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De Moivre’s Theorem 

Prerequisites 

You should be familiar with the various ways of representing a complex number in Cartesian 

form, in polar (trigonometric) form and in exponential form.   
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The first three here are three forms of the polar representation of z; the next two are Cartesian 

forms, the last two are exponent forms.  To understand this chapter you also require knowledge 

of mathematical induction. 

De Moivre’s theorem 

De Moivre’s theorem is a result that enables us to find powers and roots of complex numbers.  It 

tells us how to evaluate powers of a complex number – that is, how to find zn.  It can be expressed 

in Cartesian and polar (trigonometric) form. 

De Moivre’s theorem – Cartesian form 

       (cos sin ) cos sinn n nz r i r n i n

De Moivre’s theorem – Polar form 

  [ , ] [ , ]n n nz r r n

Example (1) 

Express  
2

2cos 2 sin
8 8

i
   

 
 in the form x iy . 
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Solution 
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2cos 2 sin 2, Putting  in polar form
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2 ,2 Applying De Moivre's theorem
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Proof of De Moivre’s Theorem 

The proof of De Moivre’s theorem follows by mathematical induction and exploits the property of 

multiplication of complex numbers.  In polar form this is 

    1 1 2 2 1 2 1 2[ , ][ , ] [ , ]r r r r  

The proof in polar form is particularly straightforward and elegant. 

Proof of De Moivre’s Theorem 

To prove 

  [ , ] [ , ]n n nz r r n  

Proof by mathematical induction. 

For the particular step, when     1 11    [ , ] [ ,1 ]n r r  

For the induction step the induction hypothesis is 

For n = k  [ , ] [ , ]k kr r k  

 [ , ] [ , ]k kr r k  

To prove for n = k + 1     1 1[ , ] [ , 1 ]k kr r k .  Now
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[ , ] Multiplication of complex numbers
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Hence the induction step holds and the result is true for all n. Converting into Cartesian form 

gives:        (cos sin ) cos sinn n nz r i r n i n
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Interpretation of De Moivre’s Theorem and the n roots of unity 

Suppose that  [ , ]z r .  For a definite illustration let us consider 3 3[ ,3 ]z r . Then graphically we 

plot 3z  by noting (1) that the argument of 3z  is 3 times the argument of z; (2) that the modulus of 

3z  is the cube of the modulus of z. 
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If r  > 1  then the values of 2 3 4, , ,...z z z  “spiral outwards”. 

z
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If r  < 1 then the values 2 3 4, , ,...z z z ”spiral inwards”.  Whilst if r = 1 then the values of 2 3 4, , ,...z z z  

all lie on the unit circle. 

z

x
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z

3 z2

z4
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The previous illustration suggests that we can apply De Moivre’s theorem in reverse to find 

solutions to the equation  1nz .  This is indeed the case.  We observe that the equation 2 1x  has 

two solutions, x  = i and x  = i.  Likewise, we expect the equation 

 1nz  

to have n solutions, and this is the case.  In polar form the equation  1nz  takes the form 

 [ , ] [1,0]nr

Applying De Moivre’s theorem we get 

 [ , ] [1,0]nr n

Hence   1 and 1 and 0nr n n .  One solution to the equation 0n   is   = 0.  However, we

should recall that the angle 0 is given modulo 2  and that

        0 2 4 ... 2 ...   mod2n

Hence the n roots of unity – that is the n roots to the equation  1nz  are given by the n distinct 

solutions to the equation  0 mod2n 

   
2 4 6

0, , , ,....
n n n

 

The solutions in polar form are the n distinct complex numbers 

      
             

2
1,0 , 1, , 1, , 1, , ...

4 6
n n n

 

Example (2) 

Solve 3 1z  

Solution 

By substitution of  3n  into the formula 

      
             

2
1,0 , 1, , 1, , 1, , ...

4 6
n n n

 

the solutions are 

   
         

2
1,0 , 1, , 1,

3 3

4
 

Graphically, these solutions are represented as follows. 
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z   = [1, 0]

z   = 1, [    ]2

1

32

z   = 1, [    ]4
33

2
32

3

2
3

In Cartesian form 

   

 

 
        

 
                     

1 2

3

2 2 1 3
cos0 sin 0 1,0 cos sin ,

3 3 2 2

2 2 1 3
cos sin ,

3 3 2 2

z i z i

z i

We can also use De Moivre’s theorem to find solutions to equations such as  4 1z . 

Example (3) 

Solve  4 1z . 

Solution 

 

 
 
  

   

   




 



                        

4

1 2 3 4

[1, ] [1, ]

[1,4 ] [1, ]

4 mod2

3 5 7
, , ,

4 4 4 4
3 5 7

1, 1, 1, 1,
4 4 4 4

z z z z
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In Cartesian form 

   
    

 
     

           
     

1

2 3 4

1 1
cos sin ,4 4 2 2

1 1 1 1 1 1
, , ,

2 2 2 2 2 2

z i

z z z

Applications of De Moivre’s theorem to trigonometric identities 

By expanding   cos sin
n

i  using the Binomial theorem (or Pascal’s triangle) and equating with 

 cos sinn i n  we can obtain further trigonometric identities.  Recall that De Moivre’s theorem is 

      cos sin cos sin
n

i n i n

Since the real and imaginary parts of both sides of this equation are independent of each other, 

we can equate real and imaginary parts to obtain trigonometric identities. The whole process is 

best grasped through illustration. 

Example (4) 

Prove       5 3cos5 16cos 20cos 5cos . 

Solution 

By De Moivre’s theorem 

      
5

cos sin cos5 sin5i i  

Pascal’s triangle up to n = 5 gives 



1
1 1

1 1
1 1

1 1

2
33

4 46
1 15 1010 5  

Hence 

      

    

   

  

5 4 2 3 2

3 2 3 4 4 5 5

cos5 sin5 cos 5 cos sin 10 cos sin

10 cos sin 5 cos sin sin

i i i

i i i

Since  2 1i we have 

      

    

   

  

5 4 3 2

2 3 4 5

cos5 sin5 cos 5 cos sin 10cos sin

10 cos sin 5cos sin sin

i i

i i

On equating real parts and using the identity   2 2cos sin 1  we get 

     
    
     

    
  

  

    

     

    

  

5 3 2 4

5 3 2 2 2

5 3 5 2 4

5 3 3 5

5 3

cos5 cos 10cos sin 5cos sin

cos 10cos (1 cos ) 5cos (1 cos )

cos 10cos 10cos 5cos (1 2cos cos )

11cos 10cos 5cos 10cos 5cos

16cos 20cos 5cos

 

By equating imaginary parts we can also show 

     
    
     

     
  

  

   

     

     

  



4 2 3 5

2 2 2 3 5

2 4 3 5 5

3 5 3 5 5

5 3

sin5 5cos sin 10cos sin sin

5(1 sin ) sin 10(1 sin )sin sin

5(1 2sin sin )sin 10sin 10sin sin

5sin 10sin 5sin 10sin 10sin sin

16sin 20sin 5sin
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EXAMPLE 2  Complete the square to evaluate

L

dx

28x - x2
.

Solution We complete the square to simplify the denominator:

 8x - x2 = -(x2 - 8x) = -(x2 - 8x + 16 - 16)

= -(x2 - 8x + 16) + 16 = 16 - (x - 4)2.

Then

L

dx

28x - x2
=

L

dx

216 - (x - 4)2

=
L

du

2a2 - u2
  

a = 4, u = (x - 4),

du = dx

= sin-1 auab + C Table 8.1, Formula 18

= sin-1 ax - 4
4
b + C.

TABLE 8.1 Basic integration formulas

1.
L

k dx = kx + C (any number k)

2.
L

xn dx = xn+1

n + 1
+ C (n ≠ -1)

3.
L

dx
x = ln 0 x 0 + C

4.
L

ex dx = ex + C

5.
L

ax dx = ax

ln a
+ C (a 7 0, a ≠ 1)

6.
L

sin x dx = -cos x + C

7.
L

cos x dx = sin x + C

8.
L

sec2 x dx = tan x + C

9.
L

csc2 x dx = -cot x + C

10.
L

sec x tan x dx = sec x + C

11.
L

csc x cot x dx = -csc x + C

12.
L

tan x dx = ln 0 sec x 0 + C

13.
L

cot x dx = ln 0 sin x 0 + C

14.
L

sec x dx = ln 0 sec x + tan x 0 + C

15.
L

csc x dx = - ln 0 csc x + cot x 0 + C

16.
L

sinh x dx = cosh x + C

17.
L

cosh x dx = sinh x + C

18.
L

dx

2a2 - x2
= sin-1ax

ab + C

19.
L

dx
a2 + x2 = 1

a tan -1ax
ab + C

20.
L

dx

x2x2 - a2
= 1

a sec-1 ` xa ` + C

21.
L

dx

2a2 + x2
= sinh-1ax

ab + C (a 7 0)

22.
L

dx

2x2 - a2
= cosh-1ax

ab + C (x 7 a 7 0)
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EXAMPLE 3  Evaluate the integral

L
(cos x sin 2x + sin x cos 2x) dx.

Solution Here we can replace the integrand with an equivalent trigonometric expression 
using the Sine Addition Formula to obtain a simple substitution:

L
(cos x sin 2x + sin x cos 2x) dx =

L
(sin (x + 2x)) dx

=
L

sin 3x dx

=
L

1
3 sin u du u = 3x, du = 3 dx

= - 1
3 cos 3x + C. Table 8.1, Formula 6

In Section 5.5 we found the indefinite integral of the secant function by multiplying it 
by a fractional form identically equal to one, and then integrating the equivalent result. We 
can use that same procedure in other instances as well, which we illustrate next.

EXAMPLE 4 Find
L

p>4

0

dx
1 - sin x

.

Solution We multiply the numerator and denominator of the integrand by 1 + sin x,
which is simply a multiplication by a form of the number one. This procedure transforms 
the integral into one we can evaluate:

L

p>4

0

dx
1 - sin x

=
L

p>4

0

1
1 - sin x

# 1 + sin x
1 + sin x

dx

=
L

p>4

0

1 + sin x
1 - sin2 x

dx

=
L

p>4

0

1 + sin x
cos2 x

dx

=
L

p>4

0
(sec2 x + sec x tan x) dx

= c tan x + sec x d p>4
0

= 11 + 22 - (0 + 1)2 = 22.

EXAMPLE 5 Evaluate

L

3x2 - 7x
3x + 2

dx.

Solution The integrand is an improper fraction since the degree of the numerator is 
greater than the degree of the denominator. To integrate it, we perform long division to 
obtain a quotient plus a remainder that is a proper fraction:

3x2 - 7x
3x + 2

= x - 3 + 6
3x + 2

.

x - 3

3x + 2)3x2 - 7x

3x2 + 2x

-9x

-9x - 6

+ 6

Use  Table 8.1,
Formulas 8 and 10
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Therefore,

L

3x2 - 7x
3x + 2

dx =
L
ax - 3 + 6

3x + 2
b dx = x2

2
- 3x + 2 ln 0 3x + 2 0 + C.

Reducing an improper fraction by long division (Example 5) does not always lead to 
an expression we can integrate directly. We see what to do about that in Section 8.5.

EXAMPLE 6 Evaluate

L

3x + 2

21 - x2
dx.

Solution We first separate the integrand to get

L

3x + 2

21 - x2
dx = 3

L

x dx

21 - x2
+ 2

L

dx

21 - x2
.

In the first of these new integrals, we substitute

u = 1 - x2, du = -2x dx, so x dx = -1
2

du.

Then we obtain

 3
L

x dx

21 - x2
= 3

L

(-1>2) du

2u
= - 3

2L
u-1>2 du

= - 3
2
# u1>2
1>2 + C1 = -321 - x2 + C1.

The second of the new integrals is a standard form,

2
L

dx

21 - x2
= 2 sin-1 x + C2.  Table 8.1, Formula 18

Combining these results and renaming C1 + C2 as C gives

L

3x + 2

21 - x2
dx = -321 - x2 + 2 sin-1 x + C.

The question of what to substitute for in an integrand is not always quite so clear. 
Sometimes we simply proceed by trial-and-error, and if nothing works out, we then try 
another method altogether. The next several sections of the text present some of these new 
methods, but substitution works in the next example.

EXAMPLE 7 Evaluate

L

dx11 + 2x23 .

Solution We might try substituting for the term 2x, but we quickly realize the deriva-
tive factor 1>2x is missing from the integrand, so this substitution will not help. The 
other possibility is to substitute for 11 + 2x2, and it turns out this works:

L

dx11 + 2x23 =
L

2(u - 1) du

u3

u = 1 + 2x, du = 1

22x
dx;

dx = 22x du = 2(u - 1) du

=
L
a 2

u2 - 2
u3b du
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= -2
u

+ 1
u2 + C

= 1 - 2u
u2 + C

=
1 - 211 + 2x2
11 + 2x22 + C

= C - 1 + 22x11 + 2x22 .

When evaluating definite integrals, a property of the integrand may help us in calcu-
lating the result.

EXAMPLE 8 Evaluate 
L

p>2

-p>2
x3 cos x dx.

Solution No substitution or algebraic manipulation is clearly helpful here. But we 
observe that the interval of integration is the symmetric interval 3-p>2, p>24 . Moreover, 
the factor x3 is an odd function, and cos x is an even function, so their product is odd. 
Therefore,

L

p>2

-p>2
x3 cos x dx = 0. Theorem 8, Section 5.6

Assorted Integrations

The integrals in Exercises 1–40 are in no particular order. Evaluate 
each integral using any algebraic method or trigonometric identity 
you think is appropriate, and then use a substitution to reduce it to a 
standard form.

1.
L

1

0

16x
8x2 + 2

dx 2.
L

x2

x2 + 1
dx

3.
L

(sec x - tan x)2 dx 4.
L

p>3

p>4
dx

cos2 x tan x

5.
L

1 - x

21 - x2
dx 6.

L

dx

x - 2x

7.
L

e-cot z

sin2 z
dz 8.

L

2ln z3

16z
dz

9.
L

dz
ez + e- z 10.

L

2

1

8 dx
x2 - 2x + 2

11.
L

0

-1

4 dx
1 + (2x + 1)2 12.

L

3

-1

4x2 - 7
2x + 3

dx

13.
L

dt
1 - sec t

14.
L

 csc t sin 3t dt

15.
L

p>4

0

1 + sin u
cos2 u

du 16.
L

du

22u - u2

17.
L

ln y

y + 4y ln2 y
dy 18.

L

22y dy

22y

19.
L

du
sec u + tan u

20.
L

dt

t23 + t2

21.
L

4t3 - t2 + 16t
t2 + 4

dt 22.
L

x + 22x - 1

2x2x - 1
dx

23.
L

p>2

0
21 - cos u du 24.

L
(sec t + cot t)2 dt

25.
L

dy

2e2y - 1
26.

L

6 dy

2y (1 + y)

27.
L

2 dx

x21 - 4 ln2 x
28.

L

dx

(x - 2)2x2 - 4x + 3

29.
L

(csc x - sec x)(sin x + cos x) dx

30.
L

3 sinh ax
2

+ ln 5b dx

31.
L

3

22

2x3

x2 - 1
dx 32.

L

1

-1
21 + x2 sin x dx

33.
L

0

-1 A
1 + y
1 - y

dy 34.
L

ez+ez
dz

Exercises 8.1
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35.
L

7 dx

(x - 1)2x2 - 2x - 48
36.

L

dx

(2x + 1)24x + 4x2

37.
L

2u3 - 7u2 + 7u
2u - 5

du 38.
L

du
cos u - 1

39.
L

dx
1 + ex

Hint: Use long division.

Evaluate

L
(1 + 3x3)ex3

dx.

48. Use the substitution u =  tan x to evaluate the integral

L

dx
1 + sin2 x

.

49. Use the substitution u = x4 + 1 to evaluate the integral

L
x72x4 + 1 dx.

50. Using different substitutions Show that the integral

L
((x2 - 1)(x + 1))-2>3dx

can be evaluated with any of the following substitutions.

a. u = 1>(x + 1)

b. u = ((x - 1)>(x + 1))k for k = 1, 1>2, 1>3, -1>3, -2>3,
and -1

c. u = tan-1 x d. u = tan-1 2x

e. u = tan-1 ((x - 1)>2) f. u = cos-1 x

g. u = cosh-1 x

  What is the value of the integral?

40.
L

2x
1 + x3 dx

Hint: Let u = x3>2.
Theory and Examples
41. Area Find the area of the region bounded above by y = 2 cos x

and below by y = sec x, -p>4 … x … p>4.

42. Volume Find the volume of the solid generated by revolving 
the region in Exercise 41 about the x-axis.

43. Arc length Find the length of the curve y = ln (cos x),
0 … x … p>3.

44. Arc length Find the length of the curve y = ln (sec x),
0 … x … p>4.

45. Centroid Find the centroid of the region bounded by the x-axis,
the curve y = sec x, and the lines x = -p>4, x = p>4.

46. Centroid Find the centroid of the region bounded by the x-axis,
the curve y = csc x, and the lines x = p>6, x = 5p>6.

47. The functions y = ex3
 and y = x3ex3

 do not have elementary anti-
derivatives, but y = (1 + 3x3)ex3

 does.

8.2 Integration by Parts

Integration by parts is a technique for simplifying integrals of the form

L
ƒ(x)g(x) dx.

It is useful when ƒ can be differentiated repeatedly and g can be integrated repeatedly 
without difficulty. The integrals

L
x cos x dx and

L
x2ex dx

are such integrals because ƒ(x) = x or ƒ(x) = x2 can be differentiated repeatedly to 
become zero, and g(x) = cos x or g(x) = ex can be integrated repeatedly without diffi-
culty. Integration by parts also applies to integrals like

L
 ln x dx and

L
ex cos x dx.

In the first case, ƒ(x) =  ln x is easy to differentiate and g(x) = 1 easily integrates to x. In 
the second case, each part of the integrand appears again after repeated differentiation or 
integration.

Product Rule in Integral Form

If ƒ and g are differentiable functions of x, the Product Rule says that

d
dx
3ƒ(x)g(x)4 = ƒ′(x)g(x) + ƒ(x)g′(x).
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In terms of indefinite integrals, this equation becomes

L

d
dx
3ƒ(x)g(x)4 dx =

L
3ƒ′(x)g(x) + ƒ(x)g′(x)4 dx

or

L

d
dx
3ƒ(x)g(x)4 dx =

L
ƒ′(x)g(x) dx +

L
ƒ(x)g′(x) dx.

Rearranging the terms of this last equation, we get

L
ƒ(x)g′(x) dx =

L

d
dx
3ƒ(x)g(x)4 dx -

L
ƒ′(x)g(x) dx,

leading to the integration by parts formula

L
ƒ(x)g′(x) dx = ƒ(x)g(x) -

L
ƒ′(x)g(x) dx (1)

Sometimes it is easier to remember the formula if we write it in differential form. Let 
u = ƒ(x) and y = g(x). Then du = ƒ′(x) dx and dy = g′(x) dx. Using the Substitution 
Rule, the integration by parts formula becomes

Integration by Parts Formula

L
u dy = uy -

L
ydu (2)

This formula expresses one integral, 1u dy, in terms of a second integral, 1ydu. 
With a proper choice of u and y, the second integral may be easier to evaluate than the 
first. In using the formula, various choices may be available for u and dy. The next exam-
ples illustrate the technique. To avoid mistakes, we always list our choices for u and dy,
then we add to the list our calculated new terms du and y, and finally we apply the formula 
in Equation (2).

EXAMPLE 1 Find

L
x cos x dx.

Solution We use the formula 1u dy = uy - 1y du with

u = x, dy = cos x dx,

du = dx, y = sin x. Simplest antiderivative of cos x

Then

L
x cos x dx = x sin x -

L
sin x dx = x sin x + cos x + C.

There are four apparent choices available for u and dy in Example 1:

1. Let u = 1 and dy = x cos x dx. 2. Let u = x and dy = cos x dx.

3. Let u = x cos x and dy = dx. 4. Let u = cos x and dy = x dx.
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Choice 2 was used in Example 1. The other three choices lead to integrals we don’t know how 
to integrate. For instance, Choice 3, with du = (cos x - x sin x) dx, leads to the integral

L
(x cos x - x2 sin x) dx.

The goal of integration by parts is to go from an integral 1u dy that we don’t see how 
to evaluate to an integral 1y du that we can evaluate. Generally, you choose dy first to be 
as much of the integrand, including dx, as you can readily integrate; u is the leftover part. 
When finding y from dy, any antiderivative will work and we usually pick the simplest 
one; no arbitrary constant of integration is needed in y because it would simply cancel out 
of the right-hand side of Equation (2).

EXAMPLE 2 Find

L
ln x dx.

Solution Since 1 ln x dx can be written as 1 ln x # 1 dx, we use the formula 

1u dy = uy - 1y du with

u = ln x Simplifies when differentiated dy = dx Easy to integrate

du = 1
x dx, y = x. Simplest antiderivative

Then from Equation (2),

L
ln x dx = x ln x -

L
x # 1x dx = x ln x -

L
dx = x ln x - x + C.

Sometimes we have to use integration by parts more than once.

EXAMPLE 3 Evaluate

L
x2ex dx.

Solution With u = x2, dy = ex dx, du = 2x dx, and y = ex, we have

L
x2ex dx = x2ex - 2

L
xex dx.

The new integral is less complicated than the original because the exponent on x is reduced 
by one. To evaluate the integral on the right, we integrate by parts again with 
u = x, dy = ex dx. Then du = dx, y = ex, and

L
xex dx = xex -

L
ex dx = xex - ex + C.

Using this last evaluation, we then obtain

L
x2ex dx = x2ex - 2

L
xex dx

= x2ex - 2xex + 2ex + C,

where the constant of integration is renamed after substituting for the integral on the right.

The technique of Example 3 works for any integral 1 xnex dx in which n is a positive 
integer, because differentiating xn will eventually lead to zero and integrating ex is easy.

Integrals like the one in the next example occur in electrical engineering. Their evalu-
ation requires two integrations by parts, followed by solving for the unknown integral.
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EXAMPLE 4 Evaluate

L
ex cos x dx.

Solution Let u = ex and dy = cos x dx. Then du = ex dx, y = sin x, and

L
ex cos x dx = ex sin x -

L
ex sin x dx.

The second integral is like the first except that it has sin x in place of cos x. To evaluate it, 
we use integration by parts with

u = ex, dy = sin x dx, y = -cos x, du = ex dx.

Then

L
ex cos x dx = ex sin x - a-ex cos x -

L
(-cos x)(ex dx)b

= ex sin x + ex cos x -
L

ex cos x dx.

The unknown integral now appears on both sides of the equation. Adding the integral to 
both sides and adding the constant of integration give

2
L

ex cos x dx = ex sin x + ex cos x + C1.

Dividing by 2 and renaming the constant of integration give

L
ex cos x dx = ex sin x + ex cos x

2
+ C.

EXAMPLE 5  Obtain a formula that expresses the integral

L
cosn x dx

in terms of an integral of a lower power of cos x.

Solution We may think of cosn x as cosn-1 x # cos x. Then we let

u = cosn-1 x and dy = cos x dx,

so that

du = (n - 1) cosn-2 x (-sin x dx) and y = sin x.

Integration by parts then gives

L
cosn x dx = cosn-1 x sin x + (n - 1)

L
sin2 x cosn-2 x dx

= cosn-1 x sin x + (n - 1)
L

(1 - cos2 x) cosn-2 x dx

= cosn-1 x sin x + (n - 1)
L

cosn-2 x dx - (n - 1)
L

cosn x dx.

