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Stress

1.1 Introduction

The three fundamental areas of engineering mechanics are statics, dynamics,
and mechanics of materials. Statics and dynamics are devoted primarily to
the study of the external e¤ects upon rigid bodies—that is, bodies for which
the change in shape (deformation) can be neglected. In contrast, mechanics

of materials deals with the internal e¤ects and deformations that are caused
by the applied loads. Both considerations are of paramount importance in
design. A machine part or structure must be strong enough to carry the
applied load without breaking and, at the same time, the deformations must
not be excessive.

Bolted connection in a steel frame. The

bolts must withstand the shear forces

imposed on them by the members of the

frame. The stress analysis of bolts and

rivets is discussed in this chapter. Courtesy

of Mark Winfrey/Shutterstock.
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The di¤erences between rigid-body mechanics and mechanics of mate-
rials can be appreciated if we consider the bar shown in Fig. 1.1. The force P

required to support the load W in the position shown can be found easily
from equilibrium analysis. After we draw the free-body diagram of the bar,
summing moments about the pin at O determines the value of P. In this
solution, we assume that the bar is both rigid (the deformation of the bar is
neglected) and strong enough to support the load W. In mechanics of mate-
rials, the statics solution is extended to include an analysis of the forces act-
ing inside the bar to be certain that the bar will neither break nor deform
excessively.

1.2 Analysis of Internal Forces; Stress

The equilibrium analysis of a rigid body is concerned primarily with the
calculation of external reactions (forces that act external to a body) and
internal reactions (forces that act at internal connections). In mechanics of
materials, we must extend this analysis to determine internal forces—that is,
forces that act on cross sections that are internal to the body itself. In addi-
tion, we must investigate the manner in which these internal forces are dis-
tributed within the body. Only after these computations have been made can
the design engineer select the proper dimensions for a member and select the
material from which the member should be fabricated.

If the external forces that hold a body in equilibrium are known, we
can compute the internal forces by straightforward equilibrium analysis. For
example, consider the bar in Fig. 1.2 that is loaded by the external forces F1,
F2, F3, and F4. To determine the internal force system acting on the cross
section labeled z1 , we must first isolate the segments of the bar lying on
either side of section z1 . The free-body diagram of the segment to the left of
section z1 is shown in Fig. 1.3(a). In addition to the external forces F1, F2,
and F3, this free-body diagram shows the resultant force-couple system of
the internal forces that are distributed over the cross section: the resultant
force R, acting at the centroid C of the cross section, and CR, the resultant
couple1 (we use double-headed arrows to represent couple-vectors). If the
external forces are known, the equilibrium equations SF ¼ 0 and SMC ¼ 0

can be used to compute R and CR.
It is conventional to represent both R and CR in terms of two compo-

nents: one perpendicular to the cross section and the other lying in the cross
section, as shown in Figs. 1.3(b) and (c). These components are given the

FIG. 1.1 Equilibrium analysis will determine the force P, but not the strength or
the rigidity of the bar.

FIG. 1.2 External forces acting on
a body.

FIG. 1.3(a) Free-body diagram
for determining the internal force
system acting on section z1 .

FIG. 1.3(b) Resolving the internal
force R into the axial force P and the
shear force V .

FIG. 1.3(c) Resolving the internal
couple CR into the torque T and the
bending moment M.

1The resultant force R can be located at any point, provided that we introduce the correct re-

sultant couple. The reason for locating R at the centroid of the cross section will be explained

shortly.
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following physically meaningful names:

P: The component of the resultant force that is perpendicular to the cross
section, tending to elongate or shorten the bar, is called the normal force.

V: The component of the resultant force lying in the plane of the cross
section, tending to shear (slide) one segment of the bar relative to the
other segment, is called the shear force.

T : The component of the resultant couple that tends to twist (rotate) the
bar is called the twisting moment or torque.

M: The component of the resultant couple that tends to bend the bar is
called the bending moment.

The deformations produced by these internal forces and internal cou-
ples are shown in Fig. 1.4.

Up to this point, we have been concerned only with the resultant of the
internal force system. However, in design, the manner in which the internal
forces are distributed is equally important. This consideration leads us to
introduce the force intensity at a point, called stress, which plays a central
role in the design of load-bearing members.

Figure 1.5(a) shows a small area element DA of the cross section lo-
cated at the arbitrary point O. We assume that DR is that part of the re-
sultant force that is transmitted across DA, with its normal and shear com-
ponents being DP and DV , respectively. The stress vector acting on the cross
section at point O is defined as

t ¼ lim
DA!0

DR

DA
(1.1)

Its normal component s (lowercase Greek sigma) and shear component t

(lowercase Greek tau), shown in Fig. 1.5(b), are

s ¼ lim
DA!0

DP

DA
¼ dP

dA
t ¼ lim

DA!0

DV

DA
¼ dV

dA
(1.2)

FIG. 1.4 Deformations produced by the components of internal forces and
couples.

FIG. 1.5 Normal and shear
stresses acting on the cross section at
point O are defined in Eq. (1.2).
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The dimension of stress is [F/L2]—that is, force divided by area. In SI
units, force is measured in newtons (N) and area in square meters, from
which the unit of stress is newtons per square meter (N/m2) or, equivalently,
pascals (Pa): 1.0 Pa ¼ 1:0 N/m2. Because 1 pascal is a very small quantity in
most engineering applications, stress is usually expressed with the SI prefix M
(read as ‘‘mega’’), which indicates multiples of 106: 1.0 MPa ¼ 1:0� 106 Pa.
In U.S. Customary units, force is measured in pounds and area in square
inches, so that the unit of stress is pounds per square inch (lb/in.2), frequently
abbreviated as psi. Another unit commonly used is kips per square inch (ksi)
(1.0 ksi ¼ 1000 psi), where ‘‘kip’’ is the abbreviation for kilopound.

The commonly used sign convention for axial forces is to define tensile
forces as positive and compressive forces as negative. This convention is car-
ried over to normal stresses: Tensile stresses are considered to be positive,
compressive stresses negative. A simple sign convention for shear stresses does
not exist; a convention that depends on a coordinate system will be introduced
later in the text. If the stresses are uniformly distributed, Eq. (1.2) gives

s ¼ P

A
t ¼ V

A
(1.3)

where A is the area of the cross section. If the stress distribution is not uni-
form, then Eqs. (1.3) should be viewed as the average stress acting on the
cross section.

1.3 Axially Loaded Bars

a. Centroidal (axial) loading

Figure 1.6(a) shows a bar of constant cross-sectional area A. The ends of the
bar carry uniformly distributed normal loads of intensity p (units: Pa or psi).
We know from statics that

when the loading is uniform, its resultant passes through the centroid of

the loaded area.

Therefore, the resultant P ¼ pA of each end load acts along the centroidal
axis (the line connecting the centroids of cross sections) of the bar, as shown in
Fig. 1.6(b). The loads shown in Fig. 1.6 are called axial or centroidal loads.

Although the loads in Figs. 1.6(a) and (b) are statically equivalent,
they do not result in the same stress distribution in the bar. In the case of the
uniform loading in Fig. 1.6(a), the internal forces acting on all cross sections
are also uniformly distributed. Therefore, the normal stress acting at any
point on a cross section is

s ¼ P

A
(1.4)

The stress distribution caused by the concentrated loading in Fig.
1.6(b) is more complicated. Advanced methods of analysis show that on
cross sections close to the ends, the maximum stress is considerably higher
than the average stress P=A. As we move away from the ends, the stress

FIG. 1.6 A bar loaded axially by
(a) uniformly distributed load of
intensity p; and (b) a statically
equivalent centroidal force P ¼ pA.
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becomes more uniform, reaching the uniform value P=A in a relatively short
distance from the ends. In other words, the stress distribution is approx-
imately uniform in the bar, except in the regions close to the ends.

As an example of concentrated loading, consider the thin strip of width
b shown in Fig. 1.7(a). The strip is loaded by the centroidal force P. Figures
1.7(b)–(d) show the stress distribution on three di¤erent cross sections. Note
that at a distance 2:5b from the loaded end, the maximum stress di¤ers by
only 0.2% from the average stress P=A.

b. Saint Venant’s principle

About 150 years ago, the French mathematician Saint Venant studied the
e¤ects of statically equivalent loads on the twisting of bars. His results led to
the following observation, called Saint Venant’s principle:

The di¤erence between the e¤ects of two di¤erent but statically equivalent

loads becomes very small at su‰ciently large distances from the load.

The example in Fig. 1.7 is an illustration of Saint Venant’s principle.
The principle also applies to the e¤ects caused by abrupt changes in the
cross section. Consider, as an example, the grooved cylindrical bar of radius
R shown in Fig. 1.8(a). The loading consists of the force P that is uniformly
distributed over the end of the bar. If the groove were not present, the nor-
mal stress acting at all points on a cross section would be P=A. Introduction
of the groove disturbs the uniformity of the stress, but this e¤ect is confined
to the vicinity of the groove, as seen in Figs. 1.8(b) and (c).

Most analysis in mechanics of materials is based on simplifications
that can be justified with Saint Venant’s principle. We often replace loads
(including support reactions) by their resultants and ignore the e¤ects of
holes, grooves, and fillets on stresses and deformations. Many of the simpli-
fications are not only justified but necessary. Without simplifying assump-
tions, analysis would be exceedingly di‰cult. However, we must always
keep in mind the approximations that were made, and make allowances for
them in the final design.

FIG. 1.7 Normal stress distribution in a strip caused by a concentrated load.
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c. Stresses on inclined planes

When a bar of cross-sectional area A is subjected to an axial load P, the
normal stress P=A acts on the cross section of the bar. Let us now consider
the stresses that act on plane a-a that is inclined at the angle y to the cross
section, as shown in Fig. 1.9(a). Note that the area of the inclined plane is
A=cos y: To investigate the forces that act on this plane, we consider the
free-body diagram of the segment of the bar shown in Fig. 1.9(b). Because
the segment is a two-force body, the resultant internal force acting on
the inclined plane must be the axial force P, which can be resolved into the
normal component P cos y and the shear component P sin y. Therefore, the
corresponding stresses, shown in Fig. 1.9(c), are

s ¼ P cos y

A=cos y
¼ P

A
cos2 y (1.5a)

t ¼ P sin y

A=cos y
¼ P

A
sin y cos y ¼ P

2A
sin 2y (1.5b)

FIG. 1.8 Normal stress distribution in a grooved bar.

FIG. 1.9 Determining the stresses acting on an inclined section of a bar.
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From these equations we see that the maximum normal stress is P=A, and it
acts on the cross section of the bar (that is, on the plane y ¼ 0). The shear
stress is zero when y ¼ 0, as would be expected. The maximum shear stress
is P=2A, which acts on the planes inclined at y ¼ 45� to the cross section.

In summary, an axial load causes not only normal stress but also shear
stress. The magnitudes of both stresses depend on the orientation of the
plane on which they act.

By replacing y with yþ 90� in Eqs. (1.5), we obtain the stresses acting
on plane a 0-a 0, which is perpendicular to a-a, as illustrated in Fig. 1.10(a):

s 0 ¼ P

A
sin2 y t 0 ¼ � P

2A
sin 2y (1.6)

where we used the identities cosðyþ 90�Þ ¼ �sin y and sin 2ðyþ 90�Þ ¼
�sin 2y. Because the stresses in Eqs. (1.5) and (1.6) act on mutually perpen-
dicular, or ‘‘complementary’’ planes, they are called complementary stresses.
The traditional way to visualize complementary stresses is to draw them on
a small (infinitesimal) element of the material, the sides of which are parallel
to the complementary planes, as in Fig. 1.10(b). When labeling the stresses,
we made use of the following important result that follows from Eqs. (1.5)
and (1.6):

t 0 ¼ �t (1.7)

In other words,

The shear stresses that act on complementary planes have the same

magnitude but opposite sense.

Although Eq. (1.7) was derived for axial loading, we will show later
that it also applies to more complex loadings.

The design of axially loaded bars is usually based on the maximum
normal stress in the bar. This stress is commonly called simply the normal

stress and denoted by s, a practice that we follow in this text. The design
criterion thus is that s ¼ P=A must not exceed the working stress of the
material from which the bar is to be fabricated. The working stress, also
called the allowable stress, is the largest value of stress that can be safely
carried by the material. Working stress, denoted by sw, will be discussed
more fully in Sec. 2.2.

d. Procedure for stress analysis

In general, the stress analysis of an axially loaded member of a structure
involves the following steps.

Equilibrium Analysis

. If necessary, find the external reactions using a free-body diagram
(FBD) of the entire structure.. Compute the axial force P in the member using the method of sections.
This method introduces an imaginary cutting plane that isolates a seg-
ment of the structure. The cutting plane must include the cross section
of the member of interest. The axial force acting in the member can

FIG. 1.10 Stresses acting on two
mutually perpendicular inclined
sections of a bar.
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then be found from the FBD of the isolated segment because it now
appears as an external force on the FBD.

Computation of Stress

. After the axial force has been found by equilibrium analysis, the aver-

age normal stress in the member can be obtained from s ¼ P=A, where
A is the cross-sectional area of the member at the cutting plane.. In slender bars, s ¼ P=A is the normal stress if the section is su‰-
ciently far from applied loads and abrupt changes in the cross section
(Saint Venant’s principle).

Design Considerations For purposes of design, the computed stress
must be compared with the allowable stress, also called the working stress.
The working stress, which we denote by sw, is discussed in detail in the next
chapter. To prevent failure of the member, the computed stress must be less
than the working stress.

Note on the Analysis of Trusses The usual assumptions made in the
analysis of trusses are: (1) weights of the members are negligible compared to
the applied loads; (2) joints behave as smooth pins; and (3) all loads are
applied at the joints. Under these assumptions, each member of the truss is an
axially loaded bar. The internal forces in the bars can be obtained by the
method of sections or the method of joints (utilizing the free-body diagrams of
the joints).

8 CHAPTER 1 Stress



Sample Problem 1.1

The bar ABCD in Fig. (a) consists of three cylindrical steel segments with di¤erent
lengths and cross-sectional areas. Axial loads are applied as shown. Calculate the
normal stress in each segment.

1.3 ft

9000 lb 2000 lb 7000 lb

C
32

(a)

(b) Free-body diagrams (FBDs)

(c) Axial force diagram
               (tension assumed positive)

4000 lb

4000 lb PAB = 4000 lb

P (lb)

PBC = 5000 lb

PCD = 7000 lb 7000 lb

1

A

A

4000 lb

4000

1.3

−5000
−70001.6

1.7

A

A
B C D

x (ft)

B D

B

1.2 in.2
1.8 in.2 1.6 in.2

1.6 ft 1.7 ft

9000 lb

Solution

We begin by using equilibrium analysis to compute the axial force in each segment of
the bar (recall that equilibrium analysis is the first step in stress analysis). The
required free body diagrams (FBDs), shown in Fig. (b), were drawn by isolating the
portions of the beam lying to the left of sections z1 and z2 , and to the right of
section z3 . From these FBDs, we see that the internal forces in the three
segments of the bar are PAB ¼ 4000 lb ðTÞ;PBC ¼ 5000 lb ðCÞ, and
PCD ¼ 7000 lb ðCÞ, where (T) denotes tension and (C) denotes compression.

The axial force diagram in Fig. (c) shows how the how the internal forces vary
with the distance x measured along the bar from end A. Note that the internal forces
vary from segment to segment, but the force in each segment is constant. Because the
internal forces are discontinuous at points A, B, C, and D, our stress calculations will be
valid only for sections that are not too close to these points (Saint Venants principle).

The normal stresses in the three segments are

sAB ¼
PAB

AAB

¼ 4000 lb

1:2 in:2
¼ 3330 psi ðTÞ Answer

sBC ¼
PBC

ABC

¼ 5000 lb

1:8 in:2
¼ 2780 psi ðCÞ Answer

sCD ¼
PCD

ACD

¼ 7000 lb

1:6 in:2
¼ 4380 psi ðCÞ Answer

Observe that the lengths of the segments do not a¤ect the calculations of the
stresses. Also, the fact that the bar is made of steel is irrelevant; the stresses in the
segments would be as calculated, regardless of the materials from which the segments
of the bar are fabricated.

1
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Sample Problem 1.2

For the truss shown in Fig. (a), calculate the normal stresses in (1) member AC; and
(2) member BD. The cross-sectional area of each member is 900 mm2.

Solution

Equilibrium analysis using the FBD of the entire truss in Fig. (a) gives the following
values for the external reactions: Ay ¼ 40 kN, Hy ¼ 60 kN, and Hx ¼ 0.

Part 1

Recall that according to the assumptions used in truss analysis, each member of the
truss is an axially loaded bar. To find the force in member AC, we draw the FBD of
pin A, as shown in Fig. (b). In this (FBD), PAB and PAC are the forces in members AB

and AC, respectively. Note that we have assumed both of these forces to be tensile.
Because the force system is concurrent and coplanar, there are two independent
equilibrium equations. From the FBD in Fig. (b), we get

X
Fy ¼ 0 þ" 40þ 3

5
PAB ¼ 0

X
Fx ¼ 0 !þ PAC þ

4

5
PAB ¼ 0

Solving the equations gives PAC ¼ 53:33 kN (tension). Thus, the normal stress in
member AC is

sAC ¼
PAC

AAC

¼ 53:33 kN

900 mm2
¼ 53:33� 103 N

900� 10�6 m2

¼ 59:3� 106 N=m2 ¼ 59:3 MPa ðTÞ Answer

Part 2

To determine the force in member BD, we see that section z1 in Fig. (a) cuts through
members BD, BE, and CE. Because three equilibrium equations are available for a
portion of the truss separated by this section, we can find the forces in all three
members, if needed.

