP = rEF.

x

z

y

0

P(x1, y1, z1)

Q(x2, y2, z2)

(v1, v2, v3)Position vector
of PQ

v = ⟨v1, v2, v3⟩ v3

v1
v2

FIGURE 12.10 A vector rPQ  in stan-
dard position has its initial point at the 
origin. The directed line segments rPQ  and 
v are parallel and have the same length.
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coordinates of its terminal point (v1, v2, v3) when v is in standard position. If v is a vector 
in the plane its terminal point (v1, v2) has two coordinates.

DEFINITION If v is a two-dimensional vector in the plane equal to the vector 
with initial point at the origin and terminal point (v1, v2), then the component
form of v is

v = 8v1, v29 .
If v is a three-dimensional vector equal to the vector with initial point at the ori-
gin and terminal point (v1, v2, v3), then the component form of v is

v = 8v1, v2, v39 .

The magnitude or length of the vector v = rPQ  is the nonnegative number

0 v 0 = 2v1
2 + v2

2 + v3
2 = 2(x2 - x1)2 + (y2 - y1)2 + (z2 - z1)2

(see Figure 12.10).

The only vector with length 0 is the zero vector 0 = 80, 09  or 0 = 80, 0, 09 . This 
vector is also the only vector with no specific direction.

EXAMPLE 1 Find the (a) component form and (b) length of the vector with initial 
point P(-3, 4, 1) and terminal point Q(-5, 2, 2).

Solution

(a) The standard position vector v representing rPQ  has components

v1 = x2 - x1 = -5 - (-3) = -2, v2 = y2 - y1 = 2 - 4 = -2,

So a two-dimensional vector is an ordered pair v = 8v1, v29  of real numbers, and a 
three-dimensional vector is an ordered triple v = 8v1, v2, v39  of real numbers. The num-
bers v1, v2, and v3 are the components of v.

If v = 8v1, v2, v39  is represented by the directed line segment rPQ, where the initial 
point is P(x1, y1, z1) and the terminal point is Q(x2, y2, z2), then x1 + v1 = x2, y1 + v2 = y2,
and z1 + v3 = z2 (see Figure 12.10). Thus, v1 = x2 - x1, v2 = y2 - y1, and v3 = z2 - z1

are the components of rPQ.
In summary, given the points P(x1, y1, z1) and Q(x2, y2, z2), the standard position vec-

tor v = 8v1, v2, v39  equal to rPQ  is

v = 8x2 - x1, y2 - y1, z2 - z19 .
If v is two-dimensional with P(x1, y1) and Q(x2, y2) as points in the plane, then 
v = 8x2 - x1, y2 - y19 . There is no third component for planar vectors. With this under-
standing, we will develop the algebra of three-dimensional vectors and simply drop the 
third component when the vector is two-dimensional (a planar vector).

Two vectors are equal if and only if their standard position vectors are identical. Thus 8u1, u2, u39  and 8v1, v2, v39  are equal if and only if u1 = v1, u2 = v2, and u3 = v3.
The magnitude or length of the vector rPQ is the length of any of its equivalent 

directed line segment representations. In particular, if v = 8x2 - x1, y2 - y1, z2 - z19  is 
the standard position vector for rPQ, then the distance formula gives the magnitude or 
length of v, denoted by the symbol 0 v 0  or 7v 7 .

HISTORICAL BIOGRAPHY

Carl Friedrich Gauss
(1777–1855)
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  and

v3 = z2 - z1 = 2 - 1 = 1.

  The component form of rPQ  is

v = 8-2, -2, 19 .
(b) The length or magnitude of v = rPQ  is

0 v 0 = 2(-2)2 + (-2)2 + (1)2 = 29 = 3.

EXAMPLE 2  A small cart is being pulled along a smooth horizontal floor with a 20-lb 
force F making a 45° angle to the floor (Figure 12.11). What is the effective force moving 
the cart forward?

Solution The effective force is the horizontal component of F = 8a, b9 , given by

a = 0F 0 cos 45° = (20)a22
2
b ≈ 14.14 lb.

Notice that F is a two-dimensional vector.

Vector Algebra Operations

Two principal operations involving vectors are vector addition and scalar multiplication.
A scalar is simply a real number, and is called such when we want to draw attention to its 
differences from vectors. Scalars can be positive, negative, or zero and are used to “scale” 
a vector by multiplication.

x

y

45

F = ⟨a, b⟩

FIGURE 12.11 The force pulling the 
cart forward is represented by the vector 
F whose horizontal component is the
effective force (Example 2).

DEFINITIONS Let u = 8u1, u2, u39  and v = 8v1, v2, v39  be vectors with k a 
scalar.

Addition:  u + v = 8u1 + v1, u2 + v2, u3 + v39
Scalar multiplication: ku = 8ku1, ku2, ku39

We add vectors by adding the corresponding components of the vectors. We multiply 
a vector by a scalar by multiplying each component by the scalar. The definitions apply to 
planar vectors except there are only two components, 8u1, u29  and 8v1, v29 .

The definition of vector addition is illustrated geometrically for planar vectors in Fig-
ure 12.12a, where the initial point of one vector is placed at the terminal point of the other. 
Another interpretation is shown in Figure 12.12b (called the parallelogram law of 

⟨u1  +  v1, u2 +  v2⟩

v2

v1

u2

u1

u

vu + v

x

y

(a)

u

v
u + v

x

y

(b)

0 0

FIGURE 12.12 (a) Geometric interpretation of the vector sum. (b) The parallelogram law 
of vector addition in which both vectors are in standard position.
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addition), where the sum, called the resultant vector, is the diagonal of the parallelogram. 
In physics, forces add vectorially as do velocities, accelerations, and so on. So the force 
acting on a particle subject to two gravitational forces, for example, is obtained by adding 
the two force vectors.

Figure 12.13 displays a geometric interpretation of the product ku of the scalar k and 
vector u. If k 7 0, then ku has the same direction as u; if k 6 0, then the direction of ku
is opposite to that of u. Comparing the lengths of u and ku, we see that

0 ku 0 = 2(ku1)2 + (ku2)2 + (ku3)2 = 2k2(u1
2 + u2

2 + u3
2)

= 2k22u1
2 + u2

2 + u3
2 = 0 k 0 0 u 0 .

The length of ku is the absolute value of the scalar k times the length of u. The vector 
(-1)u = -u has the same length as u but points in the opposite direction.

The difference u - v of two vectors is defined by

u - v = u + (-v).

If u = 8u1, u2, u39  and v = 8v1, v2, v39 , then

u - v = 8u1 - v1, u2 - v2, u3 - v39 .
Note that (u - v) + v = u, so adding the vector (u - v) to v gives u (Figure 12.14a). 
Figure 12.14b shows the difference u - v as the sum u + (-v).

EXAMPLE 3 Let u = 8-1, 3, 19  and v = 84, 7, 09. Find the components of

(a) 2u + 3v (b) u - v (c) ` 1
2

u ` .
Solution

(a) 2u + 3v = 28-1, 3, 19 + 384, 7, 09 = 8-2, 6, 29 + 812, 21, 09 = 810, 27, 29
(b) u - v = 8-1, 3, 19 - 84, 7, 09 = 8-1 - 4, 3 - 7, 1 - 09 = 8-5, -4, 19
(c) ` 1

2
u ` = ` h- 1

2
,

3
2

, 1
2
i ` = Ca- 1

2
b2

+ a3
2
b2

+ a1
2
b2

= 1
2
211.

Vector operations have many of the properties of ordinary arithmetic.

u

1.5u

2u −2u

FIGURE 12.13 Scalar multiples of u.

u

v

u − v

(a)

u

v

−v

u + (−v)

(b)

FIGURE 12.14 (a) The vector 
u - v, when added to v, gives u.
(b) u - v = u + (-v).

Properties of Vector Operations
Let u, v, w be vectors and a, b be scalars.

1. u + v = v + u 2. (u + v) + w = u + (v + w)

3. u + 0 = u 4. u + (-u) = 0

5. 0 u = 0 6. 1u = u

7. a(bu) = (ab)u 8. a(u + v) = au + av

9. (a + b) u = au + bu

These properties are readily verified using the definitions of vector addition and multi-
plication by a scalar. For instance, to establish Property 1, we have

u + v = 8u1, u2, u39 + 8v1, v2, v39
= 8u1 + v1, u2 + v2, u3 + v39
= 8v1 + u1, v2 + u2, v3 + u39
= 8v1, v2, v39 + 8u1, u2, u39
= v + u.
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When three or more space vectors lie in the same plane, we say they are coplanar
vectors. For example, the vectors u, v, and u + v are always coplanar.

Unit Vectors

A vector v of length 1 is called a unit vector. The standard unit vectors are

i = 81, 0, 09 , j = 80, 1, 09 , and k = 80, 0, 19 .
Any vector v = 8v1, v2, v39  can be written as a linear combination of the standard unit 
vectors as follows:

v = 8v1, v2, v39 = 8v1, 0, 09 + 80, v2, 09 + 80, 0, v39
= v181, 0, 09 + v280, 1, 09 + v380, 0, 19
= v1i + v2 j + v3 k.

