De Moivre’s Theorem

Prerequisites

You should be familiar with the various ways of representing a complex number in Cartesian
form, in polar (trigonometric) form and in exponential form.
z =[|z|,arg z]

=[r,0]

=r(cosd +isin )

=(xy)

=X +1iy

_ rei@

iargz

=|7|e
The first three here are three forms of the polar representation of z the next two are Cartesian

forms, the last two are exponent forms. To understand this chapter you also require knowledge

of mathematical induction.

De Moivre’s theorem

De Moivre’s theorem is a result that enables us to find powers and roots of complex numbers. It
tells us how to evaluate powers of a complex number - that is, how to find z°. It can be expressed

in Cartesian and polar (trigonometric) form.

De Moivre’s theorem - Cartesian form

Z" =r(cos@ +isin@)" =r" (Cos né +isin nH)

De Moivre’s theorem - Polar form

z" =[r,01" =[r",n6]

Example (1)

2
Express [2 cos% +2isin %j in the form x +1iy .
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Solution

2 r 2
(2 COS% +2isin %) =2, %i| [Putting z in polar form |
=|222x %} [Applying De Moivre's theorem ]
(47
| 4

=22+ 220

Proof of De Moivre’s Theorem

[4 cos% +i4sin %j [Returning to Cartesian form |

The proof of De Moivre’s theorem follows by mathematical induction and exploits the property of

multiplication of complex numbers. In polar form this is
[rlagl][rzygzl = [rlrzvgl + 92]

The proof in polar form is particularly straightforward and elegant.

Proof of De Moivre’s Theorem

To prove

z" =[r,0]" =[r",no]

Proof by mathematical induction.

For the particular step, when n=1 [r,0]' =[r!,1x6]

For the induction step the induction hypothesis is

For n =k [r,00 =[r¥, k6]

[r,01 =[r*,ko]

To prove for n=k +1 [r,0]" =[r*"',(k+1)8]. Now

[r,61" =[r,6]lr,01"

=[r,0][r*, ko] [By the induction hypothesis |
=[rxr* o+ ko] [ Multiplication of complex numbers |
= [r"”,(k +1)6]

Hence the induction step holds and the result is true for all n. Converting into Cartesian form

gives: z" =r(cos@ +ising)" =r"(cosnd +isinng)
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Interpretation of De Moivre’s Theorem and the 7 roots of unity

Suppose that z=[r,0]. For a definite illustration let us consider z*=[r?*36]. Then graphically we
plot z* by noting (1) that the argument of z* is 3 times the argument of z; (2) that the modulus of

7% is the cube of the modulus of z.

iy

30 2

If ¥ > 1 then the values of 7%, 23, z*,... “spiral outwards”.
iy

3
z4 z

If r <1 then the values z°, z°, z*,...”spiral inwards”. Whilst if ¥ = 1 then the values of z°, Z%, z*,...

all lie on the unit circle.

iy
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The previous illustration suggests that we can apply De Moivre’s theorem in reverse to find
solutions to the equation z" =1. This is indeed the case. We observe that the equation x*=1 has
two solutions, x =iand x = -i. Likewise, we expect the equation

z"=1

to have n solutions, and this is the case. In polar form the equation z" =1 takes the form

[r,01" =[1,0]

Applying De Moivre’s theorem we get

[r",nd] =[1,0]

Hence r"=1and n=1and nf =0. One solution to the equation nf =0 is & = 0. However, we

should recall that the angle 0 is given modulo 27 and that

0=27r=4r=..=2nr=.. (mod2r)

Hence the n roots of unity - that is the n roots to the equation z" =1 are given by the n distinct

solutions to the equation né =0(mod 27 )

g0, 2% 47 67

n n n

The solutions in polar form are the n distinct complex numbers
[110]1 |:112£:|1 |:1147z:|1 |:11 67T:|| e
n n n

Example (2)

Solve 73 =1

Solution

By substitution of n=3 into the formula

oy (12,132 ,{1, 6”}
| n n

the solutions are

(277 [, 4x]
110 ) 117 ] 117
[1,0] RN

Graphically, these solutions are represented as follows.
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z,=11%]

o \o 21,

NN s
z3=[1,4/n3]

In Cartesian form

7, =cos0+isin0=(1,0) zz—coszgzﬂsinzgr—[—;,\/jj

We can also use De Moivre’s theorem to find solutions to equations such as z* = -1

Example (3)

Solve z*=-1.

Solution

(L1 =[1,7]
[1,46] =[1,7]

(mod27)
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iy

> x
In Cartesian form
1 1
_ /) LieinZ/ | —
zrcosAHsm A’(\/E 2}
S S
LNR2 ’ 2" 2 2T R

Applications of De Moivre’s theorem to trigonometric identities

By expanding (cosé +isin 9)" using the Binomial theorem (or Pascal’s triangle) and equating with
cosnd +isinnd we can obtain further trigonometric identities. Recall that De Moivre’s theorem is
(cos@ +ising)" = cosnd +isinng

Since the real and imaginary parts of both sides of this equation are independent of each other,
we can equate real and imaginary parts to obtain trigonometric identities. The whole process is

best grasped through illustration.

Example (4)

Prove cos50 =16cos’ 0 -20cos®d +5cos6.

Solution

By De Moivre’s theorem
(coso + isiné’)5 = 0858 +1isin50

Pascal’s triangle up to n= 5 gives
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1 5 10 10 5 1

Hence

€0S50 +1isin56 = cos’ @ + 5i cos* &sin 6 + 10i% cos® & sin? &
+10i® cos® #sin® 8 + 5i* cos@sin* 6 + i° sin’
Since i* =-1we have
€0S50 +1isin56 = cos’ @ + 5icos* sin 6 —10 cos® sin® &
-10icos* @sin® 0 +5cosdsin* @ +isin® 6
On equating real parts and using the identity cos?6+sin’d =1 we get
€0s560 = cos’ @ —10cos® 6sin @ + 5cosPsin® 0
=cos’ 0 -10cos® 9(1 — cos® 0) + 5cosO(1 — cos® )*
=c0s’0-10co0s* 9 +10cos’ 0 +5c0s (1 - 2cos* 8 + cos* 0)

=11cos’8-10cos*8 +5cos8 —10cos® 8 +5cos’ &
=16¢0s°6—-20cos® 6 +5cos8

By equating imaginary parts we can also show

sin56 =5cos* sin§ - 10cos® sin® 4 + sin’ 6
=5(1-sin®#)*sin @ — 10(1 — sin” #)sin’ § + sin” @
=5(1-2sin?0 +sin*#)sind - 10sin® 9 + 10sin° @ + sin’®
=5sin@ -10sin’d +5sin’ @ —10sin®*# + 10sin’ @ + sin® @
=16sin’ @ —20sin’ @ +5sin @



8.1 Using Basic Integration Formulas

457

TABLE 8.1 Basic integration formulas

1. /k dx = kx + C (any number k) 12. [tanxdx = In|secx| + C
n+1
2. /x”dx = x-:l + C (n#-1) 13. [ cotxdx = In|sinx| + C
n
3. /dx Inlx| + € 14. [ secxdx = In|secx + tanx| + C

FN

a* dx—7+C (a>0,a# 1) 16. sinh x dx = coshx + C

Ina

17. coshxdx = sinhx + C

sinxdx = —cosx + C

18.

./exdeeX—i-C 15. /cscxdx——ln|cscx+cotx‘+c

. x
=s1n l<a>+C
Va — ¥?

/
/
7. /cosxdx =sinx + C
8. /seczxdx =tanx + C 19. /azf_ifxz = clzta“l<x> +C
9. /csc2xdx=—cotx+C 20. /x\/h:clzsec_lz +C
10. /secxtanxdx =secx + C 21, /\/L% = Sinh_l<2) +C  (@>0)
11. /cscxcotxdx =—cscx + C 22. /\/)% = COSh_](Z) +C x>a>0)

EXAMPLE 2 Complete the square to evaluate

/ dx
V8x — x2

Solution We complete the square to simplify the denominator:
8x —x2=—(*—8) =—(*— 8 + 16 — 16)
=—(2—8x+ 16) + 16 = 16 — (x — 4.
Then

dx . dx
/m‘/m

_ du a=4u=x—4),
Va2 — u? du = dx

. i fu

= sin a + C Table 8.1, Formula 18

sin~! <x;r4> + C.
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EXAMPLE 3 Evaluate the integral

/ (cos x sin 2x + sin x cos 2x) dx.

Solution Here we can replace the integrand with an equivalent trigonometric expression
using the Sine Addition Formula to obtain a simple substitution:

/(cos x sin 2x + sin x cos 2x) dx = /(sin (x + 2x)) dx

= /sin 3x dx

1 .
/3 sin u du u = 3x, du = 3 dx

1
- g cos 3x + C. Table 8.1, Formula6 Il

In Section 5.5 we found the indefinite integral of the secant function by multiplying it
by a fractional form identically equal to one, and then integrating the equivalent result. We
can use that same procedure in other instances as well, which we illustrate next.

1 — sinx’

/4
EXAMPLE 4  Find / dx
0

Solution We multiply the numerator and denominator of the integrand by 1 + sin x,
which is simply a multiplication by a form of the number one. This procedure transforms
the integral into one we can evaluate:

m/ dx . /4 1 1 + sinx
—_— = — ——dx
0 1 — sinx 0 ] —sinx 1 + sinx
/4 .
_/ 1 + sinx
- T e X
o 1 —sin"x
/7/41 + sin x
= —— —dx
o COS“ X

/4
= / (sec? x + sec x tan x) dx
0

Use Table 8.1,
Formulas 8 and 10

/4

={tanx+secx] =(1+\/§—(0+1))=\f2. u

0

EXAMPLE 5 Evaluate
3x2 — Tx
/ 3x + 2 dx.

x -3 Solution The integrand is an improper fraction since the degree of the numerator is
3 g prop g
3x 4 23x" = Tx greater than the degree of the denominator. To integrate it, we perform long division to

2 . . . . .
3x” + 2x obtain a quotient plus a remainder that is a proper fraction:
—Ox
2
—9x — 6 3 = Tx " 6
e T R vorng £
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Therefore,

3x* — Tx _x
/3x+2dx /(—3+ 2)d—2 3x+2In[3x+2/+C. W

Reducing an improper fraction by long division (Example 5) does not always lead to
an expression we can integrate directly. We see what to do about that in Section 8.5.

EXAMPLE 6 Evaluate

3x+2 dx
V1=
Solution We first separate the integrand to get
3x+2dx:3 x dx +2/ dx .
V1 — x2 V1 — x? V1 — X2

In the first of these new integrals, we substitute

u=1-—x2 du = —2x dx, ) xdx = —% du.

1/2) du
3 X dx /( /2) = —3/u_l/2du
V1 — %2 2
3 ul/Z

= — 42
ER A -3V1 -2 + .

The second of the new integrals is a standard form,

Then we obtain

dx -
2/\/72 =2sin"'x + G, Table 8.1, Formula 18
I —x

Combining these results and renaming C; + C, as C gives

3x + 2 .
———dx=-3V1 -2+ 2sin"'x + C. [ ]
V1 — X2

The question of what to substitute for in an integrand is not always quite so clear.
Sometimes we simply proceed by trial-and-error, and if nothing works out, we then try
another method altogether. The next several sections of the text present some of these new
methods, but substitution works in the next example.

EXAMPLE 7 Evaluate

[

Solution We might try substituting for the term Vx, but we quickly realize the deriva-
tive factor 1/ Vi is missing from the integrand, so this substitution will not help. The
other possibility is to substitute for ( 1+ \/) and it turns out this works:

/' dx /2(1,{ — 1) du u=1+Vax du= 5 lﬁ dx;
= Vx
3 3 -
(1 + \/);) u dx =2Vx du = 2(u — 1) du

-2
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S 2,1,
u u
:1—2u+c

u2

_1-2(H V)

(1+ Va)

oo 1+2Vx
I TERYSD -

When evaluating definite integrals, a property of the integrand may help us in calcu-
lating the result.

/2
EXAMPLE 8 Evaluate / X3 cos x dx.

—7/2

Solution No substitution or algebraic manipulation is clearly helpful here. But we
observe that the interval of integration is the symmetric interval [—/2, 7 /2 ]. Moreover,
the factor x* is an odd function, and cos x is an even function, so their product is odd.
Therefore,

/2
/ x3cosxdx = 0. Theorem 8, Section 5.6 [ |
—7/2

Exercises m

Assorted Integrations

The integrals in Exercises 1-40 are in no particular order. Evaluate 17.

each integral using any algebraic method or trigonometric identity
you think is appropriate, and then use a substitution to reduce it to a

dt
standard form. 19. / sec 0 + tan 0 20. / V3 + 12

- lny 2V dy
18. —
y + 4y n? y 2Vy

1 -,
1. / §6x dx 2. / 2x dx ’1. 48 — £ + 16t 4’ — e+ 16t 2. /x + 2mdx
0 8x7 + 2 x*+ 1 P2 +4 2mVa — 1

/3 dx .y
3. /(secx — tan x)* dx 4. /77/4 cos? x tan x 23. /0 V1 — cos 0 db 24. /(sect + cot )2 dt
1 —x dx ly 6 dy

5. 6. 25. /7 26. | —

Viee™ x—Va Ve — 1 Vyd +y)

cotz Inz

7. /e. > dz 8. /2162 dz 27. o 2dx 28. / dx

Stz V1 — 41n’x (x —2)Va? — 4x + 3
9. [ o, [ 8dr

. &+ e ? . 1 2 —2x+2 29. /(cscx — sec x)(sin x + cos x) dx
0 3
4 dx 452 — 7 . X
11. /_11 +(2)C+ 1)2 12. /;1 2x + 3 dx 30. /3smh<5+ln5)dx
d ’ 2x3 !

1B Y 14. [ cscisin 3t dr 3l / S dx 32. / VT + 2 sinx dx

1 —sect Vvaxt—1 .

/4 . 0

1+ sin6 do +y .
15. —F—df 16. | — 33. / d 34. /ez“ dz
/0 cos’ 0 /\/20 — 92 -1 v
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/ 7 dx 36 dx Evaluate
=DV —2x—48 ) v+ DVax + 42

/ (1 + 3x3)edx.

3y [20° =76+ 70 " 18 do
’ 20 — 5 * ) cosf — 1 48. Use the substitution # = tan x to evaluate the integral
dx Vix dx
3. 1+ ¢ 40. 1+ x3dx 1 + sin®x’
P s iad e — 32
Hint: Use long division. Hint: Let u = x*/2, 49. Use the substitution u = x* + 1 to evaluate the integral
Theory and Examples
41. Area Find the area of the region bounded above by y = 2 cos x / AVt + 1dx.

42,

43.

44.

45.

46.

47.

andbelow by y = secx, —7/4 = x = 7 /4.

Volume Find the volume of the solid generated by revolving 50. Using different substitutions Show that the integral

the region in Exercise 41 about the x-axis. /((x2 — D + 1)
Arc length Find the length of the curve y = In(cos x),

0=x=m/3 can be evaluated with any of the following substitutions.

Arc length Find the length of the curve y = In (sec x), a u=1/(x+1)

0=x=m/4 .
b. u=((x—1)/(x+ 1) fork=1,1/2,1/3,-1/3,-2/3,
Centroid Find the centroid of the region bounded by the x-axis, and —1
the curve y = sec x, and the lines x = —7 /4, x = 7 /4. e u = tan-! x d u=tan' Vs
Centroid Find the centroid of the region bounded by the x-axis, e u=tan"' (x — 1) / 2) £ ou=cos !y

the curve y = csc x, and the lines x = 7/6, x = 57 /6.

— -1
The functions y = e and y = x3e® do not have elementary anti- g u = cosh "x

derivatives, but y = (1 + 3x%)¢* does. What is the value of the integral?

82 Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

/ Fg(x) dx.

It is useful when f can be differentiated repeatedly and g can be integrated repeatedly
without difficulty. The integrals

/ X cos x dx and / x2e* dx

are such integrals because f(x) = x or f(x) = x> can be differentiated repeatedly to
become zero, and g(x) = cosx or g(x) = e* can be integrated repeatedly without diffi-
culty. Integration by parts also applies to integrals like

/ In x dx and /e" cos x dx.

In the first case, f(x) = Inx is easy to differentiate and g(x) = 1 easily integrates to x. In
the second case, each part of the integrand appears again after repeated differentiation or
integration.

Product Rule in Integral Form

If f and g are differentiable functions of x, the Product Rule says that

A fg0)] = @050 + g/ (o)
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In terms of indefinite integrals, this equation becomes

/iwmmnw=/uvmm+ﬂmvﬂw

or

/iwwmuw=/ﬂmwM+/mmmm

Rearranging the terms of this last equation, we get

/mwmw=/$wwmnw—/ﬂmma,

leading to the integration by parts formula

/ f@g' () dx = f(x)gx) — / f1(x0)g(x) dx &)

Sometimes it is easier to remember the formula if we write it in differential form. Let
u = f(x) and v = g(x). Then du = f'(x)dx and dv = g'(x)dx. Using the Substitution
Rule, the integration by parts formula becomes

Integration by Parts Formula

/udv = uv — /vdu 2)

This formula expresses one integral, f u dv, in terms of a second integral, f vdu.
With a proper choice of u and v, the second integral may be easier to evaluate than the
first. In using the formula, various choices may be available for u and dv. The next exam-
ples illustrate the technique. To avoid mistakes, we always list our choices for u and dv,
then we add to the list our calculated new terms du and v, and finally we apply the formula
in Equation (2).

EXAMPLE 1 Find

/x cos x dx.

Solution We use the formula [u dv = wv — [v du with

u=x, dv = cos x dx,
du = dx, v = sin x. Simplest antiderivative of cos x
Then
/xcosxdx=xsinx—/sinxdx=xsinx+cosx+C. [ |

There are four apparent choices available for # and dv in Example 1:

1. Letu = 1 and dv = x cos x dx. 2. Let u = x and dv = cos x dx.

3. Let u = xcosx and dv = dx. 4. Let u = cosx and dv = x dx.
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Choice 2 was used in Example 1. The other three choices lead to integrals we don’t know how
to integrate. For instance, Choice 3, with du = (cos x — x sin x)dx, leads to the integral

/(x cos x — x? sin x) dx.

The goal of integration by parts is to go from an integral f u dv that we don’t see how
to evaluate to an integral f v du that we can evaluate. Generally, you choose dv first to be
as much of the integrand, including dx, as you can readily integrate; u is the leftover part.
When finding v from dv, any antiderivative will work and we usually pick the simplest
one; no arbitrary constant of integration is needed in v because it would simply cancel out
of the right-hand side of Equation (2).

EXAMPLE 2  Find

/ln X dx.

Solution Since flnxdx can be written as flnx-ldx, we use the formula

fudvzuv— fvduwith

u=Inx Simplifies when differentiated dv = dx Easy to integrate
_1 _ : S
du = }dx, v =X Simplest antiderivative
Then from Equation (2),

/lnxdx=xlnx—/x-)lcdx=xlnx—/dx=xlnx—x+ C. [ |

Sometimes we have to use integration by parts more than once.

/ x2e* dx.

Solution With u = x%, dv = ¢ dx, du = 2x dx, and v = ¢*, we have

/x2exdx=x2ex— Z/xe"dx.

The new integral is less complicated than the original because the exponent on x is reduced
by one. To evaluate the integral on the right, we integrate by parts again with
u = x,dv = ¢*dx. Then du = dx,v = ¢*, and

EXAMPLE 3 Evaluate

/xe"dx=xex—/exdx=xe"—ex+c.

Using this last evaluation, we then obtain

/xze"dx = y2Z* — 2/xe"dx

= x2* — 2xe* + 2¢° + C,

where the constant of integration is renamed after substituting for the integral on the right.
[

The technique of Example 3 works for any integral f x"e* dx in which n is a positive
integer, because differentiating x" will eventually lead to zero and integrating e* is easy.

Integrals like the one in the next example occur in electrical engineering. Their evalu-
ation requires two integrations by parts, followed by solving for the unknown integral.
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EXAMPLE 4 Evaluate

/e‘ CoS x dx.

Solution Letu = ¢* and dv = cos x dx. Then du = e*dx, v = sin x, and

/excosxdx = e'sinx — /exsinxdx.

The second integral is like the first except that it has sin x in place of cos x. To evaluate it,
we use integration by parts with

u= e, dv = sin x dx, U = —COS X, du = e* dx.

/ex cosxdx = e'sinx — (—ex CcoS X — /(—cos x)(e* dx))

= ¢e'sinx + e“cosx — /e"cosxdx.

Then

The unknown integral now appears on both sides of the equation. Adding the integral to
both sides and adding the constant of integration give

Z/e‘cosxdx = ¢e'sinx + e cosx + C.

Dividing by 2 and renaming the constant of integration give

/excosxdx:e"51nx-|2—e"cosx+c [ |

EXAMPLE 5 Obtain a formula that expresses the integral

/cos" x dx

in terms of an integral of a lower power of cos x.

Solution  We may think of cos” x as cos”™ ' x + cos x. Then we let
u=cos" lx and dv = cos x dx,
so that
du = (n — 1) cos” 2 x (—sin x dx) and v = sinx.

Integration by parts then gives

/cos"xdx =cos" lxsinx + (n — l)/siancos”_zxdx

cos" lxsinx + (n — 1)/(1 — cos? x) cos" 2 x dx

=cos" lxsinx + (n — 1)/cos”2xdx - (n - 1)/cos”xdx.

(n — 1)/cos”xdx

If we add



FIGURE 8.1 The region in Example 6.
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to both sides of this equation, we obtain
n/cos”xdx =cos" !xsinx + (n — l)/cos”_zxdx.