The FBD of the portion of the truss lying to the left of section z1 is shown in
Fig. (c) (the portion lying to the right could also be used). We have again assumed
that the forces in the members are tensile. To calculate the force in member BD, we
use the equilibrium equationX

ME ¼ 0 þ

m

�40ð8Þ þ 30ð4Þ � PBDð3Þ ¼ 0

10



which yields

PBD ¼ �66:67 kN ¼ 66:67 kN ðCÞ

Therefore, the normal stress in member BD is

sBD ¼
PBD

ABD

¼ �66:67 kN

900 mm2
¼ �66:67� 103 N

900� 10�6 m2

¼ �74:1� 106 N=m2 ¼ 74:1 MPa ðCÞ Answer

1
Sample Problem 1.3

Figure (a) shows a two-member truss supporting a block of weight W . The
cross-sectional areas of the members are 800 mm2 for AB and 400 mm2 for AC.
Determine the maximum safe value of W if the working stresses are 110 MPa for
AB and 120 MPa for AC.

Solution

Being members of a truss, AB and AC can be considered to be axially loaded bars.
The forces in the bars can be obtained by analyzing the FBD of pin A in Fig. (b). The
equilibrium equations areX

Fx ¼ 0 !þ PAC cos 60� � PAB cos 40� ¼ 0

X
Fy ¼ 0 þ" PAC sin 60� þ PAB sin 40� �W ¼ 0

Solving simultaneously, we get

PAB ¼ 0:5077W PAC ¼ 0:7779W

Design for Normal Stress in Bar AB
The value of W that will cause the normal stress in bar AB to equal its working stress
is given by

PAB ¼ ðswÞABAAB

0:5077W ¼ ð110� 106 N=m2Þð800� 10�6 m2Þ

W ¼ 173:3� 103 N ¼ 173:3 kN

Design for Normal Stress in Bar AC
The value of W that will cause the normal stress in bar AC to equal its working stress
is found from

PAC ¼ ðswÞACAAC

0:7779W ¼ ð120� 106 N=m2Þð400� 10�6 m2Þ

W ¼ 61:7� 103 N ¼ 61:7 kN

Choose the Correct Answer

The maximum safe value of W is the smaller of the preceding two values—namely,

W ¼ 61:7 kN Answer

We see that the stress in bar AC determines the safe value of W . The other
‘‘solution,’’ W ¼ 173:3 kN, must be discarded because it would cause the stress in
AC to exceed its working stress of 120 MPa.

1
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Sample Problem 1.4

The rectangular wood panel is formed by gluing together two boards along the 30-
degree seam as shown in the figure. Determine the largest axial force P that can be
carried safely by the panel if the working stress for the wood is 1120 psi, and the
normal and shear stresses in the glue are limited to 700 psi and 450 psi, respectively.

Solution

The most convenient method for analyzing this design-type problem is to calculate
the largest safe value of P that satisfies each of the three design criteria. The smallest
of these three values is the largest safe value of P for the panel.

Design for Working Stress in Wood

The value of P for which the wood would reach its working stress is found as follows:

P ¼ swA ¼ 1120ð4� 1:0Þ ¼ 4480 lb

Design for Normal Stress in Glue

The axial force P that would cause the normal stress in the glue to equal its max-
imum allowable value is computed from Eq. (1.5a):

s ¼ P

A
cos2 y

700 ¼ P

ð4� 1:0Þ cos2 30�

P ¼ 3730lb

Design for Shear Stress in Glue

The value of P that would cause the shear stress in the glue to equal its maximum
value is computed from Eq. (1.5b):

s ¼ P

2A
sin 2y

450 ¼ P

2ð4� 1:0Þ sin 60�

P ¼ 4160lb

Choose the Correct Answer

Comparing the above three solutions, we see that the largest safe axial load that can
be safely applied is governed by the normal stress in the glue, its value being

P ¼ 3730 lb Answer

1
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Problems

1.1 A hollow steel tube with an inside diameter of 80 mm must carry an axial
tensile load of 330 kN. Determine the smallest allowable outside diameter of the tube
if the working stress is 110 MN/m2:

1.2 The cross-sectional area of bar ABCD is 600 mm2. Determine the maximum
normal stress in the bar.

FIG. P1.2

1.3 Determine the largest weight W that can be supported by the two wires AB

and AC: The working stresses are 100 MPa for AB and 150 MPa for AC. The cross-
sectional areas of AB and AC are 400 mm2 and 200 mm2, respectively.

FIG. P1.3

1.4 Axial loads are applied to the compound rod that is composed of an aluminum
segment rigidly connected between steel and bronze segments. What is the stress in
each material given that P ¼ 10 kN?

2P
4P P

3P

3 m 5 m 4 m

Bronze
A = 400 mm2

Aluminum
A = 600 mm2

Steel
A = 300 mm2

FIG. P1.4, P1.5

1.5 Axial loads are applied to the compound rod that is composed of an aluminum
segment rigidly connected between steel and bronze segments. Find the largest safe
value of P if the working stresses are 120 MPa for steel, 68 MPa for aluminum, and
110 MPa for bronze.

1.6 The wood pole is supported by two cables of 1=4-in. diameter. The turnbuckles
in the cables are tightened until the stress in the cables reaches 60 000 psi. If the
working compressive stress for wood is 200 psi, determine the smallest permissible
diameter of the pole. FIG. P1.6

Problems 13



1.7 The column consists of a wooden post and a concrete footing, separated by a
steel bearing plate. Find the maximum safe value of the axial load P if the working
stresses are 1000 psi for wood and 450 psi for concrete.

1.8 Find the maximum allowable value of P for the column. The cross-sectional
areas and working stresses (sw) are shown in the figure.

1.9 The 1200-lb uniform plate ABCD can rotate freely about the hinge AB. The
plate is supported by the cables DE and CE. If the working stress in the cables is
18 000 psi, determine the smallest safe diameter of the cables.

1.10 The homogeneous bar AB weighing 1800 lb is supported at either end by a steel
cable. Calculate the smallest safe area of each cable if the working stress is 18 000 psi for
steel.

1.11 The homogeneous 6000-lb bar ABC is supported by a pin at C and a cable
that runs from A to B around the frictionless pulley at D. Find the stress in the cable
if its diameter is 0.6 in.

1.12 Determine the largest weight W that can be supported safely by the structure
shown in the figure. The working stresses are 16 000 psi for the steel cable AB and
720 psi for the wood strut BC. Neglect the weight of the structure.

FIG. P1.7 FIG. P1.8

A

B

D

C

E

3 ft

2 ft

6 ft
4 ft

FIG. P1.9

2 ft
1.5 ft

5 ft

A B

FIG. P1.10 FIG. P1.11 FIG. P1.12
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1.13 Determine the mass of the heaviest uniform cylinder that can be supported in
the position shown without exceeding a stress of 50 MPa in cable BC. Neglect fric-
tion and the weight of bar AB: The cross-sectional area of BC is 100 mm2.

1.14 The uniform 300-lb bar AB carries a 500-lb vertical force at A. The bar
is supported by a pin at B and the 0:5-in. diameter cable CD. Find the stress in the
cable.

1.15 The figure shows the landing gear of a light airplane. Determine the com-
pressive stress in strut AB caused by the landing reaction R ¼ 40 kN. Neglect the
weights of the members. The strut is a hollow tube, with 50-mm outer diameter and
40-mm inner diameter.

1.16 The 1000-kg uniform bar AB is suspended from two cables AC and BD; each
with cross-sectional area 400 mm2. Find the magnitude P and location x of the
largest additional vertical force that can be applied to the bar. The stresses in AC and
BD are limited to 100 MPa and 50 MPa, respectively.

1.17 The cross-sectional area of each member of the truss is 1.8 in.2. Calculate the
stresses in members CE, DE, and DF . Indicate tension or compression.

FIG. P1.13

3 ft 3 ft

500 lb

4 ft

FIG. P1.14

600

Dimensions in mm

A

B C

R

400

FIG. P1.15

FIG. P1.16 FIG. P1.17
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1.18 Determine the smallest safe cross-sectional areas of members CD, GD, and
GF for the truss shown. The working stresses are 140 MPa in tension and 100 MPa in
compression. (The working stress in compression is smaller to reduce the danger of
buckling.)

1.19 Find the stresses in members BC, BD, and CF for the truss shown. Indicate
tension or compression. The cross-sectional area of each member is 1400 mm2:

1.20 Determine the smallest allowable cross-sectional areas of members CE, BE,
and EF for the truss shown. The working stresses are 20 ksi in tension and 14 ksi in
compression. (The working stress in compression is smaller to reduce the danger of
buckling.)

8 ft

18 ft

A

G

F

E

B C D8 ft 8 ft

30 kips30 kips

FIG. P1.20

6 m

140 kN

H G F

DB

C

EA

140 kN

4 m 4 m

6 m

6 m

6 m 6 m

FIG. P1.18

7040

FIG. P1.19
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1.21 Determine the smallest allowable cross-sectional areas of members BD, BE,
and CE of the truss shown. The working stresses are 20 000 psi in tension and 12 000
psi in compression. (A reduced stress in compression is specified to reduce the danger
of buckling.)

1.22 The two pieces of wood, 2 in. by 4 in., are glued together along the 40� joint.
Determine the maximum safe axial load P that can be applied if the shear stress in
the glue is limited to 250 psi.

1.23 The rectangular piece of wood, 50 mm by 100 mm, is used as a compression
block. The grain of the wood makes a 20� angle with the horizontal, as shown in the
figure. Determine the largest axial force P that can be applied safely if the allowable
stresses on the plane of the grain are 18 MPa for compression and 4 MPa for shear.

1.24 The figure shows a glued joint, known as a finger joint, in a 6-in. by 3=4-in.
piece of lumber. Find the normal and shear stresses acting on the surface of the joint.

1.25 The piece of wood, 100 mm by 100 mm in cross section, contains a glued
joint inclined at the angle y to the vertical. The working stresses are 20 MPa for
wood in tension, 8 MPa for glue in tension, and 12 MPa for glue in shear. If y ¼ 50�,
determine the largest allowable axial force P.

FIG. P1.25

FIG. P1.21 FIG. P1.22

FIG. P1.23 FIG. P1.24
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1.4 Shear Stress

By definition, normal stress acting on an interior plane is directed per-
pendicular to that plane. Shear stress, on the other hand, is tangent to the
plane on which it acts. Shear stress arises whenever the applied loads cause
one section of a body to slide past its adjacent section. In Sec. 1.3, we
examined how shear stress occurs in an axially loaded bar. Three other
examples of shear stress are illustrated in Fig. 1.11. Figure 1.11(a) shows two
plates that are joined by a rivet. As seen in the FBD, the rivet must carry the
shear force V ¼ P. Because only one cross section of the rivet resists the
shear, the rivet is said to be in single shear. The bolt of the clevis in Fig.
1.11(b) carries the load P across two cross-sectional areas, the shear force
being V ¼ P=2 on each cross section. Therefore, the bolt is said to be in a
state of double shear. In Fig. 1.11(c) a circular slug is being punched out of a
metal sheet. Here the shear force is P and the shear area is similar to the
milled edge of a coin. The loads shown in Fig. 1.11 are sometimes referred
to as direct shear to distinguish them from the induced shear illustrated in
Fig. 1.9.

The distribution of direct shear stress is usually complex and not easily
determined. It is common practice to assume that the shear force V is uni-
formly distributed over the shear area A, so that the shear stress can be
computed from

t ¼ V

A
(1.8)

FIG. 1.11 Examples of direct shear: (a) single shear in a rivet; (b) double shear in
a bolt; and (c) shear in a metal sheet produced by a punch.
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Strictly speaking, Eq. (1.8) must be interpreted as the average shear stress. It
is often used in design to evaluate the strength of connectors, such as rivets,
bolts, and welds.

1.5 Bearing Stress

If two bodies are pressed against each other, compressive forces are devel-
oped on the area of contact. The pressure caused by these surface loads is
called bearing stress. Examples of bearing stress are the soil pressure beneath
a pier and the contact pressure between a rivet and the side of its hole. If the
bearing stress is large enough, it can locally crush the material, which in turn
can lead to more serious problems. To reduce bearing stresses, engineers
sometimes employ bearing plates, the purpose of which is to distribute the
contact forces over a larger area.

As an illustration of bearing stress, consider the lap joint formed by the
two plates that are riveted together as shown in Fig. 1.12(a). The bearing
stress caused by the rivet is not constant; it actually varies from zero at the
sides of the hole to a maximum behind the rivet as illustrated in Fig. 1.12(b).
The di‰culty inherent in such a complicated stress distribution is avoided by
the common practice of assuming that the bearing stress sb is uniformly
distributed over a reduced area. The reduced area Ab is taken to be the pro-

jected area of the rivet:

Ab ¼ td

where t is the thickness of the plate and d represents the diameter of the
rivet, as shown in the FBD of the upper plate in Fig. 1.12(c). From this FBD
we see that the bearing force Pb equals the applied load P (the bearing load
will be reduced if there is friction between the plates), so that the bearing
stress becomes

sb ¼
Pb

Ab

¼ P

td
(1.9)

FIG. 1.12 Example of bearing stress: (a) a rivet in a lap joint; (b) bearing stress is
not constant; (c) bearing stress caused by the bearing force Pb is assumed to be
uniform on projected area td.
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Sample Problem 1.5

The lap joint shown in Fig. (a) is fastened by four rivets of 3/4-in. diameter. Find the
maximum load P that can be applied if the working stresses are 14 ksi for shear in
the rivet and 18 ksi for bearing in the plate. Assume that the applied load is dis-
tributed evenly among the four rivets, and neglect friction between the plates.

Solution
We will calculate P using each of the two design criteria. The largest safe load will be
the smaller of the two values. Figure (b) shows the FBD of the lower plate. In this
FBD, the lower halves of the rivets are in the plate, having been isolated from their
top halves by a cutting plane. This cut exposes the shear forces V that act on the
cross sections of the rivets. We see that the equilibrium condition is V ¼ P=4.

Design for Shear Stress in Rivets

The value of P that would cause the shear stress in the rivets to reach its working
value is found as follows:

V ¼ tA

P

4
¼ ð14� 103Þ pð3=4Þ2

4

" #

P ¼ 24 700 lb

Design for Bearing Stress in Plate

The shear force V ¼ P=4 that acts on the cross section of one rivet is equal to the
bearing force Pb due to the contact between the rivet and the plate. The value of
P that would cause the bearing stress to equal its working value is computed from
Eq. (1.9):

Pb ¼ sbtd

P

4
¼ ð18� 103Þð7=8Þð3=4Þ

P ¼ 47 300 lb

Choose the Correct Answer

Comparing the above solutions, we conclude that the maximum safe load P that can
be applied to the lap joint is

P ¼ 24 700 lb Answer

with the shear stress in the rivets being the governing design criterion.
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Problems

1.26 What force is required to punch a 20-mm-diameter hole in a plate that is 25
mm thick? The shear strength of the plate is 350 MN/m2.

1.27 A circular hole is to be punched in a plate that has a shear strength of 40
ksi—see Fig. 1.11(c). The working compressive stress for the punch is 50 ksi. (a)
Compute the maximum thickness of a plate in which a hole 2.5 in. in diameter can be
punched. (b) If the plate is 0.25 in. thick, determine the diameter of the smallest hole
that can be punched.

1.28 Find the smallest diameter bolt that can be used in the clevis in Fig. 1.11(b) if
P ¼ 400 kN. The working shear stress for the bolt is 300 MPa.

1.29 Referring to Fig. 1.11(a), assume that the diameter of the rivet that joins the
plates is d ¼ 20 mm. The working stresses are 120 MPa for bearing in the plate and
60 MPa for shear in the rivet. Determine the minimum safe thickness of each plate.

1.30 The lap joint is connected by three 20-mm-diameter rivets. Assuming that the
axial load P ¼ 50 kN is distributed equally among the three rivets, find (a) the shear
stress in a rivet; (b) the bearing stress between a plate and a rivet; and (c) the max-
imum average tensile stress in each plate.

FIG. P1.30, P1.31

1.31 Assume that the axial load P applied to the lap joint is distributed equally
among the three 20-mm-diameter rivets. What is the maximum load P that can be
applied if the allowable stresses are 40 MPa for shear in rivets, 90 MPa for bearing
between a plate and a rivet, and 120 MPa for tension in the plates?

1.32 A key prevents relative rotation between the shaft and the pulley. If the
torque T ¼ 2200 N �m is applied to the shaft, determine the smallest safe dimension
b if the working shear stress for the key is 60 MPa.

FIG. P1.32
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1.33 The bracket is supported by 1=2-in.-diameter pins at A and B (the pin at B

fits in the 45� slot in the bracket). Neglecting friction, determine the shear stresses in
the pins, assuming single shear.

1.34 The 7=8-in.-diameter pins at A and C that support the structure are in single
shear. Find the largest force F that can be applied to the structure if the working
shear stress for these pins is 5000 psi. Neglect the weights of the members.

1.35 The uniform 2-Mg bar is supported by a smooth wall at A and by a pin at B

that is in double shear. Determine the diameter of the smallest pin that can be used if
its working shear stress is 60 MPa.

1.36 The bell crank, which is in equilibrium under the forces shown in the figure,
is supported by a 20-mm-diameter pin at D that is in double shear. Determine (a) the
required diameter of the connecting rod AB, given that its tensile working stress is
100 MPa; and (b) the shear stress in the pin.