We call the scalar (or number) v1 the i@component of the vector v, v2 the 
j@component, and v3 the k@component. In component form, the vector from P1(x1, y1, z1)
to P2(x2, y2, z2) is

rP1P2 = (x2 - x1)i + ( y2 - y1)j + (z2 - z1)k

(Figure 12.15).
Whenever v ≠ 0, its length 0 v 0  is not zero and

` 10 v 0 v 2 = 10 v 0 0 v 0 = 1.

That is, v> 0 v 0  is a unit vector in the direction of v, called the direction of the nonzero 
vector v.

EXAMPLE 4  Find a unit vector u in the direction of the vector from P1(1, 0, 1) to 
P2(3, 2, 0).

Solution We divide rP1P2 by its length:

rP1P2 = (3 - 1)i + (2 - 0)j + (0 - 1)k = 2i + 2j - k

0 rP1P2 0 = 2(2)2 + (2)2 + (-1)2 = 24 + 4 + 1 = 29 = 3

u =
rP1P2

0 rP1P2 0 =
2i + 2j - k

3 = 2
3 i + 2

3 j - 1
3 k.

The unit vector u is the direction of rP1P2.

EXAMPLE 5 If v = 3i - 4j is a velocity vector, express v as a product of its speed 
times its direction of motion.

Solution Speed is the magnitude (length) of v:

0 v 0 = 2(3)2 + (-4)2 = 29 + 16 = 5.

The unit vector v> 0 v 0  is the direction of v:

v0 v 0 =
3i - 4j

5
= 3

5
i - 4

5
j.

y

z

O

k

x

i
j

P2(x2, y2, z2)

OP2 = x2i + y2 j + z2k

P1P2

P1(x1, y1, z1)

OP1 = x1i + y1j + z1k

FIGURE 12.15 The vector from P1 to 
P2 is rP1P2 = (x2 - x1)i +
(y2 - y1)j + (z2 - z1)k.
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So

v = 3i - 4j = 5a3
5

i - 4
5

jb .

(+)+*
Length Direction of motion
(speed)

In summary, we can express any nonzero vector v in terms of its two important features, 
length and direction, by writing v = 0 v 0 v0 v 0 .

If v ≠ 0, then

1. v0 v 0  is a unit vector called the direction of v;

2. the equation v = 0 v 0 v0 v 0  expresses v as its length times its direction.

EXAMPLE 6  A force of 6 newtons is applied in the direction of the vector 
v = 2i + 2j - k. Express the force F as a product of its magnitude and direction.

Solution The force vector has magnitude 6 and direction 
v0 v 0 , so

F = 6
v0 v 0 = 6

2i + 2j - k

222 + 22 + (-1)2
= 6

2i + 2j - k
3

= 6a23 i + 2
3 j - 1

3 kb .

Midpoint of a Line Segment

Vectors are often useful in geometry. For example, the coordinates of the midpoint of a 
line segment are found by averaging.

The midpoint M of the line segment joining points P1(x1, y1, z1) and P2(x2, y2, z2)
is the point

ax1 + x2

2
,

y1 + y2

2
,

z1 + z2

2
b .

To see why, observe (Figure 12.16) that

rOM = rOP1 + 1
2

( rP1P2) = rOP1 + 1
2

(rOP2 - rOP1)

= 1
2

(rOP1 + rOP2)

=
x1 + x2

2
i +

y1 + y2

2
j +

z1 + z2

2
k.

EXAMPLE 7  The midpoint of the segment joining P1(3, -2, 0) and P2(7, 4, 4) is

a3 + 7
2

, -2 + 4
2

,
0 + 4

2
b = (5, 1, 2).

O

P1(x1, y1, z1)

P2(x2, y2, z2)

M
x1 + x2

2
z1 + z2

2
y1 + y2

2
, , ba

FIGURE 12.16 The coordinates of the 
midpoint are the averages of the 
coordinates of P1 and P2.
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Applications

An important application of vectors occurs in navigation.

EXAMPLE 8 A jet airliner, flying due east at 500 mph in still air, encounters a 70-mph 
tailwind blowing in the direction 60° north of east. The airplane holds its compass heading 
due east but, because of the wind, acquires a new ground speed and direction. What are 
they?

Solution If u is the velocity of the airplane alone and v is the velocity of the tailwind, 
then 0 u 0 = 500 and 0 v 0 = 70 (Figure 12.17). The velocity of the airplane with respect to 
the ground is given by the magnitude and direction of the resultant vector u + v. If we let the 
positive x-axis represent east and the positive y-axis represent north, then the component 
forms of u and v are

u = 8500, 09 and v = 870 cos 60°, 70 sin 60°9 = 835, 35239 .
Therefore,

u + v = 8535, 35239 = 535i + 3523 j

0 u + v 0 = 25352 + (3513)2 ≈ 538.4

and

u = tan-1 3523
535

≈ 6.5°. Figure 12.17

The new ground speed of the airplane is about 538.4 mph, and its new direction is about 
6.5° north of east.

Another important application occurs in physics and engineering when several forces 
are acting on a single object.

EXAMPLE 9  A 75-N weight is suspended by two wires, as shown in Figure 12.18a. 
Find the forces F1 and F2 acting in both wires.

Solution The force vectors F1 and F2 have magnitudes 0F1 0  and 0F2 0  and components 
that are measured in newtons. The resultant force is the sum F1 + F2 and must be equal in 
magnitude and acting in the opposite (or upward) direction to the weight vector w (see 
Figure 12.18b). It follows from the figure that

F1 = 8- 0F1 0 cos 55°, 0F1 0 sin 55°9 and F2 = 8 0F2 0 cos 40°, 0F2 0 sin 40°9 .
Since F1 + F2 = 80, 759 , the resultant vector leads to the system of equations

- 0F1 0 cos 55° + 0F2 0 cos 40° = 0

0F1 0 sin 55° + 0F2 0 sin 40° = 75.

Solving for 0F2 0  in the first equation and substituting the result into the second equation, 
we get

0F2 0 = 0F1 0 cos 55°
cos 40° and 0F1 0 sin 55° +

0F1 0 cos 55°
cos 40° sin 40° = 75.

It follows that

0F1 0 = 75
sin 55° + cos 55° tan 40° ≈ 57.67 N,

E

N

u

v
u + v30̊

70

500

NOT TO SCALE

u

FIGURE 12.17 Vectors representing 
the velocities of the airplane u and tailwind 
v in Example 8.

F1

F2

40°

75

40°

55°

55°

(a)

(b)

0F1 0

0F2 0 F2

F1

40°55°

F = F1+ F2 = ⟨0, 75⟩

w = ⟨0, −75⟩

FIGURE 12.18 The suspended weight 
in Example 9.
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and

0F2 0 = 75 cos 55°
sin 55° cos 40° + cos 55° sin 40°

= 75 cos 55°
sin (55° + 40°) ≈ 43.18 N.

The force vectors are then F1 = 8-33.08, 47.249  and F2 = 833.08, 27.769 .

Vectors in the Plane
In Exercises 1–8, let u = 83, -29  and v = 8-2, 59 . Find the (a)
component form and (b) magnitude (length) of the vector.

1. 3u 2. -2v

3. u + v 4. u - v

5. 2u - 3v 6. -2u + 5v

7.
3
5

u + 4
5

v 8. - 5
13

u + 12
13

v

In Exercises 9–16, find the component form of the vector.

9. The vector rPQ, where P = (1, 3) and Q = (2, -1)

10. The vector rOP  where O is the origin and P is the midpoint of seg-
ment RS, where R = (2, -1) and S = (-4, 3)

11. The vector from the point A = (2, 3) to the origin

12. The sum of rAB  and rCD, where A = (1, -1), B = (2, 0),
C = (-1, 3), and D = (-2, 2)

13. The unit vector that makes an angle u = 2p>3 with the positive 
x-axis

14. The unit vector that makes an angle u = -3p>4 with the positive 
x-axis

15. The unit vector obtained by rotating the vector 80, 19 120° coun-
terclockwise about the origin

16. The unit vector obtained by rotating the vector 81, 09 135° coun-
terclockwise about the origin

Vectors in Space
In Exercises 17–22, express each vector in the form v = v1i +
v2j + v3k.

17. rP1P2 if P1 is the point (5, 7, -1) and P2 is the point (2, 9, -2)

18. rP1P2 if P1 is the point (1, 2, 0) and P2 is the point (-3, 0, 5)

19. rAB  if A is the point (-7, -8, 1) and B is the point (-10, 8, 1)

20. rAB  if A is the point (1, 0, 3) and B is the point (-1, 4, 5)

21. 5u - v if u = 81, 1, -19  and v = 82, 0, 39
22. -2u + 3v if u = 8-1, 0, 29  and v = 81, 1, 19

Geometric Representations
In Exercises 23 and 24, copy vectors u, v, and w head to tail as 
needed to sketch the indicated vector.