We then divide through by 7, and the final result is

o
cos" ‘xsinx  n—1 .
/cos” xdx = + /cos" 2 x dx. [ |

n n

The formula found in Example 5 is called a reduction formula because it replaces an inte-
gral containing some power of a function with an integral of the same form having the
power reduced. When # is a positive integer, we may apply the formula repeatedly until the
remaining integral is easy to evaluate. For example, the result in Example 5 tells us that

5
/cos3xdx = COS)CC%&—F g/cosxdx

= lcoszxsinx + %sinx + C.

3

Evaluating Definite Integrals by Parts

The integration by parts formula in Equation (1) can be combined with Part 2 of the Fun-
damental Theorem in order to evaluate definite integrals by parts. Assuming that both f’
and g’ are continuous over the interval [ a, b ], Part 2 of the Fundamental Theorem gives

Integration by Parts Formula for Definite Integrals

b b b
/ g’ (x) dx = f(X)g(X)} - / f1(x0g(x) dx 3)

EXAMPLE 6 Find the area of the region bounded by the curve y = xe ™ and the
x-axis from x = 0 to x = 4.

Solution The region is shaded in Figure 8.1. Its area is

4
/ xe ¥ dx.
0

Letu = x,dv = ¢ *dx,v =—¢* and du = dx. Then,

4 4
/ xe *dx = —xe‘x]g - / (—e™) dx
0 0

4
= [~de* — (—0e70) ] +/ e dx
0

= —4e* — e’x]g

=—d4et—(e*—e0=1-5*= 091 [

Tabular Integration Can Simplify Repeated Integrations

We have seen that integrals of the form f f(x)g(x) dx, in which f can be differentiated repeat-
edly to become zero and g can be integrated repeatedly without difficulty, are natural candi-
dates for integration by parts. However, if many repetitions are required, the notation and calcu-
lations can be cumbersome; or, you choose substitutions for a repeated integration by parts that
just ends up giving back the original integral you were trying to find. In situations like these,
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there is a nice way to organize the calculations that prevents these pitfalls and simplifies the
work. It is called tabular integration and is illustrated in the next examples.

/ x2e* dx.

Solution With f(x) = x? and g(x) = e, we list:

EXAMPLE 7 Evaluate

f(x) and its derivatives g(x) and its integrals

2

x (+) e
2x¥>ex
2 $H

e

0\»

We combine the products of the functions connected by the arrows according to the opera-
tion signs above the arrows to obtain

/xze"dx = x2¢" — 2xe* + 2¢° + C.

Compare this with the result in Example 3. |

EXAMPLE 8 Find the integral

717/ f(x) cos nx dx

for f(x) = 1 on [—,0)and f(x) = x> on [0, 7 ], where n is a positive integer.

Solution The integral is

T 0 pn
717/ f(x) cos nx dx = % / cos nx dx + 717/ x3 cos nx dx
- 0

T

0 o
1 . 1 3
= 77 sin nx + 7 . X’ cos nx dx
—T

T
1 3
== X’ cos nx dx.
0

Using tabular integration to find an antiderivative, we have

f(x) and its derivatives g(x) and its integrals

x3 * COs nx
3x2 -) % sin nx
\ 1
6x (+) —— COS nx
n
\ 1 .
6 -) ——3 sin nx
"
\ 1

0 — €08 nx
n
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3)—

o
/ X3 cos nxdx
0

X 3x3 6x . 6 m
—-sinnx + —-cosSnx — — SIn nx — —; COS Nx
n 2 3 4

n n n 0

3=

+ —
I’l2 I’l4 Vl4

3|~

(3772 cosnm 6 cos nm 6>

cosnm = (—1)"
o n4

_ 3(772n2(—l)” +2(—1y* + z)

Integrals like those in Example 8 occur frequently in electrical engineering.

Exercises m

Integration by Parts /3
Evaluate the integrals in Exercises 1-24 using integration by parts. 27. / x tan® x dx 28. / In (x + x?) dx
0

1. /xsin)zidx 2. /OCOSTrOdO
29. / sin (In x) dx 30. / z(In z)? dz

3. 12 cos t dt 4. / x2 sin x dx

Evaluating Integrals

2 ¢ s Evaluate the integrals in Exercises 31-52. Some integrals do not
5. . x I xdx 6. 1 7 Inxdx require integration by parts.
2 cos Vx
- / et dx g / e d 31 / x sec x? dx 32. 7 dx
1
2
9, / X2~ dx 10. / (2 — 2x + 1)eX dx 3. / * (nx)” dx 3. / i ®
In x (In x)°
11. /tan “Tydy 12. /sin’lydy 3. /x2 dx 36. / X &
3 4 5 3
13. /x sec? x dx 14. /4x sec? 2x dx 37. /x ¢ d 38. /x ¢ dx
. 3N/x2 + . 2 gin 43
15. /x3e"dx 16. /p“e”’dp 39 /x X 1 dx 40 /x sin x? dx
41. /Sin 3x cos 2x dx 42. /sin 2x cos 4x dx
17. [ (x* — 5x)e*dx 18. [ (7 +r + De'dr
\Vx
43./\/);lnxdx 44. /de
19. / et dx 20. / " dt Vax
45. /cos Vx dx 46. /\/);e\&dx
21. [ e’sin@do 22. [ e Vcosydy
/2 /2
2 G 3
23. /ez" cos 3x dx 24. /e’z" sin 2x dx 47. /0 07 sin 20 d0 48. /o X cos 2x dx
2 1/V2
Using Substitution 49. / tsec”! tdt 50. / 2x sin”! (Xz) dx
Evaluate the integrals in Exercise 25-30 by using a substitution prior 2V3 0
to integration by parts.
¢ P 51. /xtan’lxdx 52. /x2 tan”! 5 d

1
25. /e””gds 26. /x\/l—x dx
0
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Theory and Examples

53.

54.

5S.

56.

57.

Finding area Find the area of the region enclosed by the curve
y = xsin x and the x-axis (see the accompanying figure) for

a. 0=x=n.
b. 7 =x = 2.
c. 27T = x = 371.

d. What pattern do you see here? What is the area between the
curve and the x-axis for nm = x = (n + 1), n an arbitrary
nonnegative integer? Give reasons for your answer.

y
10+ y =xsinx
51
N N
0 [ 2w 3w
—5L

Finding area Find the area of the region enclosed by the curve
y = x cos x and the x-axis (see the accompanying figure) for

a. 7/2 =x = 3mw/2.
b. 37/2 = x = 57w/2.
c 5m/2 =x =T7w/2.
d

. What pattern do you see? What is the area between the curve
and the x-axis for

<2n2— 1)77 - <2n2+ 1)77,

n an arbitrary positive integer? Give reasons for your answer.

y
10F _
y = XCOSX
/N |
o a\_/J37 57\ |1m
2\/22 2
_10_

Finding volume Find the volume of the solid generated by
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = ¢*, and the line x = In 2 about the line
x =1In2.

Finding volume Find the volume of the solid generated by
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = ¢, and the line x = 1

a. about the y-axis.
b. about the line x = 1.

Finding volume Find the volume of the solid generated by
revolving the region in the first quadrant bounded by the coordi-
nate axes and the curve y = cos x, 0 = x = /2, about

a. the y-axis.

b. the line x = /2.

58.

59.

60.

61.

62.

Finding volume Find the volume of the solid generated by
revolving the region bounded by the x-axis and the curve
y = xsinx, 0 = x = 7, about

a. the y-axis.
b. the line x = 7.
(See Exercise 53 for a graph.)

Consider the region bounded by the graphs of y = Inx,y = 0,
and x = e.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region
about the x-axis.

c¢. Find the volume of the solid formed by revolving this region
about the line x = —2.

d. Find the centroid of the region.

Consider the region bounded by the graphs of y = tan™! x, y = 0,
and x = 1.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region
about the y-axis.

Average value A retarding force, symbolized by the dashpot in
the accompanying figure, slows the motion of the weighted spring

so that the mass’s position at time 7 is
y = 2e¢'cost, t=0.

Find the average value of y over the interval 0 = r = 2.

y

Dashpot

Average value In a mass-spring-dashpot system like the one in

Exercise 61, the mass’s position at time 7 is
y = 4e7(sint — cos 1), t=0.

Find the average value of y over the interval 0 = ¢ = 2.

Reduction Formulas
In Exercises 63—67, use integration by parts to establish the reduction
formula.

63. /x” cosxdx = x"sinx — n/x”’1 sin x dx

64. /x"sinxdx = —x"cosx + n/x"’lcosxdx



65. /x"e‘”‘dx = xae — g/x"_le‘”‘dx, a # 0
66. /(ln x)"dx = x(In x)" — n/(ln X" Ldx

.m n X+1
67. /x (In x) dx—m+1

w_n_ .
(In x) 1
/x"’ (Inx)y"'dx, m#—1

68. Use Example 5 to show that

/2 /2
/ sin” x dx = / cos" x dx
0

a\l:3:5-- (n—l)
D) T 5.4.6...5 > neven

2:4-6- (n—l)
C1+3:5--n

, n odd
69. Show that

[([00)s-

70. Use integration by parts to obtain the formula

1 1 1
V] — 2y —m 2/ — 2o 1
/ 1 — x“dx 5 X 1 —x +2/mdx

b
/ (x — a)f (x) dx.

Integrating Inverses of Functions
Integration by parts leads to a rule for integrating inverses that usually
gives good results:

/f"(X)dx = /yf’(Y)dy

=y — /f(y) dy

y=77'0, x=f(y»
dx = f'(y)dy

Integration by parts with
u=ydv=f(ydy

=xf') — /f(y) dy

The idea is to take the most complicated part of the integral, in this
case f~!(x), and simplify it first. For the integral of In x, we get

/lnxdx = /yeydy

=yed — e + C
=xlnx—-—x+C

y =lnx, x=¢’

dx = eYdy
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For the integral of cos™ x we get

/cos_I xdx = xcos ' x — /cosydy

y =cCcos x

=xcos'x —siny + C
= xcos 'x — sin(cos 'x) + C.
Use the formula
/ffl(x) dx = xf'(x) — /f()’) dy y=7"0 @)

to evaluate the integrals in Exercises 71-74. Express your answers in

terms of x.
72. / tan~ ! x dx

71. /sin" x dx
73. /sec"xdx 74. /logzxdx

Another way to integrate f '(x) (when f~! is integrable, of
course) is to use integration by parts with u = f~(x) and dv = dx to
rewrite the integral of f' as

/f_‘(X) dx = xf~'(x) — /x (%f“(x)) dx. &)

Exercises 75 and 76 compare the results of using Equations (4) and (5).

75. Equations (4) and (5) give different formulas for the integral of
cos ! x:

a. /cos’1 xdx = xcos'x — sin (cos'x) + C Eq. (4)
b. /cos_'xdx=xcos"x— V1—-x2+C Eq. (5)

Can both integrations be correct? Explain.

76. Equations (4) and (5) lead to different formulas for the integral of

tan~! x:
a. /tan_' xdx = xtan'x — Insec (tan ' x) + C Eq. (4)
b. /tan"xdx=xtan"x—ln V1+x2+C Eq. (5)

Can both integrations be correct? Explain.
Evaluate the integrals in Exercises 77 and 78 with (a) Eq. (4) and (b)

Eq. (5). In each case, check your work by differentiating your answer
with respect to x.

77. /sinh’lxdx

78. / tanh™! x dx

Trigonometric integrals involve algebraic combinations of the six basic trigonometric
functions. In principle, we can always express such integrals in terms of sines and cosines,
but it is often simpler to work with other functions, as in the integral

/seczxdx =tanx + C.
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The general idea is to use identities to transform the integrals we have to find into integrals

that are easier to work with.

Products of Powers of Sines and Cosines

We begin with integrals of the form

where m and n are nonnegative integers (positive or zero). We can divide the appropriate

/ sin™ x cos™ x dx,

substitution into three cases according to m and n being odd or even.

Case 1 If m is odd, we write m as 2k + 1 and use the identity sin’x =
1 — cos? x to obtain

2k+1

sin” x = sin?**! x = (sin?x)*fsinx = (1 — cos? x)* sin x. (1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to
—d(cos x).

Case 2 If mis even and n is odd in f sin™ x cos” x dx, we write n as 2k + 1
and use the identity cos’ x = 1 — sin? x to obtain

2%+ x = (cos?x)kcosx = (1 — sin? x)* cos x.

cos" x = cos
We then combine the single cos x with dx and set cos x dx equal to d(sin x).
Case 3 If both m and n are even in f sin™” x cos” x dx, we substitute

sin x = 1 — ;os 2x’ cos? x = 1+ ;os 2x ?)

to reduce the integrand to one in lower powers of cos 2x.

Here are some examples illustrating each case.

EXAMPLE 1 Evaluate

/ sin’ x cos? x dx.

Solution  This is an example of Case 1.

/sin3 xcosx dx = /sin2 X cos? x sin x dx m is odd.
= /(1 — cos? x)(cos? x)(—d (cos x)) sin x dv = —d(cos x)

= /(] — uz)(uz)(—du) U = cosx

/(bt4 - u2) du Multiply terms.
5 3

5 3
COS™ x COoS™ x
+ ( —_— —_

wo_uw
5 3 5 3
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EXAMPLE 2 Evaluate

/ cos’ x dx.

Solution This is an example of Case 2, where m = 0 is even and n = 5 is odd.

/0055 xdx = /cos4 xcos xdx = /(1 — sin? x)? d(sin x) cos x dx = d(sin x)

= /(1 - M2)2 du u = sinx

/(1 — 2 + u*)du Square 1 — 1.

_ 253,15 e winy — 23 1.5
=u 3u +5u + C =sinx 3smx+531nx+C |

EXAMPLE 3 Evaluate
/ sin® x cos* x dx.

Solution This is an example of Case 3.

_ 2
/Sin2 xcos* xdx = /(1 ;08 2)6)(1 + ;08 2x> dx m and n both even

= é/(l — cos 2x)(1 + 2 cos 2x + cos? 2x) dx

= é/(l + cos 2x — cos? 2x — cos® 2x) dx

= é[x + %sin 2x — /(0052 2x + cos’ 2x) dx

For the term involving cos? 2x, we use

/0052 2xdx = ;/(1 + cos 4x)dx

_1 X+ lSil‘l Ax Omitting the constant of
2 4 : integration until the final result
For the cos® 2x term, we have
. u = sin 2x,
cos? 2xdrx = [ (1 — sin? 2x) cos 2x dx o
du = 2 cos 2x dx

_1 ) _1(. R .
= 2/(1 u )du 2 (sm 2x 3 sin ZX). Again omitting C

Combining everything and simplifying, we get

2 4 — 4 3
/sm X cos” x dx 16 ()C I S 4x 3 Sim 2X> C.
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5. 6 Definite Integral Substitutions and the Area Between Curves

There are two methods for evaluating a definite integral by substitution. One method is to
find an antiderivative using substitution and then to evaluate the definite integral by apply-
ing the Evaluation Theorem. The other method extends the process of substitution directly
to definite integrals by changing the limits of integration. We apply the new formula intro-
duced here to the problem of computing the area between two curves.

The Substitution Formula

The following formula shows how the limits of integration change when the variable of
integration is changed by substitution.

THEOREM 7—Substitution in Definite Integrals If g’is continuous on the
interval [a, b] and f is continuous on the range of g(x) = u, then

g)

b
/ flg) g’ (x)dx = f(u) du.

g(a)

Proof Let F denote any antiderivative of f. Then,

1
b - Flg(x)
F(g(x))] = F'(g()g'(x)

= f(g(x)g'(x)

b
/ flg(x)) - g'(x) dx

xX=a

F(g(b)) — F(g(a))
u=g(b)

= F(u)]

u=g(a)

s Fund: tal
_ F(u) du. undamenta m

Theorem, Part 2
g(a)

To use the formula, make the same u-substitution u = g(x) and du = g'(x) dx you
would use to evaluate the corresponding indefinite integral. Then integrate the transformed
integral with respect to u from the value g(a) (the value of u at x = a) to the value g(b)
(the value of u at x = b).

1
EXAMPLE 1 Evaluate / 32V + 1dx.

1
Solution We have two choices.

Method 1: Transform the integral and evaluate the transformed integral with the trans-
formed limits given in Theorem 7.

1 Letu = x> + 1, du = 3x%dx.
/ 3x2V3 + 1dx Whenx = —1,u = (—1)) + 1 = 0.
- Whenx = 1L,u= (1) +1=2.

2
= Vu du
0
_23n o
= §u Evaluate the new definite integral.
0
203 ] 2 _ 42
—§[2/—0/}—§[2\6]—T
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Method 2: Transform the integral as an indefinite integral, integrate, change back to x,
and use the original x-limits.

/3)62 V3 4+ 1dx = /\/;du Letu = x> + 1,du = 3x2dx.

2
= §u3/ 24+ C Integrate with respect to u.

= %(x3 + 132+ C Replace u by x* + 1.

! 1 . Lo )
N/ 3 L 1 _ ; 3 32 Use the integral just found, with
/ 3TVa' £ Ldx 3 o+ D :|—l limits of integration for x.

(@ + D2 = (1) + 2]

W\N

[23/2 _ 03/2] —

w\m
wn\)

[2va] - 12 o

Which method is better—evaluating the transformed definite integral with trans-
formed limits using Theorem 7, or transforming the integral, integrating, and transforming
back to use the original limits of integration? In Example 1, the first method seems easier,
but that is not always the case. Generally, it is best to know both methods and to use
whichever one seems better at the time.

EXAMPLE 2 We use the method of transforming the limits of integration.

/2 0 Let u = cotf, du = —csc? 6 db,
(a) / cot 0 csc?6 df / u - (—du) —du = csc? 6 do.
T 1

/4 When 0 = 7 /4, u = cot(w/4) = 1.
0
= —/ u du
1

When 0 = 7/2, u = cot(m/2) = 0.
_ ’ﬁ ’
2

0) (1)2} 1

2 2

/4 w/4 .
) / tan x dv = / sinx ;.

/4 /4
V22 Let u = cos x, du = —sin x dx.
= — du When x = —7/4,u = V2/2.
Van u When x = 7 /4, u = V/2/2.
V2/2
= —In ‘ ‘ =0 Integrate, zero width interval |
V22

Definite Integrals of Symmetric Functions

The Substitution Formula in Theorem 7 simplifies the calculation of definite integrals of
even and odd functions (Section 1.1) over a symmetric interval [—a, a | (Figure 5.23).



(a)

—a \/u x
(b)

FIGURE 5.23 (a) For f an even func-
tion, the integral from —a to a is twice the
integral from O to a. (b) For f an odd func-
tion, the integral from —a to a equals 0.

Upper curve

y =)

| X
T— b
Lower curve
y =8k
FIGURE 5.24 The region between
the curves y = f(x) and y = g(x)
and the lines x = @ and x = b.
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THEOREM 8 Let f be continuous on the symmetric interval [—a, a].

(a) If fiseven, then/ f)dx = 2/ f(x)dx.
—a 0

a

(b) If f is odd, then/ fx)dx = 0.

—a

Proof of Part (a)

a 0 a
/ f(x)dx = / f(x)dx + / f(x)dx Additivity Rule for
—a —a 0

Definite Integrals

—a a
—/ fx)dx + / fx)dx Order of Integration Rule
0 0

a a Letu = —x,du = —dx.
_/ f(_u)(_du) + / f(x) dx When x = 0,u = 0.
0 0

When x = —a,u = a.
/ fuwydu + / fx)dx
0 0

_ ¢ ¢ f is even, so
/0 fu)du + /0 fx)dx i) = f).
a
=2 / f(x)dx
0
The proof of part (b) is entirely similar and you are asked to give it in Exercise 114. |

The assertions of Theorem 8 remain true when f is an integrable function (rather than
having the stronger property of being continuous).

2

EXAMPLE 3 Evaluate/ (x* — 4x2 + 6) dx.

2

Solution Since f(x) = x* — 4x> + 6 satisfies f(—x) = f(x), it is even on the symmet-
ric interval [—2, 2], so

2 2
/ @x* — 4x% + 6)dx = 2/ * — 4x% + 6)dx
— 0

2

_ xj 4 ; ?
2[5 —3X -1—616}0
- 32 32 :232
—2(5 3 12> 15 [ |

Areas Between Curves

Suppose we want to find the area of a region that is bounded above by the curve y = f(x),
below by the curve y = g(x), and on the left and right by the lines x = a and x = b (Fig-
ure 5.24). The region might accidentally have a shape whose area we could find with
geometry, but if f and g are arbitrary continuous functions, we usually have to find the
area with an integral.
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y
y=f)
a:‘xo‘xl X1 |
= \ AR
IR
= Ty =W

FIGURE 5.25 We approximate
the region with rectangles perpen-
dicular to the x-axis.

(e fer))

Ckl

T
flew — 8ley)

*
I
I

52
|(_)| (¢ 8(cp))
Axy

FIGURE 5.26 The area AA; of the
kth rectangle is the product of its height,
f(cr) — g(cp), and its width, Ax;.

057 (x, gx)

0 1

FIGURE 5.27 The region in Example 4

with a typical approximating rectangle.

To see what the integral should be, we first approximate the region with n vertical
rectangles based on a partition P = {xo, x{, ..., x,} of [a, b] (Figure 5.25). The area of
the kth rectangle (Figure 5.26) is

AA; = height X width = [ f(cp) — g(cp) ] Axs.
We then approximate the area of the region by adding the areas of the n rectangles:

A= EAAk = 2 [f(Ck) - g(Ck)] Axk. Riemann sum
k=1 1

k=

As ||P|| — 0, the sums on the right approach the limit fab [f(x) — g(x)] dx because f
and g are continuous. We take the area of the region to be the value of this integral. That is,

n

b
A= im, S5 = g 8= [ [0 — g0 a.

IPl—0 ;=

DEFINITION If f and g are continuous with f(x) = g(x) throughout [a, b],
then the area of the region between the curves y = f(x) and y = g(x) from
a to b is the integral of (f — g) from a to b:

b
A=/ 500 — g0)] d.