1.37 Compute the maximum force P that can be applied to the foot pedal. The
6-mm.-diameter pin at B is in single shear, and its working shear stress is 28 MPa.
The cable attached at C has a diameter of 3 mm. and a working normal stress of
140 MPa.

FIG. P1.33 FIG. P1.34 FIG. P1.35

FIG. P1.36

50 mm

150 mm
50 mm

FIG. P1.37
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1.38 The right-angle bar is supported by a pin at B and a roller at C: What is the
maximum safe value of the load P that can be applied if the shear stress in the pin is
limited to 20 000 psi? The 3=4-in.-diameter pin is in double shear.

1.39 The bar AB is supported by a frictionless inclined surface at A and a 7=8-
in.-diameter pin at B that is in double shear. Determine the shear stress in the pin
when the vertical 2000-lb force is applied. Neglect the weight of the bar.

1.40 A joint is made by gluing two plywood gussets of thickness t to wood boards.
The tensile working stresses are 1200 psi for the plywood and 700 psi for the boards.
The working shear stress for the glue is 50 psi. Determine the dimensions b and t so
that the joint is as strong as the boards.

1.41 The steel end-cap is fitted into grooves cut in the timber post. The working
stresses for the post are 1:8 MPa in shear parallel to the grain and 5:5 MPa in bearing
perpendicular to the grain. Determine the smallest safe dimensions a and b.

1.42 The halves of the coupling are held together by four 5=8-in.-diameter bolts.
The working stresses are 12 ksi for shear in the bolts and 15 ksi for bearing in the
coupling. Find the largest torque T that can be safely transmitted by the coupling.
Assume that the forces in the bolts have equal magnitudes.

FIG. P1.38 FIG. P1.39

FIG. P1.40 FIG. P1.41

FIG. P1.42
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1.43 The plate welded to the end of the I-beam is fastened to the support with four
10-mm-diameter bolts (two on each side). Assuming that the load is equally divided
among the bolts, determine the normal and shear stresses in a bolt.

1.44 The 20-mm-diameter bolt fastens two wooden planks together. The nut is
tightened until the tensile stress in the bolt is 150 MPa. Find the smallest safe diameter
d of the washers if the working bearing stress for wood is 13 MPa.

1.45 The figure shows a roof truss and the detail of the connection at joint B.
Members BC and BE are angle sections with the thicknesses shown in the figure. The
working stresses are 70 MPa for shear in the rivets and 140 MPa for bearing stress
due to the rivets. How many 19-mm-diameter rivets are required to fasten the fol-
lowing members to the gusset plate: (a) BC; and (b) BE ?

1.46 Repeat Prob. 1.45 if the rivet diameter is 22 mm, with all other data remain-
ing unchanged.

FIG. P1.45, P1.46

FIG. P1.43 FIG. P1.44
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Review Problems

1.47 The cross-sectional area of each member of the truss is 1200 mm2. Calculate
the stresses in members DF, CE, and BD.

1.48 The links of the chain are made of steel that has a working stress of 300 MPa
in tension. If the chain is to support the force P ¼ 45 kN, determine the smallest safe
diameter d of the links.

1.49 Segment AB of the bar is a tube with an outer diameter of 1.5 in. and a wall
thickness of 0.125 in. Segment BC is a solid rod of diameter 0.75 in. Determine the
normal stress in each segment.

1.50 The cylindrical steel column has an outer diameter of 4 in. and inner diame-
ter of 3.5 in. The column is separated from the concrete foundation by a square
bearing plate. The working compressive stress is 26 000 psi for the column, and the
working bearing stress is 1200 psi for concrete. Find the largest force P that can be
applied to the column.

FIG. P1.47 FIG. P1.48

FIG. P1.49

7 in.

3.5 in.

4 in.

FIG. P1.50
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1.51 The tubular tension member is fabricated by welding a steel strip into a 12�

helix. The cross-sectional area of the resulting tube is 2.75 in.2. If the normal stress
acting on the plane of the weld is 12 ksi, determine (a) the axial force P; and (b) the
shear stress acting on the plane of the weld.

1.52 An aluminum cable of 6 mm diameter is suspended from a high-altitude
balloon. The density of aluminum is 2700 kg/m3, and its breaking stress is 390 MPa.
Determine the largest length of cable that can be suspended without breaking.

1.53 The 0.8-in-diameter steel bolt is placed in the aluminum sleeve. The nut is
tightened until the normal stress in the bolt is 12 000 psi. Determine the normal stress
in the sleeve.

8 in.

0.80 in. 1.00 in. 1.25 in.

FIG. P1.53

1.54 For the joint shown in the figure, calculate (a) the largest bearing stress
between the pin and the members; (b) the average shear stress in the pin; and (c) the
largest average normal stress in the members.

1.55 The lap joint is fastened with four 3/4-in.-diameter rivets. The working
stresses are 14 ksi for the rivets in shear and 18 ksi for the plates in bearing. Find the
maximum safe axial load P that can be applied to the joint. Assume that the load is
equally distributed among the rivets.

FIG. P1.51

FIG. P1.54 FIG. P1.55
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1.56 Three wood boards, each 4 in. wide, are joined by the 3/4-in.-diameter bolt.
If the working stresses for wood are 800 psi in tension and 1500 psi in bearing, find
the largest allowable value of the force P.

1.57 The cast iron block with cross-sectional dimensions of 2.5 in. by 2.5 in. con-
sists of two pieces. The pieces are prevented from sliding along the 55� inclined joint
by the steel key, which is 2.5 in. long. Determine the smallest safe dimensions b and h

of the key if the working stresses are 40 ksi for cast iron in bearing and 50 ksi for the
key in shear.

1.58 Find the stresses in members BC and BE for the truss shown. The cross-
sectional area of each member is 4:2 in:2. Indicate whether the stresses are tensile (T) or
compressive (C).

1.59 The boom AC is a 4-in. square steel tube with a wall thickness of 0.25 in. The
boom is supported by the 0.5-in.-diameter pin at A, and the 0.375-in.-diameter cable
BC. The working stresses are 25 ksi for the cable, 18 ksi for the boom, and 13.6 ksi
for shear in the pin. Neglecting the weight of the boom, determine the largest safe
load P that can be applied as shown.

FIG. P1.56 FIG. P1.57

A

B C

D

E

L

50°

20 kips

50° 50° 50°

FIG. P1.58

B

A

70°

4 in.

3.5 in.

0.5-in. dia.

Detail at A

C

P

30°

12
 ft

FIG. P1.59
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Computer Problems

C1.1 The symmetric truss ABC of height h and span 2b carries the upward vertical
force P at its apex C. The working stresses for the members are st in tension and sc

in compression. Given b, P, st, and sc, write an algorithm to plot the required vol-
ume of material in the truss against h from h ¼ 0:5b to 4b. Also find the value of h

that results in the smallest volume of the material in the truss. Assume that the truss
is fully stressed (each member is stressed to its working stress). Use the following data:
b ¼ 6 ft, P ¼ 120 kips, st ¼ 18 ksi, and sc ¼ 12 ksi.

FIG. C1.1, C1.2

C1.2 Solve Prob. C1.1 assuming that P acts vertically downward.

C1.3 The truss ABC has an overhang b, and its two members are inclined at angles
a and y to the horizontal, both angles being positive. A downward vertical force P

acts at A. The working stresses for the members are st in tension and sc in com-
pression. Given b, P, a, st, and sc, construct an algorithm to plot the required vol-
ume of material in the truss against y from y ¼ 0� to 75�. Assume that each member
of the truss is stressed to its working stress. What is the value of y that results in the
smallest material volume? Use the following data: b ¼ 1:8 m, P ¼ 530 kN, a ¼ 30�,
st ¼ 125 MPa, and sc ¼ 85 MPa.

C1.4 A high-strength adhesive is used to join two halves of a metal bar of
cross-sectional area A along the plane m-n, which is inclined at the angle y to the
cross section. The working stresses for the adhesive are sw in tension and tw in shear.
Given A, sw, and tw, write an algorithm that plots the maximum allowable axial
force P that can be applied to the bar as a function of y in the range 0�a y a 60�.
Assume that the metal is much stronger than the adhesive, so that P is determined by
the stresses in the adhesive. Use the following data: A ¼ 4 in.2, sw ¼ 3500 psi, and
tw ¼ 1800 psi.

FIG. C1.3 FIG. C1.4
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C1.5 The concrete cooling tower with a constant wall thickness of 1.5 ft is loaded
by its own weight. The outer diameter of the tower varies as

d ¼ 20 ft� 0:1xþ ð0:35� 10�3 ft�1Þx2

where x and d are in feet. Write an algorithm to plot the axial stress in the tower as a
function of x. What is the maximum stress and where does it occur? Use 150 lb/ft3

for the weight density of concrete.

FIG. C1.5
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2
Strain

2.1 Introduction

So far, we have dealt mainly with the strength, or load-carrying capacity, of
structural members. Here we begin our study of an equally important topic
of mechanics of materials—deformations, or strains. In general terms, strain

is a geometric quantity that measures the deformation of a body. There are
two types of strain: normal strain, which characterizes dimensional changes,
and shear strain, which describes distortion (changes in angles). Stress and
strain are two fundamental concepts of mechanics of materials. Their rela-
tionship to each other defines the mechanical properties of a material, the
knowledge of which is of the utmost importance in design.

An assortment of tensile test specimens. The tensile test

is a standard procedure for determining the mechanical

properties of materials. An important material property

is the stress-strain diagram, which is discussed in this

chapter. Courtesy of Andrew Brookes, National Physical

Laboratory/Photo Researchers, Inc.
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Although our emphasis in this chapter will be on axially loaded bars,
the principles and methods developed here apply equally well to more com-
plex cases of loading discussed later. Among other topics, we will learn how
to use force-deformation relationships in conjunction with equilibrium anal-
ysis to solve statically indeterminate problems.

2.2 Axial Deformation; Stress-Strain

Diagram

The strength of a material is not the only criterion that must be considered
when designing machine parts or structures. The sti¤ness of a material is
often equally important, as are mechanical properties such as hardness,
toughness, and ductility. These properties are determined by laboratory
tests. Many materials, particularly metals, have established standards that
describe the test procedures in detail. We will confine our attention to only
one of the tests—the tensile test of steel—and use its results to illustrate
several important concepts of material behavior.

a. Normal (axial) strain

Before describing the tensile test, we must formalize the definition of normal
(axial) strain. We begin by considering the elongation of the prismatic bar of
length L in Fig. 2.1. The elongation d may be caused by an applied axial
force, or an expansion due to an increase in temperature, or even a force and
a temperature increase acting simultaneously. Strain describes the geometry
of deformation, independent of what actually causes the deformation. The
normal strain � (lowercase Greek epsilon) is defined as the elongation per unit

length. Therefore, the normal strain in the bar in the axial direction, also
known as the axial strain, is

� ¼ d

L
(2.1)

If the bar deforms uniformly, then Eq. (2.1) represents the axial strain every-
where in the bar. Otherwise, this expression should be viewed as the aver-

age axial strain. Note that normal strain, being elongation per unit length, is

FIG. 2.1 Deformation of a prismatic bar.
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a dimensionless quantity. However, ‘‘units’’ such as in./in. or mm/mm are
frequently used for normal strain.

If the deformation is not uniform, we must define strain at a point. In
Fig. 2.1, we let O be a point in the bar located at the distance x from the
fixed end. To determine the axial strain at point O, we consider the de-
formation of an imaginary line element (fiber) OA of length Dx that is em-
bedded in the bar at O. Denoting the elongation of OA by Dd, we define the
axial strain at point O as

� ¼ lim
Dx!0

Dd

Dx
¼ dd

dx
(2.2)

Observe that normal strain, like normal stress, is defined at a point in a given

direction.
We note that if the distribution of the axial strain is known, the elon-

gation of the bar can be computed from

d ¼
ðL

0

dd ¼
ðL

0

� dx (2.3)

For uniform strain distribution (the axial strain is the same at all points),
Eq. (2.3) yields d ¼ �L, which agrees with Eq. (2.1).

Although the preceding discussion assumed elongation, the results are
also applicable to compression. By convention, compression (shortening)
carries a negative sign. For example � ¼ �0:001 means a compressive strain
of magnitude 0:001.

b. Tension test

In the standard tension test, the specimen shown in Fig. 2.2 is placed in the
grips of a testing machine. The grips are designed so that the load P applied
by the machine is axial. Two gage marks are scribed on the specimen to de-
fine the gage length L. These marks are located away from the ends to avoid
the local e¤ects caused by the grips and to ensure that the stress and strain
are uniform in the material between the marks.

The testing machine elongates the specimen at a slow, constant rate
until the specimen ruptures. During the test, continuous readings are taken
of the applied load and the elongation of the gage length. These data are
then converted to stress and strain. The stress is obtained from s ¼ P=A,
where P is the load and A represents the original cross-sectional area of the
specimen. The strain is computed from � ¼ d=L, where d is the elongation

FIG. 2.2 Specimen used in the standard tension test.
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between the gage marks and L is the original gage length. These results,
which are based on the original area and the original gage length, are re-
ferred to as nominal stress and nominal strain.

As the bar is being stretched, its cross-sectional area becomes smaller
and the length between the gage marks increases. Dividing the load by the
actual (current) area of the specimen, we get the true stress. Similarly, the
true strain is obtained by dividing the elongation d by the current gage
length. The nominal and true measures are essentially the same in the work-
ing range of metals. They di¤er only for very large strains, such as occur in
rubber-like materials or in ductile metals just before rupture. With only a few
exceptions, engineering applications use nominal stress and strain.

Plotting axial stress versus axial strain results in a stress-strain diagram.
If the test is carried out properly, the stress-strain diagram for a given
material is independent of the dimensions of the test specimen. That is,
the characteristics of the diagram are determined solely by the mechanical
properties of the material. A stress-strain diagram for structural steel is
shown in Fig. 2.3. The following mechanical properties can be determined
from the diagram.

Proportional Limit and Hooke’s Law As seen in Fig. 2.3, the
stress-strain diagram is a straight line from the origin O to a point called the
proportional limit. This plot is a manifestation of Hooke’s law:1 Stress is
proportional to strain; that is,

s ¼ E� (2.4)

where E is a material property known as the modulus of elasticity or Young’s

modulus. The units of E are the same as the units of stress—that is, Pa or psi.
For steel, E ¼ 29� 106 psi, or 200 GPa, approximately. Note that Hooke’s

FIG. 2.3 Stress-strain diagram obtained from the standard tension test on a
structural steel specimen.

1This law was first postulated by Robert Hooke in 1678.
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law does not apply to the entire diagram; its validity ends at the propor-
tional limit. Beyond this point, stress is no longer proportional to strain.2

Elastic Limit A material is said to be elastic if, after being loaded, the
material returns to its original shape when the load is removed. The elastic

limit is, as its name implies, the stress beyond which the material is no longer
elastic. The permanent deformation that remains after the removal of the
load is called the permanent set. The elastic limit is slightly larger than
the proportional limit. However, because of the di‰culty in determining the
elastic limit accurately, it is usually assumed to coincide with the propor-
tional limit.

Yield Point The point where the stress-strain diagram becomes almost
horizontal is called the yield point, and the corresponding stress is known as
the yield stress or yield strength. Beyond the yield point there is an appreci-
able elongation, or yielding, of the material without a corresponding in-
crease in load. Indeed, the load may actually decrease while the yielding
occurs. However, the phenomenon of yielding is unique to structural steel.
Other grades of steel, steel alloys, and other materials do not yield, as
indicated by the stress-strain curves of the materials shown in Fig. 2.4.
Incidentally, these curves are typical for a first loading of materials that
contain appreciable residual stresses produced by manufacturing or aging
processes. After repeated loading, these residual stresses are removed and
the stress-strain curves become practically straight lines.

For materials that do not have a well-defined yield point, yield stress is
determined by the o¤set method. This method consists of drawing a line
parallel to the initial tangent of the stress-strain curve; this line starts at a
prescribed o¤set strain, usually 0.2% (� ¼ 0:002). The intersection of this line
with the stress-strain curve, shown in Fig. 2.5, is called the yield point at

0.2% o¤set.

Ultimate Stress The ultimate stress or ultimate strength, as it is often
called, is the highest stress on the stress-strain curve.

Rupture Stress The rupture stress or rupture strength is the stress at
which failure occurs. For structural steel, the nominal rupture strength is
considerably lower than the ultimate strength because the nominal rupture
strength is computed by dividing the load at rupture by the original cross-
sectional area. The true rupture strength is calculated using the reduced area
of the cross section where the fracture occurred. The di¤erence in the two
values results from a phenomenon known as necking. As failure approaches,
the material stretches very rapidly, causing the cross section to narrow, as
shown in Fig. 2.6. Because the area where rupture occurs is smaller than the
original area, the true rupture strength is larger than the ultimate strength.
However, the ultimate strength is commonly used as the maximum stress
that the material can carry.

2The stress-strain diagram of many materials is actually a curve on which there is no definite

proportional limit. In such cases, the stress-strain proportionality is assumed to exist up to a

stress at which the strain increases at a rate 50% greater than shown by the initial tangent to the

stress-strain diagram.

FIG. 2.4 Stress-strain diagrams for
various materials that fail without
significant yielding.

FIG. 2.5 Determining the yield
point by the 0.2% o¤set method.