If we add

(n - 1)
L

cosn x dx
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to both sides of this equation, we obtain

n
L

cosn x dx = cosn-1 x sin x + (n - 1)
L

cosn-2 x dx.

We then divide through by n, and the final result is

L
cosn x dx = cosn-1 x sin x

n + n - 1
n

L
cosn-2 x dx.

The formula found in Example 5 is called a reduction formula because it replaces an inte-
gral containing some power of a function with an integral of the same form having the 
power reduced. When n is a positive integer, we may apply the formula repeatedly until the 
remaining integral is easy to evaluate. For example, the result in Example 5 tells us that

L
cos3 x dx = cos2 x sin x

3 + 2
3L

cos x dx

= 1
3 cos2 x sin x + 2

3 sin x + C.

Evaluating Definite Integrals by Parts

The integration by parts formula in Equation (1) can be combined with Part 2 of the Fun-
damental Theorem in order to evaluate definite integrals by parts. Assuming that both ƒ′
and g′ are continuous over the interval 3a, b4 , Part 2 of the Fundamental Theorem gives

Integration by Parts Formula for Definite Integrals

L

b

a
ƒ(x)g′(x) dx = ƒ(x)g(x) d

a

b

-
L

b

a
ƒ′(x)g(x) dx (3)

EXAMPLE 6  Find the area of the region bounded by the curve y = xe-x and the 
x-axis from x = 0 to x = 4.

Solution The region is shaded in Figure 8.1. Its area is

L

4

0
xe-x dx.

Let u = x, dy = e-x dx, y = -e-x, and du = dx. Then,

L

4

0
xe-x dx = -xe-x40

4 -
L

4

0
(-e-x) dx

= 3-4e-4 - (-0e-0)4 +
L

4

0
e-x dx

= -4e-4 - e-x40
4

= -4e-4 - (e-4 - e-0) = 1 - 5e-4 ≈ 0.91.

Tabular Integration Can Simplify Repeated Integrations

We have seen that integrals of the form 1ƒ(x)g(x) dx, in which ƒ can be differentiated repeat-
edly to become zero and g can be integrated repeatedly without difficulty, are natural candi-
dates for integration by parts. However, if many repetitions are required, the notation and calcu-
lations can be cumbersome; or, you choose substitutions for a repeated integration by parts that 
just ends up giving back the original integral you were trying to find. In situations like these, 

FIGURE 8.1 The region in Example 6.

x

y

1 2 3 4−1 0

−0.5

−1

0.5

1

y = xe−x
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there is a nice way to organize the calculations that prevents these pitfalls and simplifies the 
work. It is called tabular integration and is illustrated in the next examples.

EXAMPLE 7 Evaluate

L
x2ex dx.

Solution With ƒ(x) = x2 and g(x) = ex, we list:

ƒ(x)  and its derivatives   g(x)  and its integrals

x2 (+) ex

2x (-) ex

2 (+) ex

0   ex

We combine the products of the functions connected by the arrows according to the opera-
tion signs above the arrows to obtain

L
x2ex dx = x2ex - 2xex + 2ex + C.

Compare this with the result in Example 3.

EXAMPLE 8  Find the integral

1
p
L

p

-p
ƒ(x) cos nx dx

for ƒ(x) = 1 on 3-p, 0) and ƒ(x) = x3 on 30, p4 , where n is a positive integer.

Solution The integral is

1
p

L

p

-p
ƒ(x) cos nx dx = 1

p
L

0

-p
cos nx dx + 1

p
L

p

0
x3 cos nx dx

= 1
np sin nx d 0

-p
+ 1
p

L

p

0
x3 cos nx dx

= 1
p

L

p

0
x3 cos nx dx.

Using tabular integration to find an antiderivative, we have

ƒ(x)  and its derivatives   g(x)  and its integrals

x3 (+) cos nx

3x2 (-) 1
n sin nx

6x (+) - 1
n2 cos nx

6 (-) - 1
n3 sin nx

0   1
n4 cos nx
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1
p

L

p

0
x3 cos nx dx

= 1
p c x

3

n sin nx + 3x3

n2 cos nx - 6x
n3 sin nx - 6

n4 cos nx d p
0

= 1
p a3p

2 cos np
n2 - 6 cos np

n4 + 6
n4b

= 3
p ap

2n2(-1)n + 2(-1)n+1 + 2

n4 b . cos np = (-1)n

Integrals like those in Example 8 occur frequently in electrical engineering.

Integration by Parts
Evaluate the integrals in Exercises 1–24 using integration by parts.

1.
L

x sin
x
2

dx 2.
L
u cos pu du

3.
L

t2 cos t dt 4.
L

x2 sin x dx

5.
L

2

1
x ln x dx 6.

L

e

1
x3 ln x dx

7.
L

xex dx 8.
L

xe3x dx

9.
L

x2e-x dx 10.
L

(x2 - 2x + 1)e2x dx

11.
L

tan -1 y dy 12.
L

sin-1 y dy

13.
L

x sec2 x dx 14.
L

4x sec2 2x dx

15.
L

x3ex dx 16.
L

p4e-p dp

17.
L

(x2 - 5x)ex dx 18.
L

(r2 + r + 1)er dr

19.
L

x5ex dx 20.
L

t2e4t dt

21.
L

eu sin u du 22.
L

e-y cos y dy

23.
L

e2x cos 3x dx 24.
L

e-2x sin 2x dx

Using Substitution
Evaluate the integrals in Exercise 25–30 by using a substitution prior 
to integration by parts.

25.
L

e23s+9 ds 26.
L

1

0
x21 - x dx

27.
L

p>3

0
x tan2 x dx 28.

L
ln (x + x2) dx

29.
L

sin (ln x) dx 30.
L

z(ln z)2 dz

Evaluating Integrals
Evaluate the integrals in Exercises 31–52. Some integrals do not 
require integration by parts.

31.
L

x sec x2 dx 32.
L

cos 2x

2x
dx

33.
L

x (ln x)2 dx 34.
L

1
x (ln x)2 dx

35.
L

ln x
x2 dx 36.

L

(ln x)3

x dx

37.
L

x3 ex4
dx 38.

L
x5 ex3

dx

39.
L

x32x2 + 1 dx 40.
L

x2 sin x3 dx

41.
L

sin 3x cos 2x dx 42.
L

sin 2x cos 4x dx

43.
L
2x ln x dx 44.

L

e2x

2x
dx

45.
L

cos 2x dx 46.
L
2x e2x dx

47.
L

p>2

0
u2 sin 2u du 48.

L

p>2

0
x3 cos 2x dx

49.
L

2

2>23
t sec-1 t dt 50.

L

1>22

0
2x sin-1 (x2) dx

51.
L

x tan-1 x dx 52.
L

x2 tan-1 x
2

dx

Exercises 8.2
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58. Finding volume Find the volume of the solid generated by 
revolving the region bounded by the x-axis and the curve 
y = x sin x, 0 … x … p, about

a. the y-axis.

b. the line x = p.

  (See Exercise 53 for a graph.)

59. Consider the region bounded by the graphs of y = ln x, y = 0,
and x = e.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region 
about the x-axis.

c. Find the volume of the solid formed by revolving this region 
about the line x = -2.

d. Find the centroid of the region.

60. Consider the region bounded by the graphs of y = tan-1 x, y = 0,
and x = 1.

a. Find the area of the region.

b. Find the volume of the solid formed by revolving this region 
about the y-axis.

61. Average value A retarding force, symbolized by the dashpot in 
the accompanying figure, slows the motion of the weighted spring 
so that the mass’s position at time t is

y = 2e-t cos t, t Ú 0.

  Find the average value of y over the interval 0 … t … 2p.

0

Massy

Dashpot

y

62. Average value In a mass-spring-dashpot system like the one in 
Exercise 61, the mass’s position at time t is

y = 4e-t(sin t - cos t), t Ú 0.

  Find the average value of y over the interval 0 … t … 2p.

Reduction Formulas
In Exercises 63–67, use integration by parts to establish the reduction 
formula.

63.
L

xn cos x dx = xn sin x - n
L

xn-1 sin x dx

64.
L

xn sin x dx = -xn cos x + n
L

xn-1 cos x dx

Theory and Examples
53. Finding area Find the area of the region enclosed by the curve 

y = x sin x and the x-axis (see the accompanying figure) for

a. 0 … x … p.

b. p … x … 2p.

c. 2p … x … 3p.

d. What pattern do you see here? What is the area between the 
curve and the x-axis for np … x … (n + 1)p, n an arbitrary 
nonnegative integer? Give reasons for your answer.

x

y

0 2pp

5

y = x sin x10

−5

3p

54. Finding area Find the area of the region enclosed by the curve 
y = x cos x and the x-axis (see the accompanying figure) for

a. p>2 … x … 3p>2.

b. 3p>2 … x … 5p>2.

c. 5p>2 … x … 7p>2.

d. What pattern do you see? What is the area between the curve 
and the x-axis for

a2n - 1
2
bp … x … a2n + 1

2
bp,

  n an arbitrary positive integer? Give reasons for your answer.

0

10

−10

y = x cos x

x

y

p
2

7p
2

5p
2

3p
2

55. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = ex, and the line x = ln 2 about the line 
x = ln 2.

56. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes, the curve y = e-x, and the line x = 1

a. about the y-axis.

b. about the line x = 1.

57. Finding volume Find the volume of the solid generated by 
revolving the region in the first quadrant bounded by the coordi-
nate axes and the curve y = cos x, 0 … x … p>2, about

a. the y-axis.

b. the line x = p>2.
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For the integral of cos-1 x we get

L
cos -1 xdx = x cos-1 x -

L
cos ydy y = cos-1 x

= x cos-1 x - sin y + C

= x cos-1 x - sin (cos-1 x) + C.

Use the formula

L
ƒ -1(x) dx = xƒ -1(x) -

L
ƒ(y) dy y = ƒ -1(x) (4)

to evaluate the integrals in Exercises 71–74. Express your answers in 
terms of x.

71.
L

sin-1 x dx 72.
L

tan-1 x dx

73.
L

sec-1 x dx 74.
L

log2 x dx

Another way to integrate ƒ -1(x) (when ƒ -1 is integrable, of 
course) is to use integration by parts with u = ƒ -1(x) and dy = dx to 
rewrite the integral of ƒ -1 as

L
ƒ -1(x) dx = xƒ -1(x) -

L
x a d

dx
 ƒ -1(x)b dx. (5)

Exercises 75 and 76 compare the results of using Equations (4) and (5).

75. Equations (4) and (5) give different formulas for the integral of 
cos-1 x:

a.
L

cos-1 x dx = x cos-1 x -  sin  (cos-1 x) + C Eq. (4)

b.
L

cos-1 x dx = x cos-1 x - 21 - x2 + C Eq. (5)

  Can both integrations be correct? Explain.

76. Equations (4) and (5) lead to different formulas for the integral of 
tan-1 x:

a.
L

tan-1 x dx = x tan-1 x - ln sec (tan-1 x) + C Eq. (4)

b.
L

tan-1 x dx = x tan-1 x - ln 21 + x2 + C Eq. (5)

  Can both integrations be correct? Explain.

Evaluate the integrals in Exercises 77 and 78 with (a) Eq. (4) and (b)
Eq. (5). In each case, check your work by differentiating your answer 
with respect to x.

77.
L

 sinh-1 x dx 78.
L

tanh-1 x dx

65.
L

xneax dx = xneax

a - n
a
L

xn-1eax dx, a ≠ 0

66.
L

(ln x)n dx = x(ln x)n - n
L

(ln x)n-1 dx

67.
L

xm(ln x)n dx = xm+1

m + 1
 (ln x)n - n

m + 1
#

L
xm (ln x)n-1 dx, m ≠ -1

68. Use Example 5 to show that

L

p>2

0
sinn x dx =

L

p>2

0
cosn x dx

= μ
ap

2
b1 # 3 # 5g(n - 1)

2 # 4 # 6gn
,  n even

2 # 4 # 6g(n - 1)
1 # 3 # 5gn

,  n odd

69. Show that

L

b

a
a
L

b

x
ƒ(t) dtb dx =

L

b

a
(x - a)ƒ(x) dx.

70. Use integration by parts to obtain the formula

L
21 - x2 dx = 1

2
x 21 - x2 + 1

2L

1

21 - x2
dx.

Integrating Inverses of Functions
Integration by parts leads to a rule for integrating inverses that usually 
gives good results:

L
ƒ -1(x) dx =

L
yƒ′(y) dy

y = ƒ -1(x), x = ƒ( y)
dx = ƒ′( y) dy

= yƒ(y) -
L

ƒ(y) dy  
Integration by parts with 
u = y, dy = ƒ′( y) dy

= xƒ-1(x) -
L

ƒ(y) dy

The idea is to take the most complicated part of the integral, in this 
case ƒ -1(x), and simplify it first. For the integral of ln x, we get

L
ln x dx =

L
yey dy

y = ln x, x = e y

dx = e y dy

= yey - ey + C

= x ln x - x + C.

8.3 Trigonometric Integrals

Trigonometric integrals involve algebraic combinations of the six basic trigonometric 
functions. In principle, we can always express such integrals in terms of sines and cosines, 
but it is often simpler to work with other functions, as in the integral

L
sec2 x dx = tan x + C.
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The general idea is to use identities to transform the integrals we have to find into integrals 
that are easier to work with.

Products of Powers of Sines and Cosines

We begin with integrals of the form

L
sinm x cosn x dx,

where m and n are nonnegative integers (positive or zero). We can divide the appropriate 
substitution into three cases according to m and n being odd or even.

Case 1 If m is odd, we write m as 2k + 1 and use the identity sin2 x =
1 - cos2 x to obtain

sinm x = sin2k+1 x = (sin2 x)k sin x = (1 - cos2 x)k sin x. (1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to 
-d(cos x).

Case 2 If m is even and n is odd in 1sinm x cosn x dx, we write n as 2k + 1
and use the identity cos2 x = 1 - sin2 x to obtain

cosn x = cos2k+1 x = (cos2 x)k cos x = (1 - sin2 x)k cos x.

We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 If both m and n are even in 1sinm x cosn x dx, we substitute

sin2 x = 1 - cos 2x
2

, cos2 x = 1 + cos 2x
2

(2)

to reduce the integrand to one in lower powers of cos 2x.

Here are some examples illustrating each case.

EXAMPLE 1 Evaluate

L
sin3 x cos2 x dx.

Solution This is an example of Case 1.

L
sin3 x cos2 x dx =

L
sin2 x cos2 x sin x dx m is odd.

=
L

(1 - cos2 x) (cos2 x)(-d (cos x)) sin x dx = -d(cos x)

=
L

(1 - u2)(u2)(-du) u = cos x

=
L

(u4 - u2) du Multiply terms.

= u5

5
- u3

3 + C = cos5 x
5

- cos3 x
3 + C
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EXAMPLE 2 Evaluate

L
cos5 x dx.

Solution This is an example of Case 2, where m = 0 is even and n = 5 is odd.

L
cos5 x dx =

L
cos4 x cos x dx =

L
(1 - sin2 x)2 d(sin x) cos x dx = d(sin x)

=
L

(1 - u2)2 du u = sin x

=
L

(1 - 2u2 + u4) du Square 1 - u2.

= u - 2
3 u3 + 1

5
u5 + C = sin x - 2

3 sin3 x + 1
5

sin5 x + C

EXAMPLE 3 Evaluate

L
sin2 x cos4 x dx.

Solution This is an example of Case 3.

L
sin2 x cos4 x dx =

L
a1 - cos 2x

2
b a1 + cos 2x

2
b2

dx m and n both even

= 1
8L

(1 - cos 2x)(1 + 2 cos 2x + cos2 2x) dx

= 1
8L

(1 + cos 2x - cos2 2x - cos3 2x) dx

= 1
8 c x + 1

2
sin 2x -

L
(cos2 2x + cos3 2x) dx d

For the term involving cos2 2x, we use

L
cos2 2x dx = 1

2L
(1 + cos 4x) dx

= 1
2
ax + 1

4
sin 4xb . Omitting the constant of 

integration until the final result

For the cos3 2x term, we have

L
cos3 2x dx =

L
(1 - sin2 2x) cos 2x dx u = sin 2x,

du = 2 cos 2x dx

= 1
2L

(1 - u2) du = 1
2
asin 2x - 1

3 sin3 2xb . Again omitting C

Combining everything and simplifying, we get

L
sin2 x cos4 x dx = 1

16
ax - 1

4
sin 4x + 1

3 sin3 2xb + C.
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5.6 Definite Integral Substitutions and the Area Between Curves

There are two methods for evaluating a definite integral by substitution. One method is to 
find an antiderivative using substitution and then to evaluate the definite integral by apply-
ing the Evaluation Theorem. The other method extends the process of substitution directly 
to definite integrals by changing the limits of integration. We apply the new formula intro-
duced here to the problem of computing the area between two curves.

The Substitution Formula

The following formula shows how the limits of integration change when the variable of 
integration is changed by substitution.

THEOREM 7—Substitution in Definite Integrals If g′ is continuous on the 
interval 3a, b4  and ƒ is continuous on the range of g(x) = u, then

L

b

a
ƒ(g(x)) # g′(x) dx =

L

g(b)

g(a)
ƒ(u) du.

Proof Let F denote any antiderivative of ƒ. Then,

L

b

a
ƒ(g(x)) # g′(x) dx = F(g(x)) d

x=a

x=b
d
dx

F(g(x))

= F′(g(x))g′(x)
= ƒ(g(x))g′(x)

= F(g(b)) - F(g(a))

= F(u) d
u=g(a)

u=g(b)

=
L

g(b)

g(a)
ƒ(u) du. Fundamental

Theorem, Part 2

To use the formula, make the same u-substitution u = g(x) and du = g′(x) dx you 
would use to evaluate the corresponding indefinite integral. Then integrate the transformed 
integral with respect to u from the value g(a) (the value of u at x = a) to the value g(b)
(the value of u at x = b).

EXAMPLE 1  Evaluate 
L

1

-1
3x22x3 + 1 dx.

Solution We have two choices.

Method 1: Transform the integral and evaluate the transformed integral with the trans-
formed limits given in Theorem 7.

L

1

-1
3x22x3 + 1 dx

Let u = x3 + 1, du = 3x2 dx.
When x = -1, u = (-1)3 + 1 = 0.
When x = 1, u = (1)3 + 1 = 2.

=
L

2

0
2u du

= 2
3 u3>2 d

0

2

Evaluate the new definite integral.

= 2
3 323>2 - 03>24 = 2

3 32224 = 422
3
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Method 2: Transform the integral as an indefinite integral, integrate, change back to x,
and use the original x-limits.

L
3x22x3 + 1 dx =

L
2u du Let u = x3 + 1, du = 3x2 dx.

= 2
3 u3>2 + C Integrate with respect to u.

= 2
3 (x3 + 1)3>2 + C Replace u by x3 + 1.

L

1

-1
3x22x3 + 1 dx = 2

3 (x3 + 1)3>2 d
-1

1
Use the integral just found, with 
limits of integration for x.

= 2
3 3 ((1)3 + 1)3>2 - ((-1)3 + 1)3>24

= 2
3 323>2 - 03>24 = 2

3 32224 = 422
3

Which method is better—evaluating the transformed definite integral with trans-
formed limits using Theorem 7, or transforming the integral, integrating, and transforming 
back to use the original limits of integration? In Example 1, the first method seems easier, 
but that is not always the case. Generally, it is best to know both methods and to use 
whichever one seems better at the time.

EXAMPLE 2  We use the method of transforming the limits of integration.

(a)
L

p>2

p>4
cot u csc2u du =

L

0

1
u # (-du)

Let u = cot u, du = -csc2 u du,
-du = csc2 u du.

When u = p>4, u = cot (p>4) = 1.
When u = p>2, u = cot (p>2) = 0.

= -
L

0

1
u du

= - c u2

2
d

1

0

= - c (0)2

2
-

(1)2

2
d = 1

2

(b)
L

p>4

-p>4
tan x dx =

L

p>4

-p>4
sin x
cos x dx

= -
L

22>2

22>2
du
u

Let u = cos x, du = -sin x dx.
When x = -p>4, u = 22>2.
When x = p>4, u = 22>2.

= - ln 0 u 0 d22>2
22>2

= 0 Integrate, zero width interval

Definite Integrals of Symmetric Functions

The Substitution Formula in Theorem 7 simplifies the calculation of definite integrals of 
even and odd functions (Section 1.1) over a symmetric interval 3-a, a4  (Figure 5.23).
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Proof of Part (a)

L

a

-a
ƒ(x) dx =

L

0

-a
ƒ(x) dx +

L

a

0
ƒ(x) dx Additivity Rule for 

Definite Integrals

= -
L

-a

0
ƒ(x) dx +

L

a

0
ƒ(x) dx Order of Integration Rule

= -
L

a

0
ƒ(-u)(-du) +

L

a

0
ƒ(x) dx

Let u = -x, du = -dx.
When x = 0, u = 0.
When x = -a, u = a.

=
L

a

0
ƒ(-u) du +

L

a

0
ƒ(x) dx

=
L

a

0
ƒ(u) du +

L

a

0
ƒ(x) dx ƒ is even, so

ƒ(-u) = ƒ(u).

= 2
L

a

0
ƒ(x) dx

The proof of part (b) is entirely similar and you are asked to give it in Exercise 114.

The assertions of Theorem 8 remain true when ƒ is an integrable function (rather than 
having the stronger property of being continuous).

EXAMPLE 3  Evaluate 
L

2

-2

(x4 - 4x2 + 6) dx.

Solution Since ƒ(x) = x4 - 4x2 + 6 satisfies ƒ(-x) = ƒ(x), it is even on the symmet-
ric interval 3-2, 24 , so

L

2

-2
(x4 - 4x2 + 6) dx = 2

L

2

0
(x4 - 4x2 + 6) dx

= 2 c x5

5
- 4

3 x3 + 6x d
0

2

= 2 a32
5

- 32
3 + 12b = 232

15
.

Areas Between Curves

Suppose we want to find the area of a region that is bounded above by the curve y = ƒ(x),
below by the curve y = g(x), and on the left and right by the lines x = a and x = b (Fig-
ure 5.24). The region might accidentally have a shape whose area we could find with 
geometry, but if ƒ and g are arbitrary continuous functions, we usually have to find the 
area with an integral.

THEOREM 8 Let ƒ be continuous on the symmetric interval 3-a, a4 .
(a) If ƒ is even, then 

L

a

-a
ƒ(x) dx = 2

L

a

0
ƒ(x) dx.

(b) If ƒ is odd, then 
L

a

-a
ƒ(x) dx = 0.

x

y

a

b

Lower curve
y = g(x)

Upper curve
y = f (x)

FIGURE 5.24 The region between 
the curves y = ƒ(x) and y = g(x)
and the lines x = a and x = b.

x

y

0
a−a

(b)

x

y

0 a−a

(a)

FIGURE 5.23 (a) For ƒ an even func-
tion, the integral from -a to a is twice the 
integral from 0 to a. (b) For ƒ an odd func-
tion, the integral from -a to a equals 0.
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To see what the integral should be, we first approximate the region with n vertical 
rectangles based on a partition P = 5x0, x1,c, xn6  of 3a, b4  (Figure 5.25). The area of 
the kth rectangle (Figure 5.26) is

∆Ak = height * width = 3ƒ(ck) - g(ck)4 ∆xk.