23.

a. u + v b. u + v + w

c. u - v d. u - w

24.

a. u - v b. u - v + w

c. 2u - v d. u + v + w

Length and Direction
In Exercises 25–30, express each vector as a product of its length and 
direction.

25. 2i + j - 2k 26. 9i - 2j + 6k

27. 5k 28.
3
5

i + 4
5

k

29. 1

26
i - 1

26
j - 1

26
k 30. i

23
+

j

23
+ k

23

v

w
u

u

w

v

Exercises 12.2
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F1 F2

45°

100

30°

46. Consider a 50-N weight suspended by two wires as shown in the 
accompanying figure. If the magnitude of vector F1 is 35 N, find 
angle a and the magnitude of vector F2.

F1

F2

60°a

50

47. Consider a w-N weight suspended by two wires as shown in the 
accompanying figure. If the magnitude of vector F2 is 100 N, find 
w and the magnitude of vector F1.

F1 F2

35°

w

40°

48. Consider a 25-N weight suspended by two wires as shown in the 
accompanying figure. If the magnitudes of vectors F1 and F2 are 
both 75 N, then angles a and b are equal. Find a.

F1 F2

25

a b

49. Location A bird flies from its nest 5 km in the direction 60° 
north of east, where it stops to rest on a tree. It then flies 10 km in 
the direction due southeast and lands atop a telephone pole. Place 
an xy-coordinate system so that the origin is the bird’s nest, the 
x-axis points east, and the y-axis points north.

a. At what point is the tree located?

b. At what point is the telephone pole?

50. Use similar triangles to find the coordinates of the point Q that 
divides the segment from P1(x1, y1, z1) to P2(x2, y2, z2) into two 
lengths whose ratio is p>q = r .

51. Medians of a triangle Suppose that A, B, and C are the corner 
points of the thin triangular plate of constant density shown here.

a. Find the vector from C to the midpoint M of side AB.

b. Find the vector from C to the point that lies two-thirds of the 
way from C to M on the median CM.

c. Find the coordinates of the point in which the medians of 
∆ABC intersect. According to Exercise 19, Section 6.6, this 
point is the plate’s center of mass. (See the accompanying 
figure.)

31. Find the vectors whose lengths and directions are given. Try to do 
the calculations without writing.

Length Direction

a. 2 i

b. 23 -k

c. 1
2

3
5

j + 4
5

k

d. 7
6
7

i - 2
7

j + 3
7

k

32. Find the vectors whose lengths and directions are given. Try to do 
the calculations without writing.

Length Direction

a. 7 - j

b. 22 - 3
5

i - 4
5

k

c.
13
12

3
13

i - 4
13

j - 12
13

k

d. a 7 0
1

22
i + 1

23
j - 1

26
k

33. Find a vector of magnitude 7 in the direction of v = 12i - 5k.

34. Find a vector of magnitude 3 in the direction opposite to the 
direction of v = (1>2)i - (1>2)j - (1>2)k.

Direction and Midpoints
In Exercises 35–38, find

a. the direction of rP1P2 and

b. the midpoint of line segment P1P2.

35. P1(-1, 1, 5) P2(2, 5, 0)

36. P1(1, 4, 5) P2(4, -2, 7)

37. P1(3, 4, 5) P2(2, 3, 4)

38. P1(0, 0, 0) P2(2, -2, -2)

39. If rAB = i + 4j - 2k and B is the point (5, 1, 3), find A.

40. If rAB = -7i + 3j + 8k and A is the point (-2, -3, 6), find B.

Theory and Applications
41. Linear combination Let u = 2i + j, v = i + j, and w =

i - j. Find scalars a and b such that u = av + bw.

42. Linear combination Let u = i - 2j, v = 2i + 3j, and w =
i + j. Write u = u1 + u2, where u1 is parallel to v and u2 is 
parallel to w. (See Exercise 41.)

43. Velocity An airplane is flying in the direction 25° west of north 
at 800 km >h. Find the component form of the velocity of the air-
plane, assuming that the positive x-axis represents due east and 
the positive y-axis represents due north.

44. (Continuation of Example 8.) What speed and direction should 
the jetliner in Example 8 have in order for the resultant vector to 
be 500 mph due east?

45. Consider a 100-N weight suspended by two wires as shown in the 
accompanying figure. Find the magnitudes and components of 
the force vectors F1 and F2.
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z

y

x

c.m.

M

C(1, 1, 3)

B(1, 3, 0)

A(4, 2, 0)

52. Find the vector from the origin to the point of intersection of the 
medians of the triangle whose vertices are

A(1, -1, 2), B(2, 1, 3), and C(-1, 2, -1).

53. Let ABCD be a general, not necessarily planar, quadrilateral in 
space. Show that the two segments joining the midpoints of oppo-
site sides of ABCD bisect each other. (Hint: Show that the seg-
ments have the same midpoint.)

54. Vectors are drawn from the center of a regular n-sided polygon in 
the plane to the vertices of the polygon. Show that the sum of the 
vectors is zero. (Hint: What happens to the sum if you rotate the 
polygon about its center?)

55. Suppose that A, B, and C are vertices of a triangle and that a, b,
and c are, respectively, the midpoints of the opposite sides. Show 
that rAa + rBb + rCc = 0.

56. Unit vectors in the plane Show that a unit vector in the plane 
can be expressed as u = (cosu)i + (sinu)j, obtained by rotating 
i through an angle u in the counterclockwise direction. Explain 
why this form gives every unit vector in the plane.

12.3  The Dot Product

If a force F is applied to a particle moving along a path, we often need to know the magni-
tude of the force in the direction of motion. If v is parallel to the tangent line to the path at 
the point where F is applied, then we want the magnitude of F in the direction of v. Figure 
12.19 shows that the scalar quantity we seek is the length 0F 0 cos u, where u is the angle 
between the two vectors F and v.

In this section we show how to calculate easily the angle between two vectors directly 
from their components. A key part of the calculation is an expression called the dot prod-
uct. Dot products are also called inner or scalar products because the product results in a 
scalar, not a vector. After investigating the dot product, we apply it to finding the projec-
tion of one vector onto another (as displayed in Figure 12.19) and to finding the work done 
by a constant force acting through a displacement.

Angle Between Vectors

When two nonzero vectors u and v are placed so their initial points coincide, they form an 
angle u of measure 0 … u … p (Figure 12.20). If the vectors do not lie along the same 
line, the angle u is measured in the plane containing both of them. If they do lie along the 
same line, the angle between them is 0 if they point in the same direction and p if they 
point in opposite directions. The angle u is the angle between u and v. Theorem 1 gives a 
formula to determine this angle.

v

F

Length = 0 F 0  cos u

u

FIGURE 12.19 The magnitude of the 
force F in the direction of vector v is the 
length 0F 0 cosu of the projection of F
onto v.

THEOREM 1—Angle Between Two Vectors The angle u between two nonzero 
vectors u = 8u1, u2, u39 and v = 8v1, v2, v39  is given by

u = cos-1 au1v1 + u2v2 + u3v30 u 0 0 v 0 b .
v

u

u

FIGURE 12.20 The angle between u
and v.

We use the law of cosines to prove Theorem 1, but before doing so, we focus attention 
on the expression u1v1 + u2v2 + u3v3 in the calculation for u. This expression is the sum 
of the products of the corresponding components for the vectors u and v.
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EXAMPLE 1  We illustrate the definition.

(a) 81, -2, -19 # 8-6, 2, -39 = (1)(-6) + (-2)(2) + (-1)(-3)

= -6 - 4 + 3 = -7

(b) a1
2

i + 3j + kb # (4i - j + 2k) = a1
2
b (4) + (3)(-1) + (1)(2) = 1

The dot product of a pair of two-dimensional vectors is defined in a similar fashion:

8u1, u29 # 8v1, v29 = u1v1 + u2v2 .

We will see throughout the remainder of the book that the dot product is a key tool for 
many important geometric and physical calculations in space (and the plane), not just for 
finding the angle between two vectors.

Proof of Theorem 1  Applying the law of cosines (Equation (8), Section 1.3) to the 
triangle in Figure 12.21, we find that

0w 0 2 = 0 u 0 2 + 0 v 0 2 - 2 0 u 0 0 v 0 cos u Law of cosines

2 0 u 0 0 v 0 cos u = 0 u 0 2 + 0 v 0 2 - 0w 0 2.
Because w = u - v, the component form of w is 8u1 - v1, u2 - v2, u3 - v39 . So

0 u 0 2 = 12u1
2 + u2

2 + u3
222 = u1

2 + u2
2 + u3

2

0 v 0 2 = 12v1
2 + v2

2 + v3
222 = v1

2 + v2
2 + v3

2

0w 0 2 = 12(u1 - v1)2 + (u2 - v2)2 + (u3 - v3)222
= (u1 - v1)2 + (u2 - v2)2 + (u3 - v3)2

= u1
2 - 2u1v1 + v1

2 + u2
2 - 2u2v2 + v2

2 + u3
2 - 2u3v3 + v3

2

and

0 u 0 2 + 0 v 0 2 - 0w 0 2 = 2(u1v1 + u2v2 + u3v3).