FIG. 2.6 Failed tensile test
specimen showing necking, or
narrowing, of the cross section.
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c. Working stress and factor of safety

The working stress sw, also called the allowable stress, is the maximum safe
axial stress used in design. In most designs, the working stress should be
limited to values not exceeding the proportional limit so that the stresses
remain in the elastic range (the straight-line portion of the stress-strain
diagram). However, because the proportional limit is di‰cult to determine
accurately, it is customary to base the working stress on either the yield
stress syp or the ultimate stress sult, divided by a suitable number N, called
the factor of safety. Thus,

sw ¼
syp

N
or sw ¼

sult

N
(2.5)

The yield point is selected as the basis for determining sw in structural steel
because it is the stress at which a prohibitively large permanent set may oc-
cur. For other materials, the working stress is usually based on the ultimate
strength.

Many factors must be considered when selecting the working stress. This
selection should not be made by the novice; usually the working stress is set by a
group of experienced engineers and is embodied in building codes and specifi-
cations. A discussion of the factors governing the selection of a working stress
starts with the observation that in many materials the proportional limit is
about one-half the ultimate strength. To avoid accidental overloading, a work-
ing stress of one-half the proportional limit is usually specified for dead loads
that are gradually applied. (The term dead load refers to the weight of the
structure and other loads that, once applied, are not removed.) A working stress
set in this way corresponds to a factor of safety of 4 with respect to sult and is
recommended for materials that are known to be uniform and homogeneous.
For other materials, such as wood, in which unpredictable nonuniformities
(such as knotholes) may occur, larger factors of safety are used. The dynamic
e¤ect of suddenly applied loads also requires higher factors of safety.

2.3 Axially Loaded Bars

Figure 2.7 shows a bar of length L and constant cross-sectional area A that
is loaded by an axial tensile force P. We assume that the stress caused by P

is below the proportional limit, so that Hooke’s law s ¼ E� is applicable.
Because the bar deforms uniformly, the axial strain is � ¼ d=L, which upon

FIG. 2.7 Axially loaded bar.
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substitution into Hooke’s law yields s ¼ Eðd=LÞ. Therefore, the elongation
of the bar is

d ¼ sL

E
¼ PL

EA
(2.6)

where in the last step we substituted s ¼ P=A. If the strain (or stress) in the
bar is not uniform, then Eq. (2.6) is invalid. In the case where the axial strain
varies with the x-coordinate, the elongation of the bar can be obtained by
integration, as stated in Eq. (2.3): d ¼

Ð L

0 � dx. Using � ¼ s=E ¼ P=ðEAÞ,
where P is the internal axial force, we get

d ¼
ðL

0

s

E
dx ¼

ðL

0

P

EA
dx (2.7)

We see that Eq. (2.7) reduces to Eq. (2.6) only if P, E, and A are constants.

Notes on the Computation of Deformation

. The magnitude of the internal force P in Eqs. (2.6) and (2.7) must be
found from equilibrium analysis. Note that a positive (tensile) P results
in positive d (elongation); conversely, a negative P (compression) gives
rise to negative d (shortening).. Care must be taken to use consistent units in Eqs. (2.6) and (2.7). It is
common practice to let the units of E determine the units to be used
for P, L, and A. In the U.S. Customary system, E is expressed in psi
(lb/in.2), so that the units of the other variables should be P [lb], L

[in.], and A [in.2]. In the SI system, where E is in Pa (N/m2), the con-
sistent units are P [N], L [m], and A [m2].. As long as the axial stress is in the elastic range, the elongation (or
shortening) of a bar is very small compared to its length. This property
can be utilized to simplify the computation of displacements in struc-
tures containing axially loaded bars, such as trusses.
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Sample Problem 2.1

The steel propeller shaft ABCD carries the axial loads shown in Fig. (a). Determine
the change in the length of the shaft caused by these loads. Use E ¼ 29� 106 psi for
steel.

Solution

From the free-body diagrams in Fig. (b) we see that the internal forces in the three
segments of the shaft are

PAB ¼ PBC ¼ 2000 lb ðTÞ PCD ¼ 4000 lb ðCÞ

Because the axial force and the cross-sectional area are constant within each segment,
the changes in the lengths of the segments can be computed from Eq. (2.6):
d ¼ PL=ðEAÞ. The change in the length of the shaft is obtained by adding the con-
tributions of the segments. Noting that tension causes elongation and compression
results in shortening, we obtain for the elongation of the shaft

d ¼
XPL

EA
¼ 1

E

PL

A

� �
AB

þ PL

A

� �
BC

� PL

A

� �
CD

� �

¼ 1

29� 106

2000ð5� 12Þ
pð0:5Þ2=4

þ 2000ð4� 12Þ
pð0:75Þ2=4

� 4000ð4� 12Þ
pð0:75Þ2=4

" #

¼ 0:013 58 in: ðelongationÞ Answer

1
Sample Problem 2.2

The cross section of the 10-m-long flat steel bar AB has a constant thickness of
20 mm, but its width varies as shown in the figure. Calculate the elongation of the
bar due to the 100-kN axial load. Use E ¼ 200 GPa for steel.
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Solution
Equilibrium requires that the internal axial force P ¼ 100 kN is constant along the
entire length of the bar. However, the cross-sectional area A of the bar varies with
the x-coordinate, so that the elongation of the bar must be computed from Eq. (2.7).

We start by determining A as a function of x. The cross-sectional areas at A

and B are AA ¼ 20� 40 ¼ 800 mm2 and AB ¼ 20� 120 ¼ 2400 mm2. Between A

and B the cross-sectional area is a linear function of x:

A ¼ AA þ ðAB � AAÞ
x

L
¼ 800 mm2 þ ð1600 mm2Þ x

L

Converting the areas from mm2 to m2 and substituting L ¼ 10 m, we get

A ¼ ð800þ 160xÞ � 10�6 m2 (a)

Substituting Eq. (a) together with P ¼ 100� 103 N and E ¼ 200� 109 Pa into
Eq. (2.7), we obtain for the elongation of the rod

d ¼
ðL

0

P

EA
dx ¼

ð10 m

0

100� 103

ð200� 109Þ½ð800þ 160xÞ � 10�6� dx

¼ 0:5

ð10 m

0

dx

800þ 160x
¼ 0:5

160
½lnð800þ 160xÞ�10

0

¼ 0:5

160
ln

2400

800
¼ 3:43� 10�3 m ¼ 3:43 mm Answer

1
Sample Problem 2.3

The rigid bar BC in Fig. (a) is supported by the steel rod AC of cross-sectional area
0:25 in.2. Find the vertical displacement of point C caused by the 2000-lb load. Use
E ¼ 29� 106 psi for steel.

Solution
We begin by computing the axial force in rod AC. Noting that bar BC is a two-force
body, the FBD of joint C in Fig. (b) yields

SFy ¼ 0 þ" PAC sin 40� � 2000 ¼ 0 PAC ¼ 3111 lb

The elongation of AC can now be obtained from Eq. (2.6). Noting that the length of
the rod is

LAC ¼
LBC

cos 40�
¼ 8� 12

cos 40�
¼ 125:32 in:

we get

dAC ¼
PL

EA

� �
AC

¼ 3111ð125:32Þ
ð29� 106Þð0:25Þ ¼ 0:053 78 in: ðelongationÞ
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The geometric relationship between dAC and the displacement DC of C is illus-
trated in the displacement diagram in Fig. (c). Because bar BC is rigid, the movement
of point C is confined to a circular arc centered at B. Observing that the displace-
ments are very small relative to the lengths of the bars, this arc is practically the
straight line CC 0, perpendicular to BC. Having established the direction of DC , we
now resolve DC into components that are parallel and perpendicular to AC.
The perpendicular component is due to the rotation of bar AC about A, whereas the
parallel component is the elongation of AC. From geometry, the enlarged portion of
the displacement diagram in Fig. (c) yields

DC ¼
dAC

sin 40�
¼ 0:053 78

sin 40�
¼ 0:0837 in: # Answer

1
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Problems

2.1 The following data were recorded during a tensile test of a 14.0-mm-diameter
mild steel rod. The gage length was 50.0 mm.

Load (N) Elongation (mm) Load (N) Elongation (mm)

0 0 46 200 1:25

6 310 0:010 52 400 2:50

12 600 0:020 58 500 4:50

18 800 0:030 65 400 7:50

25 100 0:040 69 000 12:50

31 300 0:050 67 800 15:50

37 900 0:060 65 000 20:00

40 100 0:163 61 500 Fracture

41 600 0:433

Plot the stress-strain diagram and determine the following mechanical properties:
(a) proportional limit; (b) modulus of elasticity; (c) yield stress; (d) ultimate stress;
and (e) nominal rupture stress.

2.2 The following data were obtained during a tension test of an aluminum alloy.
The initial diameter of the test specimen was 0.505 in., and the gage length was
2.0 in.

Load ( lb) Elongation (in.) Load ( lb) Elongation (in.)

0 0 14 000 0:020

2 310 0:0022 14 400 0:025

4 640 0:0044 14 500 0:060

6 950 0:0066 14 600 0:080

9 290 0:0088 14 800 0:100

11 600 0:0110 14 600 0:120

13 000 0:0150 13 600 Fracture

Plot the stress-strain diagram and determine the following mechanical properties:
(a) proportional limit; (b) modulus of elasticity; (c) yield stress at 0.2% o¤set;
(d) ultimate stress; and (e) nominal rupture stress.
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2.3 The bar ABC in Fig. (a) consists of two cylindrical segments. The material of
the bar has the stress-strain diagram shown in Fig. (b). Determine the approximate
elongation of the bar caused by the 20-kN axial load.

50

40

30

20

10

0
0.000 0.005 0.010 0.015 0.020

St
re

ss
 (

M
Pa

)

(b)

Strain
0.025 0.030 0.035 0.040

FIG. P2.3

2.4 A uniform bar of length L, cross-sectional area A, and mass density r is
suspended vertically from one end. (a) Show that the elongation of the bar is
d ¼ rgL2=ð2EÞ, where g is the gravitational acceleration and E is the modulus of
elasticity. (b) If the mass of the bar is M, show that d ¼MgL=ð2EAÞ.

2.5 A steel rod having a cross-sectional area of 300 mm2 and a length of 150 m is
suspended vertically from one end. The rod supports a tensile load of 20 kN at its
free end. Given that the mass density of steel is 7850 kg/m3 and E ¼ 200 GPa, find
the total elongation of the rod. (Hint: Use the results of Prob. 2.4.)

2.6 Determine the elongation of the tapered cylindrical aluminum bar caused by
the 30-kN axial load. Use E ¼ 72 GPa.

FIG. P2.6

2.7 The steel strip has a uniform thickness of 50 mm. Compute the elongation
of the strip caused by the 500-kN axial force. The modulus of elasticity of steel is
200 GPa.

500 kN 500 kN

50 mm 50 mm120 mm

1000 mm 1000 mm

FIG. P2.7

2.8 A 4-mm-diameter steel wire, 3.2 m long, carries an axial tensile load P. Find
the maximum safe value of P if the allowable normal stress is 280 MPa and the
elongation of the wire is limited to 4 mm. Use E ¼ 200 GPa.

50 mm

20 kN 20 kN

25 mm

400 mm
A B C

300 mm

(a)
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2.9 The compound bar ABCD has a uniform cross-sectional area of 0:25 in:2

When the axial force P is applied, the length of the bar is reduced by 0.018 in.
Determine the magnitude of the force P. The moduli of elasticity are 29� 106 psi for
steel and 10� 106 psi for aluminum.

Steel

18 in. 18 in.6 in.

Steel
Aluminum

A
P P

B DC

FIG. P2.9

2.10 The steel rod is placed inside the copper tube, the length of each being ex-
actly 15 in. If the assembly is compressed by 0.0075 in., determine the stress in each
component and the applied force P. The moduli of elasticity are 29� 106 psi for steel
and 17� 106 psi for copper.

2.11 A steel hoop, 10 mm thick and 80 mm wide, with inside diameter 1500.0 mm,
is heated and shrunk onto a steel cylinder 1500.5 mm in diameter. What is the nor-
mal force in the hoop after it has cooled? Neglect the deformation of the cylinder,
and use E ¼ 200 GPa for steel.

2.12 The timber member has a cross-sectional area of 1750 mm2 and its modulus
of elasticity is 12 GPa. Compute the change in the total length of the member after
the loads shown are applied.

40 35 20

FIG. P2.12

2.13 The member consists of the steel rod AB that is screwed into the end of the
bronze rod BC. Find the largest value of P that meets the following design criteria: (i)
the overall length of the member is not to change by more than 3 mm; and (ii) the
stresses are not to exceed 140 MPa in steel and 120 MPa in bronze. The moduli of
elasticity are 200 GPa for steel and 80 GPa for bronze.

2.14 The compound bar carries the axial forces P and 2P. Find the maximum
allowable value of P if the working stresses are 40 ksi for steel and 20 ksi for alumi-
num, and the total elongation of the bar is not to exceed 0.2 in.

FIG. P2.14

2.15 The compound bar containing steel, bronze, and aluminum segments carries
the axial loads shown in the figure. The properties of the segments and the working
stresses are listed in the table.

A (in.2) E (psi) sw (psi)

Steel 0:75 30� 106 20 000

Bronze 1:00 12� 106 18 000

Aluminum 0:50 10� 106 12 000

Determine the maximum allowable value of P if the change in length of the entire
bar is limited to 0.08 in. and the working stresses are not to be exceeded.

FIG. P2.10

FIG. P2.13

FIG. P2.15

Problems 43



2.16 A compound bar consisting of bronze, aluminum, and steel segments is
loaded axially as shown in the figure. Determine the maximum allowable value of P

if the change in length of the bar is limited to 2 mm and the working stresses pre-
scribed in the table are not to be exceeded.

A (mm2) E (GPa) sw ( MPa)

Bronze 450 83 120

Aluminum 600 70 80

Steel 300 200 140

2.17 The bar ABC is supported by a pin at A and a steel wire at B. Calculate
the elongation of the wire when the 36-lb horizontal force is applied at C. The cross-
sectional area of the wire is 0:0025 in:2 and the modulus of elasticity of steel is
29� 106 psi.

2.18 The rigid bar AB is supported by two rods made of the same material. If the
bar is horizontal before the load P is applied, find the distance x that locates the
position where P must act if the bar is to remain horizontal. Neglect the weight of
bar AB.

2.19 The rigid bar ABC is supported by a pin at A and a steel rod at B. Determine
the largest vertical load P that can be applied at C if the stress in the steel rod is
limited to 35 ksi and the vertical movement of end C must not exceed 0.12 in. Ne-
glect the weights of the members.

2.20 The rigid bar AB, attached to aluminum and steel rods, is horizontal before
the load P is applied. Find the vertical displacement of point C caused by the load
P ¼ 50 kN. Neglect all weights.

2.21 The rigid bars ABC and CD are supported by pins at A and D and by a steel
rod at B. There is a roller connection between the bars at C. Compute the vertical
displacement of point C caused by the 50-kN load.

FIG. P2.16

6 ft

4 ft

36 lbC

5 ft
B

A

D

FIG. P2.17

FIG. P2.18 FIG. P2.19
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2.22 The structure in the figure is composed of two rigid bars (AB and CD) and
two vertical rods made of aluminum and steel. All connections are pin joints.
Determine the maximum force P that can be applied to the structure if the vertical
displacement of its point of application is limited to 6 mm. Neglect the weights of the
members.

2.23 The rigid bars AB and CD are supported by pins at A and D. The vertical
rods are made of aluminum and bronze. Determine the vertical displacement of the
point where the force P ¼ 10 kips is applied. Neglect the weights of the members.

2.24 The uniform 2200-lb bar BC is supported by a pin at C and the aluminum
wire AB. The cross-sectional area of the wire is 0.165 in.2. Assuming bar BC to be
rigid, find the vertical displacement of B due to the weight of the bar. Use E ¼
10:6� 106 psi for aluminum.

300
500

FIG. P2.20 FIG. P2.21

300

500

FIG. P2.22 FIG. P2.23

FIG. P2.24
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2.25 The steel bars AC and BC, each of cross-sectional area 120 mm2, are joined
at C with a pin. Determine the displacement of point C caused by the 15-kN load.
Use E ¼ 200 GPa for steel.

FIG. P2.25, P2.26

2.26 Solve Prob. 2.25 if the 15-kN load acts horizontally to the right.

2.27 The steel truss supports a 6000-lb load. The cross-sectional areas of the
members are 0.5 in.2 for AB and 0.75 in.2 for BC. Compute the horizontal displace-
ment of B using E ¼ 29� 106 psi.

FIG. P2.27
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2.4 Generalized Hooke’s Law

a. Uniaxial loading; Poisson’s ratio

Experiments show that when a bar is stretched by an axial force, there is a
contraction in the transverse dimensions, as illustrated in Fig. 2.8. In 1811,
Siméon D. Poisson showed that the ratio of the transverse strain to the axial
strain is constant for stresses within the proportional limit. This constant,
called Poisson’s ratio, is denoted by n (lowercase Greek nu). For uniaxial
loading in the x-direction, as in Fig 2.8, Poisson’s ratio is n ¼ ��t=�x, where
�t is the transverse strain. The minus sign indicates that a positive strain
(elongation) in the axial direction causes a negative strain (contraction) in
the transverse directions. The transverse strain is uniform throughout the
cross section and is the same in any direction in the plane of the cross section.
Therefore, we have for uniaxial loading

�y ¼ �z ¼ �n�x (2.8)

Poisson’s ratio is a dimensionless quantity that ranges between 0.25 and 0.33
for metals.