We then approximate the area of the region by adding the areas of the n rectangles:

A ≈ a

n

k=1
∆Ak = a

n

k=1
3ƒ(ck) - g(ck)4 ∆xk. Riemann sum

As }P } S 0, the sums on the right approach the limit 1
b

a 3ƒ(x) - g(x)4 dx because ƒ
and g are continuous. We take the area of the region to be the value of this integral. That is,

A = lim
}P}S0 a

n

k=1
3ƒ(ck) - g(ck)4 ∆xk =

L

b

a
3ƒ(x) - g(x)4 dx.

x

y

y = f (x)

y = g(x)

b = xn

xn−1a = x0
x1

x2

FIGURE 5.25 We approximate 
the region with rectangles perpen-
dicular to the x-axis.

x

y

a

b

(ck, f (ck))

f (ck) − g(ck)

ΔAk
ck

(ck, g(ck))
Δxk

FIGURE 5.26 The area ∆Ak of the 
kth rectangle is the product of its height, 
ƒ(ck) - g(ck), and its width, ∆xk.

DEFINITION If ƒ and g are continuous with ƒ(x) Ú g(x) throughout 3a, b4 ,
then the area of the region between the curves y = f (x) and y = g(x) from
a to b is the integral of (ƒ - g) from a to b:

A =
L

b

a
3ƒ(x) - g(x)4 dx.

When applying this definition it is helpful to graph the curves. The graph reveals which curve 
is the upper curve ƒ and which is the lower curve g. It also helps you find the limits of integra-
tion if they are not given. You may need to find where the curves intersect to determine the 
limits of integration, and this may involve solving the equation ƒ(x) = g(x) for values of x.
Then you can integrate the function ƒ - g for the area between the intersections.

EXAMPLE 4  Find the area of the region bounded above by the curve y = 2e-x + x,
below by the curve y = ex>2 , on the left by x = 0, and on the right by x = 1.

Solution Figure 5.27 displays the graphs of the curves and the region whose area we 
want to find. The area between the curves over the interval 0 … x … 1 is given by

A =
L

1

0
c (2e-x + x) - 1

2
ex d dx = c-2e-x + 1

2
x2 - 1

2
ex d 1

0

= a-2e-1 + 1
2

- 1
2

eb - a-2 + 0 - 1
2
b

= 3 - 2
e - e

2
≈ 0.9051.

EXAMPLE 5  Find the area of the region enclosed by the parabola y = 2 - x2 and 
the line y = -x.

Solution First we sketch the two curves (Figure 5.28). The limits of integration are found 
by solving y = 2 - x2 and y = -x simultaneously for x.

2 - x2 = -x Equate ƒ(x) and g(x).

x2 - x - 2 = 0 Rewrite.

(x + 1)(x - 2) = 0 Factor.

x = -1, x = 2. Solve.

The region runs from x = -1 to x = 2. The limits of integration are a = -1, b = 2.

x

y

0

0.5

2

1

(x, f (x))

(x, g(x))

y = 2e−x + x

y = ex
2
1

FIGURE 5.27 The region in Example 4 
with a typical approximating rectangle.
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The area between the curves is

A =
L

b

a
3ƒ(x) - g(x)4 dx =

L

2

-1
3 (2 - x2) - (-x)4 dx

=
L

2

-1
(2 + x - x2) dx = c 2x + x2

2
- x3

3 d -1

2

= a4 + 4
2

- 8
3b - a-2 + 1

2
+ 1

3b = 9
2

.

If the formula for a bounding curve changes at one or more points, we subdivide the 
region into subregions that correspond to the formula changes and apply the formula for 
the area between curves to each subregion.

EXAMPLE 6  Find the area of the region in the first quadrant that is bounded above 
by y = 2x and below by the x-axis and the line y = x - 2.

Solution The sketch (Figure 5.29) shows that the region’s upper boundary is the graph of 
ƒ(x) = 2x. The lower boundary changes from g(x) = 0 for 0 … x … 2 to g(x) = x - 2
for 2 … x … 4 (both formulas agree at x = 2). We subdivide the region at x = 2 into sub-
regions A and B, shown in Figure 5.29.

The limits of integration for region A are a = 0 and b = 2. The left-hand limit for 
region B is a = 2. To find the right-hand limit, we solve the equations y = 2x and 
y = x - 2 simultaneously for x:

2x = x - 2 Equate ƒ(x) and g(x).

x = (x - 2)2 = x2 - 4x + 4 Square both sides.

x2 - 5x + 4 = 0 Rewrite.

(x - 1)(x - 4) = 0 Factor.

x = 1, x = 4. Solve.

Only the value x = 4 satisfies the equation 2x = x - 2. The value x = 1 is an extrane-
ous root introduced by squaring. The right-hand limit is b = 4.

For 0 … x … 2: ƒ(x) - g(x) = 2x - 0 = 2x

For 2 … x … 4: ƒ(x) - g(x) = 2x - (x - 2) = 2x - x + 2

We add the areas of subregions A and B to find the total area:

Total area =
L

2

0
2x dx +

L

4

2
12x - x + 22 dx

(++)++* (+++++)+++++*

area of A area of B

= c 23 x3>2 d
0

2

+ c 23 x3>2 - x2

2
+ 2x d

2

4

= 2
3 (2)3>2 - 0 + a23 (4)3>2 - 8 + 8b - a23 (2)3>2 - 2 + 4b

= 2
3 (8) - 2 = 10

3 .

x

y

0

1

2

42

y =
"

x

y = 0

y = x − 2

(x, f (x))

(x, f (x))

(x, g(x))

(x, g(x))

A

B
(4, 2)Area =

2

0
"

x dx

Area =

4

2
(
"

x − x + 2) dx
L

L

FIGURE 5.29 When the formula for a 
bounding curve changes, the area integral 
changes to become the sum of integrals to 
match, one integral for each of the shaded 
regions shown here for Example 6.

x

y

0−1 1 2

(−1, 1)

(x, f (x))

y = 2 − x2

(x, g(x))

Δx

y = −x (2, −2)

FIGURE 5.28 The region in 
Example 5 with a typical approxi-
mating rectangle.
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Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating rectan-
gles are horizontal instead of vertical and the basic formula has y in place of x.

For regions like these:

x = f (y)

Δ (y)

y y

x

x

x

y

x = g(y)

0

c

d

x = g(y)

x = f (y)

0

c

d

0

c

d

x = f (y)

x = g(y)

Δ (y)

Δ (y)

use the formula

A =
L

d

c
3ƒ(y) - g(y)4dy.

In this equation ƒ always denotes the right-hand curve and g the left-hand curve, so 
ƒ(y) - g(y) is nonnegative.

EXAMPLE 7  Find the area of the region in Example 6 by integrating with respect to y.

Solution We first sketch the region and a typical horizontal rectangle based on a parti-
tion of an interval of y-values (Figure 5.30). The region’s right-hand boundary is the line 
x = y + 2, so ƒ(y) = y + 2. The left-hand boundary is the curve x = y2, so g(y) = y2.
The lower limit of integration is y = 0. We find the upper limit by solving x = y + 2 and 
x = y2 simultaneously for y:

y + 2 = y2 Equate ƒ( y) = y + 2 and g(y) = y2.

y2 - y - 2 = 0 Rewrite.

( y + 1)( y - 2) = 0 Factor.

y = -1, y = 2 Solve.

The upper limit of integration is b = 2. (The value y = -1 gives a point of intersection 
below the x-axis.)

The area of the region is

A =
L

d

c
3ƒ(y) - g(y)4 dy =

L

2

0
3y + 2 - y24 dy

=
L

2

0
32 + y - y24 dy

= c 2y +
y2

2
-

y3

3 d 0
2

= 4 + 4
2

- 8
3 = 10

3 .

This is the result of Example 6, found with less work.

x

y

y = 0 2 40

1

2
(g(y), y)

( f (y), y)
f (y) − g(y)

(4, 2)

x = y + 2

x = y2

Δy

FIGURE 5.30 It takes two integra-
tions to find the area of this region if 
we integrate with respect to x. It takes 
only one if we integrate with respect to 
y (Example 7).
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Although it was easier to find the area in Example 6 by integrating with respect to y
rather than x (just as we did in Example 7), there is an easier way yet. Looking at Figure 
5.31, we see that the area we want is the area between the curve y = 2x and the x-axis
for 0 … x … 4, minus the area of an isosceles triangle of base and height equal to 2. So by 
combining calculus with some geometry, we find

Area =
L

4

0
2x dx - 1

2
 (2)(2)

= 2
3 x3>2 d 4

0
- 2

= 2
3  (8) - 0 - 2 = 10

3 .

x

y

y = 0 2

2

40

1

2

2

(4, 2)

y = x − 2
Area = 2

y =
"

x

FIGURE 5.31 The area of the blue 
region is the area under the parabola 
y = 2x minus the area of the
triangle.

Evaluating Definite Integrals
Use the Substitution Formula in Theorem 7 to evaluate the integrals in 
Exercises 1–46.

1. a.
L

3

0
2y + 1 dy b.

L

0

-1
2y + 1 dy

2. a.
L

1

0
r21 - r2 dr b.

L

1

-1
r21 - r2 dr

3. a.
L

p>4

0
tan x sec2 x dx b.

L

0

-p>4
tan x sec2 x dx

4. a.
L

p

0
3 cos2 x sin x dx b.

L

3p

2p
3 cos2 x sin x dx

5. a.
L

1

0
t3(1 + t4)3 dt b.

L

1

-1
t3(1 + t4)3 dt

6. a.
L

27

0
t(t2 + 1)1>3 dt b.

L

0

-27
t(t2 + 1)1>3 dt

7. a.
L

1

-1

5r
(4 + r2)2

dr b.
L

1

0

5r
(4 + r2)2

dr

8. a.
L

1

0

102y
(1 + y3>2)2

dy b.
L

4

1

102y
(1 + y3>2)2

dy

9. a.
L

23

0

4x

2x2 + 1
dx b.

L

23

-23

4x

2x2 + 1
dx

10. a.
L

1

0

x3

2x4 + 9
dx b.

L

0

-1

x3

2x4 + 9
dx

11. a.
L

1

0
t 24 + 5t dt b.

L

9

1
t 24 + 5t dt

12. a.
L

p>6

0
(1 - cos 3t) sin 3t dt b.

L

p>3

p>6
(1 - cos 3t) sin 3t dt

13. a.
L

2p

0

cos z

24 + 3 sin z
dz b.

L

p

-p

cos z

24 + 3 sin z
dz

14. a.
L

0

-p>2
a2 + tan 

t
2
b  sec2 t

2
dt b.

L

p>2

-p>2
a2 + tan 

t
2
b  sec2 t

2
dt

15.
L

1

0
2t5 + 2t (5t4 + 2) dt 16.

L

4

1

dy

22y11 + 2y22
17.

L

p>6

0
cos-3 2u sin 2u du 18.

L

3p>2

p

cot5 au
6
b  sec2 au

6
b du

19.
L

p

0
5(5 - 4 cos t)1>4 sin t dt 20.

L

p>4

0
(1 - sin 2t)3>2 cos 2t dt

21.
L

1

0
(4y - y2 + 4y3 + 1)-2>3 (12y2 - 2y + 4) dy

22.
L

1

0
(y3 + 6y2 - 12y + 9)-1>2 (y2 + 4y - 4) dy

23.
L

23 p2

0
2u cos2 (u3>2) du 24.

L

-1>2

-1
t-2 sin2 a1 + 1

t b dt

25.
L

p>4

0
(1 + etan u) sec2u du 26.

L

p>2

p>4
(1 + ecot u) csc2u du

27.
L

p

0

sin t
2 - cos t

dt 28.
L

p>3

0

4 sin u
1 - 4 cos u

du

29.
L

2

1

2 ln x
x dx 30.

L

4

2

dx
x ln x

31.
L

4

2

dx
x (ln x)2 32.

L

16

2

dx

2x2ln x

33.
L

p>2

0
tan 

x
2

dx 34.
L

p>2

p>4
 cot t dt

35.
L

p>3

0
tan2 u cos u du 36.

L

p>12

0
6 tan 3x dx

Exercises 5.6
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37.
L

p>2

-p>2
2 cos u du

1 + (sin u)2 38.
L

p>4

p>6
csc2 x dx

1 + (cot x)2

39.
L

ln23

0

ex dx
1 + e2x 40.

L

ep>4

1

4 dt
t(1 + ln2 t)

41.
L

1

0

4 ds

24 - s2
42.

L

23 2>4

0

ds

29 - 4s2

43.
L

2

22

sec2(sec-1 x) dx

x2x2 - 1
44.

L

2

2>23

cos (sec-1 x) dx

x2x2 - 1

45.
L

-22>2

-1

dy

y24y2 - 1
46.

L

3

0

y dy

25y + 1

Area
Find the total areas of the shaded regions in Exercises 47–62.

47.

0 2−2
x

y

y = x"4 − x2

48.

x

y

0 p

y = (1 − cos x) sin x

49.
x

y

0−1

−1

−2

−3

−2−p

y = 3(sin x)
"

1 + cos x

50.

x

y

0−1−p

−1

1

p
2

−

y = (cos x)(sin(p+ psin x))p
2

51.

x

y

pp
2

y = cos2 x

0

1 y = 1

52.

t

y

y = sec2 t1
2

p
3

p
3

− 0

1

2

−4

y = −4sin2 t

53.

x

y

−2 −1 1 2−1

8
(−2, 8) (2, 8)

y = 2x2

y = x 4 − 2x2

NOT TO SCALE

54.

0 1

1

x

y

(1, 1)

x = y2

x = y3

55.

x

y

0

1

1

x = 12y2 − 12y3

x = 2y2 − 2y

56.

x

y

−1 0

−2

1

1

y = x2

y = −2x4

57.

x

y

0 1 2

1

y = x
y = 1

y = x2

4

58.

0 1 2

1

x

y

y = x2
x + y = 2

59.

x

y

5

−4

(−3, 5)

(1, −3)(−3, −3)

10−3

y = x2 − 4

y = −x2 − 2x

60.

x

y

−10

2

1−1−2 2

(−2, −10)

y = 2x3 − x2 − 5x

y = −x2 + 3x

(2, 2)

61. 62.

x

y

−1 1 2 3−2

2

−5

4

(3, −5)

(−2, 4) y = 4 − x2

y = −x + 2

a b

x

y

30

6

−2

y =
3
x

y = − x
3
x3

(3, 6)

(3, 1)

−2, −
3
2

Find the areas of the regions enclosed by the lines and curves in 
Exercises 63–72.

63. y = x2 - 2 and y = 2 64. y = 2x - x2 and y = -3

65. y = x4 and y = 8x 66. y = x2 - 2x and y = x
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67. y = x2 and y = -x2 + 4x

68. y = 7 - 2x2 and y = x2 + 4

69. y = x4 - 4x2 + 4 and y = x2

70. y = x2a2 - x2, a 7 0, and y = 0

71. y = 2 0 x 0 and 5y = x + 6 (How many intersection points 
are there?)

72. y = 0 x2 - 4 0 and y = (x2>2) + 4

Find the areas of the regions enclosed by the lines and curves in 
Exercises 73–80.

73. x = 2y2, x = 0, and y = 3

74. x = y2 and x = y + 2

75. y2 - 4x = 4 and 4x - y = 16

76. x - y2 = 0 and x + 2y2 = 3

77. x + y2 = 0 and x + 3y2 = 2

78. x - y2>3 = 0 and x + y4 = 2

79. x = y2 - 1 and x = 0 y 021 - y2

80. x = y3 - y2 and x = 2y

Find the areas of the regions enclosed by the curves in Exercises 81–84.

81. 4x2 + y = 4 and x4 - y = 1

82. x3 - y = 0 and 3x2 - y = 4

83. x + 4y2 = 4 and x + y4 = 1, for x Ú 0

84. x + y2 = 3 and 4x + y2 = 0

Find the areas of the regions enclosed by the lines and curves in Exer-
cises 85–92.

85. y = 2 sin x and y = sin 2x, 0 … x … p
86. y = 8 cos x and y = sec2 x, -p>3 … x … p>3
87. y = cos (px>2) and y = 1 - x2

88. y = sin (px>2) and y = x

89. y = sec2 x, y = tan2 x, x = -p>4, and x = p>4
90. x = tan2 y and x = - tan2 y, -p>4 … y … p>4
91. x = 3 sin y2cos y and x = 0, 0 … y … p>2
92. y = sec2 (px>3) and y = x1>3, -1 … x … 1

Area Between Curves
93. Find the area of the propeller-shaped region enclosed by the 

curve x - y3 = 0 and the line x - y = 0.

94. Find the area of the propeller-shaped region enclosed by the 
curves x - y1>3 = 0 and x - y1>5 = 0.

95. Find the area of the region in the first quadrant bounded by the 
line y = x, the line x = 2, the curve y = 1>x2, and the x-axis.

96. Find the area of the “triangular” region in the first quadrant 
bounded on the left by the y-axis and on the right by the curves 
y = sin x and y = cos x.

97. Find the area between the curves y = ln x and y = ln 2x from 
x = 1 to x = 5.

98. Find the area between the curve y = tan x and the x-axis from 
x = -p>4 to x = p>3.

99. Find the area of the “triangular” region in the first quadrant that is 
bounded above by the curve y = e2x, below by the curve y = ex,
and on the right by the line x = ln 3.

100. Find the area of the “triangular” region in the first quadrant that 
is bounded above by the curve y = ex>2, below by the curve 
y = e-x>2, and on the right by the line x = 2 ln 2.

101. Find the area of the region between the curve y = 2x>(1 + x2)
and the interval -2 … x … 2 of the x-axis.

102. Find the area of the region between the curve y = 21-x and the 
interval -1 … x … 1 of the x-axis.

103. The region bounded below by the parabola y = x2 and above by 
the line y = 4 is to be partitioned into two subsections of equal 
area by cutting across it with the horizontal line y = c.

a. Sketch the region and draw a line y = c across it that looks 
about right. In terms of c, what are the coordinates of the 
points where the line and parabola intersect? Add them to 
your figure.

b. Find c by integrating with respect to y. (This puts c in the 
limits of integration.)

c. Find c by integrating with respect to x. (This puts c into the 
integrand as well.)

104. Find the area of the region between the curve y = 3 - x2 and 
the line y = -1 by integrating with respect to a. x, b. y.

105. Find the area of the region in the first quadrant bounded on the 
left by the y-axis, below by the line y = x>4, above left by the 
curve y = 1 + 2x, and above right by the curve y = 2>2x.

106. Find the area of the region in the first quadrant bounded on the 
left by the y-axis, below by the curve x = 22y, above left by 
the curve x = (y - 1)2, and above right by the line x = 3 - y.

x

y

0

1

2

1 2

x = 2
"

y

x = 3 − y

x = (y − 1)2

107. The figure here shows triangle AOC inscribed in the region cut 
from the parabola y = x2 by the line y = a2. Find the limit of 
the ratio of the area of the triangle to the area of the parabolic 
region as a approaches zero.

x

y

CA

O−a a

y = x2

y = a2

(a, a2)(−a, a2)

108. Suppose the area of the region between the graph of a positive 
continuous function ƒ and the x-axis from x = a to x = b is 
4 square units. Find the area between the curves y = ƒ(x) and 
y = 2ƒ(x) from x = a to x = b.
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109. Which of the following integrals, if either, calculates the area of 
the shaded region shown here? Give reasons for your answer.

a.
L

1

-1
(x - (-x)) dx =

L

1

-1
2x dx

b.
L

1

-1
(-x - (x)) dx =

L

1

-1
-2x dx

x

y

−1

−1

1

1

y = −x y = x

110. True, sometimes true, or never true? The area of the region 
between the graphs of the continuous functions y = ƒ(x) and 
y = g(x) and the vertical lines x = a and x = b (a 6 b) is

L

b

a
3ƒ(x) - g(x)4 dx.

  Give reasons for your answer.

Theory and Examples
111. Suppose that F(x) is an antiderivative of ƒ(x) = (sin x)>x,

x 7 0. Express

L

3

1

sin 2x
x dx

  in terms of F.

112. Show that if ƒ is continuous, then

L

1

0
ƒ(x) dx =

L

1

0
ƒ(1 - x) dx.

113. Suppose that

L

1

0
ƒ(x) dx = 3.

Find

L

0

-1
ƒ(x) dx

if a. ƒ is odd, b. ƒ is even.

114. a. Show that if ƒ is odd on 3-a, a4 , then

L

a

-a
ƒ(x) dx = 0.

b. Test the result in part (a) with ƒ(x) = sin x and a = p>2.

115. If ƒ is a continuous function, find the value of the integral

I =
L

a

0

ƒ(x) dx
ƒ(x) + ƒ(a - x)

  by making the substitution u = a - x and adding the resulting 
integral to I.

116. By using a substitution, prove that for all positive numbers x and y,

L

xy

x

1
t dt =

L

y

1

1
t dt.

The Shift Property for Definite Integrals A basic property of defi-
nite integrals is their invariance under translation, as expressed by the 
equation

   
L

b

a
ƒ(x) dx =

L

b-c

a-c
ƒ(x + c) dx. (1)

The equation holds whenever ƒ is integrable and defined for the neces-
sary values of x. For example in the accompanying figure, show that

L

-1

-2
(x + 2)3 dx =

L

1

0
x3 dx

because the areas of the shaded regions are congruent.

x

y

0 1−1−2

y = (x + 2)3 y = x3

117. Use a substitution to verify Equation (1).

118. For each of the following functions, graph ƒ(x) over 3a, b4  and 
ƒ(x + c) over 3a - c, b - c4  to convince yourself that Equation 
(1) is reasonable.

a. ƒ(x) = x2, a = 0, b = 1, c = 1

b. ƒ(x) = sin x, a = 0, b = p, c = p>2
c. ƒ(x) = 2x - 4, a = 4, b = 8, c = 5

COMPUTER EXPLORATIONS
In Exercises 119–122, you will find the area between curves in the 
plane when you cannot find their points of intersection using simple 
algebra. Use a CAS to perform the following steps:

a. Plot the curves together to see what they look like and how 
many points of intersection they have.

b. Use the numerical equation solver in your CAS to find all the 
points of intersection.

c. Integrate 0 ƒ(x) - g(x) 0  over consecutive pairs of intersection 
values.

d. Sum together the integrals found in part (c).

119. ƒ(x) = x3

3
- x2

2
- 2x + 1

3
, g(x) = x - 1

120. ƒ(x) = x4

2
- 3x3 + 10, g(x) = 8 - 12x

121. ƒ(x) = x + sin (2x), g(x) = x3

122. ƒ(x) = x2 cos x, g(x) = x3 - x



Chapter 5 Questions to Guide Your Review

1. How can you sometimes estimate quantities like distance traveled, 
area, and average value with finite sums? Why might you want to 
do so?

2. What is sigma notation? What advantage does it offer? Give 
examples.

3. What is a Riemann sum? Why might you want to consider such a 
sum?

4. What is the norm of a partition of a closed interval?
5. What is the definite integral of a function ƒ over a closed interval 
3a, b4 ? When can you be sure it exists?

6. What is the relation between definite integrals and area? Describe 
some other interpretations of definite integrals.

7. What is the average value of an integrable function over a closed 
interval? Must the function assume its average value? Explain.

8. Describe the rules for working with definite integrals (Table 5.6). 
Give examples.

9. What is the Fundamental Theorem of Calculus? Why is it so 
important? Illustrate each part of the theorem with an example.

10. What is the Net Change Theorem? What does it say about the 
integral of velocity? The integral of marginal cost?

11. Discuss how the processes of integration and differentiation can 
be considered as “inverses” of each other.

12. How does the Fundamental Theorem provide a solution to 
the initial value problem dy>dx = ƒ(x), y(x0) = y0 , when ƒ is 
continuous?

13. How is integration by substitution related to the Chain Rule?
14. How can you sometimes evaluate indefinite integrals by substitu-

tion? Give examples.
15. How does the method of substitution work for definite integrals? 