When applying this definition it is helpful to graph the curves. The graph reveals which curve
is the upper curve f and which is the lower curve g. It also helps you find the limits of integra-
tion if they are not given. You may need to find where the curves intersect to determine the
limits of integration, and this may involve solving the equation f(x) = g(x) for values of x.
Then you can integrate the function f — g for the area between the intersections.

EXAMPLE 4 Find the area of the region bounded above by the curve y = 2¢ ™~ + x,
below by the curve y = ¢*/2, on the left by x = 0, and on the right by x = 1.

Solution Figure 5.27 displays the graphs of the curves and the region whose area we
want to find. The area between the curves over the interval 0 = x = 1 is given by

1 1
— —X _ l — | —9,x l 2 _ l
A= /0 {(Ze + Xx) Ze"}dx { 2¢ " + 7X ZQXL

N PN S U R _ 1
—<2e +2 23) <2+0 2>

=3 - ~ 0.9051. |

[NI\S]

_¢
2
EXAMPLE 5

the line y = —x.

Find the area of the region enclosed by the parabola y = 2 — x? and

Solution First we sketch the two curves (Figure 5.28). The limits of integration are found

by solving y = 2 — x? and y = —x simultaneously for x.
2 — x2 = —X Equate f(x) and g(x).
XX—x—2=0 Rewrite.
x+1Dx—2)=0 Factor.
x =1, x = 2. Solve.

The region runs from x = —1 to x = 2. The limits of integration are a = —1,b = 2.



~<

(x, f(x))
y=2-— x2
Ax

<—>|

=

|
1
(. g()
L y=—-x 2, -2)

FIGURE 5.28 The region in
Example 5 with a typical approxi-
mating rectangle.

4
Afea:/(\/;c—x-‘rZ)dx
2

y
2 y=x

21 Area = 0\/31 dx \ (x () 4,2)

x, f() B

BN y=x—2

A (x, g(x)
- L
ol /7 y=02 7

/
(x2 ()

FIGURE 5.29 When the formula for a
bounding curve changes, the area integral
changes to become the sum of integrals to
match, one integral for each of the shaded
regions shown here for Example 6.
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The area between the curves is

b 2
A:/ [f(x)—g(x)]dx=/ (2= x) — (—x)]dx

1

2 2 B
= — x2 = A A
_1(2 +x — x9)dx {Zx + 5 3 ]1

(i d 8 (1 )0
~(4+3-9) - (2+1+1) -3 .

If the formula for a bounding curve changes at one or more points, we subdivide the
region into subregions that correspond to the formula changes and apply the formula for
the area between curves to each subregion.

EXAMPLE 6 Find the area of the region in the first quadrant that is bounded above
by y = Vx and below by the x-axis and the line y = x — 2.

Solution The sketch (Figure 5.29) shows that the region’s upper boundary is the graph of
fx) = \/x. The lower boundary changes from g(x) = 0for0 = x =2togx) =x — 2
for 2 = x = 4 (both formulas agree at x = 2). We subdivide the region at x = 2 into sub-
regions A and B, shown in Figure 5.29.

The limits of integration for region A are a = 0 and b = 2. The left-hand limit for
region B is a = 2. To find the right-hand limit, we solve the equations y = Vx and
y = x — 2 simultaneously for x:

\/J; =x—2 Equate f(x) and g(x).
x=(x—-2%=x>—4x+4 Square both sides.
X =5%x+4=0 Rewrite.
x—1Dx—4=0 Factor.
X = 1, x = 4. Solve.

Only the value x = 4 satisfies the equation Vx = x — 2. The value x = 1 is an extrane-
ous root introduced by squaring. The right-hand limitis b = 4.

ForO0=x=2  f(x —gx)=Vx—0=Vx
For2=x=4  fx)—gx)=Vx—(x—2=Vx—x+2

We add the areas of subregions A and B to find the total area:

2 4
Totalarea=/\/J;dx+/(\/);—x+2)dx
0 2

arca of A area of B

_23/22 2 5p X !
—{3)6 +3x 2—|—2)c

0 2

= %(2)3/2 -0+ (5(4)3/2 -8+ 8) — (5(2)3/2 -2+ 4)

— 2y =10
=3® -2=7. =
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= f(y) — gl
]
0] y=0 2 4

FIGURE 5.30 Tt takes two integra-
tions to find the area of this region if
we integrate with respect to x. It takes
only one if we integrate with respect to
y (Example 7).

Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating rectan-
gles are horizontal instead of vertical and the basic formula has y in place of x.
For regions like these:

EEY)

U

X =2g0)

iA()
720

x = f(y)

x=g(y| €

use the formula

d
A= / [fO) — g()]dy.

In this equation f always denotes the right-hand curve and g the left-hand curve, so
f(») — g(y) is nonnegative.

EXAMPLE 7 Find the area of the region in Example 6 by integrating with respect to y.

Solution We first sketch the region and a typical horizontal rectangle based on a parti-
tion of an interval of y-values (Figure 5.30). The region’s right-hand boundary is the line
x =y + 2,50 f(y) =y + 2. The left-hand boundary is the curve x = y?, so g(y) = y*.
The lower limit of integration is y = 0. We find the upper limit by solving x = y + 2 and
x = y? simultaneously for y:

y+2=)> Equate f(y) = y + 2 and g(y) = y*
yY-y—2=0 Rewrite.
(y+Dly—2)=0 Factor.
y=-1, y=2 Solve.

The upper limit of integration is b = 2. (The value y = —1 gives a point of intersection
below the x-axis.)
The area of the region is

d 2
A=/ [f(y)—g(y)]dy=/ [y +2—y*]dy
c 0

2
=/[2+y—y2}dy
0

2 372
_ y_y
-|lw+ -5,
_ 4_8_10
=4ty 7373

This is the result of Example 6, found with less work. [ |
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y Although it was easier to find the area in Example 6 by integrating with respect to y
rather than x (just as we did in Example 7), there is an easier way yet. Looking at Figure
5.31, we see that the area we want is the area between the curve y = Vx and the x-axis
for 0 = x = 4, minus the area of an isosceles triangle of base and height equal to 2. So by

4.2)

()
T
=
Il
B
< ———>

= y=x-2 combining calculus with some geometry, we find
Area =2 4
I<—2—> 1 1
T R Area = [ Vxd )
0
FIGURE 5.31 The area of the blue ) 4
region is the area under the parabola = §x3/ 2} -2
y = V/x minus the area of the 0
triangle. 2 _ 10
=3 @®—-0—-2= 3
Exercisesm
Evaluating Definite Integrals 5. a 2 COSs z ’T ~ cosz
Use th.e Substitution Formula in Theorem 7 to evaluate the integrals in o V4 + 3sinz m
Exercises 1-46.
’ 0 14. a /0 (2 + tan L) secLdr b /”/2(2 + tan L) sec?L dr
a. /o Vy + 1dy b. [IVy+ldy - 2 2 2 : a2 2 2
: : 15 /1\/t5 + 26t +2)dt 16 /4dy
2. a./r\/lfrzdr b./r\/lfrzdr “Jo “ 2\/§(1+\/§)2
0 -1 /6 3m/2 0 0
w4 0 17. / cos 20 sin 20 d 18. / cot’ (g) sec? (g) do
3. a. / tan x sec’x dx b. / tan x sec’x dx 0 &
0 — /4 T /4
, 19. / 5(5 — 4cosH)!/*sintdr  20. / (1 — sin 2)%/% cos 2t dt
4. a. / 3 cos? x sin x dx b. / 3 cos’x sin x dx
’ o 21. / @Ay =y + 4° + 1722122 — 2y + 4) dy
1 1 0
5. a. / B3(1 + *)3 dr b. / 231+ *)3ar 1
0 -1 22 / O3 + 6y? — 12y + 9 V2(y2 + 4y — 4) dy
0
4l 0 oo
6. a. (2 + 1)1 dr b. / 12+ 1)'BRdr ™ -1z
/0 ( ) 5 ( ) 23, / V0 cos? (63/%) do 24, / 2 sin (1 + >dz
0 -1
1 1
Sr S5r /4 /2
Ta | Gy e L A 25. / (1 + em%sec20dd  26. / (1 + e csc20 do
-1 0 0 /4
1 4
10Vv / 10Vv T w3
8. a. — o dv b. — . 5dv sin ¢ 4 sin 0
o (1 + vy L (1 + ) 27 /0 7 cos ¥ o /o (R
V3
4x 4x 2 4
9. a. ————dx b. ——dx 21nx dx
A V2 F 1 /7\/51/){2_‘_1 29./l ~dx 30. /lenx
3 4 16
10. a. / ——dx b. / ——dx / dx /
N N 31. 32.
0 x*+9 1Vx*+9 5 x(lnx)2 5 2x\/7
1 9
/2
11. a. /O tV4 + 5tdt b. /l t VA4 + 5tdt 1. / tan? dx 1, / cot 1 dt
0
12. a.

/6 /3

_ . _ . /3 /12

A (1 — cos 3f)sin3tdt b. /7/6 (1 — cos 3¢) sin 3t dt 3s. / tan? 0 cos 0 do 36. / 6 tan 3x dx
0 0
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"2 5 cos 0 db
37. 208040
—zpp 1 + (sin6)

InV3
39, / e dx
0 1+ ¥

] 4 ds
0o V4 — §?

3 /2 sec?(sec”'x) dx
s VA1

41.

-V2/2 d
R
~1 yVay* — 1

38.

40.

/ " csctxdx
a6 1+ (cotx)?
e/t
/ 4dt
. 1+ In%p)

V/2/4

42 -
0 VO — 452
" / cos (sec”'x) dx
“lovs V-1
w [ 22
o V5y+1

Find the total areas of the shaded regions in Exercises 47-62.

Area
47. y
y=xV4-— x2
L X
=2 0 2
49. y

2_
73_

y = 3(sinx)\/1 + cosx

51. vy
1 y=1
y= cos? x
L X
0 T m
2
53. y
(=2,8) g 2,98
y = 2x?
y=x*-
| | | |
-2 41 2
NOT TO SCALE

48.

52.

Y

y = (1 — cosx) sinx

54. )

ol
59 y 60. Y oy=—x?+3x
35 | L\ je)
| | | |
y=x*—4 2H N1 2 °
Loy y=2x3—x2—5x
=3 o 1 ,
y=—x"—2x (-2, -10)
710
(-3.-3) 1. =3
61. y
(—2.4) y=4-x?
2

(3.-5)

Find the areas of the regions enclosed by the lines and curves in
Exercises 63-72.

63. y=x>—2 and y=2
65. y=x* and y = 8x

64. y=2x — x> and y=-3
66. y=x*>—2x and y=x
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67. y=x> and y=—x>+ 4x

68. y=7—-2x> and y=x>+4

69. y=x*—4x>+4 and y=x’

70. y=xVa® —x% a>0, and y=0

71. y = \/m and 5y = x + 6 (How many intersection points

are there?)
72. y=|x*—4| and y= (x?/2) + 4
Find the areas of the regions enclosed by the lines and curves in
Exercises 73-80.
73. x =2y, x=0, and
74. x = y?
75. > —4x =4 and 4x—y=16
76. x —y* =0 and x+ 2y* =3
77. x +y*=0 and x+ 3y? =2
78. x —y*=0 and x+y*=2

79. x=y"—1 and x = |y[]V1 —)?

and x = 2y

y=3
and x =y + 2

80. x =y —y?
Find the areas of the regions enclosed by the curves in Exercises 81-84.
81. 4> +y=4 and x*—y=1
8. x*—y=0 and 3x*—-y=4
83. x+4”>=4 and x +y*
84. x +y>=3 and 4x+y>=0

1, for x=0

Find the areas of the regions enclosed by the lines and curves in Exer-
cises 85-92.

85. y=2sinx and y=sin2x, 0=x=m

86. y = 8cosx and y =sec’x, —w/3 =x=m/3
87. y=—cos(wmx/2) and y=1—x2

88. y =sin(wmx/2) and y=x

89. y = sec’x, y=tan’x, x =—m/4, and x = 7/4
90. x = tan’y and x = —tan’y, —w/4 =y = m/4
91. x =3sinyVecosy and x=0, 0=y=m/2
92. y =sec’(mx/3) and y=x3, -l =x=1

Area Between Curves
93. Find the area of the propeller-shaped region enclosed by the
curve x — y> = 0 and the line x — y = 0.

94. Find the area of the propeller-shaped region enclosed by the
curves x — y'/* = 0and x — y'/° = 0.

95. Find the area of the region in the first quadrant bounded by the
line y = x, the line x = 2, the curve y = 1/x?, and the x-axis.

96. Find the area of the “triangular” region in the first quadrant
bounded on the left by the y-axis and on the right by the curves
y = sinx and y = cos x.

97. Find the area between the curves y = Inx and y = In 2x from
x=1tox =5.

98. Find the area between the curve y = tan x and the x-axis from
x=-m/4tox = 7/3.

99. Find the area of the “triangular” region in the first quadrant that is
bounded above by the curve y = e, below by the curve y = ¢,
and on the right by the line x = In 3.

100.

101.

102.

103.

104.

105.

106.

107.

108.

355

Find the area of the “triangular” region in the first quadrant that
is bounded above by the curve y = €2 below by the curve
y = ¢, and on the right by the line x = 2 1n 2.

Find the area of the region between the curve y = 2x/(1 + x?)
and the interval —2 = x = 2 of the x-axis.

Find the area of the region between the curve y = 2!™* and the
interval —1 = x = 1 of the x-axis.

The region bounded below by the parabola y = x? and above by
the line y = 4 is to be partitioned into two subsections of equal
area by cutting across it with the horizontal line y = c.

a. Sketch the region and draw a line y = c¢ across it that looks
about right. In terms of ¢, what are the coordinates of the
points where the line and parabola intersect? Add them to
your figure.

b. Find ¢ by integrating with respect to y. (This puts ¢ in the
limits of integration.)

c. Find c by integrating with respect to x. (This puts ¢ into the
integrand as well.)

Find the area of the region between the curve y = 3 — x? and
the line y = —1 by integrating with respect to a. x, b. y.

Find the area of the region in the first quadrant bounded on the
left by the y-axis, below by the line y = x/4, above left by the
curve y = 1 + Vx, and above right by the curve y = 2/ Vx.

Find the area of the region in the first quadrant bounded on the
left by the y-axis, below by the curve x = 2Vy, above left by
the curve x = (y — 1), and above right by the line x = 3 — y.

The figure here shows triangle AOC inscribed in the region cut
from the parabola y = x> by the line y = @ Find the limit of
the ratio of the area of the triangle to the area of the parabolic
region as a approaches zero.

y
y =x?
\A C/ y=a’
(—a,a® (a,a®
L L x
—a o a

Suppose the area of the region between the graph of a positive
continuous function f and the x-axis from x = a to x = b is
4 square units. Find the area between the curves y = f(x) and
y = 2f(x) fromx = atox = b.
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109. Which of the following integrals, if either, calculates the area of
the shaded region shown here? Give reasons for your answer.

1 1
a. /(x — (—x)) dx /2x dx
-1 -1
1
b. / (—=x — (x)) dx
-1

I
—
5
=

110. True, sometimes true, or never true? The area of the region
between the graphs of the continuous functions y = f(x) and
y = g(x) and the vertical lines x = a and x = b (a < b) is

b
/ L) — g@] d.

Give reasons for your answer.

Theory and Examples
111. Suppose that F(x) is an antiderivative of f(x) = (sinx)/x,

x > 0. Express
3
sin 2x
[

112. Show that if f is continuous, then

in terms of F.

1 1
fx)dx = / f(l — x)dx.
0 0

113. Suppose that

Find

ifa. fisodd, b. fiseven.
114. a. Show that if f is odd on [—a, a], then

/ fx)dx = 0.

b. Test the result in part (a) with f(x) = sinx and a = 7/2.
115. If f is a continuous function, find the value of the integral
¢ f)dx
o J + fla —x)

by making the substitution # = a — x and adding the resulting
integral to /.

I =

116. By using a substitution, prove that for all positive numbers x and y,

Xy y
R A
/x ?dl‘ = [ 7dl‘.

The Shift Property for Definite Integrals A basic property of defi-
nite integrals is their invariance under translation, as expressed by the

equation
b b—c
/ fx)dx = / flx + ¢)dx. (D)

The equation holds whenever f is integrable and defined for the neces-
sary values of x. For example in the accompanying figure, show that

-1 1
/ (x + 2)Pdx = / x> dx
-2 0

because the areas of the shaded regions are congruent.

y

y=(x+2)° y=x

|
2 -1 /0 1
117. Use a substitution to verify Equation (1).

118. For each of the following functions, graph f(x) over [a, b] and
f(x + ¢)over [a — ¢, b — c¢] to convince yourself that Equation
(1) is reasonable.

a fx)=x% a=0 b=1 c=1
b. f(x) = sinx, c=m/)2
c. f\)=Vx—4, a=4, b=8, ¢c=5

a=0, b=,

COMPUTER EXPLORATIONS

In Exercises 119-122, you will find the area between curves in the
plane when you cannot find their points of intersection using simple
algebra. Use a CAS to perform the following steps:

a. Plot the curves together to see what they look like and how
many points of intersection they have.

b. Use the numerical equation solver in your CAS to find all the
points of intersection.

c. Integrate \ fx) — g(x)\ over consecutive pairs of intersection
values.
d. Sum together the integrals found in part (c).
XX 1 -~
119. f(x) = 3 > 2x + 3 gy =x—-1

4
120. f(x) = % — 303+ 10, g(x) =8 — 12x
121. f(x) = x + sin (2x),
122. f(x) = x*cos x,

g = x°

g =x —x
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Chapter 5 Practice Exercises

Questions to Guide Your Review

. How can you sometimes estimate quantities like distance traveled, 9. What is the Fundamental Theorem of Calculus? Why is it so
area, and average value with finite sums? Why might you want to important? [llustrate each part of the theorem with an example.
do so? 10. What is the Net Change Theorem? What does it say about the

. What is sigma notation? What advantage does it offer? Give integral of velocity? The integral of marginal cost?
examples. 11. Discuss how the processes of integration and differentiation can

. What is a Riemann sum? Why might you want to consider such a be considered as “inverses” of each other.
sum? 12. How does the Fundamental Theorem provide a solution to

. What is the norm of a partition of a closed interval? the initial value problem dy/dx = f(x), y(x)) = yy, wWhen f is

. What is the definite integral of a function f over a closed interval continuous?

[a, b]? When can you be sure it exists? 13. How is integration by substitution related to the Chain Rule?

. What is the relation between definite integrals and area? Describe 14. How can you sometimes evaluate indefinite integrals by substitu-
some other interpretations of definite integrals. tion? Give examples.

. What is the average value of an integrable function over a closed 15. How does the method of substitution work for definite integrals?
interval? Must the function assume its average value? Explain. Give examples.

. Describe the rules for working with definite integrals (Table 5.6). 16. How do you define and calculate the area of the region between
Give examples. the graphs of two continuous functions? Give an example.

Chapter E Practice Exercises
Finite Sums and Estimates 5
1. The accompanying figure shows the graph of the velocity (ft/sec) // \\
of a model rocket for the first 8 sec after launch. The rocket accel- ™ 4 /
erated straight up for the first 2 sec and then coasted to reach its ié,
maximum height at r = 8 sec. g . / \
£s // \\
200 2 . \
N 7 \
< 150
g / \ 0 2 4 6 8 10
E: 100 \\ Time (sec)
Q
3. Suppose that Eak = —2 and Ebk = 25. Find the value of
=1 =1
0 2 4 6 8 10 g, 10
Time after launch (sec) a. “~ 4 b. 1; (b = 3a;)
10 10 /5
a. Assuming that the rocket was launched from ground level, c. p ](ak +h— 1) d. ;(E - bk)

about how high did it go? (This is the rocket in Section 3.3,

Exercise 17, but you do not need to do Exercise 17 to do the 2

20 0
4. Suppose that zak = 0and » b, = 7. Find the values of
1 1

exercise here.) = &
b. Sketch a graph of the rocket’s height above ground as a func- 20 20
tion of time for 0 = ¢ =< 8. a. > 3aq b. > (a + b)
k=1 k=1
2. a. The accompanying figure shows the velocity (m/sec) of a
body moving along the s-axis during the time interval from 20 /1 2b 20
t = 0 to r = 10 sec. About how far did the body travel dur- [ (E - 7) d. E(ak - 2)
k=1 k=1

ing those 10 sec?

b. Sketch a graph of s as a function of 7 for 0 = r = 10, assum-
ing s(0) = 0.
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Improper Integral :

The definition of the definite integral as
b
| reoax

This integration includes the requirements that the interval [a,b] be an
finite and that £ be continous on [a,b] , in this lecture we will study
integrals that do not satisfy these requirements because of one of the

conditions below :

% One or both of limit of integration are finite -
* A(x) has an infinite discontinuity in the interval [a,b] -
Integral having either of these charctristics are called Improper Integral

For instance the integrals :

(o o] co

1
fe‘xdx . jZ dx
x4+ 1

0 —00

are improper integral because one or both limits of integration are

infinite as indicated figures:
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Simillary :
; 1 7 1
! x—1dx . _£—(x+1)2dx

are improper integral because their integrands has infinite discontinuity
that is they approach infinity some when in the interval of integration

as indicated figures :

CASE 1

Improper Integrals with infinite limits

T) if f is continous function on the interval [a, o) then :
co b
jf(x)dx = Il)im jf(x) dx

2) if fis continous function on the interval (—oo,b] then :

b b
[ r@ax= nm [ o

ﬁ
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3) if fis continous function on the interval (—oo,©) then :

joof(x)dx = ff(x)dx+ joof(x)dx

where ¢ is any real number -

in the first two cases if the limit exists then the improper integral
convergence , otherwisethe improper integral divergent ,
in the third case the integral on the left side will diverges if either

one of the integral on the right side diverges -

Example 1 _: Determine the convergence or divergence of :

1
—dx
x

1

Solution :

/

dx

2| -

b

dx = lim j
b—oo

1

R |-

dx = lim Lnx|% = lim Lnb — Ln1 = Lno = o

b—oo boco

H\s
o | -

Because the limit is infinite , then the improper integral divergent -

]
Ty
(iF

{
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Example 2 : Determine the convergence or divergence of :

1
Solution :
o0 b
! d li ! d
_[? x_bl—!g x2 a
1
b
—dx—llm— = lim — (——1)—1
b X 1 b—oo

Because the limit is finite , then the improper integral convergent to 1 -

Example 3 : Evaluate the following integral if available :

0
1
[—as

= (1 -2x)2

Solution :

1
zdx = lim | ——dx

0
[0(1 2x)2 TS (1 - 2x)2
0

0
f ———dx = lim |(1- 2x)2 dx =
oo(1 2x)2 e 2

a
e — %
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0 0 - 1 0
o Zx)zd*-a‘i'f‘w =207, - . =,
0
f ——dx = lim (1—;)=1—0=
J (- 2x)2 a——o V1 —2a

Because the limit is finite , then the improper integral convergent to 1 -

Example 4 : Find the following integral if available :

oo
oy
xXe " dx
0

Solution :

b

2 2 .2
xe ™™ dx = ll,lm xe * dx
— QO

0

°\8

b —

_ R
BB (e -1

7 . =D
xe ™™ dx = lim Te &

b—oo

3\8

2 -1 -1 1
xe*dx=—(e>*-1)=—(0-1) =—
i )=—(0-1)=>

=)

Because the limit is finite , then the improper integral convergent to 0-S

%
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Example 5: Determine the convergence or divergence of :

1

Solution :

b

1
—dx = lim == —dx
b—oo X
—b

b
j—dx = llm x~%dx
b

oo

b

fld lim — li : li 4
—dx=1lm —| =Ilim—-(—+-)= ——=
x? boo X |_p boo b b) Z<

— 00

Because the limit is finite , then the improper integral convergent to 1 -
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Example H-W :

Find the following integrals if available :

co

1
1

o

2) j%dx

1

0
1
3) —f = 1)2 dx

r 1
4) f dx

4 + x?