Using sx ¼ E�x in Eq. (2.8) yields the generalized Hooke’s law for
uniaxial loading (sy ¼ sz ¼ 0):

�x ¼
sx

E
�y ¼ �z ¼ �n

sx

E
(2.9)

b. Multiaxial Loading

Biaxial Loading Poisson’s ratio permits us to extend Hooke’s law for
uniaxial loading to biaxial and triaxial loadings. Consider an element of the
material that is subjected simultaneously to normal stresses in the x- and
y-directions, as in Fig. 2.9(a). The strains caused by sx alone are given in
Eqs. (2.9). Similarly, the strains due to sy are �y ¼ sy=E and �x ¼
�z ¼ �nsy=E. Using superposition, we write the combined e¤ect of the two
normal stresses as

�x ¼
1

E
ðsx � nsyÞ �y ¼

1

E
ðsy � nsxÞ �z ¼ �

n

E
ðsx þ syÞ (2.10)

which is Hooke’s law for biaxial loading in the xy-plane (sz ¼ 0). The first
two of Eqs. (2.10) can be inverted to express the stresses in terms of the
strains:

sx ¼
ð�x þ n�yÞE

1� n2
sy ¼

ð�y þ n�xÞE
1� n2

(2.11)

FIG. 2.8 Transverse dimensions
contract as the bar is stretched by an
axial force P.

FIG. 2.9 (a) Stresses acting on a
material element in biaxial loading;
(b) two-dimensional view of stresses;
(c) deformation of the element.
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Two-dimensional views of the stresses and the resulting deformation in the
xy-plane are shown in Figs. 2.9(b) and (c). Note that Eqs. (2.10) show that
for biaxial loading �z is not zero; that is, the strain is triaxial rather than
biaxial.

Triaxial Loading Hooke’s law for the triaxial loading in Fig. 2.10 is
obtained by adding the contribution of sz, �z ¼ sz=E and �x ¼ �y ¼ �nsz=E,
to the strains in Eqs. (2.10), which yields

�x ¼
1

E
½sx � nðsy þ szÞ�

�y ¼
1

E
½sy � nðsz þ sxÞ�

�z ¼
1

E
½sz � nðsx þ syÞ�

(2.12)

Equations (2.8)–(2.12) are valid for both tensile and compressive ef-
fects. It is only necessary to assign positive signs to elongations and tensile
stresses and, conversely, negative signs to contractions and compressive
stresses.

c. Shear loading

Shear stress causes the deformation shown in Fig. 2.11. The lengths of the
sides of the element do not change, but the element undergoes a distortion
from a rectangle to a parallelogram. The shear strain, which measures the
amount of distortion, is the angle g (lowercase Greek gamma), always ex-
pressed in radians. It can be shown that the relationship between shear stress
t and shear strain g is linear within the elastic range; that is,

t ¼ Gg (2.13)

which is Hooke’s law for shear. The material constant G is called the shear

modulus of elasticity (or simply shear modulus), or the modulus of rigidity.
The shear modulus has the same units as the modulus of elasticity (Pa or
psi). We will prove later that G is related to the modulus of elasticity E and
Poisson’s ratio n by

G ¼ E

2ð1þ nÞ (2.14)

FIG. 2.10 Stresses acting on a
material element in triaxial loading.

FIG. 2.11 Deformation of a
material element caused by shear
stress.
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Sample Problem 2.4

The 50-mm-diameter rubber rod is placed in a hole with rigid, lubricated walls. There
is no clearance between the rod and the sides of the hole. Determine the change in the
length of the rod when the 8-kN load is applied. Use E ¼ 40 MPa and n ¼ 0:45 for
rubber.

Solution
Lubrication allows the rod to contract freely in the axial direction, so that the axial
stress throughout the bar is

sx ¼ �
P

A
¼ � 8000

p

4
ð0:05Þ2

¼ �4:074� 106 Pa

(the negative sign implies compression). Because the walls of the hole prevent trans-
verse strain in the rod, we have �y ¼ �z ¼ 0. The tendency of the rubber to expand
laterally (Poisson’s e¤ect) is resisted by the uniform contact pressure p between the
walls and the rod, so that sy ¼ sz ¼ �p. If we use the second of Eqs. (2.12) (the third
equation would yield the same result), the condition �y ¼ 0 becomes

sy � nðsz þ sxÞ
E

¼ �p� nð�pþ sxÞ
E

¼ 0

which yields

p ¼ � nsx

1� n
¼ � 0:45ð�4:074� 106Þ

1� 0:45
¼ 3:333� 106 Pa

The axial strain is given by the first of Eqs. (2.12):

�x ¼
sx � nðsy þ szÞ

E
¼ sx � nð�2pÞ

E

¼ ½�4:074� 0:45ð�2� 3:333Þ� � 106

40� 106
¼ �0:026 86

The corresponding change in the length of the rod is

d ¼ �xL ¼ �0:026 86ð300Þ

¼ �8:06 mm ¼ 8:06 mm ðcontractionÞ Answer

For comparison, note that if the constraining e¤ect of the hole were neglected,
the deformation would be

d ¼ �PL

EA
¼ � 8000ð0:3Þ

ð40� 106Þ p

4
ð0:05Þ2

� � ¼ �0:0306 m ¼ �30:6 mm

1
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Sample Problem 2.5

Two 1.75-in.-thick rubber pads are bonded to three steel plates to form the shear
mount shown in Fig. (a). Find the displacement of the middle plate when the 1200-lb
load is applied. Consider the deformation of rubber only. Use E ¼ 500 psi and
n ¼ 0:48 for rubber.

Solution

To visualize the deformation of the rubber pads, we introduce a grid drawn on the
edge of the upper pad—see Fig. (b). When the load is applied, the grid deforms as
shown in the figure. Observe that the deformation represents uniform shear, except
for small regions at the edges of the pad (Saint Venant’s principle).

Each rubber pad has a shear area of A ¼ 5� 9 ¼ 45 in.2 that carries half the
1200-lb load. Hence, the average shear stress in the rubber is

t ¼ V

A
¼ 600

45
¼ 13:333 psi
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This stress is shown acting on the sides of a grid element in Fig. (c). The corre-
sponding shear strain is g ¼ t=G, where from Eq. (2.14),

G ¼ E

2ð1þ nÞ ¼
500

2ð1þ 0:48Þ ¼ 168:92 psi

Therefore,

g ¼ t

G
¼ 13:333

168:92
¼ 0:07893

From Fig. (b) we see that the displacement of the middle plate (the lower plate in the
figure) is

tg ¼ 1:75ð0:078 93Þ ¼ 0:1381 in: Answer

1
Sample Problem 2.6

An initially rectangular element of material is deformed as shown in the figure (note
that the deformation is greatly exaggerated). Calculate the normal strains ex and ey,
and the shear strain g for the element.

A
C

x

yB

0.25 in.

0.7 × 10–4 in.

1.2 × 10–4 in.

1.5 × 10–4 in.

Deformed

1.8 × 10–4 in.

0.
2 

in
.Undeformed

Solution
The elongation of side AC is dAC ¼ 0:7� 10�4 in. Therefore, the horizontal strain of
the element is

ex ¼
dAC

AC
¼ 0:7� 10�4

0:25
¼ 280� 10�6 Answer

The elongation of side AB is dAB ¼ 1:2� 10�4 in:, which yields for the vertical
strain

ey ¼
dAB

AB
¼ 1:2� 10�4

0:2
¼ 600� 10�6

Answer

The shear strain is the angle of distortion (change in the angle of a corner of
the element), measured in radians. Referring to the corner at A, we have

g ¼ rotation angle of AC þ rotation angle of AB

¼ 1:8� 10�4

0:25
þ 1:5� 10�4

0:2
¼ 1470� 10�6

Answer

1
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Problems

2.28 A solid cylinder of diameter d carries an axial load P. Show that the change
in diameter is 4Pn=ðpEdÞ.

2.29 The polyethylene sheet is subjected to the biaxial loading shown. Determine
the resulting elongations of sides AB and AC. The properties of polyethylene are
E ¼ 300 ksi and n ¼ 0:4.

2.30 A sheet of copper is stretched biaxially in the xy-plane. If the strains in the
sheet are �x ¼ 0:40� 10�3 and �y ¼ 0:30� 10�3, determine sx and sy. Use E ¼ 110
GPa and n ¼ 0:35.

2.31 The normal stresses at a point in a steel member are sx ¼ 8 ksi, sy ¼ �4 ksi,
and sz ¼ 10 ksi. Using E ¼ 29� 103 ksi and n ¼ 0:3, determine the normal strains at
this point.

2.32 The rectangular block of material of length L and cross-sectional area A fits
snugly between two rigid, lubricated walls. Derive the expression for the change in
length of the block due to the axial load P.

2.33 The two sheets of soft plastic are bonded to the central steel strip. Determine
the magnitude of the largest force P that can be safely applied to the steel strip and
the corresponding displacement of the strip. For the plastic, use tw ¼ 10 ksi and
G ¼ 800 ksi. Neglect deformation of the steel strip.

2.34 A material specimen is subjected to a uniform, triaxial compressive stress
(hydrostatic pressure) of magnitude p. Show that the volumetric strain of the mate-
rial is DV=V ¼ �3pð1� 2nÞ=E, where DV is the volume change and V is the initial
volume.

2.35 A rubber sheet of thickness t and area A is compressed as shown in the figure.
All contact surfaces are su‰ciently rough to prevent slipping. Show that the change in
the thickness of the rubber sheet caused by the load P is

d ¼ ð1þ nÞð1� 2nÞ
ð1� nÞ

Pt

EA

(Hint: The roughness of the surfaces prevents transverse expansion of the sheet.)

1.2 ksi

A B

C D

1.2 ksi

4 ft

y

x

6 ft

2 
ks

i

2 
ks

i

FIG. P2.29

FIG. P2.32

0.75 in.0.75 in.

Steel

Plastic

Top view

P

10 in.

4 in.

FIG. P2.33

FIG. P2.35
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2.36 A torsion test shows that the shear modulus of an aluminum specimen is
4:60� 106 psi. When the same specimen is used in a tensile test, the modulus of
elasticity is found to be 12:2� 106 psi. Find Poisson’s ratio for the specimen.

2.37 An initially rectangular element of a material is deformed into the shape
shown in the figure. Find �x, �y, and g for the element.

2.38 The initially square element of a material is deformed as shown. Determine
the shear strain of the element and the normal strains of the diagonals AC and BD.

2.39 The rectangular element is deformed in shear as shown. Find the shear strain.

2.40 The square element of a material undergoes the shear strain g. Assuming that
gf 1, determine the normal strains of the diagonals AC and BD.

2.41 The plastic sheet, 1/2 in. thick, is bonded to the pin-jointed steel frame.
Determine the magnitude of the force P that would result in a 0.18-in. horizontal
displacement of bar AB. Use G ¼ 70� 103 psi for the plastic, and neglect the de-
formation of the steel frame.

2.42 The steel shaft of diameter D is cemented to the thin rubber sleeve of thick-
ness t and length L. The outer surface of the sleeve is bonded to a rigid support.
When the axial load P is applied, show that the axial displacement of the shaft is
d ¼ Pt=ðpGDLÞ, where G is the shear modulus of rubber. Assume that tfD.

2.43 Show that if the rubber sleeve in Prob. 2.42 is thick, the displacement of the
shaft is

d ¼ P

2pGL
ln

Dþ 2t

D

FIG. P2.42, P2.43

FIG. P2.37
FIG. P2.38 FIG. P2.39

FIG. P2.40

FIG. P2.41
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2.5 Statically Indeterminate Problems

If the equilibrium equations are su‰cient to calculate all the forces (includ-
ing support reactions) that act on a body, these forces are said to be
statically determinate. In statically determinate problems, the number of
unknown forces is always equal to the number of independent equilibrium
equations. If the number of unknown forces exceeds the number of
independent equilibrium equations, the problem is said to be statically

indeterminate.
Static indeterminacy does not imply that the problem cannot be solved;

it simply means that the solution cannot be obtained from the equilibrium
equations alone. A statically indeterminate problem always has geometric
restrictions imposed on its deformation. The mathematical expressions of
these restrictions, known as the compatibility equations, provide us with the
additional equations needed to solve the problem (the term compatibility

refers to the geometric compatibility between deformation and the imposed
constraints). Because the source of the compatibility equations is deforma-
tion, these equations contain as unknowns either strains or elongations. We
can, however, use Hooke’s law to express the deformation measures in terms
of stresses or forces. The equations of equilibrium and compatibility can
then be solved for the unknown forces.

Procedure for Solving Statically Indeterminate Problems In
summary, the solution of a statically indeterminate problem involves the
following steps:

. Draw the required free-body diagrams and derive the equations of
equilibrium.. Derive the compatibility equations. To visualize the restrictions on
deformation, it is often helpful to draw a sketch that exaggerates the
magnitudes of the deformations.. Use Hooke’s law to express the deformations (strains) in the compati-
bility equations in terms of forces (or stresses).. Solve the equilibrium and compatibility equations for the unknown
forces.

54 CHAPTER 2 Strain



Sample Problem 2.7

The concrete post in Fig. (a) is reinforced axially with four symmetrically placed steel
bars, each of cross-sectional area 900 mm2. Compute the stress in each material when
the 1000-kN axial load is applied. The moduli of elasticity are 200 GPa for steel and
14 GPa for concrete.

Solution

Equilibrium The FBD in Fig. (b) was drawn by isolating the portion of the post
above section a-a, where Pco is the force in concrete and Pst denotes the total force
carried by the steel rods. For equilibrium, we must have

SF ¼ 0 þ" Pst þ Pco � 1:0� 106 ¼ 0

which, written in terms of stresses, becomes

sstAst þ scoAco ¼ 1:0� 106 N (a)

Equation (a) is the only independent equation of equilibrium that is available in this
problem. Because there are two unknown stresses, we conclude that the problem is
statically indeterminate.

Compatibility For the deformations to be compatible, the changes in lengths of the
steel rods and the concrete must be equal; that is, dst ¼ dco. Because the lengths of
steel and concrete are identical, the compatibility equation, written in terms of
strains, is

�st ¼ �co (b)

Hooke’s Law From Hooke’s law, Eq. (b) becomes

sst

Est
¼ sco

Eco
(c)

Equations (a) and (c) can now be solved for the stresses. From Eq. (c) we obtain

sst ¼
Est

Eco
sco ¼

200

14
sco ¼ 14:286sco (d)

Substituting the cross-sectional areas

Ast ¼ 4ð900� 10�6Þ ¼ 3:6� 10�3 m2

Aco ¼ 0:32 � 3:6� 10�3 ¼ 86:4� 10�3 m2

and Eq. (d) into Eq. (a) yields

ð14:286scoÞð3:6� 10�3Þ þ scoð86:4� 10�3Þ ¼ 1:0� 106

Solving for the stress in concrete, we get

sco ¼ 7:255� 106 Pa ¼ 7:255 MPa Answer

From Eq. (d), the stress in steel is

sst ¼ 14:286ð7:255Þ ¼ 103:6 MPa Answer

1
Sample Problem 2.8

Let the allowable stresses in the post described in Sample Problem 2.7 be sst ¼ 120
MPa and sco ¼ 6 MPa. Compute the maximum safe axial load P that may be
applied.
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Solution

The unwary student may attempt to obtain the forces by substituting the allowable
stresses into the equilibrium equation—see Eq. (a) in Sample Problem 2.7. This ap-
proach is incorrect because it ignores the compatibility condition—that is, the equal
strains of the two materials. From Eq. (d) in Sample Problem 2.7, we see that equal
strains require the following relationship between the stresses:

sst ¼ 14:286sco

Therefore, if the concrete were stressed to its limit of 6 MPa, the corresponding stress
in the steel would be

sst ¼ 14:286ð6Þ ¼ 85:72 MPa

which is below the allowable stress of 120 MPa. The maximum safe axial load is thus
found by substituting sco ¼ 6 MPa and sst ¼ 85:72 MPa into the equilibrium equa-
tion:

P ¼ sstAst þ scoAco

¼ ð85:72� 106Þð3:6� 10�3Þ þ ð6� 106Þð86:4� 10�3Þ

¼ 827� 103 N ¼ 827 kN Answer

1
Sample Problem 2.9

Figure (a) shows a copper rod that is placed in an aluminum tube. The rod is 0.005
in. longer than the tube. Find the maximum safe load P that can be applied to the
bearing plate, using the following data:

Copper Aluminum

Area (in.2) 2 3

E (psi) 17� 106 10� 106

Allowable stress (ksi) 20 10

Solution

Equilibrium We assume that the rod deforms enough so that the bearing plate
makes contact with the tube, as indicated in the FBD in Fig. (b). From this FBD we
get

SF ¼ 0 þ" Pcu þ Pal � P ¼ 0 (a)

Because no other equations of equilibrium are available, the forces Pcu and Pal are
statically indeterminate.