Give examples.
16. How do you define and calculate the area of the region between 

the graphs of two continuous functions? Give an example.

Chapter 5 Practice Exercises

Finite Sums and Estimates
1. The accompanying figure shows the graph of the velocity (ft > sec) 

of a model rocket for the first 8 sec after launch. The rocket accel-
erated straight up for the first 2 sec and then coasted to reach its 
maximum height at t = 8 sec.

2 4 6 80
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100

150

200

Time after launch (sec)

V
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 (
ft

/s
ec

)

a. Assuming that the rocket was launched from ground level, 
about how high did it go? (This is the rocket in Section 3.3, 
Exercise 17, but you do not need to do Exercise 17 to do the 
exercise here.)

b. Sketch a graph of the rocket’s height above ground as a func-
tion of time for 0 … t … 8.

2. a. The accompanying figure shows the velocity (m > sec) of a 
body moving along the s-axis during the time interval from 
t = 0 to t = 10 sec. About how far did the body travel dur-
ing those 10 sec?

b. Sketch a graph of s as a function of t for 0 … t … 10, assum-
ing s(0) = 0.
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3. Suppose that a
10

k=1
ak = -2 and a

10

k=1
bk = 25. Find the value of

  a. a

10

k=1

ak

4
b. a

10

k=1
(bk - 3ak)

  c. a

10

k=1
(ak + bk - 1) d. a

10

k=1
a5

2
- bkb

4. Suppose that a
20

k=1
ak = 0 and a

20

k=1
bk = 7. Find the values of

  a. a

20

k=1
3ak b. a

20

k=1
(ak + bk)

  c. a

20

k=1
a1

2
-

2bk

7
b d. a

20

k=1
(ak - 2)
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Improper Integral : 

ihe definition of the definite integral as : 

b 

J f(x)dx 

ihis integration includes the requirements that the interval {a,b] be an 

finite and that f be continous on { a, b] , in this lecture we will study 

integrals that do not satisfy these requirements because of one of the 

conditions below : 

•!• One or both of limit of integration are finite 

•!• f( x) has an infinite discontinuity in the interval [ a, b J 

Integral having either of these charctristics are called Improper Integral 

For instance the integrals : 
00 

, J z 1 dx 
X + 1 

-oo

are improper integral because one or both limits of integration are 

infinite as indicated figures: 

2 -4 -3 -2 -I

2 

y 

I 2 3 4 

0 
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Simillar!J : 

J---::-J x=1=1 dx
1 

are improper integral because their integrands has inFinite discontinuit!I 

that is the!J approach inFinit!J some when in the interval of integration 

as indicated Figures : 

CflSE 1 

' 

' 
' 

: .l 

-2 -I 

y 

v=-1-
• (x+ 1)

1 

_,, 

I 
_v

=

� 

-+---+--t------t------;---+---+-- X 

I 2 4 5 6 

Improper Integrals with inFinite limits 

1) if f is continous function on the interval [ a, oo) then :
co b 

J f (x)dx = Iim J f (x) dx
b➔co 

a a 

2) if f is continous function on the interval (-oo, b] then :
b b 

J f(x)dx = a'!�"" J f(x) dx
-co a 

0 
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3) if f is continous function on the interval (-oo, oo) then :

oo C oo 

J f (x)dx = J f (x)dx + J f (x)dx
-oo -oo C 

where c is an!J real number 

in the lirst two cases it the limit exists then the improper integral 

convergence , otherwisethe improper integral divergent ,

in the third case the integral on the left side will diverges it either 

one of the integral on the right side diverges 

Example 1 : Determine the convergence or divergence of : 

Solution 

oo b 

I .!_ dx = lim J 1 
dx

X b➔oo X 

1 1 

I �dx = lim Lnxlt = lim Lnb - Ln1 = Lnoo = oo 
X b➔oo b➔oo 

1 

Because the limit is inlinite , then the improper integral divergent ·

0 
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Example 2 : Determine the convergence or divergence of': 

J �dx 
xz 

Solution 

oo b 

J � dx = lim J � dx
x2 b➔oo x2 

1 1 

00 

J 1 -1 b 1 
-dx=lim- =lim-(--1)=1 
x

2 b➔oo X l b➔oo b 

Because the limit is finite , then the improper integral convergent to 1 ·

Example 3 : Evaluate the Following integral iF available : 

0 

f __ 

1 
__ 3dx

_
00 

(1 - 2x)z 

Solution 

0 0 

J--1
--

3
dx = lim J 1 

3 dx 
_

00 
(1 - 2x)z a➔-oo

a (1 - 2x)2 

0 0 J 1 

J
-3

----
3 
dx = lim (1 - 2x)z dx = 

(1 - 2x)z a➔-oo 
-oo a 

r;7 
\..,:,1 
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0 

0 

J--1--
3 

dx = lim (1- 2x)�
1 1

° 

= lim 
1

-00 (1 - 2x)z a➔ -00 a a➔ -00 ✓1 - 2x a

J 1 
3 

dx = lim (1 -
1 

) = 1 - O = 1
_

00 
(1 - 2x)z a➔ -oo ✓1 - 2a 

Because the limit is finite , then the improper integral convergent to 1 ·

Example 'I : Find the Following integral if' available : 

00 

Solution 

oo b

J xe-x
2 

dx = lim J xe-x
2 

dx 
b➔oo 

0 0 

oo 
b 

J
2 -1 2 -1 2 

xe-x dx = lim -e-x = lim-( e-b - 1) 
b➔oo 2 0 b➔oo 2 

J 
2 -1 -1 1 

xe-x dx =-(e-00 -1) =-(0- 1) = -
2 2 2

0 

Because the limit is finite , then the improper integral convergent to 0·5 

0 
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Example 5: Determine the convergence or divergence of: 

Solution 

oo b 

J _.!._dx = lim J..!..dx 
x2 b➔oo x2 

-oo -b

oo b

J \ dx = lim J x-
2 dx 

X b➔oo 

-oo -b

J�dx 
xz 

-oo

00 

J 1 -1 b 1 1 2 -dx=lim- =lim-(-+-)=lim--=0
x2 b➔oo X -b b➔oo b b b➔oo b 

-00 

Because the limit is finite , then the improper integral convergent to 1 ·

0 
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Example 1-1-W : 

Find the Following integrals if' available 

1) J :3 dx

00 

Z) J �dx

-oo

4) J l 2 dx 4+x 
-00 

00 

5 -----dxI 
1 

) (x - l)(x2 
+ 1)

c�> � 
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CIISE 2 

Improper Integrals with infinite integrands 

1) if' F is continous Function on the interval [ a, b) and approaches to

inl'init!I at b then :
b C 

I f(x)dx = lill!_ J f(x) dx
c➔b 

a a 

2) if Fis continous Function on the interval (a, b] and approaches to

inl'init!I at a then :
b b 

I f(x)dx = lim J f(x) dx 
c➔a+ 

a C 

3) if F is continous Function on the interval [ a, b] except some

values of c in ( a, b) at which F approaches inl'init!I then :
b C b 

J f(x)dx = J f (x)dx + J f(x)dx 

a a c 

where c is an!J real number lies between a and b 

in the First two cases if the limit exists then the improper integral 

convergence , otherwisethe improper integral divergent ,

in the third case the integral on the left side will diverges if either 

one of the integral on the right side diverges 

0 
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Example 6 : Determine the convergence or divergence of': 

J 1 

3
dx 

Vx-1 

Solution 

Singular points is ' 1 ' ( makes the (unction not continous} 
2 2 

J
3

1
dx = lim J 

3

1
dx 

Vx-1 c➔ 1 + Vx-1 
1 C 

J
z 

3

1 
dx = lim J\x - 1) -} dx = lim 

3 
(x - 1 )j

2 

V X - 1 C➔ 1 + C➔ 1 + 2 
C 

1 C 

J 1
dx = 

3 
lim (1 - (c - 1)j) = 

3 
(1- 0) = 

3 
'V X - 1 2 c➔ l + 2 2

1 

Because the limit is finite , then the improper integral convergent 

to 1·5 

Example 7 : Evaluate the integral : 

Solution 

J--2-dx
x2 

- 2x 
1 

0 
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Singular points is ' 0 , 2 ' ( 2 makes the Function not continous) 

By using partial Fraction we produce : 
2 C 

I 
2 

dx = lim J 1 
-

1 
dx 

x2 
- 2x c----)2- x - 2 x 

1 1 

2 

I 2 

2 

2 
dx = lill!_ [ Lnlx - 21- Lnlxm

X - X C----)2 

1 

I 
2 x-z c c-2

2 
dx = lim Ln -- = lim Ln 

x - 2x c----)2- x 1 c----)2- c
1 

2 

I 2 

2 
dx = lim Ln 1 -

2
= LnO = -oo 

x - 2x c----)2- c 
1 

-Ln1

Because the limit is inlinite , then the improper integral divergent· 

Example 8 : Evaluate the integral : 

2 

J �dx
xJ 

-1

Solution 

Singular points is ' 0 ' (makes the Function not continous) 

'This integral is improper because the integrand has an inlinite 

discontinuity at the interior value x=O , so we can write 

0 
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2 0 2 

J�dx = J�dx+J�dxxJ xJ xJ 
-1 -1 0 

---

1.1.1 1.1.2 

rt Integral 

J
o 

2
3 dx = Jim J

b 

zx-3dx = Jim -: b
X b➔o- b➔o- X 

-1
-1 -1 

0 

J�dx = Jim -(�-1) = -oo

x3 b➔o- b2 

-1

11,e 1st integral is divergent 

2nd Integral 

J
z 

2
3 

dx = Jim f
2 

2x-3 dx = Jim -: 
2

X a➔o+ a➔o+ X a 
0 a 

0 

J�dx = lim -(1 -�) = oo 

x3 a➔o+ 4 a2 

-1

11,e 1st integral is divergent too 

So the whole integral is divergent 
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Note : 

in the previous example had you not recognized that the integral was 

improper you would have obtained the incorrected result 

2 2 

J ..:._dx = J zx-3 dx = -1 2 

= -(
1 - 1) = 3 

(incorrect result)
x

3 
x

2 
_1 4 4 

-1 a 

Example J-l·W : 

Find the f'ollowing integrals if' available 

2 

1) J l dx
✓x-1 

2) J
3 

3 
dx 

X -3x

J x+2 

3) (x - 1)2 
dx

0 

4 
2 

4) J
3 

x dx 
Vx 3 

- x
5

0 
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water’s temperature was 39°C; 10 min after that, it was 33°C. Use 
Newton’s Law of Cooling to estimate how cold the refrigerator was.

44. Silver cooling in air The temperature of an ingot of silver is 
60°C above room temperature right now. Twenty minutes ago, it 
was 70°C above room temperature. How far above room temper-
ature will the silver be

  a. 15 min from now?

  b. 2 hours from now?

  c. When will the silver be 10°C above room temperature?

45. The age of Crater Lake The charcoal from a tree killed in the 
volcanic eruption that formed Crater Lake in Oregon contained 
44.5% of the carbon-14 found in living matter. About how old is 
Crater Lake?

46. The sensitivity of carbon-14 dating to measurement To see 
the effect of a relatively small error in the estimate of the amount 
of carbon-14 in a sample being dated, consider this hypothetical 
situation:

  a. A bone fragment found in central Illinois in the year 2000 
contains 17% of its original carbon-14 content. Estimate the 
year the animal died.

  b. Repeat part (a), assuming 18% instead of 17%.

  c. Repeat part (a), assuming 16% instead of 17%.

47. Carbon-14 The oldest known frozen human mummy, discov-
ered in the Schnalstal glacier of the Italian Alps in 1991 and called 
Otzi, was found wearing straw shoes and a leather coat with goat 
fur, and holding a copper ax and stone dagger. It was estimated 
that Otzi died 5000 years before he was discovered in the melting 
glacier. How much of the original carbon-14 remained in Otzi at 
the time of his discovery?

48. Art forgery A painting attributed to Vermeer (1632–1675), 
which should contain no more than 96.2% of its original car-
bon-14, contains 99.5% instead. About how old is the forgery?

49. Lascaux Cave paintings Prehistoric cave paintings of animals 
were found in the Lascaux Cave in France in 1940. Scientific 
analysis revealed that only 15% of the original carbon-14 in the 
paintings remained. What is an estimate of the age of the 
paintings?

50. Incan mummy The frozen remains of a young Incan woman 
were discovered by archeologist Johan Reinhard on Mt. Ampato 
in Peru during an expedition in 1995.

  a. How much of the original carbon-14 was present if the esti-
mated age of the “Ice Maiden” was 500 years?

  b. If a 1% error can occur in the carbon-14 measurement, what is 
the oldest possible age for the Ice Maiden?

7.3 Hyperbolic Functions

The hyperbolic functions are formed by taking combinations of the two exponential func-
tions ex and e- x. The hyperbolic functions simplify many mathematical expressions and 
occur frequently in mathematical and engineering applications. In this section we give a 
brief introduction to these functions, their graphs, their derivatives, their integrals, and 
their inverse functions.

Definitions and Identities

The hyperbolic sine and hyperbolic cosine functions are defined by the equations

sinh x = ex - e-x

2
and cosh x = ex + e-x

2
.

We pronounce sinh x as “cinch x,” rhyming with “pinch x,” and cosh x as “kosh x,” rhym-
ing with “gosh x.” From this basic pair, we define the hyperbolic tangent, cotangent, 
secant, and cosecant functions. The defining equations and graphs of these functions are 
shown in Table 7.4. We will see that the hyperbolic functions bear many similarities to the 
trigonometric functions after which they are named.

Hyperbolic functions satisfy the identities in Table 7.5. Except for differences in sign, 
these resemble identities we know for the trigonometric functions. The identities are 
proved directly from the definitions, as we show here for the second one:

2 sinh x cosh x = 2aex - e-x

2
b aex + e-x

2
b

= e2x - e-2x

2

= sinh 2x.
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The other identities are obtained similarly, by substituting in the definitions of the 
hyperbolic functions and using algebra. Like many standard functions, hyperbolic func-
tions and their inverses are easily evaluated with calculators, which often have special 
keys for that purpose.

For any real number u, we know the point with coordinates (cos u, sin u) lies on the 
unit circle x2 + y2 = 1. So the trigonometric functions are sometimes called the circular
functions. Because of the first identity

cosh2u - sinh2u = 1,

with u substituted for x in Table 7.5, the point having coordinates (cosh u, sinh u) lies on 
the right-hand branch of the hyperbola x2 - y2 = 1. This is where the hyperbolic func-
tions get their names (see Exercise 86).

Hyperbolic functions are useful in finding integrals, which we will see in Chapter 8. 
They play an important role in science and engineering as well. The hyperbolic cosine 
describes the shape of a hanging cable or wire that is strung between two points at the same 
height and hanging freely (see Exercise 83). The shape of the St. Louis Arch is an inverted 
hyperbolic cosine. The hyperbolic tangent occurs in the formula for the velocity of an ocean 
wave moving over water having a constant depth, and the inverse hyperbolic tangent describes 
how relative velocities sum according to Einstein’s Law in the Special Theory of Relativity.

Derivatives and Integrals of Hyperbolic Functions

The six hyperbolic functions, being rational combinations of the differentiable functions 
ex and e-x, have derivatives at every point at which they are defined (Table 7.6). Again, 
there are similarities with trigonometric functions.

TABLE 7.4 The six basic hyperbolic functions

x

y

1

−1
1

2
3

−2
−3

2 3−2−1−3

(a)

y = sinh xy = ex

2

y = −
e−x

2

Hyperbolic sine:

sinh x = ex - e-x

2

Hyperbolic cosine:

cosh x = ex + e-x

2

x

y

1−1 2 3−2−3

(b)

y = cosh x

y = e−x

2 1
2
3

ex

2
y =

Hyperbolic tangent:

tanh x = sinh x
cosh x

= ex - e-x

ex + e-x

Hyperbolic cotangent:

coth x = cosh x
sinh x

= ex + e-x

ex - e-x

x

y

2

1−1 2−2

−2

(c)

y = coth x

y = tanh x

y = coth x

y = 1

y = −1

Hyperbolic secant:

sech x = 1
cosh x

= 2
ex + e-x

x

y

1−1 0 2−2

2

(d)

y = sech x

y = 1

Hyperbolic cosecant:

csch x = 1
sinh x

= 2
ex - e-x  

x

y

1−1 2−2

2

1

−1

(e)

y = csch x

TABLE 7.5 Identities for 

hyperbolic functions

cosh2 x - sinh2 x = 1

sinh 2x = 2 sinh x cosh x

cosh 2x = cosh2 x + sinh2 x

cosh2 x = cosh 2x + 1
2

sinh2 x = cosh 2x - 1
2

tanh2 x = 1 - sech2 x

coth2 x = 1 + csch2 x

TABLE 7.6 Derivatives of 

hyperbolic functions

d
dx

(sinh u) = cosh u
du
dx

d
dx

(cosh u) = sinh u
du
dx

d
dx

(tanh u) = sech2 u
du
dx

d
dx

(coth u) = -csch2 u
du
dx

d
dx

(sech u) = -sech u tanh u
du
dx

d
dx

(csch u) = -csch u coth u
du
dx
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The derivative formulas are derived from the derivative of eu:

d
dx

(sinh u) = d
dx
aeu - e-u

2
b Definition of sinh u

=
eu du>dx + e-u du>dx

2
Derivative of eu

= cosh u
du
dx

. Definition of cosh u

This gives the first derivative formula. From the definition, we can calculate the derivative 
of the hyperbolic cosecant function, as follows:

d
dx

(csch u) = d
dx
a 1

sinh u
b Definition of csch u

= - cosh u
sinh2 u

du
dx

Quotient Rule for derivatives

= - 1
sinh u

cosh u
sinh u

du
dx

Rearrange terms.

= -csch u coth u
du
dx

Definitions of csch u and coth u

The other formulas in Table 7.6 are obtained similarly.
The derivative formulas lead to the integral formulas in Table 7.7.

EXAMPLE 1  We illustrate the derivative and integral formulas.

(a) d
dt
1tanh 21 + t22 = sech2 21 + t2 # d

dt
121 + t22

= t

21 + t2
sech221 + t2

(b)
L

coth 5x dx =
L

cosh 5x
sinh 5x

dx = 1
5L

du
u

u = sinh 5x ,
du = 5 cosh 5x dx

= 1
5

ln � u � + C = 1
5

ln � sinh 5x � + C

(c)
L

1

0
sinh2 x dx =

L

1

0

cosh 2x - 1
2

dx Table 7.5

= 1
2L

1

0
(cosh 2x - 1) dx = 1

2
c sinh 2x

2
- x d

0

1

= sinh 2
4

- 1
2
≈ 0.40672 Evaluate with a calculator.

(d)
L

ln 2

0
4ex sinh x dx =

L

ln 2

0
4ex ex - e-x

2
dx =

L

ln 2

0
(2e2x - 2) dx

= 3e2x - 2x40
ln 2 = (e2 ln2 - 2 ln 2) - (1 - 0)

= 4 - 2 ln 2 - 1 ≈ 1.6137

Inverse Hyperbolic Functions

The inverses of the six basic hyperbolic functions are very useful in integration (see 
Chapter 8). Since d(sinh x)>dx = cosh x 7 0, the hyperbolic sine is an increasing func-
tion of x. We denote its inverse by

y = sinh-1 x.

TABLE 7.7 Integral formulas for 

hyperbolic functions

L
sinh u du = cosh u + C

L
cosh u du = sinh u + C

L
sech2 u du = tanh u + C

L
csch2 u du = -coth u + C

L
sech u tanh u du = -sech u + C

L
csch u coth u du = -csch u + C
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For every value of x in the interval -q 6 x 6 q, the value of y = sinh-1 x is the number 
whose hyperbolic sine is x. The graphs of y = sinh x and y = sinh-1 x are shown in 
Figure 7.8a.

The function y = cosh x is not one-to-one because its graph in Table 7.4 does not 
pass the horizontal line test. The restricted function y = cosh x, x Ú 0, however, is one-
to-one and therefore has an inverse, denoted by

y = cosh-1 x.

For every value of x Ú 1, y = cosh-1 x is the number in the interval 0 … y 6 q whose 
hyperbolic cosine is x. The graphs of y = cosh x, x Ú 0, and y = cosh-1 x are shown in 
Figure 7.8b.

Like y = cosh x, the function y = sech x = 1>cosh x fails to be one-to-one, but its 
restriction to nonnegative values of x does have an inverse, denoted by

y = sech-1 x.

For every value of x in the interval (0, 14 , y = sech-1 x is the nonnegative number whose 
hyperbolic secant is x. The graphs of y = sech x, x Ú 0, and y = sech-1 x are shown in 
Figure 7.8c.

The hyperbolic tangent, cotangent, and cosecant are one-to-one on their domains and 
therefore have inverses, denoted by

y = tanh-1 x, y = coth-1 x, y = csch-1 x.

These functions are graphed in Figure 7.9.

x

y

1
2

2 4 6−6 −4 −2

x

y

1

0

2

1 2 3 4 5 6 7 8

3
4
5
6
7
8

x

y

1 2 3

1

0

2

3

(a)

(b) (c)

y = sinh x y = x

y = sinh−1 x
(x = sinh y)

y = cosh x,
x ≥ 0

y = sech x
x ≥ 0

y = x y = x

y = cosh−1 x
(x = cosh y, y ≥ 0)

y = sech−1 x
(x = sech y,
  y ≥ 0)

FIGURE 7.8 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about 
the line y = x.

x

y

0−1 1

(a)

x

y

0−1 1

(b)

x

y

0

(c)

x = tanh y
y = tanh−1 x

x = coth y
y = coth−1 x

x = csch y
y = csch−1 x

FIGURE 7.9 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.
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Useful Identities

We use the identities in Table 7.8 to calculate the values of sech-1 x, csch-1 x, and coth-1 x
on calculators that give only cosh-1 x, sinh-1 x, and tanh-1 x. These identities are direct 
consequences of the definitions. For example, if 0 6 x … 1, then

sech acosh-1 a1xb b = 1

cosh acosh-1 a1xb b
= 1

a1xb
= x.

We also know that sech (sech-1 x) = x, so because the hyperbolic secant is one-to-one on 
(0, 14 , we have

cosh-1 a1xb = sech-1 x.

Derivatives of Inverse Hyperbolic Functions

An important use of inverse hyperbolic functions lies in antiderivatives that reverse the 
derivative formulas in Table 7.9.

TABLE 7.8 Identities for 

inverse hyperbolic functions

sech-1 x = cosh-1 1
x

csch-1 x = sinh-1 1
x

coth-1 x = tanh-1 1
x

TABLE 7.9 Derivatives of inverse hyperbolic functions

d(sinh-1 u)
dx

= 1

21 + u2

du
dx

d(cosh-1 u)
dx

= 1

2u2 - 1

du
dx

, u 7 1

d(tanh-1 u)
dx

= 1
1 - u2

du
dx

, � u � 6 1

d(coth-1 u)
dx

= 1
1 - u2

du
dx

, � u � 7 1

d(sech-1 u)
dx

= - 1

u21 - u2

du
dx

, 0 6 u 6 1

d(csch-1 u)
dx

= - 1

� u �21 + u2

du
dx

, u ≠ 0

The restrictions � u � 6 1 and � u � 7 1 on the derivative formulas for tanh-1 u and 
coth-1 u come from the natural restrictions on the values of these functions. (See Figure 7.9a 
and b.) The distinction between � u � 6 1 and � u � 7 1 becomes important when we con-
vert the derivative formulas into integral formulas.

We illustrate how the derivatives of the inverse hyperbolic functions are found in 
Example 2, where we calculate d(cosh-1 u)>dx . The other derivatives are obtained by 
similar calculations.