Therefore,

2 0 u 0 0 v 0 cos u = 0 u 0 2 + 0 v 0 2 - 0w 0 2 = 2(u1v1 + u2v2 + u3v3)0 u 0 0 v 0 cos u = u1v1 + u2v2 + u3v3

cos u =
u1v1 + u2v2 + u3v30 u 0 0 v 0 .

Since 0 … u 6 p, we have

u = cos-1 au1v1 + u2v2 + u3v30 u 0 0 v 0 b .

DEFINITION  The dot product u # v (“u dot v”) of vectors u = 8u1, u2, u39
and v = 8v1, v2, v39  is the scalar

u # v = u1v1 + u2v2 + u3v3 .

u

v

u

w

FIGURE 12.21 The parallelogram law 
of addition of vectors gives w = u - v.

The Angle Between Two Nonzero Vectors u and v

u = cos-1 a u # v0 u 0 0 v 0 b
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EXAMPLE 2  Find the angle between u = i - 2j - 2k and v = 6i + 3j + 2k.

Solution We use the formula above:

u # v = (1)(6) + (-2)(3) + (-2)(2) = 6 - 6 - 4 = -4

0 u 0 = 2(1)2 + (-2)2 + (-2)2 = 29 = 3

0 v 0 = 2(6)2 + (3)2 + (2)2 = 249 = 7

u = cos-1 a u # v0 u 0 0 v 0 b = cos-1 a -4
(3)(7)

b ≈ 1.76 radians or 100.98°.

The angle formula applies to two-dimensional vectors as well. Note that the angle u is 
acute if u # v 7 0 and obtuse if u # v 6 0.

EXAMPLE 3  Find the angle u in the triangle ABC determined by the vertices 
A = (0, 0), B = (3, 5), and C = (5, 2) (Figure 12.22).

Solution The angle u is the angle between the vectors rCA and rCB. The component 
forms of these two vectors are

rCA = 8-5, -29 and rCB = 8-2, 39 .
First we calculate the dot product and magnitudes of these two vectors.

rCA # rCB = (-5)(-2) + (-2)(3) = 4

0 rCA 0 = 2(-5)2 + (-2)2 = 229

0 rCB 0 = 2(-2)2 + (3)2 = 213

Then applying the angle formula, we have

u = cos-1 ¢ rCA # rCB

0 rCA 0 0 rCB 0 ≤
= cos-1 ¢ 41229212132≤
≈ 78.1° or 1.36 radians.

Orthogonal Vectors

Two nonzero vectors u and v are perpendicular if the angle between them is p>2. For such 
vectors, we have u # v = 0 because cos (p>2) = 0. The converse is also true. If u and v
are nonzero vectors with u # v = 0 u 0 0 v 0 cos u = 0, then cos u = 0 and u = cos-1 0 = p>2.
The following definition also allows for one or both of the vectors to be the zero vector.

x

y

A

u

B(3, 5)

C(5, 2)

1

1

FIGURE 12.22 The triangle in 
Example 3.

DEFINITION Vectors u and v are orthogonal if u # v = 0.

EXAMPLE 4  To determine if two vectors are orthogonal, calculate their dot product.

(a) u = 83, -29  and v = 84, 69  are orthogonal because u # v = (3)(4) + (-2)(6) = 0.

(b) u = 3i - 2j + k and v = 2j + 4k are orthogonal because u # v = (3)(0) +
(-2)(2) + (1)(4) = 0.
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(c) 0 is orthogonal to every vector u since

0 # u = 80, 0, 09 # 8u1, u2, u39
= (0)(u1) + (0)(u2) + (0)(u3)

= 0.

Dot Product Properties and Vector Projections

The dot product obeys many of the laws that hold for ordinary products of real numbers 
(scalars).

Properties of the Dot Product

If u, v, and w are any vectors and c is a scalar, then

1. u # v = v # u 2. (cu) # v = u # (cv) = c(u # v)

3. u # (v + w) = u # v + u # w 4. u # u = 0 u 0 2
5. 0 # u = 0.

Proofs of Properties 1 and 3  The properties are easy to prove using the definition. 
For instance, here are the proofs of Properties 1 and 3.

1. u # v = u1v1 + u2v2 + u3v3 = v1u1 + v2u2 + v3u3 = v # u
3. u # (v + w) = 8u1, u2, u39 # 8v1 + w1, v2 + w2, v3 + w39

= u1(v1 + w1) + u2(v2 + w2) + u3(v3 + w3)

= u1v1 + u1w1 + u2v2 + u2w2 + u3v3 + u3w3

= (u1v1 + u2v2 + u3v3) + (u1w1 + u2w2 + u3w3)

= u # v + u # w
We now return to the problem of projecting one vector onto another, posed in the 

opening to this section. The vector projection of u = rPQ  onto a nonzero vector v = rPS
(Figure 12.23) is the vector rPR determined by dropping a perpendicular from Q to the line 
PS. The notation for this vector is

projv u (“the vector projection of u onto v”).

If u represents a force, then projv u represents the effective force in the direction of v  
(Figure 12.24).

If the angle u between u and v is acute, projv u has length 0 u 0 cosu and direction 
v> 0 v 0  (Figure 12.25). If u is obtuse, cos u 6 0 and projv u has length - 0 u 0 cosu and 
direction -v> 0 v 0 . In both cases,

 projv u = 1 0 u 0 cosu2 v0 v 0
= au # v0 v 0 b v0 v 0 0 u 0 cosu =

0 u 0 0 v 0 cosu

0 v 0 = u # v
0 v 0

= au # v0 v 0 2bv.

Q

P

u

S

v

R

Q

P

u

S

v

R

FIGURE 12.23 The vector projection 
of u onto v.

v

Force = u

projv u

FIGURE 12.24 If we pull on the box 
with force u, the effective force moving 
the box forward in the direction v is the 
projection of u onto v.
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The number 0 u 0 cosu is called the scalar component of u in the direction of v (or of u
onto v). To summarize,

u

v

(b)

u

v

(a)

u

u

projv u projv u

Length = 0u 0  cos u Length = −0u 0  cos u

FIGURE 12.25 The length of projv u is (a) 0 u 0 cos u if cos u Ú 0 and 
(b) - 0 u 0 cosu if cosu 6 0.

The vector projection of u onto v is the vector

projv u = au # v0 v 0 2bv. (1)

The scalar component of u in the direction of v is the scalar

0 u 0 cosu = u # v0 v 0 = u # v0 v 0 . (2)

Note that both the vector projection of u onto v and the scalar component of u onto v
depend only on the direction of the vector v and not its length (because we dot u with 
v> 0 v 0 , which is the direction of v).

EXAMPLE 5  Find the vector projection of u = 6i + 3j + 2k onto v = i - 2j - 2k
and the scalar component of u in the direction of v.

Solution We find projv u from Equation (1):

projv u = u # v
v # v v = 6 - 6 - 4

1 + 4 + 4
(i - 2j - 2k)

= - 4
9 (i - 2j - 2k) = - 4

9 i + 8
9 j + 8

9 k .

We find the scalar component of u in the direction of v from Equation (2):

0 u 0 cosu = u # v0 v 0 = (6i + 3j + 2k) # a13 i - 2
3 j - 2

3 kb

= 2 - 2 - 4
3 = - 4

3.

Equations (1) and (2) also apply to two-dimensional vectors. We demonstrate this in the 
next example.

EXAMPLE 6  Find the vector projection of a force F = 5i + 2j onto v = i - 3j and 
the scalar component of F in the direction of v.
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Solution The vector projection is

projv F = ¢F # v0 v 0 2 ≤v

= 5 - 6
1 + 9

(i - 3j) = - 1
10

(i - 3j)

= - 1
10

i + 3
10

j .

The scalar component of F in the direction of v is

0F 0 cosu = F # v0 v 0 = 5 - 6

21 + 9
= - 1

210
.

A routine calculation (see Exercise 29) verifies that the vector u - projv u is orthogo-
nal to the projection vector projv u (which has the same direction as v). So the equation

u = projv u + (u - projv u) = ¢u # v0 v 0 2 ≤v + ¢u - ¢u # v0 v 0 2 ≤v≤
(+)+* (++)++*

Parallel to v Orthogonal to v

expresses u as a sum of orthogonal vectors.