5 ( ¢ d
)zj(x—l)(xzﬂ) *
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CASE 2
Improper Integrals with infinite integrands
1) if £ is continous function on the interval [a,b) and approaches to

infinity at b then :
b c
ff(x)dx = lilgl_jf(x) dx

2) if fis continous function on the interval (a,b] and approaches to

infinity at a then :

b b
jf(x)dxzclilgff(x) dx

3) if fis continous function on the interval [a,b] except some

values of ¢ in (a,b) at which f approaches infinity then :

ff(x)dx:ff(x)dx+ff(x)dx

where ¢ is any real number lies between a and b -

in the first two cases if the limit exists then the improper integral
convergence , otherwisethe improper integral divergent ,

in the third case the integral on the left side will diverges if either
one of the integral on the right side diverges -

]
Ty
OHOF

{
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Example 6 : Determine the convergence or divergence of :

1
- dx
a—1

I—l%”

Solution :

Singular points is ‘1 * ( makes the function not continous )

Because the limit is finite , then the improper integral convergent
to 1-5

Example 7 : Evaluate the integral :

Z
2
Jz dx
X< — 2x
1

Solution :

= 1=

L
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Singular points is * O , 2 ‘ ( 2 makes the function not continous )

By using partial fraction we produce :
2 c

2 ) 1 1
j B dx = lim | —— ——dx
x4 —2x c—2~

xX—2 x
1

— 13 - - c
P xdx—clllzn_[LnIx 2| — Ln|x|]]

c—o2” X 1 c—2 C

dx = lim Ln 1—; =ILn0 =—o

c—o2~

1
2

j 2

1

2

2 ] x—21° c—2
jZ dx = lim Ln = lim Lnl I—Lnl
xXc — 2x ~

1

2

f 2

2x
1

x2 —

Because the limit is infinite , then the improper integral divergent-

Example 8 : Evaluate the integral :

Solution :

Singular points is * O * (makes the function not continous )
This integral is improper because the integrand has an infinite

discontinuity at the interior value x=0 , so we can write

X, 70

o
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2 0 2

JZ jz JZ
x3 _x 3
1 1 0

-y -

111 112

I’ Integral
0 b

—dx = llm 2x3dx = lim ~|
x b-0~ b-0" X
~1
0

zd 1 1 1
x_bgnl)l—_(ﬁ_ )__oo

The T** integral is divergent -

2" Integral

2 2
2 5 —1j*
—3dx = llm 2x2dx = lim —2
A5 a-0t a-0t x
0 a
0

2 1 1
—dx = lim — (———) = 00
x3 a—-0t 4 a?

=1

The T*° integral is divergent too -

So the whole integral is divergent -

b
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Note :

in the previous example had you not recognized that the integral was

improper you would have obtained the incorrected result

2
2 2xdax=—3| = (1 1)—3 ' t result
fx f xdx =—3 i Vi A (incorrect result)
=il a
Example H-W :
Find the following integrals if available : O
2 <
1 d
) j % —1 .
1
3
d
2) jx3 T

<;$



44.

45.

46.

water’s temperature was 39°C; 10 min after that, it was 33°C. Use
Newton’s Law of Cooling to estimate how cold the refrigerator was.

Silver cooling in air The temperature of an ingot of silver is
60°C above room temperature right now. Twenty minutes ago, it
was 70°C above room temperature. How far above room temper-
ature will the silver be

a. 15 min from now?
b. 2 hours from now?
¢. When will the silver be 10°C above room temperature?

The age of Crater Lake The charcoal from a tree killed in the
volcanic eruption that formed Crater Lake in Oregon contained
44.5% of the carbon-14 found in living matter. About how old is
Crater Lake?

The sensitivity of carbon-14 dating to measurement To see
the effect of a relatively small error in the estimate of the amount
of carbon-14 in a sample being dated, consider this hypothetical
situation:

a. A bone fragment found in central Illinois in the year 2000
contains 17% of its original carbon-14 content. Estimate the
year the animal died.

b. Repeat part (a), assuming 18% instead of 17%.
¢. Repeat part (a), assuming 16% instead of 17%.

7 . 3 Hyperbolic Functions

47.

48.

49.

50.

7.3 Hyperbolic Functions 439

Carbon-14 The oldest known frozen human mummy, discov-
ered in the Schnalstal glacier of the Italian Alps in 1991 and called
Otzi, was found wearing straw shoes and a leather coat with goat
fur, and holding a copper ax and stone dagger. It was estimated
that Otzi died 5000 years before he was discovered in the melting
glacier. How much of the original carbon-14 remained in Otzi at
the time of his discovery?

Art forgery A painting attributed to Vermeer (1632-1675),
which should contain no more than 96.2% of its original car-
bon-14, contains 99.5% instead. About how old is the forgery?

Lascaux Cave paintings Prehistoric cave paintings of animals
were found in the Lascaux Cave in France in 1940. Scientific
analysis revealed that only 15% of the original carbon-14 in the
paintings remained. What is an estimate of the age of the
paintings?

Incan mummy The frozen remains of a young Incan woman
were discovered by archeologist Johan Reinhard on Mt. Ampato
in Peru during an expedition in 1995.

a. How much of the original carbon-14 was present if the esti-
mated age of the “Ice Maiden” was 500 years?

b. If a 1% error can occur in the carbon-14 measurement, what is
the oldest possible age for the Ice Maiden?

The hyperbolic functions are formed by taking combinations of the two exponential func-
tions e* and e *. The hyperbolic functions simplify many mathematical expressions and
occur frequently in mathematical and engineering applications. In this section we give a
brief introduction to these functions, their graphs, their derivatives, their integrals, and

their inverse functions.

Definitions and ldentities

The hyperbolic sine and hyperbolic cosine functions are defined by the equations

sinh x =

et —¢e”*

&t et
3 and coshx = —

We pronounce sinh x as “cinch x,” thyming with “pinch x,” and cosh x as “kosh x,” rhym-
ing with “gosh x.” From this basic pair, we define the hyperbolic tangent, cotangent,
secant, and cosecant functions. The defining equations and graphs of these functions are
shown in Table 7.4. We will see that the hyperbolic functions bear many similarities to the
trigonometric functions after which they are named.

Hyperbolic functions satisfy the identities in Table 7.5. Except for differences in sign,
these resemble identities we know for the trigonometric functions. The identities are
proved directly from the definitions, as we show here for the second one:

2sinh x cosh x

2(ex - e") (e" +2 eX>

sinh 2x.
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TABLE 7.5 Identities for
hyperbolic functions

cosh?x — sinh?x = 1
sinh 2x = 2 sinh x cosh x

cosh 2x = cosh?x + sinh®x

cosh?x = cosh 22x + 1
sinh?x = cosh 22x -1

tanh’>x = 1 — sech?x

coth?x = 1 + csch?x

TABLE 7.6 Derivatives of
hyperbolic functions

d . _ du
e (sinh u) = cosh U

4 — «inh 91
i (cosh u) = sinh u d

da — coph2, du
ix (tanh 1) = sech“u i

4 — eaeh2, du
i (coth u) = —csch*u e

4 - du
dx (sech u) = —sech utanh u »

d _
ix (cschu) =

—csch ucoth u@
dx
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TABLE 7.4 The six basic hyperbolic functions

y Yy = cosh x y
L L y = coth x
y:ezi3_ /'y = sinh e’ g— =< r
2 Jy=sinhx y= y=3 y=1
\b 17 \ B S N P = tanh x
a1 T S L R
-3-2-1/k1 23 * -3-2-1 | 123 —2— 12
e S e EE e ———— | L
folby=—"7%" oL vy=l
-3 y = cothx
(@ (b) (©
Hyperbolic sine: Hyperbolic cosine: Hyperbolic tangent:
) o — o _ete _Sinhx _ e —e*
sinh x = 5 cosh x 5 tanh x coshr &+ &
Hyperbolic cotangent:
_coshx e + e
cothx = =

sinh x et — e

(@) ©
Hyperbolic secant:

Hyperbolic cosecant:

sech x = 1 __2 1 2
coshx e +e* cschx = sinhx & — e~

The other identities are obtained similarly, by substituting in the definitions of the
hyperbolic functions and using algebra. Like many standard functions, hyperbolic func-
tions and their inverses are easily evaluated with calculators, which often have special
keys for that purpose.

For any real number u, we know the point with coordinates (cos u, sin u) lies on the
unit circle x> + y> = 1. So the trigonometric functions are sometimes called the circular
functions. Because of the first identity

cosh?u — sinh?u = 1,

with u substituted for x in Table 7.5, the point having coordinates (cosh u, sinh u) lies on
the right-hand branch of the hyperbola x> — y?> = 1. This is where the hyperbolic func-
tions get their names (see Exercise 86).

Hyperbolic functions are useful in finding integrals, which we will see in Chapter 8.
They play an important role in science and engineering as well. The hyperbolic cosine
describes the shape of a hanging cable or wire that is strung between two points at the same
height and hanging freely (see Exercise 83). The shape of the St. Louis Arch is an inverted
hyperbolic cosine. The hyperbolic tangent occurs in the formula for the velocity of an ocean
wave moving over water having a constant depth, and the inverse hyperbolic tangent describes
how relative velocities sum according to Einstein’s Law in the Special Theory of Relativity.

Derivatives and Integrals of Hyperbolic Functions

The six hyperbolic functions, being rational combinations of the differentiable functions
e and e ¥, have derivatives at every point at which they are defined (Table 7.6). Again,
there are similarities with trigonometric functions.



TABLE 7.7 Integral formulas for
hyperbolic functions

sinh u du = coshu + C

coshudu = sinhu + C

sech®’u du = tanhu + C

csch®u du = —cothu + C

sech utanh u du = —sechu + C

cschucothu du = —cschu + C

/
/
/
/
/
/
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The derivative formulas are derived from the derivative of e*:

d, . _dfe —e"
E(smh u) _dx(Z )

edu/dx + e du/dx
= Derivative of e*
2
du
= coshu=-.
Wix

Definition of sinh u

Definition of cosh u

This gives the first derivative formula. From the definition, we can calculate the derivative
of the hyperbolic cosecant function, as follows:

d _df 1 R
E(CSCh M) = a sinh u Definition of csch u
_ _coshudu Quotient Rule for derivati
— . B uotien ule 1or derivatives
sinh“u dx
_ 1 coshudu N .
- T . i 5 earrange terms.
sinh u sinh u dx ©

= —csch u coth udl
dx

Definitions of csch u and coth u

The other formulas in Table 7.6 are obtained similarly.
The derivative formulas lead to the integral formulas in Table 7.7.

EXAMPLE 1
(a) %(tanh V1 + t2) = sech> V1 + tz-%(\/l + tz)

1
= ———sech® V1 + 72
V1 + 2

We illustrate the derivative and integral formulas.

cosh 5x 1 [ du u = sinh Sx,
(b) /coth Sxdx = /sinthdx = 5/” du = 5 cosh 5x dx
= %m |lu| + C = %ln [sinh 5x| + C
: 'cosh 2x — 1
(c) / sinh?x dx = / Cosfxdx Table 7.5
0 0
1 . 1
_1 _ _ 1|sinh2x _
= 2/0 (cosh2x — 1) dx 2{ > xL
= sinh 2 - l = 0.40672 Evaluate with a calculator.
4 2
In2 In2 o — g% In2
(d) / 4¢*sinh x dx = / 4¢* 3 € _dx = / (2> — 2) dx
0 0 0
= [e¥ — 2]y = ("2 = 2In2) — (1 — 0)
=4 —2In2 — 1 = 1.6137 |

Inverse Hyperbolic Functions

The inverses of the six basic hyperbolic functions are very useful in integration (see
Chapter 8). Since d(sinh x)/dx = cosh x > 0, the hyperbolic sine is an increasing func-
tion of x. We denote its inverse by

y = sinh 'x.
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y y = cosh x,
Yy y=sinhx y=x x=0 y=x y =X
| e 8 7 y =sech 'x 7
B e — 7rF 7 (x = sech y, i
N 7Y = Slflh x 6 / 3 y=0) /7
B e (x = sinh y) 5 /7 e
-7 4+ /// 2 ///
147 3k 4 4
-6 —4 — s
=7 17 (x = coshy,y =0) x=0
, ‘ T N N X I I X
7 I~ 0l 123456738 0 1 2 3
, L
e - (b) (©)
’ L
7
7

(a)

FIGURE 7.8 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about
the line y = x.

For every value of x in the interval —00 < x << 00, the value of y = sinh™ x is the number
whose hyperbolic sine is x. The graphs of y = sinhx and y = sinh™!x are shown in
Figure 7.8a.

The function y = cosh x is not one-to-one because its graph in Table 7.4 does not
pass the horizontal line test. The restricted function y = cosh x, x = 0, however, is one-
to-one and therefore has an inverse, denoted by

y = cosh'x.

For every value of x = 1,y = cosh™! x is the number in the interval 0 = y < 00 whose
hyperbolic cosine is x. The graphs of y = cosh x, x = 0, and y = cosh™!x are shown in
Figure 7.8b.

Like y = cosh x, the function y = sechx = 1/cosh x fails to be one-to-one, but its
restriction to nonnegative values of x does have an inverse, denoted by

y = sech™'x.

For every value of x in the interval (0, 1],y = sech™x is the nonnegative number whose
hyperbolic secant is x. The graphs of y = sech x, x = 0, and y = sech™' x are shown in
Figure 7.8c.

The hyperbolic tangent, cotangent, and cosecant are one-to-one on their domains and
therefore have inverses, denoted by

y =tanhlx, y=cothlx, y=cschlx

These functions are graphed in Figure 7.9.

x=cothy |

I
y= coth™ x|

x =cschy
y =csch™'x

(a)

|

|

}
_1;
|
|
|
|
|
|

(b)

(©)

FIGURE 7.9 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.



TABLE 7.8 Identities for
inverse hyperbolic functions

_ 1
sech™'x = cosh™ &

_ S |
csch™'x = sinh™' &

coth™'x = tanh™! %
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Useful Identities

We use the identities in Table 7.8 to calculate the values of sech™ x, csch™ x, and coth™ x
on calculators that give only cosh™'x, sinh™'x, and tanh™'x. These identities are direct
consequences of the definitions. For example, if 0 < x = 1, then

sech (cosh‘ (i)) - <coslh_1 (1>) = <1> —x

X X

We also know that sech (sech™ x) = x, so because the hyperbolic secant is one-to-one on

(0, 1], we have
cosh™! (;) = sech 'x.

Derivatives of Inverse Hyperbolic Functions

An important use of inverse hyperbolic functions lies in antiderivatives that reverse the
derivative formulas in Table 7.9.

TABLE 7.9 Derivatives of inverse hyperbolic functions
d(sinh™'u) 1 du

dx /14 2dx
d(cosh™'u) 1 du -

dx N V2 — 1dx’ “
d(tanh™' 1) 1 du

dx :1—u2dx’ |u| <1
d(coth™ u) 1 du

dx = = u2dx’ |u| > ]
d(sech™'u) 1 du

dx = N = dx o<u<li
d(esch™'u) 1 du 20

dx - lu| V1 + 2 dx’ !

The restrictions |u#| < 1 and |u| > 1 on the derivative formulas for tanh™'u and
coth™' u come from the natural restrictions on the values of these functions. (See Figure 7.9a
and b.) The distinction between |u#| < 1 and |u| > 1 becomes important when we con-
vert the derivative formulas into integral formulas.

We illustrate how the derivatives of the inverse hyperbolic functions are found in
Example 2, where we calculate d(cosh™'u)/dx. The other derivatives are obtained by
similar calculations.

EXAMPLE 2 Show that if u is a differentiable function of x whose values are greater
than 1, then

1 du

i(cosh"u) = —"
dx Vi — 1dx’
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Solution  First we find the derivative of y = cosh™!x for x > 1 by applying Theorem 3
of Section 3.8 with f(x) = coshx and f~'(x) = cosh™'x. Theorem 3 can be applied
because the derivative of cosh x is positive for 0 < x.
S S
FCE))

1

= sinh(cosh! o) (1) = sinh ¢
sinh (Cosh*]x) f'(u) sinh u

Theorem 3, Section 3.8

fFH'e =

1 cosh’u — sinh®u = 1,

\/coshz(cosh’lx) —1 sinhu = Vcosh®u — 1
1 |
= —— cosh (cosh™'x) = x

x2 =1

The Chain Rule gives the final result:

4 (cosh™u) = S
dx Vi — 1dx’
With appropriate substitutions, the derivative formulas in Table 7.9 lead to the integra-

tion formulas in Table 7.10. Each of the formulas in Table 7.10 can be verified by differen-
tiating the expression on the right-hand side.

TABLE 7.10 Integrals leading to inverse hyperbolic functions

du .o (u
1. /Ismhl-f—C a>0
Va? + u? (a) |

2. /\/%zcoshl(g>+c, u>a>0
w —a
J %tanh‘1 (u) + C, wr < 42
u

»
—
Q
S
|
=I\)
I
2

écoth*l (Z) + C, u? > a2

. /u\/c%:_ése‘:hl(z>+c’ O<u<a

—lcsch_1 % + C, u#0anda >0

du _
’ /uVa2+u2 @

EXAMPLE 3 Evaluate
/ 2 dx

Solution  The indefinite integral is

2 dx . du 5 , 2 d 3
- u = 2Xx, au = 2 dx, a =
V3 + 4x? Va? + u?

- u
sinh™! <a> + C Formula from Table 7.10

o 2x
sinh 1<> + C.
V3



Therefore,

2 dx
0 V3 + 4x2

Exercises

Values and Identities

Each of Exercises 1-4 gives a value of sinh x or cosh x. Use the defi-
nitions and the identity cosh?x — sinh?>x = 1 to find the values of the
remaining five hyperbolic functions.

P | L4
1. sinhx = 4 2. sinhx = 3
1 13
3. coshx:fls, x>0 4. Coshx:fs, x>0

Rewrite the expressions in Exercises 5-10 in terms of exponentials
and simplify the results as much as you can.

5. 2 cosh (In x) 6. sinh (2 Inx)

7. cosh 5x + sinh 5x 8. cosh 3x — sinh 3x
9. (sinhx + coshx)*

10. In(cosh x + sinh x) + In(cosh x — sinh x)

11. Prove the identities

sinh(x + y) = sinh x coshy + cosh xsinh y,
cosh(x + y) = cosh x cosh y + sinh xsinh y.
Then use them to show that
a. sinh 2x = 2 sinh x cosh x.
b. cosh 2x = cosh’x + sinh’x.

12. Use the definitions of cosh x and sinh x to show that

cosh?x — sinh?x = 1.

Finding Derivatives
In Exercises 13-24, find the derivative of y with respect to the appro-
priate variable.

13. y = 6sinh 3 4. y= %sinh 2x + 1)
15. y = 2\V/rtanh V1 16. y = tztanh%
17. y = In(sinh z) 18. y = In(cosh 2)

19. y = sech (1 — Insech§) 20. y = csch (1 — Incsch 0)

21. y = Incoshv — %tanhzv 22. y = Insinhv — %coth2 v

23. y = (x* + 1)sech (In x)

(Hint: Before differentiating, express in terms of exponentials
and simplify.)
24. y = (4x*> — 1)csch (In 2x)
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1
— ginh! <\2/x§ﬂ — ginh! <\%> — sinh 1(0)
0

— sinh”! <\%> — 0 ~ 0.98665. m

In Exercises 25-36, find the derivative of y with respect to the appro-
priate variable.