EXAMPLE 2  Show that if u is a differentiable function of x whose values are greater 
than 1, then

d
dx

(cosh-1 u) = 1

2u2 - 1

du
dx

.
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Solution First we find the derivative of y = cosh-1 x for x 7 1 by applying Theorem 3 
of Section 3.8 with ƒ(x) = cosh x and ƒ-1(x) = cosh-1 x. Theorem 3 can be applied 
because the derivative of cosh x is positive for 0 6 x.

(ƒ-1)′(x) = 1
ƒ′(ƒ-1 (x))

Theorem 3, Section 3.8

= 1
sinh (cosh-1 x)

ƒ′(u) = sinh u

= 1

2cosh2(cosh-1 x) - 1

cosh2 u - sinh2 u = 1,

sinh u = 2cosh2 u - 1

= 1

2x2 - 1
cosh (cosh-1 x) = x

The Chain Rule gives the final result:

d
dx

(cosh-1 u) = 1

2u2 - 1

du
dx

.

With appropriate substitutions, the derivative formulas in Table 7.9 lead to the integra-
tion formulas in Table 7.10. Each of the formulas in Table 7.10 can be verified by differen-
tiating the expression on the right-hand side.

HISTORICAL BIOGRAPHY

Sonya Kovalevsky 
(1850–1891)

TABLE 7.10 Integrals leading to inverse hyperbolic functions

1.
L

du

2a2 + u2
= sinh-1 auab + C, a 7 0

2.
L

du

2u2 - a2
= cosh-1 auab + C, u 7 a 7 0

3.
L

du
a2 - u2 = d 1

a tanh-1 auab + C, u2 6 a2

1
a coth-1 auab + C, u2 7 a2

4.
L

du

u2a2 - u2
= - 1

a sech-1 auab + C, 0 6 u 6 a

5.
L

du

u2a2 + u2
= - 1

a csch-1 ` ua ` + C , u ≠ 0 and a 7 0

EXAMPLE 3  Evaluate

L

1

0

2 dx

23 + 4x2
.

Solution The indefinite integral is

L

2 dx

23 + 4x2
=

L

du

2a2 + u2
u = 2x, du = 2 dx, a = 23

= sinh-1 auab + C Formula from Table 7.10

= sinh-1 a 2x

23
b + C.
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Therefore,

L

1

0

2 dx

23 + 4x2
= sinh-1 a 2x

23
b d

0

1

= sinh-1 a 2

23
b - sinh-1 (0)

= sinh-1 a 2

23
b - 0 ≈ 0.98665.

Values and Identities
Each of Exercises 1–4 gives a value of sinh x or cosh x. Use the defi-
nitions and the identity cosh2 x - sinh2 x = 1 to find the values of the 
remaining five hyperbolic functions.

1. sinh x = - 3
4

2. sinh x = 4
3

3. cosh x = 17
15

, x 7 0 4. cosh x = 13
5

, x 7 0

Rewrite the expressions in Exercises 5–10 in terms of exponentials 
and simplify the results as much as you can.

5. 2 cosh (ln x) 6. sinh (2 ln x)

7. cosh 5x + sinh 5x 8. cosh 3x - sinh 3x

9. (sinh x + cosh x)4

10. ln (cosh x + sinh x) + ln (cosh x - sinh x)

11. Prove the identities

sinh (x + y) = sinh x cosh y + cosh x sinh y,

cosh (x + y) = cosh x cosh y + sinh x sinh y.

  Then use them to show that

  a. sinh 2x = 2 sinh x cosh x.

  b. cosh 2x = cosh2 x + sinh2 x.

12. Use the definitions of cosh x and sinh x to show that

cosh2 x - sinh2 x = 1.

Finding Derivatives
In Exercises 13–24, find the derivative of y with respect to the appro-
priate variable.

13. y = 6 sinh
x
3

14. y = 1
2

sinh (2x + 1)

15. y = 22t tanh 2t 16. y = t2 tanh
1
t

17. y = ln (sinh z) 18. y = ln (cosh z)

19. y = sech u(1 - ln sech u) 20. y = csch u(1 - ln csch u)

21. y = ln cosh y - 1
2

tanh2 y 22. y = ln sinh y - 1
2

coth2 y

23. y = (x2 + 1) sech (ln x)

  (Hint: Before differentiating, express in terms of exponentials 
and simplify.)

24. y = (4x2 - 1) csch (ln 2x)

In Exercises 25–36, find the derivative of y with respect to the appro-
priate variable.

25. y = sinh-11x 26. y = cosh-1 22x + 1

27. y = (1 - u) tanh-1u 28. y = (u2 + 2u) tanh-1(u + 1)

29. y = (1 - t) coth-12t 30. y = (1 - t2) coth-1 t

31. y = cos-1 x - x sech-1 x 32. y = ln x + 21 - x2 sech-1 x

33. y = csch-1 a1
2
b u 34. y = csch-1 2u

35. y = sinh-1 (tan x)

36. y = cosh-1 (sec x), 0 6 x 6 p>2
Integration Formulas
Verify the integration formulas in Exercises 37–40.

37. a.
L

sech x dx = tan-1(sinh x) + C

  b.
L

sech x dx = sin-1(tanh x) + C

38.
L

x sech-1 x dx = x2

2
sech-1 x - 1

2
21 - x2 + C

39.
L

x coth-1 x dx = x2 - 1
2

coth-1 x + x
2

+ C

40.
L

tanh-1 x dx = x tanh-1 x + 1
2

ln (1 - x2) + C

Evaluating Integrals
Evaluate the integrals in Exercises 41–60.

41.
L

sinh 2x dx 42.
L

sinh
x
5

dx

43.
L

6 cosh ax
2

- ln 3b dx 44.
L

4 cosh (3x - ln 2) dx

45.
L

tanh
x
7

dx 46.
L

coth
u

23
du

47.
L

sech2 ax - 1
2
b dx 48.

L
csch2 (5 - x) dx

49.
L

sech 2t tanh 2t dt

2t
50.

L

csch (ln t) coth (ln t) dt
t

51.
L

ln4

ln2
coth x dx 52.

L

ln2

0
tanh 2x dx

Exercises 7.3
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  Then show that (ƒ(x) + ƒ(-x))>2 is even and that (ƒ(x) -
ƒ(-x))>2 is odd.

76. Derive the formula sinh-1 x = ln1x + 2x2 + 12 for all real x.
Explain in your derivation why the plus sign is used with the 
square root instead of the minus sign.

77. Skydiving If a body of mass m falling from rest under the 
action of gravity encounters an air resistance proportional to the 
square of the velocity, then the body’s velocity t sec into the fall 
satisfies the differential equation

m
dy
dt

= mg - ky2,

where k is a constant that depends on the body’s aerodynamic 
properties and the density of the air. (We assume that the fall is 
short enough so that the variation in the air’s density will not 
affect the outcome significantly.)

a. Show that

y = A
mg
k

tanhaA
gk
m tb

     satisfies the differential equation and the initial condition that 
y = 0 when t = 0.

  b. Find the body’s limiting velocity, limtSqy.

  c. For a 160-lb skydiver (mg = 160), with time in seconds and 
distance in feet, a typical value for k is 0.005. What is the 
diver’s limiting velocity?

78. Accelerations whose magnitudes are proportional to displace-
ment Suppose that the position of a body moving along a coor-
dinate line at time t is

a. s = a cos kt + b sin kt.

  b. s = a cosh kt + b sinh kt.

  Show in both cases that the acceleration d2s>dt2 is proportional to 
s but that in the first case it is directed toward the origin, whereas 
in the second case it is directed away from the origin.

79. Volume A region in the first quadrant is bounded above by the
curve y = cosh x, below by the curve y = sinh x, and on the left 
and right by the y-axis and the line x = 2, respectively. Find the vol-
ume of the solid generated by revolving the region about the x-axis.

80. Volume The region enclosed by the curve y = sech x, the 
x-axis, and the lines x = { ln23 is revolved about the x-axis to 
generate a solid. Find the volume of the solid.

81. Arc length Find the length of the graph of y = (1>2) cosh 2x
from x = 0 to x = ln25.

82. Use the definitions of the hyperbolic functions to find each of the 
following limits.

a. lim
xSq

tanh x b. lim
xS-q

tanh x

  c. lim
xSq

sinh x d. lim
xS-q

sinh x

  e. lim
xSq

sech x   f. lim
xSq

coth x

  g. lim
xS0+

coth x h. lim
xS0-

coth x

  i. lim
xS-q

csch x

83. Hanging cables Imagine a cable, like a telephone line or TV 
cable, strung from one support to another and hanging freely. The 
cable’s weight per unit length is a constant w and the horizontal 

53.
L

-ln2

-ln4
2eucosh u du 54.

L

ln2

0
4e-u sinh u du

55.
L

p>4

-p>4
cosh (tan u) sec2 u du 56.

L

p>2

0
2 sinh (sin u) cos u du

57.
L

2

1

cosh (ln t)
t dt 58.

L

4

1

8 cosh 1x
1x

dx

59.
L

0

-ln2
cosh2 ax

2
b dx 60.

L

ln10

0
4 sinh2 ax

2
b dx

Inverse Hyperbolic Functions and Integrals
When hyperbolic function keys are not available on a calculator, it is 
still possible to evaluate the inverse hyperbolic functions by express-
ing them as logarithms, as shown here.

 sinh-1 x = ln1x + 2x2 + 12, -q 6 x 6 q

 cosh-1 x = ln1x + 2x2 - 12, x Ú 1

 tanh-1 x = 1
2

ln
1 + x
1 - x

,          � x � 6 1

 sech-1 x = ln a1 + 21 - x2

x b , 0 6 x … 1

 csch-1 x = ln a1x + 21 + x2

� x �
b , x ≠ 0

 coth-1 x = 1
2

ln
x + 1
x - 1

,          � x � 7 1

Use the formulas in the box here to express the numbers in Exercises 
61–66 in terms of natural logarithms.

61. sinh-1 (-5>12) 62. cosh-1 (5>3)

63. tanh-1(-1>2) 64. coth-1 (5>4)

65. sech-1 (3>5) 66. csch-11-1>132
Evaluate the integrals in Exercises 67–74 in terms of

a. inverse hyperbolic functions.
b. natural logarithms.

67.
L

223

0

dx

24 + x2
68.

L

1>3

0

6 dx

21 + 9x2

69.
L

2

5>4
dx

1 - x2 70.
L

1>2

0

dx
1 - x2

71.
L

3>13

1>5
dx

x21 - 16x2
72.

L

2

1

dx

x24 + x2

73.
L

p

0

cos x dx

21 + sin2 x
74.

L

e

1

dx

x21 + (ln x)2

Applications and Examples
75. Show that if a function ƒ is defined on an interval symmetric 

about the origin (so that ƒ is defined at -x whenever it is defined 
at x), then

ƒ(x) =
ƒ(x) + ƒ(-x)

2
+

ƒ(x) - ƒ(-x)
2

. (1)
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tension at its lowest point is a vector of length H. If we choose a 
coordinate system for the plane of the cable in which the x-axis is 
horizontal, the force of gravity is straight down, the positive 
y-axis points straight up, and the lowest point of the cable lies at 
the point y = H>w on the y-axis (see accompanying figure), then 
it can be shown that the cable lies along the graph of the hyper-
bolic cosine

y = H
w cosh 

w
H

x.

x

y

0

H

Hanging
cable

H
w

y =      cosh xH
w

w
H

  Such a curve is sometimes called a chain curve or a catenary,
the latter deriving from the Latin catena, meaning “chain.”

a. Let P(x, y) denote an arbitrary point on the cable. The next 
accompanying figure displays the tension at P as a vector of 
length (magnitude) T, as well as the tension H at the lowest 
point A. Show that the cable’s slope at P is

tan f =
dy
dx

= sinh 
w
H

x.

x

y

0

H

T

T cos f

f
P(x, y)

y =      cosh xH
w

w
H

H
wA 0,Q R

  b. Using the result from part (a) and the fact that the horizontal 
tension at P must equal H (the cable is not moving), show that 
T = wy. Hence, the magnitude of the tension at P(x, y) is 
exactly equal to the weight of y units of cable.

84. (Continuation of Exercise 83.) The length of arc AP in the 
Exercise 83 figure is s = (1>a) sinh ax, where a = w>H. Show 
that the coordinates of P may be expressed in terms of s as

x = 1
a sinh-1 as, y = As2 + 1

a2 .

85. Area Show that the area of the region in the first quadrant 
enclosed by the curve y = (1>a) cosh ax, the coordinate axes, 
and the line x = b is the same as the area of a rectangle of height 
1 >a and length s, where s is the length of the curve from x = 0 to 
x = b. Draw a figure illustrating this result.

86. The hyperbolic in hyperbolic functions Just as x = cos u and 
y = sin u are identified with points (x, y) on the unit circle, the 

functions x = cosh u and y = sinh u are identified with points 
(x, y) on the right-hand branch of the unit hyperbola, 
x2 - y2 = 1.

    Another analogy between hyperbolic and circular functions 
is that the variable u in the coordinates (cosh u, sinh u) for the 
points of the right-hand branch of the hyperbola x2 - y2 = 1 is 
twice the area of the sector AOP pictured in the accompanying 
figure. To see why this is so, carry out the following steps.

a. Show that the area A(u) of sector AOP is

A(u) = 1
2

cosh u sinh u -
L

cosh u

1
2x2 - 1 dx.

b. Differentiate both sides of the equation in part (a) with respect 
to u to show that

A′(u) = 1
2

.

c. Solve this last equation for A(u). What is the value of A(0)?
What is the value of the constant of integration C in your solu-
tion? With C determined, what does your solution say about 
the relationship of u to A(u)?

Since cosh2 u - sinh2 u = 1, the point 
(cosh u, sinh u) lies on the right-hand 
branch of the hyperbola x2 - y2 = 1 
for every value of u.

x

y

1

10

u
:

−∞−1

u:
∞

P(cosh u, sinh u)
u = 0

x2 − y2 = 1

One of the analogies between hyperbolic and circular func-
tions is revealed by these two diagrams (Exercise 86).

x

y

O

Asymptote

Asy
mpto

te

A
x

y

O A

x2 − y2 = 1
x2 + y2 = 1 P(cos u, sin u)

u is twice the area
of sector AOP.

u = 0
u = 0

u is twice the area
of sector AOP.

P(cosh u, sinh u)
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Solution The equation

dy
dx

= y - x

is a first-order differential equation with ƒ(x, y) = y - x.

On the left side of the equation:

dy
dx

= d
dx
ax + 1 - 1

3 exb = 1 - 1
3 ex .

On the right side of the equation:

y - x = (x + 1) - 1
3 ex - x = 1 - 1

3 ex .

The function satisfies the initial condition because

y(0) = c (x + 1) - 1
3 ex d

x=0
= 1 - 1

3 = 2
3.

The graph of the function is shown in Figure 9.1.

Slope Fields: Viewing Solution Curves

Each time we specify an initial condition y(x0) = y0 for the solution of a differential equa-
tion y′ = ƒ(x, y), the solution curve (graph of the solution) is required to pass through the 
point (x0, y0) and to have slope ƒ(x0, y0) there. We can picture these slopes graphically by 
drawing short line segments of slope ƒ (x, y) at selected points (x, y) in the region of the 
xy-plane that constitutes the domain of ƒ. Each segment has the same slope as the solution 
curve through (x, y) and so is tangent to the curve there. The resulting picture is called a 
slope field (or direction field) and gives a visualization of the general shape of the solu-
tion curves. Figure 9.2a shows a slope field, with a particular solution sketched into it in 
Figure 9.2b. We see how these line segments indicate the direction the solution curve takes 
at each point it passes through.

−4 −2 2 4

−4

−3

−2

−1

1

2

x

y

0, 2
3

y = (x + 1) − ex1
3

a b

FIGURE 9.1 Graph of the solution to 
the initial value problem in Example 2.

0 2−2−4 4

2

4

−2

−4

0 2−2−4 4

2

4

−2

−4

(a) (b)

x x

y y 0, 2
3a b

FIGURE 9.2 (a) Slope field for 
dy
dx

= y - x. (b) The particular solu-

tion curve through the point a0,
2
3
b  (Example 2).

Figure 9.3 shows three slope fields and we see how the solution curves behave by fol-
lowing the tangent line segments in these fields. Slope fields are useful because they dis-
play the overall behavior of the family of solution curves for a given differential equation. 
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For instance, the slope field in Figure 9.3b reveals that every solution y(x) to the differen-
tial equation specified in the figure satisfies limxS{q y(x) = 0. We will see that knowing 
the overall behavior of the solution curves is often critical to understanding and predicting 
outcomes in a real-world system modeled by a differential equation.

Constructing a slope field with pencil and paper can be quite tedious. All our exam-
ples were generated by computer software.

Euler’s Method

If we do not require or cannot immediately find an exact solution giving an explicit for-
mula for an initial value problem y′ = ƒ(x, y), y(x0) = y0, we can often use a computer to 
generate a table of approximate numerical values of y for values of x in an appropriate 
interval. Such a table is called a numerical solution of the problem, and the method by 
which we generate the table is called a numerical method.

Given a differential equation dy>dx = ƒ(x, y) and an initial condition y(x0) = y0, we 
can approximate the solution y = y(x) by its linearization

L(x) = y(x0) + y′(x0)(x - x0) or L(x) = y0 + ƒ(x0, y0)(x - x0).

The function L(x) gives a good approximation to the solution y(x) in a short interval about 
x0 (Figure 9.4). The basis of Euler’s method is to patch together a string of linearizations 
to approximate the curve over a longer stretch. Here is how the method works.

We know the point (x0, y0) lies on the solution curve. Suppose that we specify a new 
value for the independent variable to be x1 = x0 + dx. (Recall that dx = ∆x in the defini-
tion of differentials.) If the increment dx is small, then

y1 = L(x1) = y0 + ƒ(x0, y0) dx

is a good approximation to the exact solution value y = y(x1). So from the point (x0, y0),
which lies exactly on the solution curve, we have obtained the point (x1, y1), which lies 
very close to the point (x1, y(x1)) on the solution curve (Figure 9.5).

Using the point (x1, y1) and the slope ƒ(x1, y1) of the solution curve through (x1, y1),
we take a second step. Setting x2 = x1 + dx, we use the linearization of the solution curve 
through (x1, y1) to calculate

y2 = y1 + ƒ(x1, y1) dx.

(a) y′ = y − x2 (b) y′ = −
1 + x2

2xy
(c) y′ = (1 − x)y + x

2

FIGURE 9.3 Slope fields (top row) and selected solution curves (bottom row). In computer 
renditions, slope segments are sometimes portrayed with arrows, as they are here, but they 
should be considered as just tangent line segments.

0

y
y = L(x) = y0 + f (x0, y0)(x − x0)

y = y (x)

(x0, y0)y0

x0
x

FIGURE 9.4 The linearization L(x) of 
y = y(x) at x = x0.

0

y

y = y(x)

(x1, y(x1))

(x1, y1)

x0 x1 = x0 + dx
dx x

(x0, y0)

FIGURE 9.5 The first Euler step 
approximates y(x1) with y1 = L(x1).
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This gives the next approximation (x2, y2) to values along the solution curve y = y(x)
(Figure 9.6). Continuing in this fashion, we take a third step from the point (x2, y2) with 
slope ƒ(x2, y2) to obtain the third approximation

y3 = y2 + ƒ(x2, y2) dx,

and so on. We are literally building an approximation to one of the solutions by following 
the direction of the slope field of the differential equation.

The steps in Figure 9.6 are drawn large to illustrate the construction process, so the 
approximation looks crude. In practice, dx would be small enough to make the red curve 
hug the blue one and give a good approximation throughout.

EXAMPLE 3  Find the first three approximations y1, y2, y3 using Euler’s method for 
the initial value problem

y′ = 1 + y, y(0) = 1,

starting at x0 = 0 with dx = 0.1.

Solution We have the starting values x0 = 0 and y0 = 1. Next we determine the values 
of x at which the Euler approximations will take place: x1 = x0 + dx = 0.1,
x2 = x0 + 2 dx = 0.2, and x3 = x0 + 3 dx = 0.3. Then we find

First: y1 = y0 + ƒ(x0, y0) dx

= y0 + (1 + y0) dx

= 1 + (1 + 1)(0.1) = 1.2

Second: y2 = y1 + ƒ(x1, y1) dx

= y1 + (1 + y1) dx

= 1.2 + (1 + 1.2)(0.1) = 1.42

Third: y3 = y2 + ƒ(x2, y2) dx

= y2 + (1 + y2) dx

= 1.42 + (1 + 1.42)(0.1) = 1.662

The step-by-step process used in Example 3 can be continued easily. Using equally 
spaced values for the independent variable in the table for the numerical solution, and gen-
erating n of them, set

x1 = x0 + dx

x2 = x1 + dx

f

xn = xn-1 + dx.

Then calculate the approximations to the solution,

y1 = y0 + ƒ(x0, y0) dx

y2 = y1 + ƒ(x1, y1) dx

f

yn = yn-1 + ƒ(xn-1, yn-1) dx.

The number of steps n can be as large as we like, but errors can accumulate if n is too 
large.

Euler’s method is easy to implement on a computer or calculator. The software pro-
gram generates a table of numerical solutions to an initial value problem, allowing us to 
input x0 and y0, the number of steps n, and the step size dx. It then calculates the approxi-
mate solution values y1, y2, c, yn in iterative fashion, as just described.

x

y

0

Euler approximation

Error

(x0, y0)

(x1, y1)

(x2, y2)
(x3, y3)

x0 x1 x2 x3

dx dx dx

True solution curve
y = y(x)

FIGURE 9.6 Three steps in the Euler 
approximation to the solution of the initial 
value problem y′ = ƒ(x, y), y(x0) = y0.
As we take more steps, the errors involved
usually accumulate, but not in the 
exaggerated way shown here.
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Solving the separable equation in Example 3, we find that the exact solution to the 
initial value problem is y = 2ex - 1. We use this information in Example 4.

EXAMPLE 4 Use Euler’s method to solve

y′ = 1 + y, y(0) = 1,

on the interval 0 … x … 1, starting at x0 = 0 and taking (a) dx = 0.1 and (b) dx = 0.05.
Compare the approximations with the values of the exact solution y = 2ex - 1.

Solution
(a) We used a computer to generate the approximate values in Table 9.1. The “error” col-

umn is obtained by subtracting the unrounded Euler values from the unrounded val-
ues found using the exact solution. All entries are then rounded to four decimal 
places.

TABLE 9.1 Euler solution of y ′ = 1 + y, y (0) = 1,

step size dx = 0.1

x y (Euler) y (exact) Error

0 1 1 0

0.1 1.2 1.2103 0.0103

0.2 1.42 1.4428 0.0228

0.3 1.662 1.6997 0.0377

0.4 1.9282 1.9836 0.0554

0.5 2.2210 2.2974 0.0764

0.6 2.5431 2.6442 0.1011

0.7 2.8974 3.0275 0.1301

0.8 3.2872 3.4511 0.1639

0.9 3.7159 3.9192 0.2033

1.0 4.1875 4.4366 0.2491

    By the time we reach x = 1 (after 10 steps), the error is about 5.6% of the exact 
solution. A plot of the exact solution curve with the scatterplot of Euler solution 
points from Table 9.1 is shown in Figure 9.7.

(b) One way to try to reduce the error is to decrease the step size. Table 9.2 shows the 
results and their comparisons with the exact solutions when we decrease the step size 
to 0.05, doubling the number of steps to 20. As in Table 9.1, all computations are per-
formed before rounding. This time when we reach x = 1, the relative error is only 
about 2.9%.