Work

In Chapter 6, we calculated the work done by a constant force of magnitude F in moving 
an object through a distance d as W = Fd . That formula holds only if the force is directed 
along the line of motion. If a force F moving an object through a displacement D = rPQ
has some other direction, the work is performed by the component of F in the direction of 
D. If u is the angle between F and D (Figure 12.26), then

Work = ascalar component of F
in the direction of D

b (length of D)

= ( 0F 0 cosu) 0D 0
= F # D.

F

P QD

0F 0  cos u

u

FIGURE 12.26 The work done by a 
constant force F during a displacement D
is ( 0F 0 cos u) 0D 0 , which is the dot product 
F # D .

DEFINITION The work done by a constant force F acting through a displace-
ment D = rPQ  is

W = F # D.

EXAMPLE 7 If 0F 0 = 40 N (newtons), 0D 0 = 3 m, and u = 60°, the work done by 
F in acting from P to Q is

Work = F # D Definition

= 0F 0 0D 0 cosu

= (40)(3) cos 60° Given values

= (120)(1>2) = 60 J (joules).

We encounter more challenging work problems in Chapter 16 when we learn to find 
the work done by a variable force along a more general path in space.
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Dot Product and Projections
In Exercises 1–8, find

a. v # u, 0 v 0 , 0 u 0
b. the cosine of the angle between v and u

c. the scalar component of u in the direction of v

d. the vector projv u .

1. v = 2i - 4j + 25k, u = -2i + 4j - 25k

2. v = (3>5)i + (4>5)k, u = 5i + 12j

3. v = 10i + 11j - 2k, u = 3j + 4k

4. v = 2i + 10j - 11k, u = 2i + 2j + k

5. v = 5j - 3k, u = i + j + k

6. v = - i + j, u = 22i + 23j + 2k

7. v = 5i + j, u = 2i + 217j

8. v = h 1

22
,

1

23
i, u = h 1

22
, - 1

23
i

Angle Between Vectors
Find the angles between the vectors in Exercises 9–12 to the nearest 
hundredth of a radian.

9. u = 2i + j, v = i + 2j - k

10. u = 2i - 2j + k, v = 3i + 4k

11. u = 23i - 7j, v = 23i + j - 2k

12. u = i + 22j - 22k, v = - i + j + k

13. Triangle Find the measures of the angles of the triangle whose 
vertices are A = (-1, 0), B = (2, 1), and C = (1, -2) .

14. Rectangle Find the measures of the angles between the diago-
nals of the rectangle whose vertices are A = (1, 0), B = (0, 3),
C = (3, 4), and D = (4, 1) .

15. Direction angles and direction cosines The direction angles
a, b, and g of a vector v = ai + bj + ck are defined as follows:

a is the angle between v and the positive x-axis (0 … a … p)

b is the angle between v and the positive y-axis (0 … b … p)

g is the angle between v and the positive z-axis (0 … g … p) .

y

z

x

v

0
b

a

g

T

a. Show that

cos a = a0 v 0 , cos b = b0 v 0 , cos g = c0 v 0 ,
  and cos2a + cos2b + cos2g = 1. These cosines are called 

the direction cosines of v.

b. Unit vectors are built from direction cosines Show that if 
v = ai + bj + ck is a unit vector, then a, b, and c are the 
direction cosines of v.

16. Water main construction A water main is to be constructed 
with a 20% grade in the north direction and a 10% grade in the 
east direction. Determine the angle u required in the water main 
for the turn from north to east.

East

North

u

Theory and Examples
17. Sums and differences In the accompanying figure, it looks as 

if v1 + v2 and v1 - v2 are orthogonal. Is this mere coincidence, 
or are there circumstances under which we may expect the sum of 
two vectors to be orthogonal to their difference? Give reasons for 
your answer.

v1 + v2

v1 − v2

v2

v1 −v2

18. Orthogonality on a circle Suppose that AB is the diameter of a 
circle with center O and that C is a point on one of the two arcs 
joining A and B. Show that rCA  and rCB  are orthogonal.

B
O

v

A

C

u−u

19. Diagonals of a rhombus Show that the diagonals of a rhombus 
(parallelogram with sides of equal length) are perpendicular.

Exercises 12.3
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32. Line parallel to a vector Show that the vector v = ai + bj is 
parallel to the line bx - ay = c by establishing that the slope of 
the line segment representing v is the same as the slope of the 
given line.

In Exercises 33–36, use the result of Exercise 31 to find an equation 
for the line through P perpendicular to v. Then sketch the line. Include 
v in your sketch as a vector starting at the origin.

33. P(2, 1), v = i + 2j 34. P(-1, 2), v = -2i - j

35. P(-2, -7), v = -2i + j 36. P(11, 10), v = 2i - 3j

In Exercises 37–40, use the result of Exercise 32 to find an equation 
for the line through P parallel to v. Then sketch the line. Include v in 
your sketch as a vector starting at the origin.

37. P(-2, 1), v = i - j 38. P(0, -2), v = 2i + 3j

39. P(1, 2), v = - i - 2j 40. P(1, 3), v = 3i - 2j

Work
41. Work along a line Find the work done by a force F = 5i

(magnitude 5 N) in moving an object along the line from the origin 
to the point (1, 1) (distance in meters).

42. Locomotive The Union Pacific’s Big Boy locomotive could 
pull 6000-ton trains with a tractive effort (pull) of 602,148 N 
(135,375 lb). At this level of effort, about how much work did 
Big Boy do on the (approximately straight) 605-km journey from 
San Francisco to Los Angeles?

43. Inclined plane How much work does it take to slide a crate 20 m 
along a loading dock by pulling on it with a 200-N force at an 
angle of 30° from the horizontal?

44. Sailboat The wind passing over a boat’s sail exerted a 1000-lb 
magnitude force F as shown here. How much work did the wind 
perform in moving the boat forward 1 mi? Answer in foot-pounds.

F

60°
1000 lb
magnitude
force

Angles Between Lines in the Plane
The acute angle between intersecting lines that do not cross at right 
angles is the same as the angle determined by vectors normal to the 
lines or by the vectors parallel to the lines.

u

u

u

n1
n2

L2

L2

L1

L1
v1

v2

20. Perpendicular diagonals Show that squares are the only rect-
angles with perpendicular diagonals.

21. When parallelograms are rectangles Prove that a parallelo-
gram is a rectangle if and only if its diagonals are equal in length. 
(This fact is often exploited by carpenters.)

22. Diagonal of parallelogram Show that the indicated diagonal 
of the parallelogram determined by vectors u and v bisects the 
angle between u and v if 0 u 0 = 0 v 0 .

u

v

23. Projectile motion A gun with muzzle velocity of 1200 ft > sec
is fired at an angle of 8° above the horizontal. Find the horizontal 
and vertical components of the velocity.

24. Inclined plane Suppose that a box is being towed up an 
inclined plane as shown in the figure. Find the force w needed to 
make the component of the force parallel to the inclined plane 
equal to 2.5 lb.

15°

33°

w

25. a. Cauchy-Schwartz inequality Since u # v = 0 u 0 0 v 0 cos u,
show that the inequality 0 u # v 0 … 0 u 0 0 v 0  holds for any vectors 
u and v.

b. Under what circumstances, if any, does 0 u # v 0  equal 0 u 0 0 v 0 ?
Give reasons for your answer.

26. Dot multiplication is positive definite Show that dot multipli-
cation of vectors is positive definite; that is, show that u # u Ú 0
for every vector u and that u # u = 0 if and only if u = 0 .

27. Orthogonal unit vectors If u1 and u2 are orthogonal unit vec-
tors and v = au1 + bu2, find v # u1 .

28. Cancellation in dot products In real-number multiplication, if 
uv1 = uv2 and u ≠ 0, we can cancel the u and conclude that 
v1 = v2 . Does the same rule hold for the dot product? That is, if 
u # v1 = u # v2 and u ≠ 0, can you conclude that v1 = v2? Give 
reasons for your answer.

29. Using the definition of the projection of u onto v, show by direct 
calculation that (u - projv u) # projv u = 0.

30. A force F = 2i + j - 3k is applied to a spacecraft with velocity 
vector v = 3i - j . Express F as a sum of a vector parallel to v
and a vector orthogonal to v.

Equations for Lines in the Plane
31. Line perpendicular to a vector Show that v = ai + bj is per-

pendicular to the line ax + by = c by establishing that the slope 
of the vector v is the negative reciprocal of the slope of the given 
line.
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Use this fact and the results of Exercise 31 or 32 to find the acute 
angles between the lines in Exercises 45–50.

45. 3x + y = 5, 2x - y = 4

46. y = 23x - 1, y = -23x + 2

47. 23x - y = -2, x - 23y = 1

48. x + 23y = 1, 11 - 232x + 11 + 232y = 8

49. 3x - 4y = 3, x - y = 7

50. 12x + 5y = 1, 2x - 2y = 3

12.4 The Cross Product

In studying lines in the plane, when we needed to describe how a line was tilting, we used 
the notions of slope and angle of inclination. In space, we want a way to describe how a 
plane is tilting. We accomplish this by multiplying two vectors in the plane together to get 
a third vector perpendicular to the plane. The direction of this third vector tells us the 
“inclination” of the plane. The product we use to multiply the vectors together is the vec-
tor or cross product, the second of the two vector multiplication methods. We study the 
cross product in this section.