Compatibility Figure (c) shows the changes in the lengths of the two materials (the
deformations have been greatly exaggerated). We see that the compatibility equation
is

dcu ¼ dal þ 0:005 in: (b)

Hooke’s Law Substituting d ¼ sL=E into Eq. (b), we get

sL

E

� �
cu

¼ sL

E

� �
al

þ 0:005 in:

or

scuð10:005Þ
17� 106

¼ salð10Þ
10� 106

þ 0:005
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which reduces to

scu ¼ 1:6992sal þ 8496 (c)

From Eq. (c) we find that if sal ¼ 10 000 psi, the copper will be overstressed to
25 500 psi. Therefore, the allowable stress in the copper (20 000 psi) is the limiting
condition. The corresponding stress in the aluminum is found from Eq. (c):

20 000 ¼ 1:6992sal þ 8496

which gives

sal ¼ 6770 psi

From Eq. (a), the safe load is

P ¼ Pcu þ Pal ¼ scuAcu þ salAal

¼ 20 000ð2Þ þ 6770ð3Þ ¼ 60 300 lb ¼ 60:3 kips Answer

1
Sample Problem 2.10

Figure (a) shows a rigid bar that is supported by a pin at A and two rods, one made
of steel and the other of bronze. Neglecting the weight of the bar, compute the stress
in each rod caused by the 50-kN load, using the following data:

Steel Bronze

Area (mm2) 600 300

E (GPa) 200 83

Solution

Equilibrium The free-body diagram of the bar, shown in Fig. (b), contains four un-
known forces. Since there are only three independent equilibrium equations, these
forces are statically indeterminate. The equilibrium equation that does not involve
the pin reactions at A is

SMA ¼ 0 þ

m

0:6Pst þ 1:6Pbr � 2:4ð50� 103Þ ¼ 0 (a)

Compatibility The displacement of the bar, consisting of a rigid-body rotation
about A, is shown greatly exaggerated in Fig. (c). From similar triangles, we see that
the elongations of the supporting rods must satisfy the compatibility condition

dst

0:6
¼ dbr

1:6
(b)

Hooke’s Law When we substitute d ¼ PL=ðEAÞ into Eq. (b), the compatibility
equation becomes

1

0:6

PL

EA

� �
st

¼ 1

1:6

PL

EA

� �
br

Using the given data, we obtain

1

0:6

Pstð1:0Þ
ð200Þð600Þ ¼

1

1:6

Pbrð2Þ
ð83Þð300Þ

which simplifies to

Pst ¼ 3:614Pbr (c)
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Note that we did not convert the areas from mm2 to m2, and we omitted the factor
109 from the moduli of elasticity. Since these conversion factors appear on both sides
of the equation, they would cancel out.

Solving Eqs. (a) and (c), we obtain

Pst ¼ 115:08� 103 N Pbr ¼ 31:84� 103 N

The stresses are

sst ¼
Pst

Ast
¼ 115:08� 103

600� 10�6
¼ 191:8� 106 Pa ¼ 191:8 MPa Answer

sbr ¼
Pbr

Abr
¼ 31:84� 103

300� 10�6
¼ 106:1� 106 Pa ¼ 106:1 MPa Answer

1
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Problems

2.44 The figure shows the cross section of a circular steel tube that is filled with
concrete and topped with a rigid cap. Calculate the stresses in the steel and in the
concrete caused by the 200-kip axial load. Use Est ¼ 29� 106 psi and
Eco ¼ 3:5� 106 psi.

2.45 A reinforced concrete column 200 mm in diameter is designed to carry an
axial compressive load of 320 kN. Determine the required cross-sectional area of the
reinforcing steel if the allowable stresses are 6 MPa for concrete and 120 MPa for
steel. Use Eco ¼ 14 GPa and Est ¼ 200 GPa.

2.46 A timber column, 8 in. by 8 in. in cross section, is reinforced on all four sides
by steel plates, each plate being 8 in. wide and t in. thick. Determine the smallest
value of t for which the column can support an axial load of 300 kips if the working
stresses are 1200 psi for timber and 20 ksi for steel. The moduli of elasticity are
1:5� 106 psi for timber and 29� 106 psi for steel.

2.47 The rigid block of mass M is supported by the three symmetrically placed
rods. The ends of the rods were level before the block was attached. Determine the
largest allowable value of M if the properties of the rods are as listed (sw is the
working stress):

E (GPa) A (mm2) sw (MPa)

Copper 120 900 70

Steel 200 1200 140

2.48 The concrete column is reinforced by four steel bars of total cross-sectional
area 1250 mm2. If the working stresses for steel and concrete are 180 MPa and
15 MPa, respectively, determine the largest axial force P that can be safely applied to
the column. Use Est ¼ 200 GPa and Eco ¼ 24 GPa.

2.49 The rigid slab of weight W, with center of gravity at G, is suspended from
three identical steel wires. Determine the force in each wire.

2.50 Before the 400-kN load is applied, the rigid platform rests on two steel bars,
each of cross-sectional area 1400 mm2, as shown in the figure. The cross-sectional
area of the aluminum bar is 2800 mm2. Compute the stress in the aluminum bar after
the 400-kN load is applied. Use E ¼ 200 GPa for steel and E ¼ 70 GPa for alumi-
num. Neglect the weight of the platform.

200 kips

Steel
Concrete 6 in.

6.5 in.

FIG. P2.44

FIG. P2.47

Dimensions
in mm

250

250

P

FIG. P2.48

1.2b

G

CBA

b b

FIG. P2.49 FIG. P2.50
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2.51 The three steel (E ¼ 29� 106 psi) eye-bars, each 4 in. by 1.0 in. in cross sec-
tion, are assembled by driving 7/8-in.-diameter drift pins through holes drilled in the
ends of the bars. The distance between the holes is 30 ft in the two outer bars, but
0.045 in. less in the middle bar. Find the shear stress developed in the drift pins.
Neglect local deformation at the holes.

2.52 The rigid bar ABC of negligible weight is suspended from three aluminum
wires, each of cross-sectional area 0.3 in.2. Before the load P is applied, the middle
wire is slack, being 0.2 in. longer than the other two wires. Determine the largest
safe value of P if the working stress for the wires is 12 ksi. Use E ¼ 10� 106 psi for
aluminum.

2.53 The rigid bar AB of negligible weight is supported by a pin at O. When the
two steel rods are attached to the ends of the bar, there is a gap D ¼ 4 mm between
the lower end of the left rod and its pin support at C. Compute the stress in the
left rod after its lower end is attached to the support. The cross-sectional areas are
300 mm2 for rod AC and 250 mm2 for rod BD. Use E ¼ 200 GPa for steel.

2.54 The rigid bar AB of negligible weight is supported by a pin at O. When the
two steel rods are attached to the ends of the bar, there is a gap D between the lower
end of the left rod and its pin support at C. After attachment, the strain in the left rod
is 1:5� 10�3. What is the length of the gap D? The cross-sectional areas are 300 mm2

for rod AC and 250 mm2 for rod BD. Use E ¼ 200 GPa for steel.

2.55 The homogeneous rod of constant cross section is attached to unyielding
supports. The rod carries an axial load P, applied as shown in the figure. Show that
the reactions are given by R1 ¼ Pb=L and R2 ¼ Pa=L.

2.56 The homogeneous bar with a cross-sectional area of 600 mm2 is attached
to rigid supports. The bar carries the axial loads P1 ¼ 20 kN and P2 ¼ 60 kN, as
shown. Determine the stress in segment BC. (Hint: Use the results of Prob. 2.55 to
compute the reactions caused by P1 and P2 acting separately. Then use superposition
to compute the reactions when both loads are applied.)

FIG. P2.51 FIG. P2.52
FIG. P2.53, P2.54

FIG. P2.55 FIG. 2.56
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2.57 The composite bar is firmly attached to unyielding supports. Compute the
stress in each material caused by the application of the axial load P ¼ 40 kips.

2.58 The composite bar, firmly attached to unyielding supports, is initially stress-
free. What maximum axial load P can be applied if the allowable stresses are 10 ksi
for aluminum and 18 ksi for steel?

2.59 The steel rod is stress-free before the axial loads P1 ¼ 150 kN and P2 ¼ 90
kN are applied to the rod. Assuming that the walls are rigid, calculate the axial force
in each segment after the loads are applied. Use E ¼ 200 GPa.

2.60 The bar BCD of length L has a constant thickness t, but its width varies as
shown. The cross-sectional area A of the bar is given by A ¼ btð1þ x=LÞ. The ends
of the bar are attached to the rigid walls, and the bar is initially stress-free. Compute
the reactions at B and D after the force P is applied at the midpoint C of the bar.

C

Top view

D
B

P

L

t

2

x

b

L

b

b

2

FIG. P2.60

2.61 The steel column of circular cross section is attached to rigid supports at A

and C. Find the maximum stress in the column caused by the 25-kN load.

2.62 The assembly consists of a bronze tube and a threaded steel bolt. The pitch of the
thread is 1/32 in. (one turn of the nut advances it 1/32 in.). The cross-sectional areas are
1.5 in.2 for the tube and 0.75 in.2 for the bolt. The nut is turned until there is a compressive
stress of 4000 psi in the tube. Find the stresses in the bolt and the tube if the nut is given
one additional turn. Use E ¼ 12� 106 psi for bronze and E ¼ 29� 106 psi for steel.

2.63 The two vertical rods attached to the rigid bar are identical except for length.
Before the 6600-lb weight was attached, the bar was horizontal. Determine the axial
force in each bar caused by the application of the weight. Neglect the weight of the bar.

FIG. P2.57, P2.58 FIG. P2.59

FIG. P2.61

FIG. P2.62
FIG. P2.63
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2.64 The rigid beam of negligible weight is supported by a pin at O and two ver-
tical rods. Find the vertical displacement of the 50-kip weight.

2.65 The rigid bar of negligible weight is pinned at O and attached to two vertical
rods. Assuming that the rods were initially stress-free, what is the largest load P that
can be applied without exceeding stresses of 150 MPa in the steel rod and 70 MPa in
the bronze rod?

2.66 The rigid, homogeneous slab weighing 600 kN is supported by three rods of
identical material and cross section. Before the slab was attached, the lower ends of
the rods were at the same level. Compute the axial force in each rod.

2.67 The rigid bar BCD of negligible weight is supported by two steel cables of
identical cross section. Determine the force in each cable caused by the applied
weight W.

2.68 The three steel rods, each of cross-sectional area 250 mm2, jointly support
the 7.5-kN load. Assuming that there was no slack or stress in the rods before the
load was applied, find the force in each rod. Use E ¼ 200 GPa for steel.

2.69 The bars AB, AC, and AD are pinned together as shown in the figure. Hori-
zontal movement of the pin at A is prevented by the rigid horizontal strut AE. Cal-
culate the axial force in the strut caused by the 10-kip load. For each steel bar,
A ¼ 0:3 in.2 and E ¼ 29� 106 psi. For the aluminum bar, A ¼ 0:6 in.2 and
E ¼ 10� 106 psi.

FIG. P2.64 FIG. P2.65

FIG. P2.66

FIG. P2.67 FIG. P2.68 FIG. P2.69
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2.70 The horizontal bar ABC is supported by a pin at A and two rods with iden-
tical cross-sectional areas. The rod at B is steel and the rod at C is aluminum.
Neglecting the weight of the bar, determine the force in each rod when the force
P ¼ 10 kips is applied. Use Est ¼ 29� 106 psi and Eal ¼ 10� 106 psi.

2.71 The lower ends of the three vertical rods were at the same level before the uni-
form, rigid bar ABC weighing 3000 lb was attached. Each rod has a cross-sectional
area of 0.5 in.2. The two outer rods are steel and the middle rod is aluminum.
Find the force in the middle rod. Use Est ¼ 29� 106 psi and Eal ¼ 10� 106 psi.

2.72 Solve Prob. 2.71 if the steel rod attached at C is replaced by an aluminum
rod of the same size.

2.73 The uniform rigid bar ABC of weight W is supported by two rods that are
identical except for their lengths. Assuming that the bar was held in the horizontal
position when the rods were attached, determine the force in each rod after the
attachment.

2.6 Thermal Stresses

It is well known that changes in temperature cause dimensional changes in a
body: An increase in temperature results in expansion, whereas a temper-
ature decrease produces contraction. This deformation is isotropic (the same
in every direction) and proportional to the temperature change. It follows
that the associated strain, called thermal strain, is

�T ¼ aðDTÞ (2.15)

where the constant a is a material property known as the coe‰cient of ther-

mal expansion, and DT is the temperature change. The coe‰cient of thermal
expansion represents the normal strain caused by a one-degree change in
temperature. By convention, DT is taken to be positive when the temper-
ature increases, and negative when the temperature decreases. Thus, in Eq.
(2.15), positive DT produces positive strain (elongation) and negative DT

produces negative strain (contraction). The units of a are 1=�C (per degree
Celsius) in the SI system, and 1=�F (per degree Fahrenheit) in the U.S.
Customary system. Typical values of a are 23� 10�6=�C (13� 10�6=�F) for
aluminum and 12� 10�6=�C (6:5� 10�6=�F) for steel.

FIG. P2.70 FIG. P2.71, P2.72 FIG. P2.73
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If the temperature change is uniform throughout the body, the thermal
strain is also uniform. Consequently, the change in any dimension L of the
body is given by

dT ¼ �T L ¼ aðDTÞL (2.16)

If thermal deformation is permitted to occur freely (by using expansion
joints or roller supports, for example), no internal forces will be induced in
the body—there will be strain, but no stress. In cases where the deformation
of a body is restricted, either totally or partially, internal forces will develop
that oppose the thermal expansion or contraction. The stresses caused by
these internal forces are known as thermal stresses.

The forces that result from temperature changes cannot be determined
by equilibrium analysis alone; that is, these forces are statically in-
determinate. Consequently, the analysis of thermal stresses follows the same
principles that we used in Sec. 2.5: equilibrium, compatibility, and Hooke’s
law. The only di¤erence here is that we must now include thermal expansion
in the analysis of deformation.

Procedure for Deriving Compatibility Equations We recommend
the following procedure for deriving the equations of compatibility:

. Remove the constraints that prevent the thermal deformation to occur
freely (this procedure is sometimes referred to as ‘‘relaxing the
supports’’). Show the thermal deformation on a sketch using an
exaggerated scale.. Apply the forces that are necessary to restore the specified conditions
of constraint. Add the deformations caused by these forces to the
sketch that was drawn in the previous step. (Draw the magnitudes
of the deformations so that they are compatible with the geometric
constraints.). By inspection of the sketch, write the relationships between the thermal
deformations and the deformations due to the constraint forces.
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Sample Problem 2.11

The horizontal steel rod, 2.5 m long and 1200 mm2 in cross-sectional area, is secured
between two walls as shown in Fig. (a). If the rod is stress-free at 20�C, compute
the stress when the temperature has dropped to �20�C. Assume that (1) the walls
do not move and (2) the walls move together a distance D ¼ 0:5 mm. Use a ¼
11:7� 10�6=�C and E ¼ 200 GPa.

Solution

Part 1

Compatibility We begin by assuming that the rod has been disconnected from the
right wall, as shown in Fig. (b), so that the contraction dT caused by the temperature
drop DT can occur freely. To reattach the rod to the wall, we must stretch the rod to
its original length by applying the tensile force P. Compatibility of deformations re-
quires that the resulting elongation dP, shown in Fig. (c), must be equal to dT ; that is,

dT ¼ dP

Hooke’s Law If we substitute dT ¼ aðDTÞL and dP ¼ PL=ðEAÞ ¼ sL=E, the com-
patibility equation becomes

sL

E
¼ aðDTÞL

Therefore, the stress in the rod is

s ¼ aðDTÞE ¼ ð11:7� 10�6Þð40Þð200� 109Þ

¼ 93:6� 106 Pa ¼ 93:6 MPa Answer

Note that L canceled out in the preceding equation, which indicates that the stress is
independent of the length of the rod.

Part 2

Compatibility When the walls move together a distance D, we see from Figs. (d) and
(e) that the free thermal contraction dT is related to D and the elongation dP caused
by the axial force P by

dT ¼ dP þ D

Hooke’s Law Substituting for dT and dP as in Part 1, we obtain

aðDTÞL ¼ sL

E
þ D

The solution for the stress s is

s ¼ E aðDTÞ � D

L

� �

¼ ð200� 109Þ ð11:7� 10�6Þð40Þ � 0:5� 10�3

2:5

� �

¼ 53:6� 106 Pa ¼ 53:6 MPa Answer

We see that the movement of the walls reduces the stress considerably. Also observe
that the length of the rod does not cancel out as in Part 1.

1
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Sample Problem 2.12

Figure (a) shows a homogeneous, rigid block weighing 12 kips that is supported by
three symmetrically placed rods. The lower ends of the rods were at the same level
before the block was attached. Determine the stress in each rod after the block is at-
tached and the temperature of all bars increases by 100�F. Use the following data:

A (in.2) E (psi) a (/�F)

Each steel rod 0.75 29� 106 6:5� 10�6

Bronze rod 1.50 12� 106 10:0� 10�6

Solution

Compatibility Note that the block remains horizontal because of the symmetry of
the structure. Let us assume that the block is detached from the rods, as shown in
Fig. (b). With the rods unconstrained, a temperature rise will cause the elongations
ðdT Þst in the steel rods and ðdT Þbr in the bronze rod. To reattach the block to the rods,
the rods must undergo the additional deformations ðdPÞst and ðdPÞbr, both assumed to
be elongations. From the deformation diagram in Fig. (b), we obtain the following
compatibility equation (recall that the block remains horizontal):

ðdT Þst þ ðdPÞst ¼ ðdT Þbr þ ðdPÞbr

Hooke’s Law Using Hooke’s law, we can write the compatibility equation as

½aðDTÞL�st þ
PL

EA

� �
st

¼ ½aðDTÞL�br þ
PL

EA

� �
br

Substituting the given data, we have

ð6:5� 10�6Þð100Þð2� 12Þ þ Pstð2� 12Þ
ð29� 106Þð0:75Þ

¼ ð10:0� 10�6Þð100Þð3� 12Þ þ Pbrð3� 12Þ
ð12� 106Þð1:50Þ

If we rearrange terms and simplify, the compatibility equation becomes

0:091 95Pst � 0:1667Pbr ¼ 1700 (a)

Equilibrium From the free-body diagram in Fig. (c) we obtain

SF ¼ 0 þ" 2Pst þ Pbr � 12 000 ¼ 0 (b)

Solving Eqs. (a) and (b) simultaneously yields

Pst ¼ 8700 lb and Pbr ¼ �5400 lb

The negative sign for Pbr means that the force in the bronze rod is compressive (it
acts in the direction opposite to that shown in the figures). The stresses in the rods
are:

sst ¼
Pst

Ast
¼ 8700

0:75
¼ 11 600 psi ðTÞ Answer

sbr ¼
Pbr

Abr
¼ �5400

1:50
¼ �3600 psi ¼ 3600 psi ðCÞ Answer

1
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Sample Problem 2.13

Using the data in Sample Problem 2.12, determine the temperature increase that
would cause the entire weight of the block to be carried by the steel rods.