It might be tempting to reduce the step size even further in Example 4 to obtain 
greater accuracy. Each additional calculation, however, not only requires additional com-
puter time but more importantly adds to the buildup of round-off errors due to the approxi-
mate representations of numbers inside the computer.

The analysis of error and the investigation of methods to reduce it when making 
numerical calculations are important but are appropriate for a more advanced course. 
There are numerical methods more accurate than Euler’s method, usually presented in a 
further study of differential equations or in a numerical analysis course.

10

1

2

3

4

x

y

y = 2ex − 1

FIGURE 9.7 The graph of y = 2ex - 1
superimposed on a scatterplot of the 
Euler approximations shown in Table 9.1 
(Example 4).
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TABLE 9.2 Euler solution of y′ = 1 + y, y(0) = 1,

step size dx = 0.05

x y (Euler) y (exact) Error

0 1 1 0

0.05 1.1 1.1025 0.0025

0.10 1.205 1.2103 0.0053

0.15 1.3153 1.3237 0.0084

0.20 1.4310 1.4428 0.0118

0.25 1.5526 1.5681 0.0155

0.30 1.6802 1.6997 0.0195

0.35 1.8142 1.8381 0.0239

0.40 1.9549 1.9836 0.0287

0.45 2.1027 2.1366 0.0340

0.50 2.2578 2.2974 0.0397

0.55 2.4207 2.4665 0.0458

0.60 2.5917 2.6442 0.0525

0.65 2.7713 2.8311 0.0598

0.70 2.9599 3.0275 0.0676

0.75 3.1579 3.2340 0.0761

0.80 3.3657 3.4511 0.0853

0.85 3.5840 3.6793 0.0953

0.90 3.8132 3.9192 0.1060

0.95 4.0539 4.1714 0.1175

1.00 4.3066 4.4366 0.1300

Slope Fields
In Exercises 1–4, match the differential equations with their slope 
fields, graphed here.
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1. y′ = x + y 2. y′ = y + 1

3. y′ = -x
y 4. y′ = y2 - x2

Exercises 9.1
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In Exercises 5 and 6, copy the slope fields and sketch in some of the 
solution curves.

5. y′ = (y + 2)(y - 2)

2

−2

−2 2 4−4

−4

4

x

y

6. y′ = y(y + 1)(y - 1)

2

−2

−2 2 4−4

−4

4

x

y

Integral Equations
In Exercises 7–10, write an equivalent first-order differential equation 
and initial condition for y.

7. y = -1 +
L

x

1
(t - y(t)) dt

8. y =
L

x

1

1
t dt

9. y = 2 -
L

x

0
(1 + y(t)) sin t dt

10. y = 1 +
L

x

0
y(t) dt

Using Euler’s Method
In Exercises 11–16, use Euler’s method to calculate the first three 
approximations to the given initial value problem for the specified 
increment size. Calculate the exact solution and investigate the accuracy 
of your approximations. Round your results to four decimal places.

11. y′ = 1 -
y
x , y(2) = -1, dx = 0.5

12. y′ = x(1 - y), y(1) = 0, dx = 0.2

13. y′ = 2xy + 2y, y(0) = 3, dx = 0.2

14. y′ = y2(1 + 2x), y(-1) = 1, dx = 0.5

15. y′ = 2xex2
, y(0) = 2, dx = 0.1

16. y′ = yex, y(0) = 2, dx = 0.5

17. Use the Euler method with dx = 0.2 to estimate y(1) if y′ = y
and y(0) = 1. What is the exact value of y(1)?

18. Use the Euler method with dx = 0.2 to estimate y(2) if y′ = y>x
and y(1) = 2. What is the exact value of y(2)?

T

T

19. Use the Euler method with dx = 0.5 to estimate y(5) if y′ =
y2>2x and y(1) = -1. What is the exact value of y(5)?

20. Use the Euler method with dx = 1>3 to estimate y(2) if y′ =
x sin y and y(0) = 1. What is the exact value of y(2)?

21. Show that the solution of the initial value problem

y′ = x + y, y(x0) = y0

  is

y = -1 - x + (1 + x0 + y0) ex-x0.

22. What integral equation is equivalent to the initial value problem 
y′ = ƒ(x), y(x0) = y0?

COMPUTER EXPLORATIONS
In Exercises 23–28, obtain a slope field and add to it graphs of the 
solution curves passing through the given points.

23. y′ = y with

a. (0, 1) b. (0, 2) c. (0, -1)

24. y′ = 2(y - 4) with

a. (0, 1) b. (0, 4) c. (0, 5)

25. y′ = y(x + y) with

a. (0, 1) b. (0, -2) c. (0, 1>4) d. (-1, -1)

26. y′ = y2 with

a. (0, 1) b. (0, 2) c. (0, -1) d. (0, 0)

27. y′ = (y - 1)(x + 2) with

a. (0, -1) b. (0, 1) c. (0, 3) d. (1, - 1)

28. y′ =
xy

x2 + 4
 with

a. (0, 2) b. (0, -6) c. 1-223, -42
In Exercises 29 and 30, obtain a slope field and graph the particular 
solution over the specified interval. Use your CAS DE solver to find 
the general solution of the differential equation.

29. A logistic equation y′ = y(2 - y), y(0) = 1>2; 0 … x … 4,
0 … y … 3

30. y′ = (sin x)(sin y), y(0) = 2; -6 … x … 6, -6 … y … 6

Exercises 31 and 32 have no explicit solution in terms of elementary 
functions. Use a CAS to explore graphically each of the differential 
equations.

31. y′ = cos (2x - y), y(0) = 2; 0 … x … 5, 0 … y … 5

32. A Gompertz equation y′ = y(1>2 - ln y), y(0) = 1>3;
0 … x … 4, 0 … y … 3

33. Use a CAS to find the solutions of y′ + y = ƒ(x) subject to the 
initial condition y(0) = 0, if ƒ(x) is

a. 2x b. sin 2x c. 3ex>2 d. 2e-x>2 cos 2x.

  Graph all four solutions over the interval -2 … x … 6 to com-
pare the results.

34.  a. Use a CAS to plot the slope field of the differential equation

y′ = 3x2 + 4x + 2
2(y - 1)

  over the region -3 … x … 3 and -3 … y … 3.

b. Separate the variables and use a CAS integrator to find the 
general solution in implicit form.
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c. Using a CAS implicit function grapher, plot solution curves 
for the arbitrary constant values C = -6, -4, -2, 0, 2, 4, 6.

d. Find and graph the solution that satisfies the initial condition 
y(0) = -1.

In Exercises 35–38, use Euler’s method with the specified step size to 
estimate the value of the solution at the given point x*. Find the value 
of the exact solution at x*.

35. y′ = 2xex2
, y(0) = 2, dx = 0.1, x* = 1

36. y′ = 2y2(x - 1), y(2) = -1>2, dx = 0.1, x* = 3

37. y′ = 2x>y, y 7 0, y(0) = 1, dx = 0.1, x* = 1

38. y′ = 1 + y2, y(0) = 0, dx = 0.1, x* = 1

Use a CAS to explore graphically each of the differential equations in 
Exercises 39–42. Perform the following steps to help with your explo-
rations.

a. Plot a slope field for the differential equation in the given 
xy-window.

b. Find the general solution of the differential equation using 
your CAS DE solver.

c. Graph the solutions for the values of the arbitrary constant 
C = -2, -1, 0, 1, 2 superimposed on your slope field plot.

d. Find and graph the solution that satisfies the specified initial 
condition over the interval 30, b4 .

e. Find the Euler numerical approximation to the solution of the 
initial value problem with 4 subintervals of the x-interval and 
plot the Euler approximation superimposed on the graph pro-
duced in part (d).

f. Repeat part (e) for 8, 16, and 32 subintervals. Plot these three
Euler approximations superimposed on the graph from part (e).

g. Find the error (y(exact) - y(Euler)) at the specified point 
x = b for each of your four Euler approximations. Discuss 
the improvement in the percentage error.

39. y′ = x + y, y(0) = -7>10; -4 … x … 4, -4 … y … 4;
b = 1

40. y′ = -x>y, y(0) = 2; -3 … x … 3, -3 … y … 3; b = 2

41. y′ = y(2 - y), y(0) = 1>2; 0 … x … 4, 0 … y … 3; b = 3

42. y′ = (sin x)(sin y), y(0) = 2; -6 … x … 6, -6 … y … 6;
b = 3p>2

9.2 First-Order Linear Equations

A first-order linear differential equation is one that can be written in the form

dy
dx

+ P(x)y = Q(x), (1)

where P and Q are continuous functions of x. Equation (1) is the linear equation’s stan-
dard form. Since the exponential growth>decay equation dy>dx = ky (Section 7.2) can 
be put in the standard form

dy
dx

- ky = 0,

we see it is a linear equation with P(x) = -k and Q(x) = 0. Equation (1) is linear (in y)
because y and its derivative dy >dx occur only to the first power, they are not multiplied 

together, nor do they appear as the argument of a function 1such as sin y, ey, or 2dy>dx2.
EXAMPLE 1  Put the following equation in standard form:

x
dy
dx

= x2 + 3y, x 7 0.

Solution

x
dy
dx

= x2 + 3y

dy
dx

= x + 3
x y Divide by x.

dy
dx

- 3
x  y = x

Standard form with P(x) = -3>x
and Q(x) = x

Notice that P(x) is -3>x, not +3>x. The standard form is y′ + P(x)y = Q(x), so the 
minus sign is part of the formula for P(x).
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Ordinary Differential Equation
Differentiai equation. A differential equation is any equation which

contains derivatives, either ordinary derivatives or partial derivatives.

F(*,y,y',y'',...,y(n)):o

\\here x is called the independent variable and y is the dependent.

Here are a few more examples of differential equations.

I

L

I ql+by'+cy = g(t)

,i, U)*=U-i** y2s-sr" dx' - 'dx

,y(o) +10/'- ai +2y =.os(r)

n?'u Au* 
-=-0x' 0t

a\tn = uo

.37u _1 ,Au
7 -at-'- u,

(s)

(6)

(7)

(8)

i tri

iiEi;

The order of a differential equation is the largest derivative present in the

differential equation.

Examples: In thg differential equations listed above(5), (6), (8), and l.;; arc

second order differential equations, (10) is a third order differential equation

Ordinary and Partial Differential Equations

Definition A differential equation is called an ordinary differential

equation, abbreviated by ode, if it has ordinary derivatives in it

F(*,y,y',/',...,y(n)):o

Definition a differential equation is called a partial differential equatiort,

abbreviated by pde, if it has differential derivatives in it. tn the differential

Example: equations above (l) - (l) are ode's and (Q - 0-0 are pde's.

I
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A linear differential equation is any differential equation that can be

rvritten in the following form'

o" (r)r(*) (r)+a,-r (,) /-') o* - *q (,) i (t)+"0(4v(r) = c (t) ...(11)

The important thing to note about linear dffirential equations is that there are

no products of the function, 
yQ) , and its derivatives and neither the function or

its derivatives occur to any power other than the first power' The cofficients

oo(r), -..drU) ora gQ) con be zero or non-zero functions' constant or non-

constant functions, linear or non'linear functions' Only the function' vQ) ' ond

its derivatives are used in determining i'{ a dffirential equation is linear'

If a differential equation cannot be written in the fonn' ('11) then it is called a

non-linear differential equation'

Examplg l-n-(5) - aabove onty (Q is non-linear' the other t\ro aie ii;'ea''

Definition A solution to a differential equation on an intei-val s <t < '# ls 'n1'- 
function Y:Y(t)

which satisfies the differential equation in question on the intervai

Example Show that

is a solution to

3

llx)= x '

4t y'' +l}xY' +3Y = 0 forr > 0'

SolutionWe,llneedthefirstahdsecondderivativetodothis.

.)
y'l*) =- i^' y'(*) =

uation.

15

-x4

Putthese fun.tio@
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Initial Condition(s) are a condition, or set of conditions, on the solution that

rvill allow us to determine which solution that we are after. Initial conditions
(often abbreviated i.c.'s) are of the form,

y(t)=yo and/or y\*r(to)- tr

So, in other words, initial conditions are values of the solution and/or its

derivative(s) at specific points.

Note The nugbe.y of initial conditions that are required for a given di'rferentiai

equation will depend upon the order of the differential equation as we rvill see.

Example y(x)= *-i ,, a sotution to

4f 2/'+t24,' +3y =a, 
YU)=*, *a''U) = -* 

.

Solution As we saw in previous examp_le th-q-funqtion is a solution and vre

can then note that

v(4\=4-!r= 1 
==L'\t ({?)'B

z-1 3 t 3y'(4)=-;o'=-;fry='A

and so this solution also meets the initial conditions of v(q)= i and /'(1) = fi

Definition An Initial Value Problem (or IVP) is a differential equation along

u'ith an appropriate number of initial conditions.

, Example The following is an IVP.

l(4\=- 3
r\/ 

64
vO=

s

So, .r (') = '-'

4 *^ ( 
g 

,-ll * rz.( _Z ;'t'l * ,[ ;i 'l 
= o

[4 / -\2 )\, /
_3_ _1 _I_

75x2-18x?+3x2=O
0=0

does satisff the diflerential equation and hence is a solution.

4f y''+12ry'+3y =0

i
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Definition The seneral solution to a differential equation is the m-9st general

f""" th"t th. ,oluti* ian take and doesn't take any initial conditions into

account i.e contains a constants same as the order of DE.

Example yg):QtQ +1cltz) is the general solution to

\tY'+4Y=3

Example Here's another IVP.

)Jy'+4y=3 y(t)= -+

@icular solution to the following IVP?

Definition The particular solution to a differential equation is

r"lrt." thrt not only satisfies the differgntl?! equation, but also

given initial condition(s).

the specific
satlsfies the

\tv'+4Y=3 Y(t)=-+

SolutionThis is actually easier to do than it might at first appear. From the previor;s

example we already know (well that is provided you believe my solution to this

.*u*pl....)Ihat alisolutions to the differential equation are of the form'

3c
vlt) =; *-
- --:l --L

All that we need to do is determine the value of c that wili give us the soiui-ioil tirat *e 'rc

after. To find this all we need do is use our initial condition as follows'

4=ro)= J*;
So, the actual solution to the IVP is.

3 19. - -4, --=- -44

l19
vJl'l =--------i-' \t 4 4l'

I
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Separable Differential Eq uations

A separable differential equation is any differential equation that we can write in the
following form.

ue)*= M(x\ (t)t', dx I /

Note that in order for a differential equation to be separable all the y's in the differential
equation must be multiplied by the derivative and all the x's in the differential equation must
be on the other side of the equal sign.

Solving separable differential equation is fairly easy. We first rewrite the differentiai equation
as the following

t't{Y)dY = M [*)d*

Then you integrate both sides.

[w1y1at=[u(*)d*

The solution in the form / = Y(r)

Exomple I
:'*_

SoIution

Solve the followilg (_ifferential equation

*:6rr* ,(r)= *

Y-zdY = 6xdx

Ifat=[e*a*
1 ^.--= 5t tc
v

J ,\ r i . i I

I

So apply the initial condition.and find the value of c.

1/
/25

= 3 (1)2 +c

Plug this into the general solution and then solve to get an explicit solution.

-1=3x2-zB
v

,r(x)= 

"*



t
I
T

T

t
T

I
I
T

T

T

T

t
T

T

T

I
I

i:

ExantPle'2 Siu. t[" following'

. 3x2 +4x-4
t tt -t - z.y-4

Solution
This differential equation is clearly separable, so let's put it in the proper form and then

/(1)= 3

integrate both sides'

Qy-q)aY =(3x'? +4x-a)dx

I Pr- 4)dv =l(l*' +4x -A)dx

y2 -4y = *3+ Zxz -4x+c

I \\/e now have our implicit solution, so as with the first example let's apply the initial

i .;il;;;, ir,i, poi"t to determine the value of c'

I (3f -4(3)=(r)3+2(1)'-4(1)+c 
c=-2

10 Solve LIus au *"-';:,*" 
,"*?""r- unlike quadraties.you are uSeO tQ,

otaratic formula to solve it' However' t

l[nr,*,.,, w,l not "*"iry 
be cbnst-arit, but wiri in fact i'flvplve x's'

.i

I

i The solution is then
y, -4y= f +2f -4x-2

\\:e now need to find the explicit solution' Tlis is actually.easier than it might look and you

already know how to ;;;.^"Ft* we neerl to rewrite the solution a little

f -4y- l^3 +2*x - 4 x- z)= o

I

4 10 solve this al.l we,T:1,:" f::*]", ,,nlike orua.uti6,sliu ,r. ,r.d te, at least sorne cf the,r.d to, at least sorne cf the

So, upon using the quadratic formula on this we get'

v(,)=

\ext,notic.thl*..:Tfactora4outfromunderthesquareroot(itwillcomeoutasa2,,.)
and then simPlifY a liu,le'

4Lz'.m
,v\rrl=-

\\ie are almost there. Notice that we've.actually got two solutions here (the r' !* ") and we

onlv want a s'ngle solut'on' In fact' only***afo-e s'gns can be collect' So' to fig e out

-)+
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Solut
This
sides

Jvhi.h o". Only one of the signs will
eive the correct value so we can use this to figpre out which one of the signs is correct.

Plugging x: 1 into the solution gives. "'t'

I = y(1) =2!.lGZ-q+z= 2+1=3,1

In this case it looks like the "+" is the correct sign for our solution. Note that it is completely
possible that the " --" could be the solution so don't always expect it to be one or the

other.

Appl

ry'

Example 5 Solve the following IVP.

r(t)=2

Solutiott
This is actually a fairly simple differential equation to solve. I'm doing this one mostly

:

dr rz

-=-d00

'ample'4 ,Solve the following IVP.

!'= e-! (zx -a) r(5) = o

lution
is differential equation is easy enough to separate, so let's do that and then integrate both

eY dy = (2x-  )dx

[u' ay = [12* -4)dx

d = *2 -4x*c

ying the initial condition gives

.:, 1='2)-.20tc c=-4

then gives an implicit solution of.

out and then i
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=
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1

-; dlr'
I |a,Jr'

_1
r

find c.

=h (1)+r

=Lo,
0

= l!0,)o
= ln l6l+c

u'. apply the

the implicit

U

-i=t,. ltl-i

Solving for r gets us our explicit solution. 
1

Example 6 Solve the following IVP.

!=e. sec(y)(r+z') z(o)= o
dt ,.v

Solution
This problem will require a little work to get it separated and in a form that we can integrate'

so let's do that first.

dy u"'(, *f )
at 

= ,o\y 1' (

e-/ cos e)ay = ". (t+ t\tt

Nor,,,, with a little integration by parts on both sides we can get an implicit solution'

f e-/ .os (Y)aY= I'" f+ t)at

f{,t,,{r)-,o,(r))= -"' P2 +zt+3)+c

Applying the initial condition gives.

jr,l =-(r)+c ' =f,

Therefore, the implicit solution is.

C,)(nc__

# (,t,. (x)-.o, (r)) = -;' (' +zt+z)+1

1I

2
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Solving Linear Equations

We solve the equation

dy
dx

+ P(x)y = Q(x)

by multiplying both sides by a positive function y(x) that transforms the left-hand side into 
the derivative of the product y(x) # y. We will show how to find y in a moment, but first we 
want to show how, once found, it provides the solution we seek.

Here is why multiplying by y(x) works:

dy
dx

+ P(x)y = Q(x)
Original equation is 
in standard form.

y(x)
dy
dx

+ P(x)y(x)y = y(x)Q(x) Multiply by positive y(x).

d
dx

(y(x) # y) = y(x)Q(x)
y(x) is chosen to make

y
dy

dx
+ Pyy = d

dx
(y # y).

y(x) # y =
L
y(x)Q(x) dx

Integrate with respect 
to x.

y = 1
y(x)L

y(x)Q(x) dx (2)

Equation (2) expresses the solution of Equation (1) in terms of the functions y(x) and 
Q(x). We call y(x) an integrating factor for Equation (1) because its presence makes the 
equation integrable.

Why doesn’t the formula for P(x) appear in the solution as well? It does, but indi-
rectly, in the construction of the positive function y(x). We have

d
dx

(yy) = y
dy
dx

+ Pyy Condition imposed on y

y
dy
dx

+ y
dy
dx

= y
dy
dx

+ Pyy Derivative Product Rule

y
dy
dx

= Pyy The terms y
dy

dx
 cancel.

This last equation will hold if

dy
dx

= Py

dy
y = P dx Variables separated, y 7 0

L

dy
y =

L
P dx Integrate both sides.

lny =
L

P dx
Since y 7 0, we do not need absolute 

value signs in ln y.

eln y = e1P dx Exponentiate both sides to solve for y.

y = e1P dx (3)

Thus a formula for the general solution to Equation (1) is given by Equation (2), where y(x)
is given by Equation (3). However, rather than memorizing the formula, just remember how 
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When you integrate the product on the left-hand side in this procedure, you always obtain 
the product y(x)y of the integrating factor and solution function y because of the way y is 
defined.

To solve the linear equation y′ + P(x)y = Q(x), multiply both sides by the inte-
grating factor y(x) = e1P(x) dx and integrate both sides.

EXAMPLE 2  Solve the equation

x
dy
dx

= x2 + 3y, x 7 0.

Solution First we put the equation in standard form (Example 1):

dy
dx

- 3
x y = x,

so P(x) = -3>x is identified.
The integrating factor is

y(x) = e1P(x) dx = e1(-3>x) dx

= e-3 ln 0x 0 Constant of integration is 0, 
so y is as simple as possible.

= e-3 ln x    x 7 0

= eln x-3 = 1
x3 .

Next we multiply both sides of the standard form by y(x) and integrate:

1
x3
# ady

dx
- 3

x yb = 1
x3
# x

1
x3

dy
dx

- 3
x4 y = 1

x2

d
dx
a 1

x3 yb = 1
x2 Left-hand side is 

d
dx

(y # y).

1
x3 y =

L

1
x2 dx Integrate both sides.

1
x3 y = - 1

x + C.

Solving this last equation for y gives the general solution:

y = x3 a- 1
x + Cb = -x2 + Cx3, x 7 0.

HISTORICAL BIOGRAPHY

Adrien Marie Legendre
(1752–1833)

EXAMPLE 3  Find the particular solution of

3xy′ - y = ln x + 1, x 7 0,

satisfying y(1) = -2.

to find the integrating factor once you have the standard form so P(x) is correctly identified. 
Any antiderivative of P works for Equation (3).
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Solution With x 7 0, we write the equation in standard form:

y′ - 1
3x

y = ln x + 1
3x

.

Then the integrating factor is given by

y = e1-dx>3x = e(-1>3)lnx = x-1>3. x 7 0

Thus

x-1>3y = 1
3L

(ln x + 1)x-4>3 dx. Left-hand side is yy.

Integration by parts of the right-hand side gives

x-1>3y = -x-1>3(ln x + 1) +
L

x-4>3 dx + C.

Therefore

x-1>3y = -x-1>3(ln x + 1) - 3x-1>3 + C

or, solving for y,

y = -(ln x + 4) + Cx1>3.

When x = 1 and y = -2 this last equation becomes

-2 = -(0 + 4) + C,

so

C = 2.

Substitution into the equation for y gives the particular solution

y = 2x1>3 - ln x - 4.