25. y = sinh ' Vx 26. y = cosh'2Vx + 1

27. y = (1 — §)tanh 19 28. y = (6% + 20)tanh™' (6 + 1)

29. y = (I — Heoth ' V1 30. y = (1 — Acoth™'t

31. y = cos'x — xsech™'x 32. y=Inx+ V1 — x’sech'x
0

33. y = csch™! (%) 34. y = csch™'2f

35. y = sinh”!(tan x)
36. y = cosh'(secx), 0 <x < /2

Integration Formulas
Verify the integration formulas in Exercises 37—40.

tan ' (sinh x) + C

37. a. / sech x dx

b. /sechxdx = sin !(tanh x) + C

2
38. /xsech-'xdx = %sech"x — %\/1 -2 +cC

-1
2

39. /xcoth’lx dx coth™'x + )2£ +C

40. /tanh’lxdx = xtanh 'x + %ln(l -+ C

Evaluating Integrals
Evaluate the integrals in Exercises 41-60.

41. / sinh 2x dx 4. / sinh g_idx
43. /6cosh (g — In 3) dx 44. /4cosh (Bx — In2) dx
45 / tanh = dx 46 / coth —_dp
7 ) V3
47. / sech? (x — %) dx 48. / csch?(5 — x)dx
19 / sech V7 tanh /7 dt 50 /csch (In 7)coth (In 1) dt
. v . ;
In4 In2
51. / coth x dx 52. / tanh 2x dx
In2 0
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—In2 In2
53. / 2¢%cosh 6 d 54. / 4¢7%sinh 6 d6
0

—In4

/4 /2
55. / cosh(tan @)sec> 6 df  56. / 2sinh (sin ) cos 6 d0
- 0

/4
2
cosh (In?) 8COSh \f
57. / ——dt 58. dx
1 ! | CVa

0 In10
59, cosh?( %) dx 60. 4sin?( 2 ) dx
—In2 2 0 2

Inverse Hyperbolic Functions and Integrals

When hyperbolic function keys are not available on a calculator, it is
still possible to evaluate the inverse hyperbolic functions by express-
ing them as logarithms, as shown here.

sinh”'x = In (x+ V2 + 1 ) —00 < x < 00
cosh™'x = In (x + Va2 ) x=1
tanhlx—% 1+x x| <1
N
sech‘x—l( ), 0<x=1
cschlx = ()lc L+ x ), x#0
x|
_ 1. x+1
coth™'x = L [x] >1

Use the formulas in the box here to express the numbers in Exercises
61-66 in terms of natural logarithms.

61. sinh™'(—5/12) 62. cosh™'(5/3)
63. tanh™'(=1/2) 64. coth™' (5/4)
65. sech™' (3/5) 66. csch™'(—1/V3)

Evaluate the integrals in Exercises 67—74 in terms of

a. inverse hyperbolic functions.
b. natural logarithms.

67 / dix
) 0 V4 + x2

2 1/2
69./ e 70./ dr_
5/41_)C 0 1 —x

3/13 2
n o dx 7 / _odx
V1 — 16x? 1 xV4 + X2
73 cos x dx 74 /e dx
“Jo V1 + sin’x )Vl o+ (In x)?

Applications and Examples

75. Show that if a function f is defined on an interval symmetric
about the origin (so that f is defined at —x whenever it is defined
at x), then

) = f() +2f(—X) N F) —2f(—X). 0

76.

77.

78.

79.

80.

81.

82.

83.

Then show that (f(x) + f(—x))/2 is even and that (f(x) —
f(=x))/2 is odd.

Derive the formula sinh™'x = In(x + V2 + 1) for all real x.
Explain in your derivation why the plus sign is used with the
square root instead of the minus sign.

Skydiving If a body of mass m falling from rest under the
action of gravity encounters an air resistance proportional to the
square of the velocity, then the body’s velocity ¢ sec into the fall
satisfies the differential equation

where k is a constant that depends on the body’s aerodynamic
properties and the density of the air. (We assume that the fall is
short enough so that the variation in the air’s density will not
affect the outcome significantly.)

a. Show that
m, k
v = /%tanh(, /%t)

satisfies the differential equation and the initial condition that
v =0 whent = 0.

b. Find the body’s limiting velocity, lim,_v.

c. For a 160-1b skydiver (mg = 160), with time in seconds and
distance in feet, a typical value for k is 0.005. What is the
diver’s limiting velocity?

Accelerations whose magnitudes are proportional to displace-

ment Suppose that the position of a body moving along a coor-

dinate line at time ¢ is

a. s = acoskt + bsinkt.

b. s = acosh kt + b sinh k.

Show in both cases that the acceleration d%s/d#? is proportional to

s but that in the first case it is directed toward the origin, whereas

in the second case it is directed away from the origin.

Volume A region in the first quadrant is bounded above by the

curve y = cosh x, below by the curve y = sinh x, and on the left

and right by the y-axis and the line x = 2, respectively. Find the vol-
ume of the solid generated by revolving the region about the x-axis.

Volume The region enclosed by the curve y = sechx, the

x-axis, and the lines x = * In V/3 is revolved about the x-axis to

generate a solid. Find the volume of the solid.

Arc length Find the length of the graph of y = (1/2) cosh 2x

fromx = 0 to x = In /5.

Use the definitions of the hyperbolic functions to find each of the

following limits.

a. lim tanh x b. lim tanhx
X—00 xX—>—00

¢. limsinhx d. lim sinhx
x—00 x——00

e. limsechx f. limcoth x
xX—>00 X—00

g. limcothx h. limcoth x
x—0" x—0"

i. lim cschx
x——00

Hanging cables Imagine a cable, like a telephone line or TV
cable, strung from one support to another and hanging freely. The
cable’s weight per unit length is a constant w and the horizontal



tension at its lowest point is a vector of length H. If we choose a
coordinate system for the plane of the cable in which the x-axis is
horizontal, the force of gravity is straight down, the positive
y-axis points straight up, and the lowest point of the cable lies at
the point y = H/w on the y-axis (see accompanying figure), then
it can be shown that the cable lies along the graph of the hyper-
bolic cosine

H w
y = j,cosh —x.

H
_H w
y y= W cosh "
Hanging
cable
H
H W N
0

Such a curve is sometimes called a chain curve or a catenary,
the latter deriving from the Latin catena, meaning “chain.”

a. Let P(x, y) denote an arbitrary point on the cable. The next
accompanying figure displays the tension at P as a vector of
length (magnitude) 7, as well as the tension H at the lowest
point A. Show that the cable’s slope at P is

d
tan p = d% = sinh %x.

- H w
y y—wcosth

b. Using the result from part (a) and the fact that the horizontal
tension at P must equal H (the cable is not moving), show that
T = wy. Hence, the magnitude of the tension at P(x, y) is
exactly equal to the weight of y units of cable.

84. (Continuation of Exercise 83.) The length of arc AP in the
Exercise 83 figure is s = (1/a)sinh ax, where a = w/H. Show
that the coordinates of P may be expressed in terms of s as

x = ésinh" as, y=./s+ i.

85. Area Show that the area of the region in the first quadrant
enclosed by the curve y = (1/a)cosh ax, the coordinate axes,
and the line x = b is the same as the area of a rectangle of height
1 /a and length s, where s is the length of the curve from x = 0 to
x = b. Draw a figure illustrating this result.

86. The hyperbolic in hyperbolic functions Just as x = cos u and
y = sin u are identified with points (x, y) on the unit circle, the
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functions x = cosh # and y = sinh u are identified with points
(x,y) on the right-hand branch of the unit hyperbola,
2=y =1.

§

—_
T

W .
P(cosh u, sinh u)

Since cosh?u — sinh?>u = 1, the point
(cosh u, sinh ) lies on the right-hand
branch of the hyperbola x> — y> = 1
for every value of u.

Another analogy between hyperbolic and circular functions
is that the variable u in the coordinates (cosh u, sinh u) for the
points of the right-hand branch of the hyperbola x> — y> = 1 is
twice the area of the sector AOP pictured in the accompanying
figure. To see why this is so, carry out the following steps.

a. Show that the area A(u) of sector AOP is

cosh u

Va2 — 1dx.

A(u) = lcosh usinh u —

2 1

b. Differentiate both sides of the equation in part (a) with respect
to u to show that

A'(u) = %

c. Solve this last equation for A(x). What is the value of A(0)?
What is the value of the constant of integration C in your solu-
tion? With C determined, what does your solution say about
the relationship of u to A(u)?

y
&
S/ -y =1 X
%ﬁé\ x2+y2=1 | P(cosu,sin u)

| P(cosh u, sinh u)

} u is twice the area

l'of sector AOP.

L X x

o o AN

u is twice the area u=
of sector AOP.

One of the analogies between hyperbolic and circular func-
tions is revealed by these two diagrams (Exercise 86).
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FIGURE 9.1 Graph of the solution to
the initial value problem in Example 2.

Solution The equation

dy _
Y

is a first-order differential equation with f(x,y) =y — x.

On the left side of the equation:

dy g 1.\ 1
dx_dx(x+1_ e'x>—1—3

On the right side of the equation:

y—x=(x+1)—%e"—x= —%e".

The function satisfies the initial condition because

I
—_
I

ﬂm={u+n—§f}o

The graph of the function is shown in Figure 9.1.

Slope Fields: Viewing Solution Curves

Each time we specify an initial condition y(x,) = y, for the solution of a differential equa-
tion y' = f(x, y), the solution curve (graph of the solution) is required to pass through the
point (xy, yo) and to have slope f(xy, yy) there. We can picture these slopes graphically by
drawing short line segments of slope f(x, y) at selected points (x, y) in the region of the
xy-plane that constitutes the domain of f. Each segment has the same slope as the solution
curve through (x, y) and so is tangent to the curve there. The resulting picture is called a
slope field (or direction field) and gives a visualization of the general shape of the solu-
tion curves. Figure 9.2a shows a slope field, with a particular solution sketched into it in
Figure 9.2b. We see how these line segments indicate the direction the solution curve takes

at each point it passes through.
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FIGURE 9.2 (a) Slope field for % =y — x. (b) The particular solu-

tion curve through the point (0, %) (Example 2).

Figure 9.3 shows three slope fields and we see how the solution curves behave by fol-
lowing the tangent line segments in these fields. Slope fields are useful because they dis-
play the overall behavior of the family of solution curves for a given differential equation.



Yor-

vy =Lx) = yo+ f(xp, yo)(x — xq)

y = y(x)

(xg, ¥o)

X0

FIGURE 9.4 The linearization L(x) of
y = y(x) at x = x.

(1 y)

FIGURE 9.5 The first Euler step
approximates y(x;) with y; = L(x).
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FIGURE 9.3 Slope fields (top row) and selected solution curves (bottom row). In computer
renditions, slope segments are sometimes portrayed with arrows, as they are here, but they
should be considered as just tangent line segments.

For instance, the slope field in Figure 9.3b reveals that every solution y(x) to the differen-
tial equation specified in the figure satisfies lim,_, + o y(x) = 0. We will see that knowing
the overall behavior of the solution curves is often critical to understanding and predicting
outcomes in a real-world system modeled by a differential equation.

Constructing a slope field with pencil and paper can be quite tedious. All our exam-
ples were generated by computer software.

Euler’s Method

If we do not require or cannot immediately find an exact solution giving an explicit for-
mula for an initial value problem y' = f(x, y), y(x;) = ¥y, we can often use a computer to
generate a table of approximate numerical values of y for values of x in an appropriate
interval. Such a table is called a numerical solution of the problem, and the method by
which we generate the table is called a numerical method.

Given a differential equation dy/dx = f(x, y) and an initial condition y(x)) = y,, we
can approximate the solution y = y(x) by its linearization

L(x) = y(xp) + ¥ (xp)(x — xo) or L(x) = yo + f(x0, yo)(x — Xp).

The function L(x) gives a good approximation to the solution y(x) in a short interval about
xy (Figure 9.4). The basis of Euler’s method is to patch together a string of linearizations
to approximate the curve over a longer stretch. Here is how the method works.

We know the point (x, yy) lies on the solution curve. Suppose that we specify a new
value for the independent variable to be x; = x, + dx. (Recall that dx = Ax in the defini-
tion of differentials.) If the increment dx is small, then

i = Lx)) = yo + f(xo, o) dx

is a good approximation to the exact solution value y = y(x;). So from the point (xy, y,),
which lies exactly on the solution curve, we have obtained the point (x;, y;), which lies
very close to the point (x;, y(x;)) on the solution curve (Figure 9.5).

Using the point (x, y;) and the slope f(x;, y;) of the solution curve through (x;, y,),
we take a second step. Setting x, = x; + dx, we use the linearization of the solution curve
through (x;, y;) to calculate

Y2 =y + flx, y) dx.
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I L
True solution curve

y =y

I
I
I
I

| dx | dx |

0 0 X1 L%

FIGURE 9.6 Three steps in the Euler
approximation to the solution of the initial
value problem y' = f(x, y), y(xo) = yp.
As we take more steps, the errors involved
usually accumulate, but not in the
exaggerated way shown here.
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This gives the next approximation (x,, y,) to values along the solution curve y = y(x)
(Figure 9.6). Continuing in this fashion, we take a third step from the point (x,, y,) with
slope f(x,, y,) to obtain the third approximation

3 = » + f(x, y,) dx,

and so on. We are literally building an approximation to one of the solutions by following
the direction of the slope field of the differential equation.

The steps in Figure 9.6 are drawn large to illustrate the construction process, so the
approximation looks crude. In practice, dx would be small enough to make the red curve
hug the blue one and give a good approximation throughout.

EXAMPLE 3 Find the first three approximations y;, y,, y; using Euler’s method for
the initial value problem

y=1+y  y0) =1,

starting at x, = 0 with dx = 0.1.

Solution We have the starting values x, = 0 and y, = 1. Next we determine the values
of x at which the Euler approximations will take place: x; = xq + dx = 0.1,
X, = xy + 2dx = 0.2, and x3 = xy + 3dx = 0.3. Then we find

First: yi = Yo + fxo, yo) dx
=y + A + y)dx

1+ + 101 =12

=y + fx, y) dx

=yt A+ y)dx

— 12+ (1 + 1.2)0.1) = 1.42

=y + f(x, ) dx

=yt d+ydx

142 + (1 + 1.42)(0.1) = 1.662 m

Second: Vs

Third: V3

The step-by-step process used in Example 3 can be continued easily. Using equally
spaced values for the independent variable in the table for the numerical solution, and gen-
erating n of them, set

X, = xy + dx

X, = x; + dx

X, = X,—; T dx.
Then calculate the approximations to the solution,

i = Yo T fxo, yo) dx
Y2 =y flx, y) dx

Yn = Yn—1 + f(xnfb yn*l) dx.

The number of steps n can be as large as we like, but errors can accumulate if n is too
large.

Euler’s method is easy to implement on a computer or calculator. The software pro-
gram generates a table of numerical solutions to an initial value problem, allowing us to
input x; and y,, the number of steps n, and the step size dx. It then calculates the approxi-
mate solution values yj, y,, . . ., y, in iterative fashion, as just described.



FIGURE 9.7 The graph of y = 2¢* — 1
superimposed on a scatterplot of the
Euler approximations shown in Table 9.1

(Example 4).

1
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Solving the separable equation in Example 3, we find that the exact solution to the
initial value problem is y = 2¢* — 1. We use this information in Example 4.

EXAMPLE 4 Use Euler’s method to solve
y=1+y 0 =1

on the interval 0 = x = 1, starting at x, = 0 and taking (a) dx = 0.1 and (b) dx = 0.05.
Compare the approximations with the values of the exact solution y = 2¢* — 1.

Solution

(a) We used a computer to generate the approximate values in Table 9.1. The “error” col-
umn is obtained by subtracting the unrounded Euler values from the unrounded val-
ues found using the exact solution. All entries are then rounded to four decimal
places.

TABLE 9.1 Euler solutionof y’ =1 + y, y(0) = 1,
step size dx = 0.1

x y (Euler) y (exact) Error
0 1 1 0

0.1 1.2 1.2103 0.0103
0.2 1.42 1.4428 0.0228
0.3 1.662 1.6997 0.0377
04 1.9282 1.9836 0.0554
0.5 2.2210 2.2974 0.0764
0.6 2.5431 2.6442 0.1011
0.7 2.8974 3.0275 0.1301
0.8 3.2872 34511 0.1639
0.9 3.7159 3.9192 0.2033
1.0 4.1875 4.4366 0.2491

By the time we reach x = 1 (after 10 steps), the error is about 5.6% of the exact
solution. A plot of the exact solution curve with the scatterplot of Euler solution
points from Table 9.1 is shown in Figure 9.7.

(b) One way to try to reduce the error is to decrease the step size. Table 9.2 shows the
results and their comparisons with the exact solutions when we decrease the step size
to 0.05, doubling the number of steps to 20. As in Table 9.1, all computations are per-
formed before rounding. This time when we reach x = 1, the relative error is only
about 2.9%. |

It might be tempting to reduce the step size even further in Example 4 to obtain
greater accuracy. Each additional calculation, however, not only requires additional com-
puter time but more importantly adds to the buildup of round-off errors due to the approxi-
mate representations of numbers inside the computer.

The analysis of error and the investigation of methods to reduce it when making
numerical calculations are important but are appropriate for a more advanced course.
There are numerical methods more accurate than Euler’s method, usually presented in a
further study of differential equations or in a numerical analysis course.
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TABLE 9.2 Euler solutionof y' = 1 + y, y(0) = 1,
step size dx = 0.05
X y (Euler) y (exact) Error
0 1 1 0
0.05 1.1 1.1025 0.0025
0.10 1.205 1.2103 0.0053
0.15 1.3153 1.3237 0.0084
0.20 1.4310 1.4428 0.0118
0.25 1.5526 1.5681 0.0155
0.30 1.6802 1.6997 0.0195
0.35 1.8142 1.8381 0.0239
0.40 1.9549 1.9836 0.0287
0.45 2.1027 2.1366 0.0340
0.50 2.2578 2.2974 0.0397
0.55 2.4207 2.4665 0.0458
0.60 2.5917 2.6442 0.0525
0.65 2.7713 2.8311 0.0598
0.70 2.9599 3.0275 0.0676
0.75 3.1579 3.2340 0.0761
0.80 3.3657 3.4511 0.0853
0.85 3.5840 3.6793 0.0953
0.90 3.8132 3.9192 0.1060
0.95 4.0539 4.1714 0.1175
1.00 4.3066 4.4366 0.1300
Exercisesm
Slope Fields y y
In Exercises 1-4, match the differential equations with their slope L — 77T
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In Exercises 5 and 6, copy the slope fields and sketch in some of the
solution curves.
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Integral Equations

In Exercises 7-10, write an equivalent first-order differential equation
and initial condition for y.

~1 +/ t — y() dt
1

8.y:/%dt
1

9. y=2*/ (1 + y(0) sint dt
0

7.y

10. y =1 +/ y(¢) dt
0

Using Euler’s Method

In Exercises 11-16, use Euler’s method to calculate the first three
approximations to the given initial value problem for the specified
increment size. Calculate the exact solution and investigate the accuracy
of your approximations. Round your results to four decimal places.

1. y' =1 - )y; y2)=-1, dx =05

12. yy =x(1 —y), y1) =0, dx=02
13. y = 2xy + 2y, y0) =3, dx=02
14. y' =y (1 + 20, y-1)=1, dx=05

15. y' = 2xe", y(0) =2, dx = 0.1
16. y' = ye', y(0) =2, dx=0.5

17. Use the Euler method with dx = 0.2 to estimate y(1) if y' =y
and y(0) = 1. What is the exact value of y(1)?

18. Use the Euler method with dx = 0.2 to estimate y(2) if y’ = y/x
and y(1) = 2. What is the exact value of y(2)?
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19. Use the Euler method with dx = 0.5 to estimate y(5) if y’
yz/\/); and y(1) = —1. What is the exact value of y(5)?

20. Use the Euler method with dx = 1/3 to estimate y(2) if y'
x siny and y(0) = 1. What is the exact value of y(2)?

21. Show that the solution of the initial value problem

Y oExty, o yx) =y
is
y=—1—x+ {1+ x5+ y) e

22. What integral equation is equivalent to the initial value problem
Y = (0, y(x) = wo?

COMPUTER EXPLORATIONS
In Exercises 23-28, obtain a slope field and add to it graphs of the
solution curves passing through the given points.

23. y' = y with

a. (0,1) b. (0,2 c. (0,—1)
24. y' = 2(y — 4) with

a. (0,1) b. (0,4) c. (0,5)
25. y' = y(x + y) with

a. (0,1) b. (0,-2) ¢ (0,1/4) d (-1,—1)
26. y' = y? with

a. (0,1) b. (0,2 c. (0,—1) d. (0,0)
27. y' = (y — D(x + 2) with

a. (0,—1) b. (0,1) c. (0,3) d. (I, = 1)

Xy .

28. y' = 214 with

a. (0,2) b, (0,—6) ¢ (-2V3,-4)

In Exercises 29 and 30, obtain a slope field and graph the particular

solution over the specified interval. Use your CAS DE solver to find

the general solution of the differential equation.

29. A logistic equation y' = y(2 —y), y(0) = 1/2; 0 = x = 4,
O0=sy=3

30. y = (sinx)(siny), y0)=2; -6=x=6, -6=y=6

Exercises 31 and 32 have no explicit solution in terms of elementary

functions. Use a CAS to explore graphically each of the differential
equations.

3l. yy =cos(2x —y), y0)=2; 0=x=5 0=y=S5

32. A Gompertz equation y' = y(1/2 — Iny), ¥(0) = 1/3;
O0=x=4 0=y=3

33. Use a CAS to find the solutions of y’ + y = f(x) subject to the
initial condition y(0) = 0, if f(x) is

c. 3e7? d. 2¢2cos 2x.