Solution

Equilibrium The problem statement implies that the bronze rod is stress-free. Thus,
each steel rod carries half the weight of the rigid block, so that Pst ¼ 6000 lb.

Compatibility The temperature increase causes the elongations ðdT Þst and ðdT Þbr in
the steel and bronze rods, respectively, as shown in the figure. Because the bronze rod
is to carry no load, the ends of the steel rods must be at the same level as the end of
the unstressed bronze rod before the rigid block can be reattached. Therefore, the
steel rods must elongate by ðdPÞst due to the tensile forces Pst ¼ 6000 lb, which gives

ðdTÞbr ¼ ðdT Þst þ ðdPÞst

Hooke’s Law Using Hooke’s law, the compatibility equation becomes

½aðDTÞL�br ¼ ½aðDTÞL�st þ
PL

EA

� �
st

ð10� 10�6ÞðDTÞð3� 12Þ ¼ ð6:5� 10�6ÞðDTÞð2� 12Þ þ 6000ð2� 12Þ
ð29� 106Þð0:75Þ

which yields

DT ¼ 32:5�F Answer

as the temperature increase at which the bronze rod would be unstressed.

1
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Problems

2.74 A steel rod with a cross-sectional area of 0.25 in.2 is stretched between two
fixed points. The tensile force in the rod at 70�F is 1200 lb. (a) What will be the stress
at 0�F? (b) At what temperature will the stress be zero? Use a ¼ 6:5� 10�6=�F and
E ¼ 29� 106 psi.

2.75 A steel rod is stretched between two walls. At 20�C, the tensile force in the
rod is 5000 N. If the stress is not to exceed 130 MPa at �20�C, find the minimum
allowable diameter of the rod. Use a ¼ 11:7� 10�6=�C and E ¼ 200 GPa.

2.76 Steel railroad rails 10 m long are laid with end-to-end clearance of 3 mm at a
temperature of 15�C. (a) At what temperature will the rails just come in contact? (b)
What stress would be induced in the rails at that temperature if there were no initial
clearance? Use a ¼ 11:7� 10�6=�C and E ¼ 200 GPa.

2.77 A steel rod 3 ft long with a cross-sectional area of 0.3 in.2 is stretched
between two fixed points. The tensile force in the rod is 1200 lb at 40�F. Using a ¼
6:5� 10�6=�F and E ¼ 29� 106 psi, calculate the temperature at which the stress in
the rod will be (a) 10 ksi; and (b) zero.

2.78 The bronze bar 3 m long with a cross-sectional area of 350 mm2 is placed
between two rigid walls. At a temperature of �20�C, there is a gap D ¼ 2:2 mm, as
shown in the figure. Find the temperature at which the compressive stress in the bar
will be 30 MPa. Use a ¼ 18:0� 10�6=�C and E ¼ 80 GPa.

2.79 Calculate the increase in stress in each segment of the compound bar if the
temperature is increased by 80�F. Assume that the supports are unyielding and use
the following data:

A (in.2) E (psi) a (/�F)

Aluminum 1.5 10� 106 12:8� 10�6

Steel 2.0 29� 106 6:5� 10�6

2.80 A prismatic bar of length L fits snugly between two rigid walls. If the bar is
given a temperature increase that varies linearly from DTA at one end to DTB at the
other end, show that the resulting stress in the bar is s ¼ aEðDTA þ DTBÞ=2.

2.81 The rigid bar ABC is supported by a pin at B and two vertical steel rods.
Initially the bar is horizontal and the rods are stress-free. Determine the stress in each
rod if the temperature of the rod at A is decreased by 40�C. Neglect the weight of bar
ABC. Use a ¼ 11:7� 10�6/�C and E ¼ 200 GPa for steel.

FIG. P2.78 FIG. P2.79

FIG. P2.81
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2.82 The rigid, horizontal slab is attached to two identical copper rods. There is a
gap D ¼ 0:18 mm between the middle bar, which is made of aluminum, and the slab.
Neglecting the mass of the slab, calculate the stress in each rod when the temperature
in the assembly is increased by 85�C. Use the following data:

A (mm2) a (/�C) E (GPa)

Each copper rod 500 16:8� 10�6 120

Aluminum rod 400 23:1� 10�6 70

2.83 A bronze sleeve is slipped over a steel bolt and held in place by a nut that is
tightened to produce an initial stress of 2000 psi in the bronze. Find the stress in each
material after the temperature of the assembly is increased by 100�F. The properties
of the components are listed in the table.

A (in.2) a (/�F) E (psi)

Bronze sleeve 1.50 10:5� 10�6 12� 106

Steel bolt 0.75 6:5� 10�6 29� 106

2.84 The rigid bar of negligible weight is supported as shown in the figure. If
W ¼ 80 kN, compute the temperature change of the assembly that will cause a ten-
sile stress of 50 MPa in the steel rod. Use the following data:

A (mm2) a (/�C) E (GPa)

Steel rod 300 11:7� 10�6 200

Bronze rod 1400 18:9� 10�6 83

2.85 The rigid bar of negligible weight is supported as shown. The assembly is in-
itially stress-free. Find the stress in each rod if the temperature rises 20�C after a load
W ¼ 120 kN is applied. Use the properties of the bars given in Prob. 2.84.

2.86 The composite bar is firmly attached to unyielding supports. The bar is
stress-free at 60�F. Compute the stress in each material after the 50-kip force is ap-
plied and the temperature is increased to 120�F. Use a ¼ 6:5� 10�6/�F for steel and
a ¼ 12:8� 10�6/�F for aluminum.

2.87 At what temperature will the aluminum and steel segments in Prob. 2.86
have stresses of equal magnitude after the 50-kip force is applied?

2.88 All members of the steel truss have the same cross-sectional area. If the truss
is stress-free at 10�C, determine the stresses in the members at 90�C. For steel,
a ¼ 11:7� 10�6/�C and E ¼ 200 GPa.

FIG. P2.82

FIG. P2.84, P2.85

FIG. P2.86, P2.87 FIG. P2.88
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2.89 The rigid bar ABCD is supported by a pin at B and restrained by identical
steel bars at C and D, each of area 250 mm2. If the temperature is increased by 80�C,
determine the force P that will cause the bar at C to be stress-free. Use E ¼ 200 GPa
and a ¼ 12� 10�6=�C.

2.90 The compound bar, composed of the three segments shown, is initially stress-
free. Compute the stress in each material if the temperature drops 25�C. Assume that
the walls do not yield and use the following data:

A (mm2) a (/�C) E (GPa)

Bronze segment 2000 19:0� 10�6 83

Aluminum segment 1400 23:0� 10�6 70

Steel segment 800 11:7� 10�6 200

2.91 The rigid bar AOB is pinned at O and connected to aluminum and steel rods. If
the bar is horizontal at a given temperature, determine the ratio of the areas of the two
rods so that the bar will be horizontal at any temperature. Neglect the mass of the bar.

FIG. P2.91

2.92 The aluminum and bronze cylinders are centered and secured between two
rigid end-plates by tightening the two steel bolts. There is no axial load in the as-
sembly at a temperature of 50�F. Find the stress in the steel bolts when the temper-
ature is increased to 200�F. Use the following data:

A (in.2) a (/�F) E (psi)

Aluminum cylinder 2.00 12:8� 10�6 10� 106

Bronze cylinder 3.00 10:5� 10�6 12� 106

Each steel bolt 0.75 6:5� 10�6 29� 106

2.93 The assembly consists of a bronze tube fitted over a threaded steel bolt. The nut
on the bolt is turned until it is finger-tight. Determine the stresses in the sleeve and bolt
when the temperature of the assembly is increased by 200�F. Use the following data:

A (in.2) a (/�F) E (psi)

Bronze 1.5 10� 10�6 12� 106

Steel 0.75 6:5� 10�6 29� 106

3 m 0.8 m
0.6 m

BA

P

C D

FIG. P2.89 FIG. P2.90

FIG. P2.92

Bronze tube

40 in.

FIG. P2.93
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Review Problems

2.94 The elastic strip with a cutout is of length L, width b, and thickness t. Derive
the expression for the elongation of the strip caused by the axial load P.

2.95 The aluminum bar of cross-sectional area 0.6 in.2 carries the axial loads
shown in the figure. Compute the total change in length of the bar given that E ¼
10� 106 psi.

2.96 The uniform beam of weight W is to be supported by the two rods, the lower
ends of which were initially at the same level. Determine the ratio of the areas of the
rods so that the beam will be horizontal after it is attached to the rods. Neglect the
deformation of the beam.

2.97 A round bar of length L, modulus of elasticity E, and weight density g tapers
uniformly from a diameter 2D at one end to a diameter D at the other end. If the bar
is suspended vertically from the larger end, find the elongation of the bar caused by
its own weight.

2.98 The timber member BC, inclined at angle y ¼ 60� to the vertical, is supported
by a pin at B and the 0.75-in.-diameter steel bar AC. (a) Determine the cross-sectional
area of BC for which the displacement of C will be vertical when the 5000-lb force is
applied. (b) Compute the corresponding displacement of C. The moduli of elasticity
are 1:8� 106 psi for timber and 29� 106 psi for steel. Neglect the weight of BC.

2.99 The collar B is welded to the midpoint of the cylindrical steel bar AC of length 2L.
The left half of the bar is then inserted in a brass tube and the assembly is placed between
rigid walls. Determine the forces in the steel bar and the brass tube when the force P is ap-
plied to the collar. Neglect the deformation of the collar and assume ðEAÞst ¼ 3ðEAÞbr.

L
L

B CA
P

FIG. P2.99

2.100 A solid aluminum shaft of diameter 80 mm fits concentrically inside a hol-
low tube. Compute the minimum internal diameter of the tube so that no contact
pressure exists when the aluminum shaft carries an axial compressive force of 400
kN. Use n ¼ 1=3 and E ¼ 70 GPa for aluminum.

2.101 The normal stresses in an aluminum block are sx ¼ �4000 psi and
sy ¼ sz ¼ �p. Determine (a) the value of p for which �x ¼ 0; and (b) the corre-
sponding value of �y. Use E ¼ 10� 106 psi and n ¼ 0:33:

P P

0.4 L

0.6b b

L

FIG. P2.94

FIG. P2.95 FIG. P2.96

FIG. P2.98
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2.102 The three steel wires, each of cross-sectional area 0.05 in.2, support the
weight W. Their unstressed lengths are 74.98 ft, 74.99 ft, and 75.00 ft. (a) Find the
stress in the longest wire if W ¼ 1500 lb. (b) Determine the stress in the shortest wire
if W ¼ 500 lb. Use E ¼ 29� 106 psi.

2.103 The figure shows an aluminum tube that is placed between rigid bulkheads.
After the two steel bolts connecting the bulkheads are turned finger-tight, the tem-
perature of the assembly is raised by 90�C. Compute the resulting forces in the tube
and bolts. Use the following data:

E (GPa) a (/�C) Diameter (mm)

Aluminum tube 70 23� 10�6 outer: 68; inner: 60

Steel bolts 200 12� 10�6 each bolt: 12

2.104 The rigid bar ABCD is supported by a pin at B and restrained by identical
steel bars at C and D. Determine the forces in the bars caused by the vertical load P

that is applied at A.

3 m 0.8 m
0.6 m

BA

P

C D

FIG. P2.104

2.105 The rigid bar ACE is supported by a pin at A and two horizontal aluminum
rods, each of cross-sectional area 50 mm2. When the 200-kN load is applied at point
E, determine (a) the axial force in rod DE and (b) the vertical displacement of point
E. Use E ¼ 70 GPa for aluminum.

2.106 The two vertical steel rods that support the rigid bar ABCD are initially
stress-free. Determine the stress in each rod after the 20-kip load is applied. Neglect
the weight of the bar and use E ¼ 29� 106 psi for steel.

2.107 The rigid bar ABCD of negligible weight is initially horizontal, and the steel
rods attached at A and C are stress-free. The 20-kip load is then applied and the
temperature of the steel rods is changed by DT . Find DT for which the stresses in the
two steel rods will be equal. Use a ¼ 6:5� 10�6/�F and E ¼ 29� 106 psi for steel.

FIG. P2.102

135 mm

200 mm

FIG. P2.103

FIG. P2.105
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FIG. P2.106, P2.107

2.108 The rigid horizontal bar ABC of negligible mass is connected to two rods
as shown in the figure. If the system is initially stress-free, calculate the temperature
change that will cause a tensile stress of 90 MPa in the brass rod. Assume that both
rods are subjected to the same change in temperature.

FIG. P2.108

Computer Problems

C2.1 The figure shows an aluminum bar of circular cross section with variable di-
ameter. Use numerical integration to compute the elongation of the bar caused by
the 6-kN axial force. Use E ¼ 70� 109 Pa for aluminum.

C2.2 The flat aluminum bar shown in profile has a constant thickness of 10 mm.
Determine the elongation of the bar caused by the 6-kN axial load using numerical
integration. For aluminum E ¼ 70� 109 Pa.

C2.3 The shaft of length L has diameter d that varies with the axial coordinate x.
Given L, dðxÞ, and the modulus of elasticity E, write an algorithm to compute the
axial sti¤ness k ¼ P=d of the bar. Use (a) L ¼ 500 mm and

FIG. C2.1, C2.2 FIG. C2.3
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d ¼ ð25 mmÞ 1þ 3:8
x

L
� 3:6

x2

L2

� �

and (b) L ¼ 200 mm and

d ¼ ð24� 0:05xÞ mm if x a 120 mm

18 mm if x b 120 mm

�

C2.4 The symmetric truss carries a force P inclined at the angle y to the vertical. Given
P and the angle a, write an algorithm to plot the axial force in each member as a function
of y from y ¼ �90� to 90�. Assume the cross-sectional areas of the members are the
same. Use P ¼ 10 kN and (a) a ¼ 30�; and (b) a ¼ 60�. (Hint: Compute the e¤ects of the
horizontal and vertical components of P separately, and then superimpose the e¤ects.)

C2.5 The rigid bar BC of length b and negligible weight is supported by the wire
AC of cross-sectional area A and modulus of elasticity E. The vertical displacement
of point C can be expressed in the form

DC ¼
Pb

EA
f ðyÞ

where y is the angle between the wire and the rigid bar. (a) Derive the function f ðyÞ
and plot it from y ¼ 20� to 85�. (b) What value of y yields the smallest vertical dis-
placement of C?

C2.6 The steel bolt of cross-sectional area A0 is placed inside the aluminum tube,
also of cross-sectional area A0. The assembly is completed by making the nut ‘‘finger-
tight.’’ The dimensions of the reduced segment of the bolt (length b and cross-sectional
area A) are designed so that the segment will yield when the temperature of the as-
sembly is increased by 200�F. Write an algorithm that determines the relationship be-
tween A=A0 and b=L that satisfies this design requirement. Plot A=A0 against b=L

from b=L ¼ 0 to 1.0. Use the properties of steel and aluminum shown in the figure.

FIG. C2.4 FIG. C2.5

FIG. C2.6
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3
Torsion

3.1 Introduction

In many engineering applications, members are required to carry torsional
loads. In this chapter, we consider the torsion of circular shafts. Because a
circular cross section is an e‰cient shape for resisting torsional loads, circu-
lar shafts are commonly used to transmit power in rotating machinery. We
also discuss another important application—torsion of thin-walled tubes.

Torsion is our introduction to problems in which the stress is not uni-
form, or assumed to be uniform, over the cross section of the member.
Another problem in this category, which we will treat later, is the bending of

The drive shaft of a twin-rotor helicopter.

The power output of the turbine is

transmitted to the rotors by the shaft. The

relationship between transmitted power and

shear stress in the shaft is one of the topics

in this chapter. Courtesy of

dutourdumonde/Shutterstock.

75

d
u

to
u

rd
u

m
o

n
d

e/
S

h
u

tt
er

st
o

ck



beams. Derivation of the equations used in the analysis of both torsion and
bending follows these steps:

. Make simplifying assumptions about the deformation based on experi-
mental evidence.. Determine the strains that are geometrically compatible with the as-
sumed deformations.. Use Hooke’s law to express the equations of compatibility in terms of
stresses.. Derive the equations of equilibrium. (These equations provide the re-
lationships between the stresses and the applied loads.)

3.2 Torsion of Circular Shafts

a. Simplifying assumptions

Figure 3.1 shows the deformation of a circular shaft that is subjected to
a twisting couple (torque) T. To visualize the deformation, we scribe the
straight line AB on the surface of the shaft before the torque is applied. After
loading, this line deforms into the helix AB 0 as the free end of the shaft
rotates through the angle y. During the deformation, the cross sections
are not distorted in any manner—they remain plane, and the radius r does
not change. In addition, the length L of the shaft remains constant. Based on
these observations, we make the following assumptions:

. Circular cross sections remain plane (do not warp) and perpendicular
to the axis of the shaft.. Cross sections do not deform (there is no strain in the plane of the
cross section).. The distances between cross sections do not change (the axial normal
strain is zero).