In solving the linear equation in Example 2, we integrated both sides of the equation 
after multiplying each side by the integrating factor. However, we can shorten the amount 
of work, as in Example 3, by remembering that the left-hand side always integrates into 
the product y(x) # y of the integrating factor times the solution function. From Equation (2) 
this means that

y(x)y =
L
y(x)Q(x) dx. (4)

We need only integrate the product of the integrating factor y(x) with Q(x) on the right-
hand side of Equation (1) and then equate the result with y(x)y to obtain the general solu-
tion. Nevertheless, to emphasize the role of y(x) in the solution process, we sometimes 
follow the complete procedure as illustrated in Example 2.

Observe that if the function Q(x) is identically zero in the standard form given by 
Equation (1), the linear equation is separable and can be solved by the method of 
Section 7.2:

dy
dx

+ P(x)y = Q(x)

dy
dx

+ P(x)y = 0 Q(x) = 0

dy
y = -P(x) dx Separating the variables
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RL Circuits

The diagram in Figure 9.8 represents an electrical circuit whose total resistance is a con-
stant R ohms and whose self-inductance, shown as a coil, is L henries, also a constant. 
There is a switch whose terminals at a and b can be closed to connect a constant electrical 
source of V volts.

Ohm’s Law, V = RI, has to be augmented for such a circuit. The correct equation 
accounting for both resistance and inductance is

L
di
dt

+ Ri = V, (5)

where i is the current in amperes and t is the time in seconds. By solving this equation, we 
can predict how the current will flow after the switch is closed.

EXAMPLE 4  The switch in the RL circuit in Figure 9.8 is closed at time t = 0. How 
will the current flow as a function of time?

Solution Equation (5) is a first-order linear differential equation for i as a function of t.
Its standard form is

di
dt

+ R
L i = V

L , (6)

and the corresponding solution, given that i = 0 when t = 0, is

i = V
R - V

R e-(R>L)t. (7)

(We leave the calculation of the solution for you to do in Exercise 28.) Since R and L are 
positive, -(R>L) is negative and e-(R>L)t S 0 as t S q. Thus,

lim
tSq

i = lim
tSq
aVR - V

R e-(R>L)tb = V
R - V

R
# 0 = V

R .

At any given time, the current is theoretically less than V >R, but as time passes, the cur-
rent approaches the steady-state value V >R. According to the equation

L
di
dt

+ Ri = V,

I = V>R is the current that will flow in the circuit if either L = 0 (no inductance) or 
di>dt = 0 (steady current, i = constant) (Figure 9.9).

Equation (7) expresses the solution of Equation (6) as the sum of two terms: a 
steady-state solution V >R and a transient solution -(V>R)e-(R>L)t that tends to zero as 
t S q.

Switch

R L

a b

i

V
+ −

FIGURE 9.8 The RL circuit in 
Example 4.

i

t
0 432

i = (1 − e−Rt�L)V
R

I = V
R I

e

L
R

L
R

L
R

L
R

FIGURE 9.9 The growth of the current 
in the RL circuit in Example 4. I is the 
current’s steady-state value. The number 
t = L>R is the time constant of the circuit. 
The current gets to within 5% of its 
steady-state value in 3 time constants 
(Exercise 27).

Exercises 9.2
First-Order Linear Equations
Solve the differential equations in Exercises 1–14.

1. x
dy
dx

+ y = ex, x 7 0 2. ex
dy
dx

+ 2exy = 1

3. xy′ + 3y = sin x
x2 , x 7 0

4. y′ + (tan x)y = cos2 x, -p>2 6 x 6 p>2

5. x
dy
dx

+ 2y = 1 - 1
x , x 7 0

6. (1 + x) y′ + y = 2x 7. 2y′ = ex>2 + y

8. e2x y′ + 2e2x y = 2x 9. xy′ - y = 2x ln x

10. x
dy
dx

= cos x
x - 2y, x 7 0
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11. (t - 1)3 ds
dt

+ 4(t - 1)2s = t + 1, t 7 1

12. (t + 1)
ds
dt

+ 2s = 3(t + 1) + 1
(t + 1)2 , t 7 -1

13. sin u
dr
du

+ (cos u)r = tan u , 0 6 u 6 p>2

14. tan u
dr
du

+ r = sin2 u , 0 6 u 6 p>2
Solving Initial Value Problems
Solve the initial value problems in Exercises 15–20.

15.
dy
dt

+ 2y = 3, y(0) = 1

16. t
dy
dt

+ 2y = t3 , t 7 0, y(2) = 1

17. u
dy
du

+ y = sin u , u 7 0, y(p>2) = 1

18. u
dy
du

- 2y = u3 sec u tan u , u 7 0, y(p>3) = 2

19. (x + 1)
dy
dx

- 2(x2 + x)y = ex2

x + 1
, x 7 -1, y(0) = 5

20.
dy
dx

+ xy = x , y(0) = -6

21. Solve the exponential growth >decay initial value problem for y
as a function of t by thinking of the differential equation as a first-
order linear equation with P(x) = -k and Q(x) = 0:

dy
dt

= ky (k constant) , y(0) = y0

22. Solve the following initial value problem for u as a function of t:

du
dt

+ k
m u = 0 (k and m positive constants) , u(0) = u0

a. as a first-order linear equation.

b. as a separable equation.

Theory and Examples
23. Is either of the following equations correct? Give reasons for your 

answers.

a. x
L

1
x dx = x ln � x � + C b. x

L

1
x dx = x ln � x � + Cx

24. Is either of the following equations correct? Give reasons for your 
answers.

a. 1
cos x

L
cos x dx = tan x + C

b. 1
cos x

L
cos x dx = tan x + C

cos x

25. Current in a closed RL circuit How many seconds after the 
switch in an RL circuit is closed will it take the current i to reach 
half of its steady-state value? Notice that the time depends on R
and L and not on how much voltage is applied.

26. Current in an open RL circuit If the switch is thrown open 
after the current in an RL circuit has built up to its steady-state 
value I = V>R, the decaying current (see accompanying figure) 
obeys the equation

L
di
dt

+ Ri = 0,

  which is Equation (5) with V = 0.

a. Solve the equation to express i as a function of t.

b. How long after the switch is thrown will it take the current to 
fall to half its original value?

c. Show that the value of the current when t = L>R is I>e. (The 
significance of this time is explained in the next exercise.)

i

t
0

32

V
R

I
e

L
R

L
R

L
R

27. Time constants Engineers call the number L>R the time constant
of the RL circuit in Figure 9.9. The significance of the time con-
stant is that the current will reach 95% of its final value within 3 
time constants of the time the switch is closed (Figure 9.9). Thus, 
the time constant gives a built-in measure of how rapidly an indi-
vidual circuit will reach equilibrium.

a. Find the value of i in Equation (7) that corresponds to 
t = 3L>R and show that it is about 95% of the steady-state 
value I = V>R.

b. Approximately what percentage of the steady-state current 
will be flowing in the circuit 2 time constants after the switch 
is closed (i.e., when t = 2L>R)?

28. Derivation of Equation (7) in Example 4

a. Show that the solution of the equation

di
dt

+ R
L

i = V
L

is

i = V
R

+ Ce-(R>L)t.

b. Then use the initial condition i(0) = 0 to determine the value 
of C. This will complete the derivation of Equation (7).

c. Show that i = V>R is a solution of Equation (6) and that 
i = Ce-(R>L)t satisfies the equation

di
dt

+ R
L

i = 0.
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A Bernoulli differential equation is of the form

dy
dx

+ P(x)y = Q(x)yn.

Observe that, if n = 0 or 1, the Bernoulli equation is linear. 
For other values of n, the substitution u = y1-n transforms 
the Bernoulli equation into the linear equation

du
dx

+ (1 - n)P(x)u = (1 - n)Q(x).

For example, in the equation

dy
dx

- y = e-x y2

  we have n = 2, so that u = y1-2 = y-1 and du>dx =
-y-2 dy>dx. Then dy>dx = -y2 du>dx = -u-2 du>dx.
Substitution into the original equation gives

-u-2 du
dx

- u-1 = e-x u-2

  or, equivalently,

du
dx

+ u = -e-x.

  This last equation is linear in the (unknown) dependent variable u.

Solve the Bernoulli equations in Exercises 29–32.

29. y′ - y = -y2 30. y′ - y = xy2

31. xy′ + y = y-2 32. x2y′ + 2xy = y3

HISTORICAL BIOGRAPHY

James Bernoulli
(1654–1705)

9.3 Applications

We now look at four applications of first-order differential equations. The first application 
analyzes an object moving along a straight line while subject to a force opposing its 
motion. The second is a model of population growth. The third application considers a 
curve or curves intersecting each curve in a second family of curves orthogonally (that is, 
at right angles). The final application analyzes chemical concentrations entering and leav-
ing a container. The various models involve separable or linear first-order equations.

Motion with Resistance Proportional to Velocity

In some cases it is reasonable to assume that the resistance encountered by a moving object, 
such as a car coasting to a stop, is proportional to the object’s velocity. The faster the object 
moves, the more its forward progress is resisted by the air through which it passes. Picture 
the object as a mass m moving along a coordinate line with position function s and velocity 
y at time t. From Newton’s second law of motion, the resisting force opposing the motion is

Force = mass * acceleration = m
dy
dt

.

If the resisting force is proportional to velocity, we have

m
dy
dt

= -ky or
dy
dt

= - k
my (k 7 0).

This is a separable differential equation representing exponential change. The solution to 
the equation with initial condition y = y0 at t = 0 is (Section 7.2)

y = y0e-(k>m)t. (1)

What can we learn from Equation (1)? For one thing, we can see that if m is some-
thing large, like the mass of a 20,000-ton ore boat in Lake Erie, it will take a long time for 
the velocity to approach zero (because t must be large in the exponent of the equation in 
order to make kt >m large enough for y to be small). We can learn even more if we inte-
grate Equation (1) to find the position s as a function of time t.

Suppose that an object is coasting to a stop and the only force acting on it is a resis-
tance proportional to its speed. How far will it coast? To find out, we start with Equation 
(1) and solve the initial value problem

ds
dt

= y0e-(k>m)t, s(0) = 0.
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Integrating with respect to t gives

s = -
y0m

k
e-(k>m)t + C.

Substituting s = 0 when t = 0 gives

0 = -
y0m

k
+ C and C =

y0m
k

.

The body’s position at time t is therefore

s(t) = -
y0m

k
e-(k>m)t +

y0m
k

=
y0m

k
(1 - e-(k/m)t). (2)

To find how far the body will coast, we find the limit of s(t) as t S q. Since -(k>m) 6 0,
we know that e-(k>m)t S 0 as t S q, so that

lim
tSq

s(t) = lim
tSq

y0m
k

(1 - e-(k>m)t)

=
y0m

k
(1 - 0) =

y0m
k

.

Thus,

Distance coasted =
y0m

k
. (3)

The number y0m>k is only an upper bound (albeit a useful one). It is true to life in one 
respect, at least: If m is large, the body will coast a long way.

In the English system, in which weight is 
measured in pounds, mass is measured in 
slugs. Thus,

Pounds = slugs * 32,

assuming the gravitational constant is 
32 ft > sec2.

EXAMPLE 1  For a 192-lb ice skater, the k in Equation (1) is about 1 >3 slug > sec and 
m = 192>32 = 6 slugs. How long will it take the skater to coast from 11 ft > sec (7.5 
mph) to 1 ft > sec? How far will the skater coast before coming to a complete stop?

Solution We answer the first question by solving Equation (1) for t:

11e-t>18 = 1

e-t>18 = 1>11

- t>18 = ln (1>11) = - ln 11

t = 18 ln 11 ≈ 43 sec.

Eq. (1) with k = 1>3,

m = 6, v0 = 11, v = 1

We answer the second question with Equation (3):

Distance coasted =
y0m

k
= 11 # 6

1>3
= 198 ft.

Inaccuracy of the Exponential Population Growth Model

In Section 7.2 we modeled population growth with the Law of Exponential Change:

dP
dt

= kP, P(0) = P0

where P is the population at time t, k 7 0 is a constant growth rate, and P0 is the size of 
the population at time t = 0. In Section 7.2 we found the solution P = P0ekt to this model.

To assess the model, notice that the exponential growth differential equation says that

dP>dt
P = k (4)
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is constant. This rate is called the relative growth rate. Now, Table 9.3 gives the world 
population at midyear for the years 1980 to 1989. Taking dt = 1 and dP ≈ ∆P, we see 
from the table that the relative growth rate in Equation (4) is approximately the constant 
0.017. Thus, based on the tabled data with t = 0 representing 1980, t = 1 representing 
1981, and so forth, the world population could be modeled by the initial value problem,

dP
dt

= 0.017P, P(0) = 4454.

The solution to this initial value problem gives the population function P = 4454e0.017t. In 
year 2008 (so t = 28), the solution predicts the world population in midyear to be about 
7169 million, or 7.2 billion (Figure 9.10), which is more than the actual population of 
6707 million from the U.S. Bureau of the Census. A more realistic model would consider 
environmental and other factors affecting the growth rate, which has been steadily declin-
ing to about 0.012 since 1987. We consider one such model in Section 9.4.

Orthogonal Trajectories

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the 
family at right angles, or orthogonally (Figure 9.11). For instance, each straight line 
through the origin is an orthogonal trajectory of the family of circles x2 + y2 = a2, cen-
tered at the origin (Figure 9.12). Such mutually orthogonal systems of curves are of particu-
lar importance in physical problems related to electrical potential, where the curves in one 
family correspond to strength of an electric field and those in the other family correspond to 
constant electric potential. They also occur in hydrodynamics and heat-flow problems.

EXAMPLE 2  Find the orthogonal trajectories of the family of curves xy = a, where 
a ≠ 0 is an arbitrary constant.

Solution The curves xy = a form a family of hyperbolas having the coordinate axes as 
asymptotes. First we find the slopes of each curve in this family, or their dy >dx values. 
Differentiating xy = a implicitly gives

x
dy
dx

+ y = 0 or
dy
dx

= -
y
x .

Source: U.S. Bureau of the Census (Sept., 2007): www.census

.gov/ipc/www/idb.

TABLE 9.3 World population (midyear)

Population 
Year (millions) 𝚫P>P
1980 4454 76>4454 ≈ 0.0171

1981 4530 80>4530 ≈ 0.0177

1982 4610 80>4610 ≈ 0.0174

1983 4690 80>4690 ≈ 0.0171

1984 4770 81>4770 ≈ 0.0170

1985 4851 82>4851 ≈ 0.0169

1986 4933 85>4933 ≈ 0.0172

1987 5018 87>5018 ≈ 0.0173

1988 5105 85>5105 ≈ 0.0167

1989 5190

t

P

0 10 30

7000

5000

4000

World population (1980–2008)

P = 4454e0.017t

FIGURE 9.10 Notice that the value of 
the solution P = 4454e0.017t is 7169 when 
t = 28, which is nearly 7% more than the 
actual population in 2008.

Orthogonal trajectory

FIGURE 9.11 An orthogonal trajec-
tory intersects the family of curves at right 
angles, or orthogonally.

x

y

FIGURE 9.12 Every straight line through 
the origin is orthogonal to the family of 
circles centered at the origin.
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Thus the slope of the tangent line at any point (x, y) on one of the hyperbolas xy = a is 
y′ = -y>x. On an orthogonal trajectory the slope of the tangent line at this same point 
must be the negative reciprocal, or x >y. Therefore, the orthogonal trajectories must satisfy 
the differential equation

dy
dx

= x
y .

This differential equation is separable and we solve it as in Section 7.2:

y dy = x dx Separate variables.

L
y dy =

L
x dx Integrate both sides.

1
2

y2 = 1
2

x2 + C

y2 - x2 = b, (5)

where b = 2C is an arbitrary constant. The orthogonal trajectories are the family of 
hyperbolas given by Equation (5) and sketched in Figure 9.13.

Mixture Problems

Suppose a chemical in a liquid solution (or dispersed in a gas) runs into a container hold-
ing the liquid (or the gas) with, possibly, a specified amount of the chemical dissolved as 
well. The mixture is kept uniform by stirring and flows out of the container at a known 
rate. In this process, it is often important to know the concentration of the chemical in the 
container at any given time. The differential equation describing the process is based on 
the formula

Rate of change
of amount

in container
= £ rate at which

chemical
arrives

≥ - £ rate at which
chemical
departs.

≥ . (6)

If y(t) is the amount of chemical in the container at time t and V(t) is the total volume of 
liquid in the container at time t, then the departure rate of the chemical at time t is

Departure rate =
y(t)
V(t)

# (outflow rate)

= a concentration in
container at time t

b # (outflow rate). (7)

Accordingly, Equation (6) becomes

dy
dt

= (chemical>s arrival rate) -
y(t)
V(t)

# (outflow rate). (8)

If, say, y is measured in pounds, V in gallons, and t in minutes, the units in Equation (8) are

pounds
minutes

=
pounds
minutes

-
pounds
gallons

# gallons
minutes

.

EXAMPLE 3  In an oil refinery, a storage tank contains 2000 gal of gasoline that ini-
tially has 100 lb of an additive dissolved in it. In preparation for winter weather, gasoline 
containing 2 lb of additive per gallon is pumped into the tank at a rate of 40 gal >min.

x

y

x2 − y2 = b
b ≠ 0

xy = a,
a ≠ 0

0

FIGURE 9.13 Each curve is orthogonal 
to every curve it meets in the other family 
(Example 2).
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Solution Let y be the amount (in pounds) of additive in the tank at time t. We know that 
y = 100 when t = 0. The number of gallons of gasoline and additive in solution in the 
tank at any time t is

V(t) = 2000 gal + a40
gal
min

- 45
gal
min
b (t min)

= (2000 - 5t) gal.

Therefore,

Rate out =
y(t)
V(t)

# outflow rate Eq. (7)

= a y
2000 - 5t

b 45
Outflow rate is 45 gal/min 
and V = 2000 - 5t .

=
45y

2000 - 5t
lb

min
.

Also,

Rate in = a2 lb
gal
b a40

gal
min
b

= 80
lb

min
.

The differential equation modeling the mixture process is

dy
dt

= 80 -
45y

2000 - 5t
Eq. (8)

in pounds per minute.
To solve this differential equation, we first write it in standard linear form:

dy
dt

+ 45
2000 - 5t

y = 80.

Thus, P(t) = 45>(2000 - 5t) and Q(t) = 80. The integrating factor is

y(t) = e1P dt = e1
45

2000 - 5t dt

= e-9 ln (2000-5t) 2000 - 5t 7 0

= (2000 - 5t)-9 .

40 gal�min containing 2 lb�gal

45 gal�min containing y  lb�gal
V

FIGURE 9.14 The storage tank in Example 3 mixes input 
liquid with stored liquid to produce an output liquid.

The well-mixed solution is pumped out at a rate of 45 gal >min. How much of the additive 
is in the tank 20 min after the pumping process begins (Figure 9.14)?



9.3  Applications 555

Multiplying both sides of the standard equation by y(t) and integrating both sides gives

(2000 - 5t)-9 # ady
dt

+ 45
2000 - 5t

yb = 80(2000 - 5t)-9

(2000 - 5t)-9
dy
dt

+ 45(2000 - 5t)-10 y = 80(2000 - 5t)-9

d
dt
3 (2000 - 5t)-9y4 = 80(2000 - 5t)-9

(2000 - 5t)-9y =
L

80(2000 - 5t)-9 dt

(2000 - 5t)-9y = 80 # (2000 - 5t)-8

(-8)(-5)
+ C.

The general solution is

y = 2(2000 - 5t) + C(2000 - 5t)9.

Because y = 100 when t = 0, we can determine the value of C:

100 = 2(2000 - 0) + C(2000 - 0)9

C = - 3900
(2000)9 .

The particular solution of the initial value problem is

y = 2(2000 - 5t) - 3900
(2000)9 (2000 - 5t)9.

The amount of additive in the tank 20 min after the pumping begins is

y(20) = 232000 - 5(20)4 - 3900
(2000)9 32000 - 5(20)4 9 ≈ 1342 lb.

Exercises 9.3
Motion Along a Line
1. Coasting bicycle A 66-kg cyclist on a 7-kg bicycle starts coast-

ing on level ground at 9 m > sec. The k in Equation (1) is about 3.9 
kg > sec.

a. About how far will the cyclist coast before reaching a com-
plete stop?

b. How long will it take the cyclist’s speed to drop to 1 m > sec?

2. Coasting battleship Suppose that an Iowa class battleship has 
mass around 51,000 metric tons (51,000,000 kg) and a k value in 

Equation (1) of about 59,000 kg > sec. Assume that the ship loses 
power when it is moving at a speed of 9 m > sec.

a. About how far will the ship coast before it is dead in the water?

b. About how long will it take the ship’s speed to drop to 1 m>sec?

3. The data in Table 9.4 were collected with a motion detector and a 
CBL™ by Valerie Sharritts, then a mathematics teacher at St. Fran-
cis DeSales High School in Columbus, Ohio. The table shows the 
distance s (meters) coasted on inline skates in t sec by her daughter 
Ashley when she was 10 years old. Find a model for Ashley’s 
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position given by the data in Table 9.4 in the form of Equation (2). 
Her initial velocity was y0 = 2.75 m>sec, her mass m = 39.92 kg
(she weighed 88 lb), and her total coasting distance was 4.91 m.

4. Coasting to a stop Table 9.5 shows the distance s (meters) 
coasted on inline skates in terms of time t (seconds) by Kelly 
Schmitzer. Find a model for her position in the form of Equation 
(2). Her initial velocity was y0 = 0.80 m>sec, her mass 
m = 49.90 kg (110 lb), and her total coasting distance was 1.32 m.

TABLE 9.4 Ashley Sharritts skating data

t (sec) s (m) t (sec) s (m) t (sec) s (m)

0 0 2.24 3.05 4.48 4.77

0.16 0.31 2.40 3.22 4.64 4.82

0.32 0.57 2.56 3.38 4.80 4.84

0.48 0.80 2.72 3.52 4.96 4.86

0.64 1.05 2.88 3.67 5.12 4.88

0.80 1.28 3.04 3.82 5.28 4.89

0.96 1.50 3.20 3.96 5.44 4.90

1.12 1.72 3.36 4.08 5.60 4.90

1.28 1.93 3.52 4.18 5.76 4.91

1.44 2.09 3.68 4.31 5.92 4.90

1.60 2.30 3.84 4.41 6.08 4.91

1.76 2.53 4.00 4.52 6.24 4.90

1.92 2.73 4.16 4.63 6.40 4.91

2.08 2.89 4.32 4.69 6.56 4.91

TABLE 9.5 Kelly Schmitzer skating data

t (sec) s (m) t (sec) s (m) t (sec) s (m)

0 0 1.5 0.89 3.1 1.30

0.1 0.07 1.7 0.97 3.3 1.31

0.3 0.22 1.9 1.05 3.5 1.32

0.5 0.36 2.1 1.11 3.7 1.32

0.7 0.49 2.3 1.17 3.9 1.32

0.9 0.60 2.5 1.22 4.1 1.32

1.1 0.71 2.7 1.25 4.3 1.32

1.3 0.81 2.9 1.28 4.5 1.32

Orthogonal Trajectories
In Exercises 5–10, find the orthogonal trajectories of the family of 
curves. Sketch several members of each family.

5. y = mx 6. y = cx2

7. kx2 + y2 = 1 8. 2x2 + y2 = c2

9. y = ce-x 10. y = ekx

11. Show that the curves 2x2 + 3y2 = 5 and y2 = x3 are orthogonal.

12. Find the family of solutions of the given differential equation and 
the family of orthogonal trajectories. Sketch both families.

a. x dx + y dy = 0 b. x dy - 2y dx = 0

Mixture Problems
13. Salt mixture A tank initially contains 100 gal of brine in which 

50 lb of salt are dissolved. A brine containing 2 lb >gal of salt runs 
into the tank at the rate of 5 gal >min. The mixture is kept uniform 
by stirring and flows out of the tank at the rate of 4 gal >min.

a. At what rate (pounds per minute) does salt enter the tank at 
time t?

b. What is the volume of brine in the tank at time t?

c. At what rate (pounds per minute) does salt leave the tank at 
time t?

d. Write down and solve the initial value problem describing the 
mixing process.

e. Find the concentration of salt in the tank 25 min after the 
process starts.