The Cross Product of Two Vectors in Space

We start with two nonzero vectors u and v in space. If u and v are not parallel, they deter-
mine a plane. We select a unit vector n perpendicular to the plane by the right-hand rule.
This means that we choose n to be the unit (normal) vector that points the way your right 
thumb points when your fingers curl through the angle u from u to v (Figure 12.27). Then 
we define a new vector as follows.

v

u

n
u

u × v

FIGURE 12.27 The construction of 
u * v .

DEFINITION The cross product u :  v (“u cross v”) is the vector

u * v = ( 0 u 0 0 v 0 sin u) n.

Unlike the dot product, the cross product is a vector. For this reason it’s also called the 
vector product of u and v, and applies only to vectors in space. The vector u * v is 
orthogonal to both u and v because it is a scalar multiple of n.

There is a straightforward way to calculate the cross product of two vectors from their 
components. The method does not require that we know the angle between them (as sug-
gested by the definition), but we postpone that calculation momentarily so we can focus 
first on the properties of the cross product.

Since the sines of 0 and p are both zero, it makes sense to define the cross product of 
two parallel nonzero vectors to be 0. If one or both of u and v are zero, we also define 
u * v to be zero. This way, the cross product of two vectors u and v is zero if and only if 
u and v are parallel or one or both of them are zero.

Parallel Vectors

Nonzero vectors u and v are parallel if and only if u * v = 0 .

Properties of the Cross Product

If u, v, and w are any vectors and r, s are scalars, then

1. (ru) * (sv) = (rs)(u * v) 2. u * (v + w) = u * v + u * w

3. v * u = -(u * v) 4. (v + w) * u = v * u + w * u

5. 0 * u = 0 6. u * (v * w) = (u # w)v - (u # v)w

The cross product obeys the following laws.



12.4  The Cross Product 727

To visualize Property 3, for example, notice that when the fingers of your right hand 
curl through the angle u from v to u, your thumb points the opposite way; the unit vector 
we choose in forming v * u is the negative of the one we choose in forming u * v
(Figure 12.28).

Property 1 can be verified by applying the definition of cross product to both sides of 
the equation and comparing the results. Property 2 is proved in Appendix 8. Property 4 
follows by multiplying both sides of the equation in Property 2 by -1 and reversing the 
order of the products using Property 3. Property 5 is a definition. As a rule, cross product 
multiplication is not associative so (u * v) * w does not generally equal u * (v * w).
(See Additional Exercise 17.)

When we apply the definition and Property 3 to calculate the pairwise cross products 
of i, j, and k, we find (Figure 12.29)

i * j = -(j * i) = k

j * k = -(k * j) = i

k * i = -(i * k) = j

and

i * i = j * j = k * k = 0 .

0 u : v 0 Is the Area of a Parallelogram

Because n is a unit vector, the magnitude of u * v is

v

u

u−n

v × u

FIGURE 12.28 The construction of 
v * u .

y

x

z
k = i × j

j = k × i

i = j × k

FIGURE 12.29 The pairwise cross 
products of i, j, and k.

i

jk

Diagram for recalling
cross products

0 u * v 0 = 0 u 0 0 v 0 0 sinu 0 0 n 0 = 0 u 0 0 v 0 sinu .

This is the area of the parallelogram determined by u and v (Figure 12.30), 0 u 0  being the 
base of the parallelogram and 0 v 0 0 sinu 0  the height.

Determinant Formula for u : v

Our next objective is to calculate u * v from the components of u and v relative to a 
Cartesian coordinate system.

Suppose that

u = u1 i + u2 j + u3 k and v = v1 i + v2 j + v3 k .

Then the distributive laws and the rules for multiplying i, j, and k tell us that

u * v = (u1 i + u2 j + u3 k) * (v1 i + v2 j + v3 k)

= u1v1 i * i + u1v2 i * j + u1v3 i * k

+ u2v1j * i + u2v2 j * j + u2v3 j * k

+ u3v1k * i + u3v2k * j + u3v3k * k

= (u2v3 - u3v2)i - (u1v3 - u3v1)j + (u1v2 - u2v1)k .

The component terms in the last line are hard to remember, but they are the same as 
the terms in the expansion of the symbolic determinant

3 i j k
u1 u2 u3

v1 v2 v3

3 .

v

u

u

h = 0 v 0 0 sin u 0

Area = base · height
= 0u 0  · 0 v 0 0 sin u 0
= 0u × v 0

FIGURE 12.30 The parallelogram 
determined by u and v.



728 Chapter 12: Vectors and the Geometry of Space 

So we restate the calculation in this easy-to-remember form.Determinants
2 * 2 and 3 * 3 determinants are 
evaluated as follows:2 a b

c d
2 = ad - bc

3 a1 a2 a3

b1 b2 b3

c1 c2 c3

3 = a1
2 b2 b3

c2 c3

2
- a2

2 b1 b3

c1 c3

2 + a3
2 b1 b2

c1 c2

2

Calculating the Cross Product as a Determinant

If u = u1i + u2 j + u3 k and v = v1i + v2 j + v3 k, then

u * v = 3 i j k
u1 u2 u3

v1 v2 v3

3 .
EXAMPLE 1 Find u * v and v * u if u = 2i + j + k and v = -4i + 3j + k .

Solution We expand the symbolic determinant:

u * v = 3 i j k
2 1 1

-4 3 1

3 = ` 1 1

3 1
` i - ` 2 1

-4 1
` j + ` 2 1

-4 3
` k

= -2i - 6j + 10k

v * u = -(u * v) = 2i + 6j - 10k Property 3

EXAMPLE 2  Find a vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1),
and R(-1, 1, 2) (Figure 12.31).

Solution The vector rPQ * rPR is perpendicular to the plane because it is perpendicular 
to both vectors. In terms of components,

rPQ = (2 - 1)i + (1 + 1)j + (-1 - 0)k = i + 2j - k
rPR = (-1 - 1)i + (1 + 1)j + (2 - 0)k = -2i + 2j + 2k

rPQ * rPR = 3 i j k
1 2 -1

-2 2 2

3 = ` 2 -1

2 2
` i - ` 1 -1

-2 2
` j + ` 1 2

-2 2
` k

= 6i + 6k.

EXAMPLE 3  Find the area of the triangle with vertices P(1, -1, 0), Q(2, 1, -1), and 
R(-1, 1, 2) (Figure 12.31).

Solution The area of the parallelogram determined by P, Q, and R is

0 rPQ * rPR 0 = 0 6i + 6k 0 Values from Example 2

= 2(6)2 + (6)2 = 22 # 36 = 622.

The triangle’s area is half of this, or 322.

EXAMPLE 4  Find a unit vector perpendicular to the plane of P(1, -1, 0), Q(2, 1, -1),
and R(-1, 1, 2) .

Solution Since rPQ * rPR is perpendicular to the plane, its direction n is a unit vector 
perpendicular to the plane. Taking values from Examples 2 and 3, we have

n =
rPQ * rPR

0 rPQ * rPR 0 =
6i + 6k

622
= 1

22
i + 1

22
k .

y

x

z

0

P(1, −1, 0)

Q(2, 1, –1)

R(−1, 1, 2)

FIGURE 12.31 The vector rPQ * rPR  is 
perpendicular to the plane of triangle PQR
(Example 2). The area of triangle PQR is 
half of 0 rPQ * rPR 0  (Example 3).
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For ease in calculating the cross product using determinants, we usually write vectors 
in the form v = v1i + v2 j + v3k rather than as ordered triples v = 8v1, v2, v39 .
Torque

When we turn a bolt by applying a force F to a wrench (Figure 12.32), we produce a 
torque that causes the bolt to rotate. The torque vector points in the direction of the axis 
of the bolt according to the right-hand rule (so the rotation is counterclockwise when 
viewed from the tip of the vector). The magnitude of the torque depends on how far out on 
the wrench the force is applied and on how much of the force is perpendicular to the 
wrench at the point of application. The number we use to measure the torque’s magnitude 
is the product of the length of the lever arm r and the scalar component of F perpendicular 
to r. In the notation of Figure 12.32,

Magnitude of torque vector = 0 r 0 0F 0 sinu,

or 0 r * F 0 . If we let n be a unit vector along the axis of the bolt in the direction of the 
torque, then a complete description of the torque vector is r * F, or

Torque vector = ( 0 r 0 0F 0 sinu) n .

Recall that we defined u * v to be 0 when u and v are parallel. This is consistent with the 
torque interpretation as well. If the force F in Figure 12.32 is parallel to the wrench, mean-
ing that we are trying to turn the bolt by pushing or pulling along the line of the wrench’s 
handle, the torque produced is zero.