Graph all four solutions over the interval —2 = x = 6 to com-
pare the results.

a. 2x b. sin 2x

34. a. Use a CAS to plot the slope field of the differential equation
L3+ 4+ 2
Y 20 — 1)
over theregion -3 = x =3 and -3 =y = 3.

b. Separate the variables and use a CAS integrator to find the
general solution in implicit form.
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c. Using a CAS implicit function grapher, plot solution curves c. Graph the solutions for the values of the arbitrary constant
for the arbitrary constant values C = —6,—4,—-2,0, 2, 4, 6. C =-2,—-1,0,1, 2 superimposed on your slope field plot.

d. Find and graph the solution that satisfies the initial condition d. Find and graph the solution that satisfies the specified initial
y(0) = —1. condition over the interval [0, b ].

In Exercises 35-38, use Euler’s method with the specified step size to
estimate the value of the solution at the given point x*. Find the value
of the exact solution at x*.

e. Find the Euler numerical approximation to the solution of the
initial value problem with 4 subintervals of the x-interval and
plot the Euler approximation superimposed on the graph pro-
duced in part (d).

"= 2 = = * =
35. y Zet, Y0 =2, de=01, x ! f. Repeat part (e) for 8, 16, and 32 subintervals. Plot these three
36. ¥y =2x— 1), y2)=-1/2, dx=01, x*=3 Euler approximations superimposed on the graph from part (e).
37. ' = \/7;/ » y>0 y0) =1 dx=01 x*=1 g. Find the error (y(exact) — y(Euler)) at the specified point
38. y =1+ y0)=0, de=01, x*=1 x = b for each of your four Euler approximations. Discuss
the improvement in the percentage error.
Use a.CAS to explore graphically ea.ch of the dlfferentlgl equations in 39y =x+y, W0)=-7/10; -d=x=4 —4=y=4
Exercises 39-42. Perform the following steps to help with your explo- bh=1
rations.
) . ) o ) 40. y' = —x/y, y0) =2, -3=x=3, 3=y=3b=2
a. Plot a slope field for the differential equation in the given ,
xy-window. 41. Yy =y2 —y), y0)=1/2; 0=x=40=y=3;h=3
b. Find the general solution of the differential equation using 42. Z :3(51?2)6)(51“ » y0) =2 —6=x=6 —6=y=6
=37

your CAS DE solver.

92 First-Order Linear Equations

A first-order linear differential equation is one that can be written in the form

by

i + P(x)y = Qx), (D

where P and Q are continuous functions of x. Equation (1) is the linear equation’s stan-
dard form. Since the exponential growth/decay equation dy/dx = ky (Section 7.2) can
be put in the standard form

dy
% - ky - 0’
we see it is a linear equation with P(x) = —k and Q(x) = 0. Equation (1) is linear (in y)

because y and its derivative dy/dx occur only to the first power, they are not multiplied
together, nor do they appear as the argument of a function (such as sin y, ¢, or Vidy/ dx).

EXAMPLE 1 Put the following equation in standard form:

dy
@ _ 2 = 0.
X=X + 3y, x>0
Solution
dy
@ _ 2
X=X + 3y
dy .3 R
de X XY Divide by x.
dy 3 _ Standard form with P(x) = —3/x
dx xY =X and Q(x) = x

Notice that P(x) is —3/x, not +3/x. The standard form is y’ + P(x)y = Q(x), so the
minus sign is part of the formula for P(x). |



Ordinary Differential Equation

Differentiai equation. A differential equation is any equation which
L contains derivatives, either ordinary derivatives or partial derivatives.
Fyy sy sy ™)=0
L Where x is called the independent variable and y is the dependent.
Here are a few more examples of differential equations.
L 2y +by'+cy=g(£) : 6}
o dly & g
L sin (y)aT:(]—y)d—x-f-er » (6)
YA +10y™ -4y +2y =cos(t) )
L 208 _% )
ox’ o
aku,, = u, 9)
L Fu A .
=1+= i6
& xox dy
L
Order |
L The order of a differential equation is the largest derivative present in the
differential equation.
L Examples: In the differential equations listed above(5), (6), (8), and {Z;are
second order differential equations, (10) is a third order differential equation
L and (7) is a fourth order differential equat_ion.;__ B
t : . : : _
Ordinary and Partial Differential Equations
| Definition A differential equation is called an ordinary differential
1 equation, abbreviated by ode, if it has ordinary derivatives in it
FOGyy oy sy ™)=0
i Definition a differential equation is called a partial differential equation,
abbreviated by pde, if it has differential derivatives in it. In the differential
i Example: equations above (5) - (7) are ode’s and (8) - (10) are pde’s.
|




A linear differential equation is any differential equation that can be
written in the following form.

2, ()5 () () PO+ +a ()Y () +a()yO)=2C) ..an
The important thing to note about linear differential equations is that there are

no products of the function, ¥ (¢). and its derivatives and neither the function or
its derivatives occur to any power other than the first power. The coefficients
Go (), - sty (2) and g(t) can be zero or non-zero functions, constant or non-
constant functions, linear or non-linear functions. Only the function, ¥{t), and

its derivatives are used in determining if a differential equation is linear.

If a differential equation cannot be written in the form, (11) then it is called a

non-linear differential equation.

Examples In (5) - (7) above only (6) is non-linear, the other two sre ilnea
o= _

differential equations.

Definition A solution to a differential equation on an interval &<t <8 isany
function y=y(t) L

which satisfies the differential equation in question on the interval

3

Example Show that y(x)=x o

is a solution to 48y +12x0'+ 3y = 0 forz >0,

Solution We'll need the first and second derivative to do this.

15 -4
y'(x)=‘4"" :

1
Y

y'(x)=-

ol w
=

Put these function into the differential equation.




15 - 2 2
45 [-a—x 2J+12x(—§-x 3}4—3(;( 2JzO
3 3 3
152 2-18x 2+3x 2 =0
0=0

$
So, »{x)=x 7 does satisfy the differential equation and hence is a solution.

Initial Condition(s) are a condition, or set of conditions, on the solution that
will allow us to determine which solution that we are after. Initial conditions
(often abbreviated i.c.’s) are of the form,

y(zo):yo andfor y(”(to) =V

So, in other words, initial conditions are values of the solution and/or its
derivative(s) at specific points.

- Note The number of initial conditions that are required for a given differential

equation will depend upon the order of the differential equation as we will see.

3
Examnle y(x):x ? is a solution to
1 oo 3
42y + 12043y =0 ,”(4)=§, and Y (4)_‘5.

o= _
Solution As we saw in previous example the function is a solution and we
can then note that

s SRR N,
. 33 3 1 3
Y (9=3 TEy

and so this solution also meets the initial conditions of »(4)=§ and ¥ (4)=-%

Definition An Initial Value Problem (or IVP) is a differential equation along
with an appropriate number of initial conditions.

- Example The following is an IVP.

4By 12 vy =0 y(a)=




Example Here’s another IVP.

!
| 2y +dy=3  y(1)=-4

Definition The general solution to a differential equation is the most general
form that the solution can take and doesn’t take any initial conditions into
account i.e contains a constants same as the order of DE.

Example y(t) =(3/4) +(c/t’) is the general solution to
26y +4y=3

Definition The particular solution to a differential equation is the speciiic
solution that not only satisfies the differential equation, but also satisfies the

given initial condition(s).

Example 6 What is the particular solution to the following IVP?
2y +4y=3  y(l)=-4

Solution This is actually easier to do than it might at first appear. From the previous
example we already know (well that is provided you believe my solution to this
example...) that all solutions to the differential equation are of the form.
- - 3 ¢
' (i) 4 f_zz_
All that we need to do is determine the value of ¢ that will give us the solution that we're
after. To find this all we need do is use our initial condition as follows.

3 ¢ 3 1¢
4 = = —+4+—= = =—4——=—— —
40 4 12 ¢ 4 4
So, the actual solution to the TVP is.
‘ 3 19 _
Y0=3"37




Separable Differential Equations

A separable differential equation is any differential equation that we can write in the
following form.

¥() 2= (%) O

Note that in order for a differential equation to be separable all the y's in the differential
equation must be multiplied by the derivative and all the x's in the differential equation must
be on the other side of the equal sign.

-Solving separable differential equation is fairly easy. We first rewrite the differential equation
as the following

N(y)d’y:M(x)dx

Then you integrate both sides.
[ (y)dy = [ M (5)dx ()

The solution in the form Y =Y (X)

Example 1 Solve the following differential equation \ :
S 1 AR VI

=" ady (
- X =6 2 11= — S
- - 2o =5 Vlh
| Solution - e I
¥ idy = 6xdx
[y'%’y:[fixdx
1
——=3x+c
b

; —%=3(l)2+c c=-28
i /25 ’
Plug this into the general solution and then solve to get an explicit solution.
L3 08
b
1
1) g5




“Example 2 Solve the following.
3% +4x -4
y(1)=3

YE=—
, 2y—4
. Solution
| This differential equation is clearly separable,

_integrate both sides.

so let's put it in the proper form and then

| (2y—4)dy=(3x2+4x—4)dx
| [(2y-4)dy= [ (3 +4x—4)dx

'4’ y2—4y=x3+2x2—4x+c

- We now have our implicit solution, so as with the first example let’s apply the initial
. condition at this point to determine the value of ¢.
|

i (3)"_4(3)5(;1,)?+2(;)2—4(1)+c c=-2

" The solution is then

! yi-4y= B2 -Ax—2
“ We now need to find the explicit solution. This is actually easier than it might look and you

l | already know how to do it. First we need to rewrite the solution a little

|
: y—dy- (z3+2x2—-4x— 2): 0
|
b :
_ o= To solve this all we need to recognize is that this iS¢ uadratic in y and so we cail Us€ the

| quadratic formula to solve it. However, unlike quadrati%gé?you are used to, at least some of the

| “constants” will not actually be Sonstant, but will in fact inyolve x’s.

So, upon using the quadratic formula on this we get.

4z fis-a() (-(+ +2x —4x- 2}

y(x)= 5

i 4t {16+4(x3+2x’—4x—2) -

2

- \,_I{exg_notice that we can factor a 4 out from under the square root (it will come out as a 2...)

and then simplify a little. -

k | _4t2,}4+(x3+2x’—4x— 2)

|
5 (%)= 5

= 21«/? +oxt —4x+2

| We are almost there. Notice that we’ve actually got two solutions here (the . £E ) and we
be correct. So, to figure out

an | nlv want a single solution. In fact, only one of the signs can :




* which o.ie is correct \ié can reapply the initial condmon to this. Only one of the signs will
give the correct value so we can use this to ﬁgure out which one of the signs is correct.
Plugging x = 1 into the solution gives.

=y(1)=2i‘J1+2—4+2= 2+1=31

In this case it looks like the “+” is the correct sign for our solution. Note that it is completely
possible that the “ __” could be the solution so don’t always expect it to be one or the
other.

/'

Example 4 Solve the following IVP.
-e"'(2x 4) y(5)=0

Solution

This differential equation is easy enough to separate, so let's do that and then integrate both
sides. ‘

e’ dy =(2x—4)dx

[eray = [(21 -4)ax
¢ =x —dx+c

Applying the initial condition gives
1=25-20+¢ c=-4

This then gives an implicit solution of.

- -—

=7 e’=x'-4x-4

Example 5 Solve the following IVP. : £

dr  »¢ -

—_— = rih=2

d g & M

Solution

This is actually a fairly simple differential equation to solve. I’'m doing this one mostly

because of the interval of validity.

| So, get things separated out and then integrate.




]
--—--‘----—--

1 1

—Q—drz —dg
r g
[Lar=[Lio
r &
1
——=In]g+c
r

' Now, apply the initial condition to find c.
!

—%:1n(1)+c c=——

So, the implicit solution is then,
1 In|6|- 1
r 2

Solving for » gets us our explicit solution.
1

1-In !9'

»r=

Example 6 Solve the following IVP.
%:e"’sec(y)(l+t’) »(0)=0

Solution
This problem will require a little work to get it separated and in a form that we can integrat

so let's do that first.

- - -1
S)z—’z_—ey? (1+¢) . ’1

cos y) B e c -
e cos(y)dy =e” (l+ tjla’t —

Now, with a little integration by parts on both sides we can get an implicit solution.
[e"" cos(y)dy = J-e" (l+ z’)dt
X

%—(sx’n(y)—cos(y)) =g’ (22 +2z+3)+c

Applying the initial condition gives.

%(—1) =—(3)+c c=

YR N

Therefore, the implicit solution is.

%—y—(sin(y)—cos(y)) =—e" (z’ +2z+3) +%

=3
W,
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Solving Linear Equations
We solve the equation

dy B
o Py = 0

by multiplying both sides by a positive function v(x) that transforms the left-hand side into
the derivative of the product v(x) + y. We will show how to find v in a moment, but first we
want to show how, once found, it provides the solution we seek.

Here is why multiplying by v(x) works:

dy Original equation is
dx + P(x)y = Ox) in standard form.
d . i
v(x)ﬁ + P(x)v(x)y = v(x)0(x) Multiply by positive v(x).
d v(x) is chosen to make
= ) = 1y
dx W)+ y) v(N)Q(x) v% + Pvy = i[x(v Y.
Integrate with respect
v(0) 'y = [ v()Q(x) dx o x.

y= % / V(0O dx @)

Equation (2) expresses the solution of Equation (1) in terms of the functions v(x) and
O(x). We call v(x) an integrating factor for Equation (1) because its presence makes the
equation integrable.

Why doesn’t the formula for P(x) appear in the solution as well? It does, but indi-
rectly, in the construction of the positive function v(x). We have

d dy .
a(vy) = va + Puy Condition imposed on v

dy dv dy

Ua + ydx = Ua + Puy Derivative Product Rule
dv_p The terms v°2 cancel
ydx = rvy ne terms U(,/.x‘ cancel.
This last equation will hold if

dv

- =Pv

dx

dv

v = P dx Variables separated, v > 0

dv
/U = P dx Integrate both sides.

Since v > 0, we do not need absolute
Inv = P dx value signs in In v.
env = e./de Exponentiate both sides to solve for v.
v = edex (3)

Thus a formula for the general solution to Equation (1) is given by Equation (2), where v(x)
is given by Equation (3). However, rather than memorizing the formula, just remember how
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to find the integrating factor once you have the standard form so P(x) is correctly identified.
Any antiderivative of P works for Equation (3).

To solve the linear equation y’ + P(x)y = Q(x), multiply both sides by the inte-
grating factor v(x) = e/ "™ 9 and integrate both sides.

When you integrate the product on the left-hand side in this procedure, you always obtain

the product v(x)y of the integrating factor and solution function y because of the way v is
defined.

EXAMPLE 2 Solve the equation

d
xl=x2+3y, x> 0.

dx
HISTORICAL BIOGRAPHY Solution  First we put the equation in standard form (Example 1):
Adrien Marie Legendre d
(1752-1833) & éy =X
dx X ’

so P(x) = —3/x is identified.
The integrating factor is

= ofP@dx — ,[(3/x)dx
v(x) e e Constant of integration is 0,

= ¢3 In so v is as simple as possible.
= ¢ 3Inx x>0

-3 1
— elnx - =

Next we multiply both sides of the standard form by v(x) and integrate:

L& 31,
Bo\dx ~ XY B

1dy 3
x3dx x4y

d (1) _
dx x3y

1

x2
1 1 ,
3y = - dx Integrate both sides.
X X

|—

=
[}

Left-hand side is i(v “y).
dx" " -

1 1
“y=—2+C
R X

Solving this last equation for y gives the general solution:

y=x3(—)1€+C)=—x2+Cx3, x> 0. [ |

EXAMPLE 3  Find the particular solution of
3xy) —y=1Inx + 1, x>0,
satisfying y(1) = —2.
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Solution With x > 0, we write the equation in standard form:

o1 _Inx+1
Y 3x” 3x
Then the integrating factor is given by
v = ef—dx/3x — e(—l/3)lnx — )C_l/3. x>0
Thus
x_1/3y = ;/ (Inx + 1))6_4/3 dx. Left-hand side is vy.

Integration by parts of the right-hand side gives
x_]/3y = —x_1/3(lnx +1) + /x_4/3 dx + C.

Therefore
x WPy =—x"nx+ 1) -3+ C
or, solving for y,

y=—(nx + 4) + Cx'/3.

When x = 1 and y = —2 this last equation becomes
-2=—-0+4) + C,
)
Cc=2
Substitution into the equation for y gives the particular solution

y=2x"7—Inx — 4. u

In solving the linear equation in Example 2, we integrated both sides of the equation
after multiplying each side by the integrating factor. However, we can shorten the amount
of work, as in Example 3, by remembering that the left-hand side always integrates into
the product v(x) - y of the integrating factor times the solution function. From Equation (2)
this means that

v(x)y = / v(0)Q(x) dx. “

We need only integrate the product of the integrating factor v(x) with Q(x) on the right-
hand side of Equation (1) and then equate the result with v(x)y to obtain the general solu-
tion. Nevertheless, to emphasize the role of v(x) in the solution process, we sometimes
follow the complete procedure as illustrated in Example 2.

Observe that if the function Q(x) is identically zero in the standard form given by
Equation (1), the linear equation is separable and can be solved by the method of
Section 7.2:

dy _
2 TPy = 0W)

Y piyy = 0
dx (x)y = 0x) =0

~ = —P(x) dx Separating the variables
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FIGURE 9.8 The RL circuit in
Example 4.
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FIGURE 9.9 The growth of the current
in the RL circuit in Example 4. [ is the
current’s steady-state value. The number

t = L/R is the time constant of the circuit.

The current gets to within 5% of its
steady-state value in 3 time constants
(Exercise 27).
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RL Circuits

The diagram in Figure 9.8 represents an electrical circuit whose total resistance is a con-
stant R ohms and whose self-inductance, shown as a coil, is L henries, also a constant.
There is a switch whose terminals at @ and b can be closed to connect a constant electrical
source of V volts.
Ohm’s Law, V = RI, has to be augmented for such a circuit. The correct equation
accounting for both resistance and inductance is
di .
L— +Ri =1V, 5
d ()
where i is the current in amperes and ¢ is the time in seconds. By solving this equation, we
can predict how the current will flow after the switch is closed.

EXAMPLE 4  The switch in the RL circuit in Figure 9.8 is closed at time ¢ = 0. How
will the current flow as a function of time?

Solution Equation (5) is a first-order linear differential equation for i as a function of 7.
Its standard form is
di | R Vv

at LT ©

and the corresponding solution, given that i = O when ¢ = 0, is

_V_V _wuwx
i=R R . @)
(We leave the calculation of the solution for you to do in Exercise 28.) Since R and L are
positive, —(R/L) is negative and e~ ®/L" — () as t — 00, Thus,

e (VY e\ _V_V.,_V
lim i hm(R R R 0

1—>00 1—>00 R R ’

At any given time, the current is theoretically less than V/R, but as time passes, the cur-
rent approaches the steady-state value V/R. According to the equation
di .
L a + Ri =V,

I = V/R is the current that will flow in the circuit if either L = 0 (no inductance) or
di/dr = 0 (steady current, i = constant) (Figure 9.9).

Equation (7) expresses the solution of Equation (6) as the sum of two terms: a
steady-state solution V/R and a transient solution —(V/R)e"®/L* that tends to zero as

t— 00, [ |
Exercisesm
First-Order Linear Equations dy 1
Solve the differential equations in Exercises 1-14. 5. YT y=1-% x>0
d d / , x
LaZ+y=¢ x>0 2 ¢ +2y =1 6. (1+xy +y=Vx 7.2y = ety
. 8. ¥y + 2y = 2 9. xy) —y=2xInx
, sin x
3o +3y=""75", x>0
* 10 Do s
. dx X y?

4. y' + (tanx)y = cos’x,

—m/2 <x</2



11. (t—1)3%+4(t—1)2s=t+1, > 1

1

—, t>—1
t+ DY

12. (t+l)%+2s=3(t+l)+

13. sin 0% + (cos O)r = tanh, 0 <6 <7/2

14. tanO%-ﬁ- r=sin?6, 0<6<m/2

Solving Initial Value Problems
Solve the initial value problems in Exercises 15-20.

15. 200y = 3 o) = 1
. dt y = l Y()—

dy
16. IE+2y=t3, t>0, y2) =1

dy i
17. 0%+y=sm0, 0 >0, ymw/2)=1

dy
18. 0%— 2y = @3secHtan 6, 6 >0, yw/3) =2
19 (x+1)d—y—2(x2+x)y: N ¥0) =5
: dx x+ 1 ’
20. 2 =x w0 =6
'dx Xy = X, y()_

21. Solve the exponential growth /decay initial value problem for y
as a function of 7 by thinking of the differential equation as a first-
order linear equation with P(x) = —k and Q(x) = 0:

dy
5 = kv (kconstant), y(0) =y,

22. Solve the following initial value problem for u as a function of #:

% + %u = 0 (kand m positive constants), u(0) = u,

a. as a first-order linear equation.

b. as a separable equation.

Theory and Examples
23. Is either of the following equations correct? Give reasons for your
answers.

a. x/)lfcdx=xln|x\ +C b x/)lfcdx=xln\x\ + Cx

24. Is either of the following equations correct? Give reasons for your
answers.

1
a. @/cosxdx =tanx + C

1 _ C
b. cosx/ cosxdx = tanx + Cos X

25. Current in a closed RL circuit How many seconds after the
switch in an RL circuit is closed will it take the current i to reach
half of its steady-state value? Notice that the time depends on R
and L and not on how much voltage is applied.

9.2 First-Order Linear Equations 549

26. Current in an open RL circuit If the switch is thrown open
after the current in an RL circuit has built up to its steady-state
value / = V/R, the decaying current (see accompanying figure)
obeys the equation

di .
L dt + Ri =0,
which is Equation (5) with V = 0.
a. Solve the equation to express i as a function of 7.

b. How long after the switch is thrown will it take the current to
fall to half its original value?

c. Show that the value of the current when ¢t = L/R is I/e. (The
significance of this time is explained in the next exercise.)