14. Mixture problem A 200-gal tank is half full of distilled water. 
At time t = 0, a solution containing 0.5 lb >gal of concentrate 
enters the tank at the rate of 5 gal >min, and the well-stirred mix-
ture is withdrawn at the rate of 3 gal >min.

a. At what time will the tank be full?

b. At the time the tank is full, how many pounds of concentrate 
will it contain?

15. Fertilizer mixture A tank contains 100 gal of fresh water. A 
solution containing 1 lb >gal of soluble lawn fertilizer runs into 
the tank at the rate of 1 gal >min, and the mixture is pumped out 
of the tank at the rate of 3 gal >min. Find the maximum amount of 
fertilizer in the tank and the time required to reach the maximum.

16. Carbon monoxide pollution An executive conference room of a 
corporation contains 4500 ft3 of air initially free of carbon monox-
ide. Starting at time t = 0, cigarette smoke containing 4% carbon 
monoxide is blown into the room at the rate of 0.3 ft3>min. A ceil-
ing fan keeps the air in the room well circulated and the air leaves 
the room at the same rate of 0.3 ft3>min. Find the time when the 
concentration of carbon monoxide in the room reaches 0.01%.

9.4 Graphical Solutions of Autonomous Equations

In Chapter 4 we learned that the sign of the first derivative tells where the graph of a func-
tion is increasing and where it is decreasing. The sign of the second derivative tells the 
concavity of the graph. We can build on our knowledge of how derivatives determine the 
shape of a graph to solve differential equations graphically. We will see that the ability to 
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Exam : Solve the D.E x 2

(1-y 
2)dx + y (l +x 2)dy = 0

Sol: 

x 2 y 
--

2
-dx +

2
dy =0

(1 +x ) (l-y )

(1-
l 

2 )dx +
y 

2 dy = 0
l+x (l-y )

x -tan-
1
x + �LnlI-y 2 l=c 

Exam : Solve the D.E 
dy 

-
4 y 

Sol: 
x (y -3)dy = 4ydx 

(y 
-

3) dy = _±dx
y X 

3 4 
(1--)dy = -dx 

y X 

dx x (y -3)

y -3Ln IY I= 4Ln Ix I +c 

2 - Homogeneous D.E. 

, 

Def: we said that the function f(x,y) is homo. From degree n if satisfies : 

f (tx ,ty) =t nf (x ,y) 
Ex: 

f (x ,y) = 4x 2 
+ 9xy -8y 

2

f (tx ,ty) = 4(tx )2 
+ 9txty - 8(ty )

2

=4t 2x 2 +9t 2xy-8t 2y 2

= t 2(4x 2 +9xy -8y 
2

) =t 2f (x ,y)

:. Homo. 2

Def: we said that the D.E. (M dx + N dy =O) is homo. If M&N are homo. Functions 
with same degree 



Exam: Solve the D.E (2x - y )dy = (2y -x )dx 
Sol: 

(2x -y )dy = (2y -x )dx 
'-v-----' '-v-----' 

N M 

M (tx ,ty) = 2ty -tx = t(2y -x )}
:. homo.

N ( tx , ty ) = 2tx -ty = t ( 2x -y )
Let y =vx ⇒ dy =vdx +xdv 
(2x -vx )(vdx +xdv) = (2vx -x )dx 

� +2x 2dv -v 2xdx -vx 2dv =� -xdx 

x 2(2-v)dv -x(v 2 -l)dx =0
(2 -v) dv _ _!__dx = 0
(v 2 -l) x 
1/2 

-
3/2 _ _!_dx = 0

v-1 v+l x 
l/2Ln � - 11- 3/2Ln � + 11- Ln Ix I= c 

l/2Ln L-l -3/2Ln L+l -Ln Ix I =c 
X X 

Exam : Solve the D.E (3x + 2 y )dx + (2x -4 y )dy 
Sol: 

M (tx , ty ) = 3tx. 
+ 2ty = t (3x + 2 y ) = tM }

N(tx,ty)=2tx -4ty =t(2x -4y)=tN 
let y =vx ⇒ dy =vdx +xdv 
(3x + 2vx )dx + (2x -4vx )(vdx +xdv) 

x (3 + 4v -4v 2 )dx + 2x 2 (1- 2v )dv = 0
dx 

+ 
2(1-2v ) 

dv = 0
X (3 + 4v - 4v 

2
) 

Lnlxl+ _!_Ln 3+4L-4(L) 2 =c 
2 X X 

:. homo. 
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3 - D.E. of linear cofactors. 

(ax +by +c)dx +(ax+ py + y)dy =0 
Where a, b ,c , a , p and y are constants 

-a -a 

m
1 

=-, m 2 =- ,m is slope 
b p 

CASE 1 

ml =/:- m 2 (mim 2 = -1) �l:i:lA w' 4Jiiu,A.ll CJI.S. \j\

�� � c)AJ ( �J\a.,l\) 6:;•fii•11oll (b,k) �I la\.i.i �.J,l �I ti.a�

x =x i +h ⇒ dx =dx i , y = Y i +k ⇒ dy =dy i

CASE2 
� JJ:.:i.i �� '"J <ii ml =m2 64.JI� u' ,Jii• 11.A.ll CJ'I.S \j\

z=ax+by wl �Jij �I ti.a� 
Exam:SolvetheD.E. (2.x -3y +4)dx +(3x +2y +l)dy =0 
Sol: 

-2 2 -3m - - - - m - - , ml .m 2 = -1 , Intersecting 
i - -3 - 3 ' 2 - 2 

2x -3y +4=0 
3x +2y + 1 = 0 

(h k) = (
-11 10

)' 13 '13 
11 10 x =xi -- ⇒ dx =dx 1 , y =y i +- ⇒ dy =dy i13 13 

[2(x i _ !!_)-3(yi + 
10

)+4]dxi +[3(x i _ _!__!_)+2(y i + lO)+l]dyi =0
13 13 13 13 

(2x i - 3 y i )dx i + (3x i + 2 y i )dy i = 0 
Let Yi =vx i ⇒ dy i =vdx i +x idv 
(2x i - 3vx i )dx 1 + (3x i + 2vx 1 )(vdx 1 + x 1dv ) = 0

(2x i + 2v 2x i )dx i + (3x / + 2vx /)dv = 0

2xi (l+v 2 )dx 1 +x/(3+2v)dv =0 

2 dx 
i + (3 + 2v ) dv = 0

X (l+v 2 ) 



2 dx 1 +
3 dv + 2v dv = 0

Xi (l+v 2 ) (l+v 2 ) 

2Ln Ix 1 1 + 3 tan-1v + Ln 11 +v 2 1 =c

2L n Ix 1 I + 3 tan -1c �) + L n l + c ll ) 2
= C 

Xi Xl 

10 10 
ll y +- y +-

2Ln x -- + 3tan-i( 13) +Ln l + ( 13 )2 =c
13 11 11 

X -- X --

13 13 

Exam: Solve the D.E. (2x -3y -l)dx + (l2x -18y -6)dy = 0
Sol: 

-2 2 -12 2 m = - = - m = - = - ml = m 2 parallelI 
-3 3 '

2 
-18 3 ' ' 

-1 -1 let z =2x -3y ⇒ y =-(z -2x) ⇒ dy =-(dz -2dx)
3 3 

(2x -3y -l)dx +6(2x -3y -l)dy =0
(z -l)dx + 6(2 -l)dy = 0

(z -l)dx + 6(z -1)[ 
3
1 (dz - 2dx)] = 0

(z -1 )dx -2(z -1 )( dz - 2dx ) = 0
(z -l)dx -2(z -l)dz + 4(z -l)dx = 0
5(z -l)dx -2(z -l)dz =0 ⇒ 5dx -2dz =0
5x -2z =c
5x -2(2x -3y) =c
X +6y =C 

4-EXACT D.E. Lw I a • 1, ;.,i,i;jJ 1 �'l .ll£.Al 1

: � \j\ LU Mdx + Ndy =O 11�1 � 
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f (x , y ) = f M (x , y )dx + ¢(y ) 

f (x ,y) = f N (x ,y )dy + G (x) 

a1 =M a1 =N 
ax 

, ay 

Exam : Solve the D.E. 

Sol: 

aM =3x 2

ay 

aN =3x 2

ax 

aM aN -=- ⇒ :.exact 
ay ax 

f (x ,y) = f M (x ,y )dx + ¢(y) 

f (x ,y) = f (2x + 3x 2y )ix + ¢(y) 

f (x ,y) = x z +x 3y + ¢(y) 
af = X 

3 + ¢' (y ) 
ay 

/ +3y 2 =/ +¢'(y) ⇒ ¢'(y)=3y 2

¢(y) = f ¢'(y )dy =f 3y 2dy y 3 +c 

f (x ,y) = x z +x 3y + y 3 +c 

f ( x , y ) = f N (x , y )dy + G ( x ) 

f ( x , y ) = f ( x 3 
+ 3 y 2 )iy + G (x ) 

f (x ,y) = x 3y + y 3 + G (x)

a1 2 -=3x y +G (x) 
ax 

2x + � = � +G'(x) ⇒ G'(x)=2x 

G ( x ) = f G ' ( x )dx = f 2xdx =x 
2 

+ c

f (x ,y) = x 3y + y 3 +x 2 +c



Exam: Solve the D.E. (cosy + yCosx )dx + (sinx -xSiny )dy = 0
Sol: 

3M -- = -Siny + cosx 
ay 3M 3N --=- ⇒ :.exact 
3N - = cosx -Siny
ax 

ay ax 

f (x ,y) = f M (x ,y )dx + ¢(y) 

f (x ,y) = f (cosy + yCosx )dx + ¢(y) 

f (x ,y) = x cosy + ySinx + ¢(y) 

aJ = -xSiny + Sinx + ¢' (y)
ay 

� - � = � + §jn< +¢'(y) ⇒ ¢'(y)=O 

¢(y) = f ¢'(y )dy =c

f (x ,y) =x cosy+ ySinx +c 

5 - Integration cofactor 

�

�

3M 3N 
---

h(x) _

_ 

3_y 3x f h(x)dx 
---- ⇒⇒ u=e 

or 
3M 3N 
----

( ) 
3_y ax 

⇒⇒ u =efg(y)dy g y =-

M 
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Exam: Solve the D.E. 

Sol: 

(2y -4x 2 )dx +xdy = 0

8M = 2
8y 

8N 
=l 

ax 

8M 8N 
--=1=- - ⇒ :. not exact
8y ax 

2 - 1 1 f _!__dx Lnx h (x) = -- = - ⇒⇒ u = e x = e = x 
X X 

(2xy -4x 3 )dx +x 2dy = 0
8M 8N 
-=2x=-
ay ax 

f (x ,y) = f M (x ,y )dx + rp(y) 

f(x,y)= f (2xy -4x 3 ):ix +¢(y) 

f (x 'y ) = X 2 y - X 4 + tp(y ) 
8j = X 

2 + rp' (y )
8y 
/ = / + ¢'(y) ⇒ ¢'(y) = 0 ⇒ <p(y) =c 

f(x,y)=x 2y -x 4 +c

Exam : Solve the D.E. 

(2x 3y 2 +4x 2y +2xy 2 +xy 4 +2y)dx +2(y
3 +x 2y +x)dy =0

Sol: 

8M 3 2 3 -=4x y +4x +4xy +4xy +2
8y 8M 8N 

--=1=-- ⇒ :.not exact 
8N -=4xy +2
ax 

8M 8N 

ay ax 

;:). ' -a 4x 3y + 4x 2 + 4xy 3 4x( 'x -- 2 2 - . ' � + y 3) 

h(x)= vy X ---------� ___ x-r_y_ )_2x
N 

-
2(y 3 +x 2y +x) 

-
2� -

f2xdx x 2 

u =e =e

��e� 10�
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2 2 . 2 2 2

(2x 3e x y 2 +4x 2e x y + 2xe x y 2 +xe x y 4 
+ 2ye x )dx 

+2(y 3ex
2 

+x 2ex
2

y +xex
2

)dy =0 ⇒exact 

f ( X 'y ) = f N ( X 'y )dy + G ( X )

1 4 x 2 2 x 2 2 x 2 

f(x,y)=-y e +x e· y +2xe y +G(x) 
2 

! =xy 4e'
2 +x 2e'\O) + y 2 [ 2x 3e'

2 

+ 2xe'
2

]

+y [4x 2e x
2 

+2ex
2

J+G'(x) 

�+�+�+�+�= 

� +� +� +� +� +G'(x)

G'(x)=0 ⇒ G(x)=c 
1 4 x 2 2 x 2 2 x 2 

f ( x , y ) = -y e + x e y + 2x e y + c 
2 

************************************************************************** 

SOLVE 

(l )ydx +(x 2 -4x)dy =0

(2)Sin 2xCosy dx +SinySecx dy = 0 

( 3) x (l - y ) dy 
+ y (l + x ) = 0 

dx 
?

(4)dx _ x-
dy y 2 +6y +9

(5)(x 
2 

+ l)(y 
2 -l)dx + 2xydy = 0 

(6)(4x +xy 2)dx + (y +x 2y )dy = 0 

( 7) x (y 2 + 1 )dy + (y 3 
- 4 y )dx = 0 

��Eel£ 10�



SOLVE 

(I)xdy - ydx = .Jx 2 
+ y 2dx

(2)xy 2dy -(x 3 + y 3 )dx = 0

( 3) x ( x 2 

+ 3 y 2 )dy = y (y 2 
+ 3x 2 )dx

(4) dy 
= 

y
dx x +J;i

SOLVE 

(1)(2x -3y + 4)dx + (3x -2y + l)dy = 0

(2)(4x +2y +3)dx -(6x +3y -2)dy =0

(3)(2x -3y -l)dx = 4(x + l)dy

(4)(2y -x -4)dx =(2x -y +2)dy
SOLVE 

2 2

(1)2x (ye x -l)dx +e x dy = 0

(2)(x 2 +y 2 +x)dx +(xy)dy =0

(3)(2xy 4e Y + 2xy 3 + y )dx +(x 2y 4e Y -x 2y 2 -3x )dy

(4)yLnydx +(x -Lny)dy = 0 

(5) ye xy dx +xe xy dy = 0 
SOLVE 

(l)xdy - ydx = x 2y 3dx

(2)xdy -3ydx =x 4y-1dx

(3)(2xy 2 

- 2y )dx + (3x 2y -4x )dy
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� __ L_INEA_R ll_tF_FE_REm_tA_L _- g_E�_0U_EQ_UAT_I0_N_S -� t.E.C!-4?- F 

Example 1 : 

Solve the D·E : dy + l = x2

dx x 

Solution: 

1 

p(x) = - , Q(x) = x
2

X 

1

I = ef p(x)dx = ef xdx 
= eLnx 

= X 

yl = J Q(x)Idx

yx = J x2 xdx

x3 C 
y=-+-

4 X 

Example 2: 

Solve the D·E : xdy + ydx = xsinx2 dx

Solution : 

By dividing on dx 

dy 
x 

dx 
+ y = xsinx2 

c�> � 



� __ L_INEA_R ll_tF_FE_REm_tA_L _- g_E�_0U_EQ_UAT_I0_N_S -� t.E.C!-4?- F 

dy y . z 
-+-= sinx 
dx x 

1 
p(x) = - , Q(x) = sinx2

X 

yl = J Q(x)Idx

yx = J xsinx2 dx

-1
yx = 

2
cosx2 

+ C

-1 C 
y = -cosx2 

+-
2x X 

Example 3: 

2 

Solve the D·E : dy + 2xydx = xe-x dx 

Solution 

B!J dividing on dx 

dy 2 

-+ 2xy = xe-x 
dx 

p(x) = 2x , Q(x) = xe-x 
2

J = ef p(x)dx 
= 

ef 2xdx 
= 

ex2

0 



� __ L_INEA_R ll_tF_FE_REm_tA_L _- g_E�_0U_EQ_UAT_I0_N_S -� t.E.C!-4?- F 

yl = J Q(x)Idx

Example q.. 

dx 3 Solve the D· E : y dy + 2 x = y

Solution 

By dividing on !I 

dx 2x 
2 

-+-=ydy y 

2 

g (y) = 
- , h(y) = y2

y 
2

I= ef 9(y)dy = efY
d

y = e2Lny = eLny2 
= y2

xi= J h(y)Idy

xyz = J yz

y
z dy 

G�> � 



� __ L_rNEA_R n_ rf_FE_wa_,A_L _- i_s_RN_oU_Eil_UAT_to_N_s -� twf?- F 
y5 

xy
2 = 5+ C

y3 C 

X=-+-
5 y2 

Example 5: 

dx 
Solve the D·E : dy 

+ 2xy = 4y

Solution : 

g(y) = 2y , h(y) = 4y

I= ef g(y)dy = ef 2ydy = eY
2 

xi = J h(y)Idy 

2 
J 

2 
xeY = 4yeY dy 

2 2 

xeY = 2eY + C 

2 
x = 2 + ce-Y

G�> � 



� __ L_INEA_R ll_tF_FE_REm_tA_L _- g_E�_0U_EQ_UAT_I0_N_S -� t.E.C!-4?- F 

Example 1-/·W: 

Solve the Following D·E 

1) y' + y = sinx

2) x dy
- 2y = x3 cos4x

dx 

3) x dy =y+x3 +3x2 -2xdx

dx 'I) - + x = 4cos2ydy 

5) dy + ycotx = 5ecosx

dx 

Bernoli Equation 

11,e general Form to bernoli equation is : 

dy+p(x)y=Q(x)yn ,n=F1 
dx . . .

. ·(1)

Such that p and Q Functions For x onl!J 

method oF solution 

transform eq(T) to l-·D·E b!J multipl!Jing b!J !l-n 

y-n dy + p(x)y1-n
= Q(x) dx ······(2) 

l.et Z = y1-n ⇒ dz= (i _ n)y-n dy 1 dz -n dy 
dx dx ⇒ 1-n dx = Y dx . . .  ·(3)

0 
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Subistituting eq{3) in eq{2) we get : 

1 dz 
1 

-
d 

+ p(x)z = Q(x)-n X 

The last equation is l-· D· E and its solution is : 

z.I = J Q(x).l dx

B!J the same method , The general Form to bernoli equation is : 

dx + g (y) x = h (y) xn , n -=I= 1 
dy .... ·{1)

Such that g and h Functions For !I onl!J 

method oF solution 

transform eq{T) to l-·D·E b!J multipl!Jing b!J x-n 

x-n dx 
+ g(y)x1-n = h(y)

dy ..... ·{2) 

, -t _ 1-n dz _ (i ) -n dx 1 dz _ -n dx
� Z-X ⇒ -- -n X - ⇒ ---X -

dy dy 1-n dy dy 

Subistituting eq{3) in eq(2) we get : 

1 dz 
1 

-
d 

+ g(y)z = h(y)-n y 

The last equation is l-· D· E and its solution is : 

z.I = J h(y).I dy

... ·{3) 

0 
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Example 6: 

� � 3 2
�olve the D·E : xy - - = y e-x 

dx 

Solution: 

multipl!Jing b!J {-1) 

dy 3 2 
- - xy = -y e-x ·····{1)
dx 

Eq{1) is bernoli equation , multipl!J (1) b!J y-3

-3 dy -2 -x2 

(21 ly - - xy = -e ····· /
dx 

1 -t _ -2 dz _ z -3 dy -1 dz _ -3 dy • • • •  ·(3• l� z - y ==> - - - y - ==> -- - y - /dx dx 2 dx dx 

Subistitute eq{3) in eq{2) we get : 

-1 dz 2 
-x ---xz=-e 

2 dx 

/Ylultipl!J b!J {-2) 

dz 2 
- + 2xz = ze-x is L-·D·E 
dx 

p(x) = 2x , Q(x) = ze-x 
2

J = ef p(x)dx = ef 2xdx = ex2 

zl = J Q(x)Idx 

0 
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zex2 

= J 2dx

2 2 2 zex 
= 2x + C ==> z = 2xe-x + C e-x 

Example 7: 

Solve the D·E : :� - y = -xy5

Solution 
dy 5

( - - y = -xy ····· 1) dx 

Eq(1) is bernoli equation , multipl!J (1) b!J y-5

y-5 dy - y-4 = -X ·····(2)dx 
1 

-.&. -4 dz 
4 

-5 dy -1 dz -5 dy .... ·(3• l�" z = y ==> - = - y - ==> -- = y -
'/ dx dx 4 dx dx 

Subistitute eq(3) in eq(2) we get : 

-1 dz 
---z= -x
4 dx 

/J1ultipl!J b!J (-'I-) 
dz 
- + 4z = 4x is l-·D·E dx 

p(x) = 4 , Q(x) = 4x 

0 
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J = ef p(x)dx = ef 4dx = e4x 

zl = J Q(x)Idx

ze4x 
= J 4x e4x dx

1 
ze4x 

= xe 4x 
- -e4x 

+ C
4 

e4x 
1 

-
= xe4x -

- e4x 
+ C

y4 4 

Example 8: 

Solve the D·E : dx - xdy = yx2 dy 

Solution 

Dividing b!J d!J 

dx 
- x = yx2 ·····{1}

dy 

Eq{1} is bernoli equation , multipl!J (1) b!J x-2

x-2 dx 
-

x-1
= y .... ·{2} dy 

1 -t -1 dz -2 dx dz -2 dx
&.-e: Z = X ==> - = -X - ==> - - = X -

dy dy dy dy 

Subistitute eq(3} in eq{2} we get : 

... 
··{3}

0 
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dz 

---z=y 
dy 

tnultipl!J b!J (-1) 

dz 
- + z = -y is l,.·D·Edy 

g(y) = 1 , h(y) = 
-y

I
= 

ef g(y)dy 
= 

ef dy 
= 

eY 

zl 
=

J h(y)Idy 

zeY 
= J -y eY dy

zeY 
= -(y eY - eY) + C 

eY 
- = -y eY + eY + C
X 

Example 9: 

2

Solve the D·E : dx - 2xydy = 6x3y2 e-2Y dy 

Solution 

Dividing b!J d!J 

dx - 2xy = 6x3
y2e-2y2

·····(1)dy 

Eq(1) is bernoli equation , multipl!J (1) b!J x-3

G�> � 
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1 -I;
-2 dz z -3 dx -1 dz -3 dx

&.-e Z = X � - = - X - � --
= X -

dy dy 2 dy dy 

Subistitute eq(3) in eq(2) we get : 

-1 dz 2 
--- 2zy = 6y2 e-2Y
2 dy 

tnultipl!J b!J (-2) 

dz 2 2 2 
- + 4zy = -12y e- Y is l-·D·E 
dy 

g(y) = 4y , h(y) = -12y2 e-2Y

I= ef4ydy 
= 

e2y2

zl = J h(y)Idy

ze2i' = J -12y2 e-2Y
2 e2i' dy

ze2i' = J -12y2 dy

2 ze2Y
= -4y3 

+ C

2 
x-2 e2y = -4y3 + C

2 

. . .  ··(3)

0 
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Example J-l·W : 

Solve the following D· E 

1) xdy + ydx = x3y6 dx

2) :; + xy = 6xfy 

3) dy + y = y3 
dx

'I) dx + xdy = x2
eY dy 

5) dx x -1 ( ) 3 ---=- cosy x 
dy 

2y 2 
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