EXAMPLE 5  The magnitude of the torque generated by force F at the pivot point P in 
Figure 12.33 is

0 rPQ * F 0 = 0 rPQ 0 0F 0 sin 70°
≈ (3)(20)(0.94)

≈ 56.4 ft@lb .

In this example the torque vector is pointing out of the page toward you.

Triple Scalar or Box Product

The product (u * v) # w is called the triple scalar product of u, v, and w (in that order). 
As you can see from the formula

0 (u * v) # w 0 = 0 u * v 0 0w 0 0 cosu 0 ,
the absolute value of this product is the volume of the parallelepiped (parallelogram-sided 
box) determined by u, v, and w (Figure 12.34). The number 0 u * v 0  is the area of the base 

n

r

F

Torque

Component of F
perpendicular to r.
Its length is 0F 0  sin u. u

FIGURE 12.32 The torque vector 
describes the tendency of the force F to 
drive the bolt forward.

F

P Q
3 ft bar

20 lb
magnitude
force

70°

FIGURE 12.33 The magnitude of the 
torque exerted by F at P is about 56.4 ft-lb 
(Example 5). The bar rotates counter-
clockwise around P.

v

w

u

uHeight = 0w 0 0 cos u 0

u × v

Area of base
= 0u × v 0

Volume = area of base · height
= 0u × v 0 0w 0 0 cos u 0
= 0 (u × v) · w 0

FIGURE 12.34 The number 0 (u * v) # w 0  is the volume of a parallelepiped.
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parallelogram. The number 0w 0 0 cos u 0  is the parallelepiped’s height. Because of this 
geometry, (u * v) # w is also called the box product of u, v, and w.

By treating the planes of v and w and of w and u as the base planes of the parallelepi-
ped determined by u, v, and w, we see that

(u * v) # w = (v * w) # u = (w * u) # v .

Since the dot product is commutative, we also have

(u * v) # w = u # (v * w) .

The triple scalar product can be evaluated as a determinant:

(u * v) # w = c ` u2 u3

v2 v3
` i - ` u1 u3

v1 v3
` j + ` u1 u2

v1 v2
` k d # w

= w1 ` u2 u3

v2 v3
` - w2 ` u1 u3

v1 v3
` + w3 ` u1 u2

v1 v2
`

= 3 u1 u2 u3

v1 v2 v3

w1 w2 w3

3 .

The dot and cross may be inter-
changed in a triple scalar product 
without altering is value.

Calculating the Triple Scalar Product as a Determinant

(u * v) # w = 3 u1 u2 u3

v1 v2 v3

w1 w2 w3

3
EXAMPLE 6  Find the volume of the box (parallelepiped) determined by u = i + 2j - k,
v = -2i + 3k, and w = 7j - 4k .

Solution Using the rule for calculating a 3 * 3 determinant, we find

(u * v) # w = 3 1 2 -1

-2 0 3

0 7 -4

3 = (1) 2 0 3

7 -4
2 - (2) 2 -2 3

0 -4
2 + (-1) 2 -2 0

0 7
2 = -23.

The volume is 0 (u * v) # w 0 = 23 units cubed.

Cross Product Calculations
In Exercises 1–8, find the length and direction (when defined) of 
u * v and v * u .

1. u = 2i - 2j - k, v = i - k

2. u = 2i + 3j, v = - i + j

3. u = 2i - 2j + 4k, v = - i + j - 2k

4. u = i + j - k, v = 0

5. u = 2i, v = -3j

6. u = i * j, v = j * k

7. u = -8i - 2j - 4k, v = 2i + 2j + k

8. u = 3
2

i - 1
2

j + k, v = i + j + 2k

In Exercises 9–14, sketch the coordinate axes and then include the 
vectors u, v, and u * v as vectors starting at the origin.

9. u = i, v = j 10. u = i - k, v = j

11. u = i - k, v = j + k 12. u = 2i - j, v = i + 2j

13. u = i + j, v = i - j 14. u = j + 2k, v = i

Exercises 12.4
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d. (cu) # v = u # (cv) = c(u # v) (any number c)

e. c(u * v) = (cu) * v = u * (cv) (any number c)

f. u # u = 0 u 0 2
g. (u * u) # u = 0

h. (u * v) # u = v # (u * v)

29. Given nonzero vectors u, v, and w, use dot product and cross 
product notation, as appropriate, to describe the following.

a. The vector projection of u onto v

b. A vector orthogonal to u and v

c. A vector orthogonal to u * v and w

d. The volume of the parallelepiped determined by u, v, and w

e. A vector orthogonal to u * v and u * w

f. A vector of length 0 u 0  in the direction of v

30. Compute (i * j) * j and i * (j * j) . What can you conclude 
about the associativity of the cross product?

31. Let u, v, and w be vectors. Which of the following make sense, 
and which do not? Give reasons for your answers.

a. (u * v) # w
b. u * (v # w)

c. u * (v * w)

d. u # (v # w)

32. Cross products of three vectors Show that except in degener-
ate cases, (u * v) * w lies in the plane of u and v, whereas 
u * (v * w) lies in the plane of v and w. What are the degener-
ate cases?

33. Cancelation in cross products If u * v = u * w and u ≠ 0,
then does v = w? Give reasons for your answer.

34. Double cancelation If u ≠ 0 and if u * v = u * w and 
u # v = u # w, then does v = w? Give reasons for your answer.

Area of a Parallelogram
Find the areas of the parallelograms whose vertices are given in Exer-
cises 35–40.

35. A(1, 0), B(0, 1), C(-1, 0), D(0, -1)

36. A(0, 0), B(7, 3), C(9, 8), D(2, 5)

37. A(-1, 2), B(2, 0), C(7, 1), D(4, 3)

38. A(-6, 0), B(1, -4), C(3, 1), D(-4, 5)

39. A(0, 0, 0), B(3, 2, 4), C(5, 1, 4), D(2, -1, 0)

40. A(1, 0, -1), B(1, 7, 2), C(2, 4, -1), D(0, 3, 2)

Area of a Triangle
Find the areas of the triangles whose vertices are given in Exercises 
41–47.

41. A(0, 0), B(-2, 3), C(3, 1)

42. A(-1, -1), B(3, 3), C(2, 1)

43. A(-5, 3), B(1, -2), C(6, -2)

44. A(-6, 0), B(10, -5), C(-2, 4)

45. A(1, 0, 0), B(0, 2, 0), C(0, 0, -1)

46. A(0, 0, 0), B(-1, 1, -1), C(3, 0, 3)

47. A(1, -1, 1), B(0, 1, 1), C(1, 0, -1)

Triangles in Space
In Exercises 15–18,

a. Find the area of the triangle determined by the points P, Q,
and R.

b. Find a unit vector perpendicular to plane PQR.

15. P(1, -1, 2), Q(2, 0, -1), R(0, 2, 1)

16. P(1, 1, 1), Q(2, 1, 3), R(3, -1, 1)

17. P(2, -2, 1), Q(3, -1, 2), R(3, -1, 1)

18. P(-2, 2, 0), Q(0, 1, -1), R(-1, 2, -2)

Triple Scalar Products
In Exercises 19–22, verify that (u * v) # w = (v * w) # u =
(w * u) # v and find the volume of the parallelepiped (box) deter-
mined by u, v, and w.

u v w

19. 2i 2j 2k

20. i - j + k 2i + j - 2k - i + 2j - k

21. 2i + j 2i - j + k i + 2k

22. i + j - 2k - i - k 2i + 4j - 2k

Theory and Examples
23. Parallel and perpendicular vectors Let u = 5i - j + k, v =

j - 5k, w = -15i + 3j - 3k . Which vectors, if any, are (a)
perpendicular? (b) Parallel? Give reasons for your answers.

24. Parallel and perpendicular vectors Let u = i + 2j - k,
v = - i + j + k, w = i + k, r = - (p>2)i - pj + (p>2)k .
Which vectors, if any, are (a) perpendicular? (b) Parallel? Give 
reasons for your answers.

In Exercises 25 and 26, find the magnitude of the torque exerted by F
on the bolt at P if 0 rPQ 0 = 8 in. and 0F 0 = 30 lb. Answer in foot-
pounds.

25.    26.

F

Q

P

60°
F

Q

P

135°

27. Which of the following are always true, and which are not always 
true? Give reasons for your answers.

a. 0 u 0 = 2u # u
b. u # u = 0 u 0
c. u * 0 = 0 * u = 0

d. u * (-u) = 0

e. u * v = v * u

f. u * (v + w) = u * v + u * w

g. (u * v) # v = 0

h. (u * v) # w = u # (v * w)

28. Which of the following are always true, and which are not always 
true? Give reasons for your answers.

a. u # v = v # u b. u * v = - (v * u)

c. (-u) * v = - (u * v)
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48. Find the volume of a parallelepiped if four of its eight vertices are 
A(0, 0, 0), B(1, 2, 0), C(0, -3, 2), and D(3, -4, 5) .