=<

|~

|t~
]l

27. Time constants Engineers call the number L/R the time constant
of the RL circuit in Figure 9.9. The significance of the time con-
stant is that the current will reach 95% of its final value within 3
time constants of the time the switch is closed (Figure 9.9). Thus,
the time constant gives a built-in measure of how rapidly an indi-
vidual circuit will reach equilibrium.

a. Find the value of i in Equation (7) that corresponds to
t = 3L/R and show that it is about 95% of the steady-state
value I = V/R.

b. Approximately what percentage of the steady-state current
will be flowing in the circuit 2 time constants after the switch
is closed (i.e., when r = 2L/R)?

28. Derivation of Equation (7) in Example 4

a. Show that the solution of the equation

di , R \4

a "L TL

is
i= % + Ce®/L1,

b. Then use the initial condition i(0) = 0 to determine the value
of C. This will complete the derivation of Equation (7).
c. Show that i = V/R is a solution of Equation (6) and that
i = Ce ®/Dr satisfies the equation
di R

E"rzl:o.
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we have n = 2, sothat u = y'"2 =y and du/dx =
HISTORICAL BIOGRAPHY —y~2dy/dx. Then dy/dx = —y* du/dx = —u> du/dx.

James Bernoulli Substitution into the original equation gives

(1654-1705)
A Bernoulli differential equation is of the form _ M—sz =y
Y por — ot )
dx * Py = Q00y™. or, equivalently,
Observe that, if n = 0 or 1, the Bernoulli equation is linear.
For other values of n, the substitution # = y' " transforms % +u=—¢"
the Bernoulli equation into the linear equation
du This last equation is linear in the (unknown) dependent variable u.
dx + (1 — n)Pxu = (1 — n)Qx).

Solve the Bernoulli equations in Exercises 29-32.

For example, in the equation 29,y —y=—y? 30. y —y=xy

2

dy N ' = y2 2,0 =43
a_y:exyz 3. ) +y=y 32, xy + 2xy =y

9 . 3 Applications

We now look at four applications of first-order differential equations. The first application
analyzes an object moving along a straight line while subject to a force opposing its
motion. The second is a model of population growth. The third application considers a
curve or curves intersecting each curve in a second family of curves orthogonally (that is,
at right angles). The final application analyzes chemical concentrations entering and leav-
ing a container. The various models involve separable or linear first-order equations.

Motion with Resistance Proportional to Velocity

In some cases it is reasonable to assume that the resistance encountered by a moving object,
such as a car coasting to a stop, is proportional to the object’s velocity. The faster the object
moves, the more its forward progress is resisted by the air through which it passes. Picture
the object as a mass m moving along a coordinate line with position function s and velocity
v at time 7. From Newton’s second law of motion, the resisting force opposing the motion is

. dv
Force = mass X acceleration = m—

dt’
If the resisting force is proportional to velocity, we have
dv _ _ dv _ _k
moa = kv or d -~ mY (k > 0).

This is a separable differential equation representing exponential change. The solution to
the equation with initial condition v = v, at t = 0 is (Section 7.2)

v = yye kmr, (L

What can we learn from Equation (1)? For one thing, we can see that if m is some-
thing large, like the mass of a 20,000-ton ore boat in Lake Erie, it will take a long time for
the velocity to approach zero (because ¢t must be large in the exponent of the equation in
order to make kt/m large enough for v to be small). We can learn even more if we inte-
grate Equation (1) to find the position s as a function of time 7.

Suppose that an object is coasting to a stop and the only force acting on it is a resis-
tance proportional to its speed. How far will it coast? To find out, we start with Equation
(1) and solve the initial value problem

ds

a = vpe k/mr, s(0) = 0.



In the English system, in which weight is
measured in pounds, mass is measured in

slugs. Thus,
Pounds = slugs X 32,

assuming the gravitational constant is
32 ft /sec?.
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Integrating with respect to ¢ gives

ypm

s == e kmr + .

Substituting s = 0 when ¢t = 0 gives

0=-""4¢c ad c=2"
= k an = k-

The body’s position at time ¢ is therefore

s() = = SRt 4 DT 2 (1 — gty @

To find how far the body will coast, we find the limit of s(¢) as # — 00. Since —(k/m) < 0,
we know that ¢~ ®/™" — () as t — 00, so that

vom
lim s() = 11m°7(1 — oty
—00 —>00

_ Yom o _ Yo
(1 - 0) = S
Thus,
. Voim
Distance coasted = - 3)

The number vym/k is only an upper bound (albeit a useful one). It is true to life in one
respect, at least: If m is large, the body will coast a long way.

EXAMPLE 1 For a 192-1b ice skater, the k in Equation (1) is about 1 /3 slug /sec and
m = 192/32 = 6 slugs. How long will it take the skater to coast from 11 ft/sec (7.5
mph) to 1 ft/sec? How far will the skater coast before coming to a complete stop?

Solution We answer the first question by solving Equation (1) for ¢

11e/18 = 1 Eq. (1) with k = 1/3,
eft/18 — 1/11 m= 6,vy=11,v =1
—1/18 = In(1/11) = —In 11

=18 In11 = 43sec.

~

We answer the second question with Equation (3):

i _wm 116
Distance coasted = . 13
= 198 ft. m

Inaccuracy of the Exponential Population Growth Model
In Section 7.2 we modeled population growth with the Law of Exponential Change:

dp _

= kP PO) =R

where P is the population at time #, k > 0 is a constant growth rate, and F, is the size of
the population at time ¢ = 0. In Section 7.2 we found the solution P = P,e! to this model.
To assess the model, notice that the exponential growth differential equation says that

dp/dt
p =k “)
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P World population (1980-2008)
7000

P = 44540017
5000

! L5
40000 10 30

FIGURE 9.10 Notice that the value of
the solution P = 4454¢%07" is 7169 when
t = 28, which is nearly 7% more than the
actual population in 2008.

Orthogonal trajectory

FIGURE 9.11 An orthogonal trajec-
tory intersects the family of curves at right
angles, or orthogonally.

FIGURE 9.12 Every straight line through
the origin is orthogonal to the family of
circles centered at the origin.

TABLE 9.3 World population (midyear)
Population
Year (millions) AP/P
1980 4454 76/4454 = 0.0171
1981 4530 80/4530 =~ 0.0177
1982 4610 80/4610 = 0.0174
1983 4690 80/4690 =~ 0.0171
1984 4770 81/4770 =~ 0.0170
1985 4851 82/4851 = 0.0169
1986 4933 85/4933 = 0.0172
1987 5018 87/5018 =~ 0.0173
1988 5105 85/5105 =~ 0.0167
1989 5190

Source: U.S. Bureau of the Census (Sept., 2007): www.census
.gov/ipc/www/idb.

is constant. This rate is called the relative growth rate. Now, Table 9.3 gives the world

population at midyear for the years 1980 to 1989. Taking df = 1 and dP = AP, we see

from the table that the relative growth rate in Equation (4) is approximately the constant

0.017. Thus, based on the tabled data with t = O representing 1980, + = 1 representing

1981, and so forth, the world population could be modeled by the initial value problem,
dp

= 0017, P(0) = 4454.

The solution to this initial value problem gives the population function P = 4454¢"°!7 In
year 2008 (so ¢ = 28), the solution predicts the world population in midyear to be about
7169 million, or 7.2 billion (Figure 9.10), which is more than the actual population of
6707 million from the U.S. Bureau of the Census. A more realistic model would consider
environmental and other factors affecting the growth rate, which has been steadily declin-
ing to about 0.012 since 1987. We consider one such model in Section 9.4.

Orthogonal Trajectories

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the
family at right angles, or orthogonally (Figure 9.11). For instance, each straight line
through the origin is an orthogonal trajectory of the family of circles x* + y? = a?, cen-
tered at the origin (Figure 9.12). Such mutually orthogonal systems of curves are of particu-
lar importance in physical problems related to electrical potential, where the curves in one
family correspond to strength of an electric field and those in the other family correspond to
constant electric potential. They also occur in hydrodynamics and heat-flow problems.

EXAMPLE 2 Find the orthogonal trajectories of the family of curves xy = a, where
a # 0 is an arbitrary constant.

Solution The curves xy = a form a family of hyperbolas having the coordinate axes as
asymptotes. First we find the slopes of each curve in this family, or their dy/dx values.
Differentiating xy = a implicitly gives
dy Y
X

@, dy _
XLty = or T .



y

FIGURE 9.13 Each curve is orthogonal
to every curve it meets in the other family
(Example 2).
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Thus the slope of the tangent line at any point (x, y) on one of the hyperbolas xy = a is
y' = —y/x. On an orthogonal trajectory the slope of the tangent line at this same point
must be the negative reciprocal, or x/y. Therefore, the orthogonal trajectories must satisfy
the differential equation

dy _x
dx Y

This differential equation is separable and we solve it as in Section 7.2:

ydy = xdx Separate variables.
/ ydy = /x dx Integrate both sides.
%yz = %xz +C
= x=b, )

where b = 2C is an arbitrary constant. The orthogonal trajectories are the family of
hyperbolas given by Equation (5) and sketched in Figure 9.13. |

Mixture Problems

Suppose a chemical in a liquid solution (or dispersed in a gas) runs into a container hold-
ing the liquid (or the gas) with, possibly, a specified amount of the chemical dissolved as
well. The mixture is kept uniform by stirring and flows out of the container at a known
rate. In this process, it is often important to know the concentration of the chemical in the
container at any given time. The differential equation describing the process is based on
the formula

Rate of change rate at which rate at which
of amount = chemical - chemical |. (6)
in container arrives departs.

If y(7) is the amount of chemical in the container at time ¢ and V(¢) is the total volume of
liquid in the container at time ¢, then the departure rate of the chemical at time ¢ is

Y@

Departure rate = % (outflow rate)

_ ( concentration in

= . . - (outflow rate). 7
container at time ¢

Accordingly, Equation (6) becomes

— = (chemical’s arrival rate) — = - (outflow rate). ®)

dy y(1)
dt WV(®)

If, say, y is measured in pounds, V in gallons, and ¢ in minutes, the units in Equation (8) are

pounds  pounds  pounds gallons

minutes  minutes  gallons minutes’

EXAMPLE 3 In an oil refinery, a storage tank contains 2000 gal of gasoline that ini-
tially has 100 1b of an additive dissolved in it. In preparation for winter weather, gasoline
containing 2 1b of additive per gallon is pumped into the tank at a rate of 40 gal /min.
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The well-mixed solution is pumped out at a rate of 45 gal /min. How much of the additive
is in the tank 20 min after the pumping process begins (Figure 9.14)?

Q 40 gal/min containing 2 1b/gal

45 gal/min containing % 1b/gal

FIGURE 9.14 The storage tank in Example 3 mixes input
liquid with stored liquid to produce an output liquid.

Solution Let y be the amount (in pounds) of additive in the tank at time 7. We know that
y = 100 when ¢ = 0. The number of gallons of gasoline and additive in solution in the
tank at any time 7 is

gal gal .
V() = 2000 gal + | 40—— — 45— ) (¢ min)
min min
= (2000 — 57) gal.
Therefore,
Rate o t=M-o tflow rate Eq. (7
u V() utflow q. (7)
y Outflow rate is 45 gal/min
= %000 =5;/% and V = 2000 — 51.
_ ¥y b
2000 — 5t min’
Also,
al
Rate in = (21b> <40g.>
gal min
— 802
min

The differential equation modeling the mixture process is

dy 45y

ar =8 000 -5 e ®

in pounds per minute.
To solve this differential equation, we first write it in standard linear form:

dy 45
dr " 2000 — 57

Thus, P(f) = 45/(2000 — 5¢) and Q(r) = 80. The integrating factor is

= 80.

() = el P = e Tozdt
= 79I (2000-50 2000 — 5¢ >0
(2000 — 5¢)7°.



Exercisesm
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9.3 Applications 555
Multiplying both sides of the standard equation by v(#) and integrating both sides gives

d
(2000 — 519+ (y R

I SR P
d 2000—5ty> 802000 — 51

d
(2000 — 52‘)’9% + 45(2000 — 50710y = 80(2000 — 51)°
%[(2000 — 507% ] = 80(2000 — 51

(2000 — 5¢)% = / 80(2000 — 56 dr

(2000 — 51 % = go- 2000 = 57 .
Y —8)(=5) '

The general solution is
y = 2(2000 — 5£) + C(2000 — 5¢)°.
Because y = 100 when ¢ = 0, we can determine the value of C:

100 = 2(2000 — 0) + C(2000 — 0)°

3900
(2000)°"

C =

The particular solution of the initial value problem is

3900

= 2(2000 — 51) —
y=2 )~ 2000

(2000 — 50°.

The amount of additive in the tank 20 min after the pumping begins is

3900

¥(20) = 2[2000 — 5(20)] — 20007

[2000 — 5(20)]° = 1342 1b. |

Equation (1) of about 59,000 kg /sec. Assume that the ship loses

1. Coasting bicycle A 66-kg cyclist on a 7-kg bicycle starts coast- power when it is moving at a speed of 9 m/sec.

ing on level ground at 9 m/sec. The k in Equation (1) is about 3.9

kg /sec.

a. About how far will the ship coast before it is dead in the water?

b. About how long will it take the ship’s speed to drop to 1 m /sec?

a. About how far will the cyclist coast before reaching a com-

plete stop?

b. How long will it take the cyclist’s speed to drop to 1 m/sec?

3. The data in Table 9.4 were collected with a motion detector and a
CBL™ by Valerie Sharritts, then a mathematics teacher at St. Fran-
cis DeSales High School in Columbus, Ohio. The table shows the

2. Coasting battleship Suppose that an Iowa class battleship has distance s (meters) coasted on inline skates in 7 sec by her daughter
mass around 51,000 metric tons (51,000,000 kg) and a k value in Ashley when she was 10 years old. Find a model for Ashley’s
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position given by the data in Table 9.4 in the form of Equation (2). Orthogonal Trajectories
Her initial velocity was vy = 2.75 m/sec, her mass m = 39.92 kg In Exercises 5-10, find the orthogonal trajectories of the family of
(she weighed 88 1b), and her total coasting distance was 4.91 m. curves. Sketch several members of each family.
5. y=mx 6. y=cx?
TABLE 9.4 Ashley Sharritts skating data 7. k432 =1 8. 22+ =2
t (sec) s (m) t (sec) s (m) t (sec) s (m) 9. y=ce™ 10. y = &
0 0 2.24 3.05 4.48 4.77 11. Show that the curves 2x* + 3y?> = 5 and y* = x3 are orthogonal.
0.16 0.31 2.40 3.22 4.64 4.82 12. Find the family of solutions of the given differential equation and
0.32 0.57 256 3.38 4.80 4.84 the family of orthogonal trajectories. Sketch both families.
a. xdx + ydy =0 b. xdy —2ydx =0

0.48 0.80 272 3.52 4.96 4.86

0.64 1.05 2.88 3.67 5.12 4.88 Mixture Problems
0.80 128 3.04 382 598 4.89 13. Salt mixture A tank initially contains 100 gal of brine in which

50 1b of salt are dissolved. A brine containing 2 1b / gal of salt runs

0.96 1.50 3.20 3.96 5.44 4.90 into the tank at the rate of 5 gal /min. The mixture is kept uniform

1.12 1.72 3.36 4.08 5.60 4.90 by stirring and flows out of the tank at the rate of 4 gal /min.

1.28 1.93 3.5 4.18 576 491 a. At what rate (pounds per minute) does salt enter the tank at
time £?

1.44 2.09 3.68 431 5.92 4.90
1.60 2.30 3.84 441 6.08 491

b. What is the volume of brine in the tank at time ¢?

c. At what rate (pounds per minute) does salt leave the tank at

1.76 2.53 4.00 4.52 6.24 4.90 time 2
1.92 273 4.16 4.63 6.40 4.91 d. Write down and solve the initial value problem describing the
2.08 2.89 4.32 4.69 6.56 491 mixing process.

e. Find the concentration of salt in the tank 25 min after the

4. Coasting to a stop Table 9.5 shows the distance s (meters) process starts.

coasted on inline skates in terms of time ¢ (seconds) by Kelly 14. Mixture problem A 200-gal tank is half full of distilled water.
Schmitzer. Find a model for her position in the form of Equation At time ¢ = 0, a solution containing 0.5 Ib/gal of concentrate
(2). Her initial velocity was vy, = 0.80 m/sec, her mass enters the tank at the rate of 5 gal /min, and the well-stirred mix-
m = 49.90 kg (110 Ib), and her total coasting distance was 1.32 m. ture is withdrawn at the rate of 3 gal / min.
a. At what time will the tank be full?
TABLE 9.5 Kelly Schmitzer skating data b. At the time the tank is full, how many pounds of concentrate
will it contain?
t (sec) s (m) t (sec) s (m) t (sec) s (m) 15. Fertilizer mixture A tank contains 100 gal of fresh water. A
solution containing 1 1b/gal of soluble lawn fertilizer runs into
0 0 1.5 0.89 31 1.30 the tank at the rate of 1 gal /min, and the mixture is pumped out
0.1 0.07 1.7 0.97 33 1.31 of the tank at the rate of 3 gal /min. Find the maximum amount of
03 022 1.9 1.05 35 1.32 fertilizer in the tank and the time required to reach the maximum.
0.5 0.36 21 1.11 3.7 1.32 16. Carbon monoxide pollution An executive conference room of a
' ' ’ ' ’ ' corporation contains 4500 ft> of air initially free of carbon monox-
0.7 0.49 2.3 1.17 3.9 1.32 ide. Starting at time ¢ = 0, cigarette smoke containing 4% carbon
0.9 0.60 2.5 1.22 4.1 1.32 monoxide is blown into the room at the rate of 0.3 ft*/min. A ceil-
ing fan keeps the air in the room well circulated and the air leaves
L1 0.71 2.7 1.25 43 1.32 e P
the room at the same rate of 0.3 ft>/min. Find the time when the
1.3 0.81 29 1.28 4.5 1.32 concentration of carbon monoxide in the room reaches 0.01%.

94 Graphical Solutions of Autonomous Equations

In Chapter 4 we learned that the sign of the first derivative tells where the graph of a func-
tion is increasing and where it is decreasing. The sign of the second derivative tells the
concavity of the graph. We can build on our knowledge of how derivatives determine the
shape of a graph to solve differential equations graphically. We will see that the ability to
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Exam : Solve the D.E xz(l—yz)dx +y(l+x2)dy =0
Sol:
2
= S 4 ¥ s—dy =0
A+xd) A=y?)

1 Y
1- dx + dy =0
( 1+x2) d—p*) 5

x —tan ' x +%Ln ‘1—y2‘=c

Exam : Solve the D.E dy = 4y
dx x(y -3
Sol:
x (y —3)dy =4ydx
Yy X
4
(1- i)dy = —dx
y X

y —3Ln‘y‘=4Ln‘x’+c

2 — Homogeneous D.E.
Def: we said that the function f(x,y) is homo. From degree n if satisfies :

fx,ty)=t"f(x,y)
Ex:

FOx,y)=4x*+9xy -8y ?
f(ex,ty)=4@x )" +9xty —8(ty )’
=dt%x 2 + 9 *xy 8%y 2
—12(4x 2 +9xy —8y ) =t’f (x,y)
.. Homo.?2

Def: we said that the D.E. (M dx + N dy =0) is homo. If M&N are homo. Functions
with same degree




i THE DEFERENTIAL EQUATIONS :
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Exam : Solve the D.E (2x —y)dy =(2y —x)dx
Sel:

(2x —y)dy =2y —x)dx

(R

——
N M

M (e, ty) =2ty —tx =12y —x)
.. homo.
N (tx,ty) = 20x —ty =1(2x —)

Let y =vx =>dy =vdx +xdv

2x —vx )wdx +xdv)=2vx —x )dx

M+2x 2dv —v *xdx —vx *dv =M—xdx

x2Q2-v)v —x@*-1dx =0

(22—1/' )-dv —ldx =0
v - x
/2 32 1

v—-1l v+1 x
12Lnp —1|-3/2Lnpy +1|-Lnjx|=c

y

1/2Ln Y —1|-3/2Ln |2 41~ Lnfx|=c

X X
Exam : Solve the D.E (3x +2y)dx +(2x —4y)dy
Sol:
M (x,ty)=3tx +2ty =t(3x +2y)=tM
. homo
N@x,ty)=2x -4ty =t(2x —4y)=tN
let y =vx =dy =vedx +xdv
(Bx +2vx )dx + (2x —4vx)(vdx +xdv)
XG44 —4v )dx +2x*(1-2v)dv =0
dx » 2(1-2v)
x  QB+dv—dw?)

dv =

Ln‘x‘+an =
2

3+42 — 42y
X X




3 — D.E. of linear cofactors .

o A0 Abeally ) oS5 dadll) cSabaall il bialind] Alstaal)

(ax +by +c)dx +(ax + fy +y)dy =0
Where a, b ,c, ¢,  and y are constants

—a —a _
m=—, m,=—— ,m is slope

1 b ﬂ

m,#m, (mm, =—1) Gabliis Sladiiuall Gl 13
2R o a9 (Ol ) Gaadiiaaall (h,K) abolilf B 2 g5 Jad) 45

x =x;+h=dx =dx, ,y=y,+k =dy =dy,
. uadlata M Alstadl] (| e Sidic

CASE 2 :
Ao\ bl a2 i Y o) m1=m2 Ok sie Clasiueal) ¢S 1
z=ax+by O ga il Jal) 4y )k
Exam : Solve the D.E. (2x —3y +4)dx +(3x +2y +Ddy =0

Sel :
— — .
ml=—=g , M, = ,ml.m2=-1, Intersecting
-3 5 2
2x =3y +4=0
3x +2y +1=0
-11 10
hk)y=———
) 13 13
11 10
X =x,—— =dx =dx, , y=y1+E =dy =dy,

[2(““1_;;)_30’1"‘%)"'4]5]3‘1+[3(x1_%)+2(YI+%)+1:|dY1 =0
(2x, =3y )dx, +(3x, +2y,)dy, =0

Let y, =vx, =dy, =vdx +xdv

(2x, —3vx x|+ QBx, +2vx  )vdx | +x,dv)=0

Qx, +2v2x )dx, +(Bx,” +2vx *)dv =0

2x,(1+v 3 )dx  +x,*B+2)dv =0

ox +(3+212))dv ~0
X (I+v*?)

v
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2 “+ = dv + i

" (1+v2) (1+v2)

dv =0

2Ln ’x1’+3tan_1v +Ln ‘1 +v2‘ =c

2Lnlx,|+3tan (EL) + Ln
3

1+ (2L =
X

2Ln +3tan ' (— 13y 4 Lnf1+ (— 13

x__

Exam : Solve the D.E. (2x —3y —1)dx +(12x —18y —6)dy =0
Sol :

’”1=_—§=% 5 mz=:1—2=§ ,ml=m2 ,parallel

let z=2x -3y >y ——(z —-2x)>=>dy ——(dz —2dx)
(2x =3y —Ddx +6(2x —3y -y =

(z —Ddx +6(z —1dy =0

(z =Ddx +6(z —1)[%1(612 —2dx)i|=

(z —=Ddx —2(z —=1)(dz —2dx)=0
(z -Ddx —2(z —-1)dz +4(z —1dx =0
Sz —Ddx —2(z —-1)dz =0=5dx —2dz =0

Sn—=2 =@
5x =2(2x -3y)=c
x +6y =c
4-EXACT D.E. dalilf dulaliilt calaal)
il 13 dali Mdx + Nely =0 Hakaal) (95
oM _ON
R

ol g
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: :

fx.y)=]M@,p)x +d(y)
f&,y)=[NGe,y)dy +G(x)

oy Yy
ox oy
Exam : Solve the D.E. (2x +3x 2y Yix +(x* + 3y 2)a’y =)
Sol :

% =3x?