49. Triangle area Find a 2 * 2 determinant formula for the area 
of the triangle in the xy-plane with vertices at (0, 0), (a1, a2), and 
(b1, b2) . Explain your work.

50. Triangle area Find a concise 3 * 3 determinant  formula that 
gives the area of a triangle in the xy-plane having vertices 
(a1, a2), (b1, b2), and (c1, c2) .

12.5 Lines and Planes in Space

This section shows how to use scalar and vector products to write equations for lines, line 
segments, and planes in space. We will use these representations throughout the rest of the 
book in studying the calculus of curves and surfaces in space.

Lines and Line Segments in Space

In the plane, a line is determined by a point and a number giving the slope of the line. In 
space a line is determined by a point and a vector giving the direction of the line.

Suppose that L is a line in space passing through a point P0(x0, y0, z0) parallel to a vec-
tor v = v1 i + v2 j + v3 k . Then L is the set of all points P(x, y, z) for which rP0P is paral-
lel to v (Figure 12.35). Thus, rP0P = tv for some scalar parameter t. The value of t depends 
on the location of the point P along the line, and the domain of t is (-q, q) . The 
expanded form of the equation rP0P = tv is

(x - x0)i + (y - y0)j + (z - z0)k = t(v1 i + v2 j + v3 k),

which can be rewritten as

xi + yj + zk = x0i + y0j + z0 k + t(v1 i + v2 j + v3 k) . (1)

If r(t) is the position vector of a point P(x, y, z) on the line and r0 is the position vector 
of the point P0(x0, y0, z0), then Equation (1) gives the following vector form for the equa-
tion of a line in space.

y

z

0

x

v

L
P(x, y, z)

P0(x0, y0, z0)

FIGURE 12.35 A point P lies on L
through P0 parallel to v if and only if rP0P
is a scalar multiple of v.

Vector Equation for a Line

A vector equation for the line L through P0(x0, y0, z0) parallel to v is

r(t) = r0 + tv, -q 6 t 6 q, (2)

where r is the position vector of a point P(x, y, z) on L and r0 is the position 
vector of P0(x0, y0, z0) .

Parametric Equations for a Line

The standard parametrization of the line through P0(x0, y0, z0) parallel to
v = v1 i + v2 j + v3 k is

x = x0 + tv1, y = y0 + tv2, z = z0 + tv3, -q 6 t 6 q (3)

Equating the corresponding components of the two sides of Equation (1) gives three 
scalar equations involving the parameter t:

x = x0 + tv1, y = y0 + tv2, z = z0 + tv3 .

These equations give us the standard parametrization of the line for the parameter interval 
-q 6 t 6 q .



COMLEX NUMBER: 

ℝ
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Definition: - 

Complex numbers are some of the most general numbers used in algebra. Any 

number that can be expressed in the form        or       , where   and 

  are real numbers and   √    is a complex number. Complex number can be 

thought of as a two-dimensional vector ( ,  ), where   is the real part and   is 

the imaginary part. 

NOTES: - 

1. The set of real no. is denoted by ℝ 

The set of complex no. is denoted by   

2. The real part of Z denoted by   ( ) 

The imaginary part of Z denoted by   ( ) 

Complex number algebra 

A number is real when the coefficient of   is zero and is imaginary when real part 

is zero. 

For example 

        

        is real, 

        is imaginary 

 

Basic Operations 

1. Addition and subtraction: 

Addition of complex numbers is defined by separately adding real and 

imaginary parts. 

If         ,       , then 

    (    )  (    )  (   )  (   )  

Similarly for subtraction: 

    (    )  (    )  (   )  (   )  

Example: - 

Express each of the following in term of     . 
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a. (    )  (    ) 

b. (    )    

c.    (    ) 

Solution  

a. (      )  (    )  (   )  (   )       

b. (    )    (   )          

c.    (    )     (   )        

2. Multiplication 

Multiplication is straightforward provided remember that        

So, if:        and       , then: 

    (    )  (    )  (     )  (       )  

Example: - 

Simply the following in the form     . 

 (    )  (    )  

   Solution 

(    )  (    )                      

NOTES: - 

  √    

       

             

      

           

3. Division 

The complex conjugate of a complex number is obtained by changing the sign of 

the imaginary part. So, if        , its complex conjugate  ̅, is defined by: 

 ̅      . Any complex number      has a complex conjugate     . 

Example: - 

Simplify the following expression in the form     . 

a. 
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b. 
    

    
 

c. 
 

     
 

Solution  

a. 
 

   
  

 

   
 
   

   
  

    

   
  

    

 
  

 

 
  

 

 
  

b. 
    

    
  

    

    
 
    

    
  

     

    
  

     

  
  

  

  
  

 

  
  

c. 
 

     
 

 

     
 
     

     
 

 (     )

(     )(     )
  

       

    
  

       

  
   

 

 
  

 

 
  

NOTES: - 

1. If    , then  ̅    

2. If z is real part only, then  ̅    

3. If   is imaginary only, then  ̅     

 

Polar Form of Complex Number 

The relation between the complex no. and the polar coordinates are given by: 

          

          

  √       

     
 

 
        

 

 
  

   (           ) 

In general 

     (               ) 

Example: - 

Let      , put it in a polar form. 

Solution  

     

     

  √( )  ( )  √   
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   (           ) 

  √ (             )  

Modulus & Argument 

The number   is called the modulus of Z and is denoted by    . 

    √      

and the number   is called the argument of Z and is denoted by       

        

Examples: - 

Find the modulus & argument to: 

1)     

Solution  

    √      √   

     
 

 
   

 

 
  

      
 

 
  

2)   √   

Solution 

    √   √ 
 
    

     
√ 

 
   

 

 
  

      
 

 
  

3) (   )  

Solution 
(   )             

    √0        
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Euler Formula 

Does a relation connect the Cartesian coordinates plane to the polar plane in 

complex numbers 

                

If         (           ), then        

NOTES: - 

1.             (     ) 

2. 
    

    
   (     ) 

Power of Z 

If       , then for any integer number 

   (    )         

Examples: - 

Find the value of complex number  

1) (  √  )    

Solution 

   ,      √ ,       00  

  √      √   √ 
 
 √    

       
√ 

 
 

 

√ 
  0  

     (            )  

       (√  )
   
(   ( 00   0)      ( 00   0))  

       (    )   ( 0     0  )  

2)      

Solution 
   ,      0,          

  √      √   0     

       
 

 
 0  

     (            )  

         (   (  0)      (  0))  
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        (    0)     

3)    √   , find √ 
 

 

Sol. 

√ 
 
  

 

  ( √   )
 

   

   √ ,        ,      
 

 
   

  √( √ )  (  )     

       
 

√ 
 
 

 
   

     (            )  

        
 

 (   (
 

 
 
 

 
 )      (

 

 
 
 

 
 ))  

        
 

 (   (
 

  
 )      (

 

  
 ))  

 

 

Homework 
a) Find the value of complex numbers 

1. (    )  

2. (     )   

3. (   √  )  

b) Find the modulus & argument of: 

 )     ,   2) ,  3)1 
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Root of Complex Number 

1) Let    
 

  √ 
 
            ( ) 

So that w is a solution of all equations 

                ( )  

Then, 

    
 
 (   

     

 
      

     

 
)    

2) If             s a complex number different from zero and   is a positive 

integer, then there are precisely   different complex numbers, that are nth 

roots of z given by: 

√    
 

    √  
 
   (

 
 
     

  
 
)     

Examples: 

1) Find the three cubic roots of 1 

Sol. 
    0   

   ,   0  

  √( )  0      

      
 

 
    

        0   0  

    
 

 (   
     

 
      

     

 
) ,    , , ,  ,    

   ( )
 
 (   

0     

 
      

0     

 
),   

at        

   ( )
 

 (   
     

 
      

     

 
)   (   0      0)       

at        

   ( )
 

 (   
    ( )

 
      

    ( )

 
)   (   

  

 
     

  

 
)   0   0          

at     

   ( )
 

 (   
    ( )

 
      

    ( )

 
)   (   

  

 
     

  

 
)   0   0          
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2) Find the four forth roots of (   )  

Sol 

       

   √(   )  0       

      
 

 
  

         
 

   
    or   0 

√   
 

  √  
 

   (
 

 
   

  

 
)     (

 

 
   

 

 
)
 ,     0, , ,  

at         

first root      
 
 

   (   
 

 
           

 

 
)   √   √   

at        

second root      
 
  

  =   √   √   

at         

third root       
 
  

   =   √    √   

at       

 fourth root      
 
  

  = √     √   

 

Function of Complex Variable 

A complex variable   is said to be function of the complex variable   

If        and       , then   and   both are a function of  ,  , so  

We can express  ( ,  ) and  ( ,  ) as: 

   ( )   ( ,  )    ( ,  ) 

When   and   are real numbers. 

Examples: 

1) Let  ( )       , find ( )  
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