Cy cM ON

> =—>=..exact

ON ,| &y ox

— =3x

o J

f.y)=[M@x,y)x +¢(y)
fx.y)=[(@x +3x %y Xx +d(y)
F.y)=x"+x"y +4(»)

‘;yi=x3 +¢'()

¥ 132 = 145> # () =3y
p(v)=[d )y =[3y°dy =y* +c

fx,y)=x’+x’y +y’+c
2 g A ARy Jal)

fx.y)=|N(,yMy +Gx)
f@.y)=]G* +3y )y +G(x)
f,y)=x’y +y° +Gx)

ai:sxzy +G'(x)
ox

2x + 377 =377 +G'(x)=>G'(x)=2x

G(x)= IG "(x )dx =J2xdx =’+c

f(x,y)=x3y +y3+x2+c
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Exam : Solve the D.E. (cosy + yCosx )dx + (sinx —xSiny )dy =0
Sel :

oM
—— ==Siny +cosx
Cy 8M _CN
—— =..exact
cN _ ay &
—— =cosx —Siny
ox

f(x,y)=jM(x,y)dx +d(y)
fx,py)= I(COS}’ + yCosx Ydx + ¢(y)
f(x,y)=xcosy + ySinx +d(y)

ai = —xSiny +Sinx + ¢'(y)

M—%—M+M+¢(y):¢<y) 0
$) =[P )y =
fx,y)=xcosy +ySinx +c

5§ — Integration cofactor . Jalsdl) Jals
O &) 4l 8 ALomladl) Alabaal) s 13

oM M _ N ON
cy  ox

sl g u &lﬁlldﬁbMJM;\JJ\;AHQ&)EQH&JJLU&JJM“J! L g . gud

oM O©ON

h(X)— 8y ax — =eJ.h(x)d:c
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Exam ; Solve the D.E.  (2y —4x *)dx +xdy =0

Sol :
M _,)
Oy oM ON
\ #— = ..not exact
L
ox
-1 ldx -
h(x)=2—=i:>:u =ejfT =g =3
X %
(2xy —4x3)dx +x2dy =0
oM
oy Ox

f,y)=M(,p)dx +¢(y)
f@.y)=[@xy —4x )ix +4(y)
f.y)=xy —x"+4()

of

&v—=x2 +4(r)

¥ = 120 =0= () =c
f(x,y)=x2y —_xtte

Exam : Solve the D.E.
Cx’y? +4x%y +2xy 2 +xy 42y )x +2(y° +x°y +x)dy =0
Sol :

oM ?
—=4x3y +4x‘+4xy+4xy3+2
By oM ON )
- >8* ¢—ﬁ:‘>..n0texact
g=4xy +2 ¥
8M_8N
Oy ox  4x’y +4x?+4xy’ 4XM
(y +x%y +x) 2 +Xx)
ijdx 2

u=e




T s —— 00
p s —

G D) 25 ek 2 ) - g | 2
(2x°e” y +4x"e’ y +2xe” y“+xe  y +2ye )dx

+2(y 3ex2 +xzex2y +xe"'2)dy =0 exact
f@,y)=|N(,p)y +G(x)

f(x,y)=J2ySex2+2xzex2y +2xex2)c{y +G(x)
1 4 x? Poeni®n, D x?

f(x,y)=—ye +x’e y +2xe y +G(x)

ai—=xy4ex +x’e” (O)+y |:2x3e"'2+2xex2}

+y |:4x 2¢%" +2ex2}+G’(x)

G'x)=0=>G(x)=c

1 4 ixt 052, o0 72
f(x,y)=5y e +x'e y +2xe y+c

EREREEREREERREREREEREREERERELERERELRRERERRERE R R TR hvhnx

SOLVE
l>ydx +(x % —4x Yy =0

<
<2>Sin *xCosy dx +SinySecx dy =0
<

d
3>x(1—y);]§~+y(1+x)=o

<5>(x2 +1)(y? =Ddx +2xydy =0
<6>(4x +xy )dx +(y +x*y)dy =0
(Tx(*+Ddy +(y° —4y)dx =0
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SOLVE

<l>xdy —ydx = \/x >4y ldx

<2>\yzdy —(x +yP)dx =0
)

(3)x(x*+3y*)dy =y (y*+3x7)dx
dy Y

dx  x +.fxy

1)(2x =3y +4)dx +(Bx =2y +1)dy =0

2)(4x +2y +3)dx —(6x +3y —2)dy =0
)(2x =3y —Ddx =4(x +1)dy

)2y —x —4)dx =(2x —y +2)dy

2)(x*+y % +x)dx +(xy)dy =0

Y2xy e’ +2xy° +y)dx +(x’y e’ —x?y? —3x )y
4>yLnya’x +((x —Lny)dy =0

S5)ye™dx +xeVdy =0

Dxdy —ydx =x %y dx
2>xa’y —3ydx =x"y dx

(
S
(
(
3
(
S
(1)2x (ye* —1D)dx +e* dy =0
(
3
<
(
S
<
(
<3>(2xy2 —2y )dx +@Bx %y —4x)dy




It is not possible to find an explicit solution for this problem and so we will have to leave the
solution in its implicit form

- - Homogeneous Equation

Definition: A function f(x,y) is said to be homogeneous equation of order n if

fltx,ty) = "f(x,y)

Example:1- f(x,y)= x'2+y21n§

—— 1 f
2- flxy)=/y sin

3- x%3x° y+5y2x2-2y4

e 4

y

X y
ex+ tan (x)
Definition An equation of the form

Plx,y) dx+Q(x,y) d

is'said to be homogeneous equation the functions P(x,y) and Q(x,y) are homogeneous and of
the same order.

Method of solution

By usjr;g tthe substitution
y = ux
- _ dy =udx +x du
the homogeneous equation converted to separable equation.

Example: 1- 2xy dx+(x*+y%) dy=0

- 2- (Yx* —y? +y)dx-x dy=0 Integratiomof(dw/(1-u*)'?) is sin’'u

CXpd xo (){\7*; o

- R
C(/(‘)/IJ)YZX/ (’/ \ 7-\' . o i() | C( 40?
VLX) S A \-'jz | B ’.B - N\ )< (2 —g 4 U\XOI-V‘ ~f\')('j Y wX!

- ) K\,k) ‘;.\/\\Ql")( t-')(c\'\,\ :) (\/\((\/ / \(‘C'b\ec

— Y & {)((\ ;(1 Q\c)(( l\<l )(Cl\’\/ u‘ L\iKD/M \'k\\ ’jc"'\\ =

O

-9.

-x \/ (\Y /’/( /q\/\%)(“)/ ‘f ( >< V/l/t\/\r} q\/\ %J
K‘/‘ é G ! l 4

S WS w\i'( S



Exact Differentials equations

Theorem A necessary and sufficient condition that the DE

P(xy) dx +Q(x,y) dy =0

Be exact is that

a d
ap(x:J’) =5;Q(xly)

Method of solution

The solution of the exact DE is given by

x

Fey) = [ Poyyar+ f Qo y)dy = ¢
Xo
Where (X0,Yo) is any point at which the functxcm P(x,y) and Q(x,y) is defined.
Examples Show that the following DE’s are exact and find the 1-parameter family of
solutions
1- Cosy dx —(x siny —y*)dy = 0
2- (x-2xy+e")dx+(y-x*+xe’)dy = 0

Integrating F actors A multiplying factor which will convert an inexact DE into exact one is
called an infegrating factor.

Example
2 ()i
(y+y)dx-x dy = 0 is not-exact
LF.=y> -

(1+}17)dx —;—zdy =0 ,y#0 isexact

Finding an integrating factor

Simple exact DE

ydx +xdy=0 then d(_xy), 2xydx+x*dy = 0 d(x%y)

Vdxt2xydy=0 - dxyP), yd—y"fﬂ =0 d(x/y)

211 -



Linear First Order DE

These equation are equations of the type:
y + P(z)y = Q(z),y(zo) = %o

In order to solve this equation

1-multiply both side by p(x)= ef P(x)dx (Integral factor),we obtain

y' e;P(x)dx +P(x)efp(x)dxy — Q(x)efp(x)dx

2-This Way the L.H.S. equation is the derivative of some function, which is
d (y ejP(x)dx) — Q(x)efP(x)dx
3- By integration
y efP(x)dx — f Q(x;\,efP(x)dx +C

4- use the initial condition to find the constant of integration c.

Examplel Solve the following IVP.

7 + 4 — 3
= yryrsr
o< _
Example2 Solve the following IVP
-2v'-2v=1x = V4v=—1x u(x)=e"

Bernoulli Differential Equations
In this section we are going to take a look at differential-equations in the form,
. L : )”’*‘ p(x)y =g (7() yn . |
where p{x) and g(x) are continuous functions on the interval we’re working on and n is a real
number. Differential equations in this form are called Bernoulli Equations.

Note that if #=0 or # =1 then the equation is linear and we already know how to solve it in
these cases. Therefore, in this section we’re going to be looking at solutions for values of n

other than these two.

In order to solve these we’ll first divide the differential equation by y* to get,

-12-



Y +p(x) v =q(1)

We are now going to use the substitution

v= yl—n
So, taking the derivative gives us,

V= (l - n) yoy!
Now, plugging this as well as our substitution into the differential equation gives,

Ijnv'-f-p(x)v:q(x)

This is a linear differential equation that we can solve for v and once we have this in hand we
can also get the solution to the original differential equation by plugging v back into our
substitution and solving for y.

Let’s take a look at an example.

Example 1 Solve the following IVP.

"Solution
So, the first thing that we need to do is get this into the “proper” form and that means dividing

-everything by b Doing this gives,

4
] y 2y 1o 3
2 x

o

The substitution and derivative that we’ll need-here is,
v=y~ vi= -y
With this substitution the differential equation becomes,

4
V'+—v=x*

X

Here’s the solution to this differential equation.

- 4
vf_ﬂ,,:_f = ﬂ(x):e"Td"___e—mlxI:z{
x
f(x"v)'dx= I~x“ dx
v=-ln|d+e = v(x)=cxt-x'Inx

So, to get the solution in terms of y all we need to do is plug the substitution back in. Doing
this gives,

y =1 (c—ln x)

-13 -




At this point we can solve for y and then apply the initial condition or apply the initial
condition and then solve for y. We’ll generally do this with the later approach so let’s apply

the initial condition to get,
1

(-1)" =c2 -241n2 = c=ln2-—

Plugging in for ¢ and solving for y gives,
1 -16 -16

y(#)= F2-g-lnx) #(1+16lnx-16l2) x'(1+16In4)

Example 2 Solve the following IVP.
\ y'= Sy +e ¥y~ ¥(0)=2
%j — I \/ } - \ N
Solution - \ ")

The first thing we’ll need to do here is multiply through by ¥* and we’ll alsc do a little
rearranging to get things into the form we’ll need for the linear differential equation. This

gives,
ylyr - ij: o<

The substitution here and its derivative is,

- v=y’ v'=3yy
o< —_
Plugging the substitution into the dif_?fere_nt_ial equation gives,
%v'—5v=e"“‘ = v —15v=2"" ulx)=¢"
v(x)=cel.’>x_%e—2x -
Now go back to y’s.
g = cel - Fedt _

Applying the initial condition and solving Tor ¢ gives,
8 =C- 127 = C= I

| Plugging in ¢ and solving for y gives,

1
139e™ - 3e““j3

y(x):[ 17

- 14 -
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Example 3 Sulve the following IVP.

5y~ 2y =xy y(0)=—2
Solution
First get the differential equation in the proper form and then write down the substitution.
6y*ty'—2y3=x = v=y3 vi= =3yt

Plugging the substitution into the differential equation gives,

—2v'=2v=x = Viv=—ix ﬁ(x)=e"

Again, we’ve rearranged a little and given the integrating factor needed to solve the linear
differential equation. Upon solving the linear differential equation we have,

v(x) =—;—(x—.l)+ce"‘

Now back substitute to get back into ’s.

> =——%(x—l)+ce""

Now we need to apply the initial condition and solve for c.

1_1 - _35
"‘3'—7'*‘6' = c= k]

Plugging in ¢ and solving for y gives,

¥(x)=~

To this point we’ve only worked-examples in which n was an integer (positive and negaiive)
and so we should work a quick example where n is not an integer.

Example 4 Solve the following IVP.

y'-l-%—\/)-/:O y(=0 -

Solution _
Let’s first get the differential equation into proper form.

1 ] 1
yi—y =yl = y '+
x
The substitution is then,

v=y Vi=—y

Now plug the substitution into the differential equation to get,

-15-
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T "’""%""“'l””""’i&

2v’+lv=l = V’+—1‘V='l‘ ,u(x):xi
x 2x 2

As we’ve done with the previous examples we’ve done some rearranging and given the
integrating factor needed for solving the linear differential equation. Solving this gives us,

v(z)=+x +ex 2

In terms of y this is,

1
yi=lx+ex?

Applying the initial condition and solving for ¢ gives,
0=3+c = €= —3

Plugging in for ¢ and solving for y gives us the solution.

N2 3 3

- -2x3 41
_tr,_1. 73 2 =%

)’(7() (zﬂ 3X ] ox

_16-



= U NERDIFFERENTIAL - BERNOLI EQUATIONS

lEep- E

Example 1 :

Solve the D-E : 12— 42

Solution :
1 2
p)=—, Qx)=x
F= efp(x)dx — ef%dx = elnx _
yi =jQ(x)Idx
yx = j x%x dx
x4
yx = 1 +C
B ' @
Y=2 7%
Example 2 :

Solve the D-E : xdy + ydx = xsinx® dx

Solution :

By dividing on dx

d
=24 y = xsinx?

i== ={/2\1E
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1 :
p(x) =— , Q(x) = sinx®

I = efp(x)dx — ef%dx = el‘nx = A°
yi =fQ(x)Idx

yx = j xsinx? dx

—
yx = 70035«2 +C

-1 2, C
= —COSX —
y 2x X

Example 3 :

Solve the D-E : dy + 2xydx = xe™™ dx

Solution :

By dividing on dx

dy 2
—Z L 2xv = xe ¥
dx T Xy xXe

p(x)=2x , Q(x) = xe

[ = e/ PXdx — g 2xdx _ exz

— ___—{’;E
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yi =]Q(x)1dx

yca"“2 = f e* xe * dx

ye"2 = f xdx
2 X xZe~* .
ye =7+C B A +Ce
Example 4 :

Solve the D-E : }’%+2x=y3

Solution :

By dividing on y

dx+2x_ 3
dy 'y <

2
g(:y):— ’ h(y):yz
y
2
§i= efg(Y)dy = ef;dy — eZLnY = eLnyZ = yz

xI =fh(y)1dy

xy? = f y2y? dy

—_— ={£§




LI NER DI fFERENTIAL - BERNOU EQUATIONS

H (ecy.-

|0

y
2:—
Xy 5 +C
3
y C
x=?+?
Example 5 :

Solve the D-E : % + 2xy = 4y

Solution :

gly)=2y , h(y) =4y

I = el 90dy — of2ydy _ ¥?
xI = f h(y)Idy
xer = f 4ye3’2 dy

xe”2 — 2’ +C

x=2+ce?

N
4]

{
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Example H-W :
Solve the following D-E
O
o
1) y +y=sinx °

2) x—-— 2y = x3cos4x

3) x%=y+x3+3x2—2x

4) Z—;+ X = 4cos2y

S) % + ycotx = 5e°os*

Bernoli Equation

The general form to bernoli equation is :
Zip®y=Q®)y" mE1 oo (1)

Such that p and @ functions for x only -

method of solution :

transform eq(1) to L-D-E by multiplying by y*

_ny

yr=+p@y' ™ =Q(x) e (2)

— 1-n .‘Z: — _nﬂ Ld_.
let z=y e~ 1-n)y e i
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ey E

Subistituting eq(3) in eq(2) we get :

1 dz

T—nag p(x)z = Q(x)

The last equation is L-D-E and its solution is :

zI= ] Q(x).Idx

By the same method ,The general form to bernoli equation is :

ZrgA=h) A nrl e (1)
Such that g and h functions for y only -

method of solution :

transform eq(1) to L-D-E by multiplying by x"

L GO b)) ()
— a1 E_ . —nﬂf LE— —nﬂ
let z=x""> dy—(l n)x il (3)

Subistituting eq(3) in eq(2) we get :

1 dz

@yt 90z =h0)

The last equation is L-D-E and its solution is :

z.I= fh(y).l dy

= i:;g
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Example 6 :

Solve the D-E : xy —% 23 y3e—x2

Solution :

multiplying by (-1)
d o
d_i’ —xy=—y3e* -.... 7)

Eq(1) is bernoli equation , multiply (1) by y3

—3dy s —x2
y3a_xy 2:_ex ..... (2)

_ a2 dz _ _5.,-3dy _ -1dz _  _3dy _
Letz-y =>dx— Zy dx = 2 dx dx (3)

—1dz o
———xZ=—€
2 dx

Multiply by (-2)

:—i +2xz=2e% is L-D-E

p(x)=2x , Q(x)=2e*

[ = eJP@dx _ gf2xdx _ ex2

zI=jQ(x)Idx
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2

2 2
ze* =jZe‘J'r e* dx

2

ze* = dex

ze* = 2x +C > z= 2xe~* +C e—*

Example 7 :

Solve the D-E : %— y = —xy°

Solution :

Eq(1) is bernoli equation , multiply (1) by y=>

_ed g
y Sy t=—x - (2)

! 9z _ _py-5% _ -1dz _  sdy | .
Let 5= :>dx_ 4’)’ dx == 4 dx dx (3)

Subistitute eq(3) in eq(2) we get :
—1dz

—_——— — —x

4 dx
Multiply by (-4)
:—i+ 4z =4x s L-D-E

p(x)=4 , Q(x)=4x

___—%::;g
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I = el P®dx _ [ 4dx _ p4x
zl =jQ(x)Idx
zet* = j 4x e** dx
4x 4x 1 4x
ze"t =xet ——e™+C
4
e4x

1
F= xe4x—Ze4x+C

Example 8 :

Solve the D-E : dx — xdy = yx*dy

Solution :

Dividing by dy

. dz —2dx dz —2dx
Lgtz:xlz;»—:—x 207 o 22 4222 (3)
dy dy dy dy

Subistitute eq(3) in eq(2) we get :




lEc)- E
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Multiply by (-1)
dz o 5 N.
d—y+z- y is L-D-E

gy)=1, h(y)=—-y

| = e/ 90y — pfdy — p¥
zlth(y)ldy

zeY =j—y e’ dy

ze¥=—(ye?—eY)+C

ey
?z—yey+ e’ +C

Example 9 :

Solve the D-E : dx — 2xydy = 6x3y%e~2Y" dy

Solution :

Dividing by dy

j_; - ny — 6x3yze_2y2 ..... (])

3

Eq(7) is bernoli equation , multiply (T) by x~
—— =% n E
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-34x -2 _ gvZe-2" .....
d—y—Zx =6y-e 2)
i d _3d ~1d _3d
let z=x2 == -2x3= === x3=2
dy dy 2 dy dy

Subistitute eq(3) in eq(2) we get :

—1dz 2
. - 2 ,—2y
3 dy 2zy = 6y“e

Multiply by (-2)

Z—; +4zy = —12y%e 2"’  js L-D-E

gly) =4y , h(y) = —12312e"23’2

| = el tydy — o2v?

zI =]h(y)ldy
ze?’ = f —12y%e~2" 2y’ dy
ze?" = f —12y* dy

ze? = —4y3 4 C

x2e® = —ay3 + C

..... (3)

2
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B ey

Example H-W :

Solve the following D-E

1) xdy + ydx = x3y° dx
2) %-+xy= 6x./y
2y, u 38
3 -+y=y
4) dx + xdy = x*e? dy
dx -1

LF e 8
S5) o (cosy)x

@)

o
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