The deformation that results from the above assumptions is relatively
simple: Each cross section rotates as a rigid entity about the axis of the shaft.
Although this conclusion is based on the observed deformation of a cylin-
drical shaft carrying a constant internal torque, we assume that the result
remains valid even if the diameter of the shaft or the internal torque varies
along the length of the shaft.

FIG. 3.1 Deformation of a circular shaft caused by the torque T. The initially
straight line AB deforms into a helix.
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b. Compatibility

To analyze the deformation in the interior of the shaft in Fig. 3.1, we con-
sider the portion of the shaft shown in Fig. 3.2(a). We first isolate a segment
of the shaft of infinitesimal length dx and then ‘‘peel’’ o¤ its outer layer,
leaving us with the cylindrical core of radius r. As the shaft deforms, the two
cross sections of the segment rotate about the x-axis. Because the cross sec-
tions are separated by an infinitesimal distance, the di¤erence in their rota-
tions, denoted by the angle dy, is also infinitesimal. We now imagine that the
straight line CD has been drawn on the cylindrical surface. As the cross
sections undergo the relative rotation dy, CD deforms into the helix CD 0. By
observing the distortion of the shaded element, we recognize that the helix
angle g is the shear strain of the element.

From the geometry of Fig. 3.2(a), we obtain DD 0 ¼ r dy ¼ g dx, from
which the shear strain is

g ¼ dy

dx
r (3.1)

The quantity dy=dx is the angle of twist per unit length, where y is expressed
in radians. The corresponding shear stress, illustrated in Fig. 3.2(b), is
determined from Hooke’s law:

t ¼ Gg ¼ G
dy

dx
r (3.2)

Note that Gðdy=dxÞ in Eq. (3.2) is independent of the radial distance r.
Therefore, the shear stress varies linearly with the radial distance r from the

axis of the shaft. The variation of the shear stress acting on the cross section
is illustrated in Fig. 3.3. The maximum shear stress, denoted by tmax, occurs
at the surface of the shaft.

c. Equilibrium

For the shaft to be in equilibrium, the resultant of the shear stress acting on
a cross section must be equal to the internal torque T acting on that cross
section. Figure 3.4 shows a cross section of the shaft containing a di¤erential
element of area dA located at the radial distance r from the axis of the shaft.
The shear force acting on this area is dP ¼ t dA ¼ Gðdy=dxÞr dA, directed
perpendicular to the radius. Hence, the moment (torque) of dP about the
center O is r dP ¼ Gðdy=dxÞr2 dA. Summing the contributions of all the
di¤erential elements across the cross-sectional area A and equating the result
to the internal torque yields

Ð
A

r dP ¼ T , or

G
dy

dx

ð
A

r2 dA ¼ T

Recognizing that
Ð

A
r2 dA ¼ J is (by definition) the polar moment of inertia

of the cross-sectional area, we can write this equation as Gðdy=dxÞJ ¼ T , or

dy

dx
¼ T

GJ
(3.3)

FIG. 3.2 (a) Shear strain of a
material element caused by twisting
of the shaft; (b) the corresponding
shear stress.

FIG. 3.3 Distribution of shear
stress along the radius of a circular
shaft.

FIG. 3.4 Calculating the resultant
of the shear stress acting on the cross
section. Resultant is a couple equal
to the internal torque T.
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The rotation of the cross section at the free end of the shaft, called the
angle of twist, is obtained by integration:

y ¼
ðL

0

dy ¼
ðL

0

T

GJ
dx (3.4a)

If the integrand is independent of x, as in the case of a prismatic bar carry-
ing a constant torque, then Eq. (3.4a) reduces to the torque-twist relationship

y ¼ TL

GJ
(3.4b)

Note the similarity between Eqs. (3.4) and the corresponding formulas for
axial deformation: d ¼

Ð L

0 ðP=EAÞ dx and d ¼ PL=ðEAÞ.

Notes on the Computation of Angle of Twist

. It is common practice to let the units of G determine the units of the
other terms in Eqs. (3.4). In the U.S. Customary system, the consistent
units are G [psi], T [lb � in.], L [in.], and J [in.4]; in the SI system, the
consistent units are G [Pa], T [N �m], L [m], and J [m4].. The unit of y in Eqs. (3.4) is radians, regardless of which system of
units is used in the computation.. In problems where it is convenient to use a sign convention for torques
and angles of twist, we represent torques as vectors (we use double-
headed arrows to represent couples and rotations) using the right-hand
rule, as illustrated in Fig. 3.5. A torque vector is considered positive if
it points away from the cross section, and negative if it points toward
the cross section. The same sign convention applies to the angle of
twist y.

d. Torsion formulas

From Eq. (3.3) we see that Gðdy=dxÞ ¼ T=J, which, upon substitution into
Eq. (3.2), gives the shear stress acting at the distance r from the center of the
shaft:

t ¼ Tr

J
(3.5a)

FIG. 3.5 Sign conventions for torque T and angle of twist y.
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The maximum shear stress is found by replacing r by the radius r of the
shaft:

tmax ¼
Tr

J
(3.5b)

Because Hooke’s law was used in the derivation of Eqs. (3.2)–(3.5),
these formulas are valid only if the shear stresses do not exceed the propor-
tional limit of the material in shear.1 Furthermore, these formulas are
applicable only to circular shafts, either solid or hollow.

The expressions for the polar moments of circular areas are given in
Fig. 3.6. Substituting these formulas into Eq. (3.5b), we obtain:

Solid shaft: tmax ¼
2T

pr3
¼ 16T

pd 3
(3.5c)

Hollow shaft: tmax ¼
2TR

pðR4 � r4Þ ¼
16TD

pðD4 � d 4Þ (3.5d)

Equations (3.5c) and (3.5d) are called the torsion formulas.

e. Power transmission

In many practical applications, shafts are used to transmit power. The
power P transmitted by a torque T rotating at the angular speed o is given
by P ¼ To, where o is measured in radians per unit time. If the shaft
is rotating with a frequency of f revolutions per unit time, then o ¼ 2pf ,
which gives P ¼ Tð2pf Þ. Therefore, the torque can be expressed as

1Equation (3.5b) is sometimes used to determine the ‘‘shear stress’’ corresponding to the torque

at rupture, although the proportional limit is exceeded. The value so obtained is called the tor-

sional modulus of rupture. It is used to compare the ultimate strengths of di¤erent materials and

diameters.

FIG. 3.6 Polar moments of inertia of circular areas.
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T ¼ P

2pf
(3.6a)

In SI units, P in usually measured in watts (1.0 W ¼ 1.0 N �m/s) and f in
hertz (1.0 Hz ¼ 1.0 rev/s); Eq. (3.6a) then determines the torque T in N �m.
In U.S. Customary units with P in lb � in./s and f in hertz, Eq. (3.6a) cal-
culates the torque T in lb � in. Because power in U.S. Customary units is often
expressed in horsepower (1.0 hp ¼ 550 lb � ft/s ¼ 396� 103 lb � in./min), a
convenient form of Eq. (3.6a) is

T ðlb � in:Þ ¼ P ðhpÞ
2pf ðrev=minÞ �

396� 103 ðlb � in:=minÞ
1:0 ðhpÞ

which simplifies to

T ðlb � in:Þ ¼ 63:0� 103 P ðhpÞ
f ðrev=minÞ (3.6b)

f. Statically indeterminate problems

The procedure for solving statically indeterminate torsion problems is sim-
ilar to the steps presented in Sec. 2.5 for axially loaded bars:

. Draw the required free-body diagrams and write the equations of
equilibrium.. Derive the compatibility equations from the restrictions imposed on the
angles of twist.. Use the torque-twist relationships in Eqs. (3.4) to express the angles of
twist in the compatibility equations in terms of the torques.. Solve the equations of equilibrium and compatibility for the torques.
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Sample Problem 3.1

Figure (a) shows a 2-in.-diameter solid steel cylinder that is built into the support at
C and subjected to the torques TA and TB. (1) Determine the maximum shear stresses
in segments AB and BC of the cylinder; and (2) compute the angle of rotation of end
A. Use G ¼ 12� 106 psi for steel.

3 ft

TB = 400 lb·ft TA = 900 lb·ft

5 ft

(a)

(b) FBDs (c) FBDs (using the right-hand rule)

C A

x

2 in. dia.

TB = 400 lb·ft

TB = 400 lb·ft

TC = 500 lb·ft

TBC = 500 lb·ft

TA = 900 lb·ft

TA = 900 lb·ft

3 ft 5 ft 3 ft 5 ftC A

B A

x

TB = 400 lb·ftTBC = 500 lb·ft TA = 900 lb·ft

5 ft

B A

TA = 900 lb·ftTAB = 900 lb·ft

A A

TB = 400 lb·ft

TC = 500 lb·ft TA = 900 lb·ft

BC A

TAB = 900 lb·ft TA = 900 lb·ft

x

x

x

x

x

B

B

Solution

Preliminary calculations

Before we can find the required stresses and the rotation of end A, we must first use
equilibrium analysis to determine the torque in each of the two segments of the cylinder.

Figure (b) displays three FBDs. The top FBD shows the torques acting upon
the entire cylinder. The middle and bottom FBDs expose the internal torques acting
on arbitrary sections of segments AB and BC, respectively. Applying the moment
equilibrium equation, �Mx ¼ 0, determines the reactive torque at C to be
TC ¼ 500 lb � ft, with the torques in the segments being TAB ¼ 900 lb � ft and
TBC ¼ 500 lb � ft. Both internal torques are positive according to the sign convention
in Fig. 3.5. Furthermore, note that the torque in each segment is constant.

You may find it convenient to use the equivalent FBDs shown in Fig. (c),
where the torques are represented as double-headed vectors using the right-hand rule.
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The polar moment of inertia for the cylinder is

J ¼ pd4

32
¼ pð2Þ4

32
¼ 1:5708 in:4

Part 1

We calculate the maximum shear stress in each segment using Eq. (3.5b) as follows
(converting the torques to pound-inches):

ðtmaxÞAB ¼
TABr

J
¼ ð900� 12Þð1:0Þ

1:5708
¼ 6880 psi Answer

ðtmaxÞBC ¼
TBCr

J
¼ ð500� 12Þð1:0Þ

1:5708
¼ 3820 psi Answer

Part 2

The rotation of end A of the cylinder is obtained by summing the angles of twist of
the two segments:

yA ¼ yA=B þ yB=C

Using Eq. (3.4b), we obtain (converting the lengths to inches and the torques to
pound-inches)

yA ¼
TABLAB þ TBCLBC

GJ
¼ 900� 12ð Þ 5� 12ð Þ þ 500� 12ð Þ 3� 12ð Þ

12� 106ð Þ 1:5708ð Þ
¼ 0:045 84rad ¼ 2:63̊ Answer

The positive result indicates that the rotation vector of A is in the positive x-direction;
that is, yA is directed counterclockwise when viewed from A toward C.

1
Sample Problem 3.2

The shaft in Fig. (a) consists of a 3-in.-diameter aluminum segment that is rigidly joined
to a 2-in.-diameter steel segment. The ends of the shaft are attached to rigid supports.
Calculate the maximum shear stress developed in each segment when the torque T ¼ 10
kip � in. is applied. Use G ¼ 4� 106 psi for aluminum and G ¼ 12� 106 psi for steel.

Solution

Equilibrium From the FBD of the entire shaft in Fig. (b), the equilibrium equation is
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SMx ¼ 0 ð10� 103Þ � Tst � Tal ¼ 0 (a)

This problem is statically indeterminate because there are two unknown torques
(Tst and Tal) but only one independent equilibrium equation.

Compatibility A second relationship between the torques is obtained by noting that
the right end of the aluminum segment must rotate through the same angle as the left
end of the steel segment. Therefore, the two segments must have the same angle of
twist; that is, yst ¼ yal. From Eq. (3.4b), this condition becomes

TL

GJ

� �
st

¼ TL

GJ

� �
al

Tstð3� 12Þ

ð12� 106Þ p

32
ð2Þ4

¼ Talð6� 12Þ

ð4� 106Þ p

32
ð3Þ4

from which

Tst ¼ 1:1852 Tal (b)

Solving Eqs. (a) and (b), we obtain

Tal ¼ 4576 lb � in: Tst ¼ 5424 lb � in:

From the torsion formula, Eq. (3.5c), the maximum shear stresses are

ðtmaxÞal ¼
16T

pd 3

� �
al

¼ 16ð4576Þ
pð3Þ3

¼ 863 psi Answer

ðtmaxÞst ¼
16T

pd 3

� �
st

¼ 16ð5424Þ
pð2Þ3

¼ 3450 psi Answer

1
Sample Problem 3.3

The four rigid gears, loaded as shown in Fig. (a), are attached to a 2-in.-diameter
steel shaft. Compute the angle of rotation of gear A relative to gear D. Use G ¼
12� 106 psi for the shaft.

Solution

It is convenient to represent the torques as vectors (using the right-hand rule) on the
FBDs in Fig. (b). We assume that the internal torques TAB, TBC , and TCD are positive
according to the sign convention introduced earlier (positive torque vectors point
away from the cross section). Applying the equilibrium condition SMx ¼ 0 to each
FBD, we obtain
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500� 900þ 1000� TCD ¼ 0

500� 900� TBC ¼ 0

500� TAB ¼ 0

which yield

TAB ¼ 500 lb � ft TBC ¼ �400 lb � ft TCD ¼ 600 lb � ft

The minus sign indicates that the sense of TBC is opposite to that shown on the FBD.
The rotation of gear A relative to gear D can be viewed as the rotation of gear

A if gear D were fixed. This rotation is obtained by summing the angles of twist of
the three segments:

yA=D ¼ yA=B þ yB=C þ yC=D

Using Eq. (3.4b), we obtain (converting the lengths to inches and torques to pound-inches)

yA=D ¼
TABLAB þ TBCLBC þ TCDLCD

GJ

¼ ð500� 12Þð5� 12Þ � ð400� 12Þð3� 12Þ þ ð600� 12Þð4� 12Þ
½pð2Þ4=32�ð12� 106Þ

¼ 0:028 27 rad ¼ 1:620� Answer

The positive result indicates that the rotation vector of A relative to D is in the positive
x-direction; that is, yAD is directed counterclockwise when viewed from A toward D.

1
Sample Problem 3.4

Figure (a) shows a steel shaft of length L ¼ 1:5 m and diameter d ¼ 25 mm that
carries a distributed torque of intensity (torque per unit length) t ¼ tBðx=LÞ, where
tB ¼ 200 N �m=m. Determine (1) the maximum shear stress in the shaft; and (2) the
angle of twist of the shaft. Use G ¼ 80 GPa for steel.

Solution

Part 1

Figure (b) shows the FBD of the shaft. The applied torque acting on a length dx

of the shaft is t dx, so that the total torque applied to the shaft is
Ð L

0 t dx. The
maximum torque in the shaft is TA, which occurs at the fixed support. From the FBD
we get

SMx ¼ 0

ðL

0

t dx� TA ¼ 0
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Therefore
TA ¼

ðL

0

t dx ¼
ðL

0

tB

x

L
dx ¼ tBL

2

¼ 1

2
ð200Þð1:5Þ ¼ 150 N �m

From Eq. (3.5c), the maximum shear stress in the shaft is

tmax ¼
16TA

pd 3
¼ 16ð150Þ

pð0:025Þ3
¼ 48:9� 106 Pa ¼ 48:9 MPa Answer

Part 2

The torque T acting on a cross section located at the distance x from the fixed end
can be found from the FBD in Fig. (c):

SMx ¼ 0 T þ
ð x

0

t dx� TA ¼ 0

which gives

T ¼ TA �
ð x

0

t dx ¼ tBL

2
�
ð x

0

tB

x

L
dx ¼ tB

2L
ðL2 � x2Þ

From Eq. (3.4a), the angle of twist of the shaft is

y ¼
ðL

0

T

GJ
dx ¼ tB

2LGJ

ðL

0

ðL2 � x2Þ dx ¼ tBL2

3GJ

¼ 200ð1:5Þ2

3ð80� 109Þ½ðp=32Þð0:025Þ4�
¼ 0:0489 rad ¼ 2:80� Answer

1
Sample Problem 3.5

A solid steel shaft in a rolling mill transmits 20 kW of power at 2 Hz. Determine the
smallest safe diameter of the shaft if the shear stress is not to exceed 40 MPa and the
angle of twist is limited to 6� in a length of 3 m. Use G ¼ 83 GPa.

Solution

This problem illustrates a design that must possess su‰cient strength as well as
rigidity. We begin by applying Eq. (3.6a) to determine the torque:

T ¼ P

2pf
¼ 20� 103

2pð2Þ ¼ 1591:5 N �m

To satisfy the strength condition, we apply the torsion formula, Eq. (3.5c):

tmax ¼
16T

pd 3
40� 106 ¼ 16ð1591:5Þ

pd 3

which yields d ¼ 58:7� 10�3 m ¼ 58:7 mm.
We next apply the torque-twist relationship, Eq. (3.4b), to determine the

diameter necessary to satisfy the requirement of rigidity (remembering to convert y

from degrees to radians):

y ¼ TL

GJ
6

p

180

� �
¼ 1591:5ð3Þ
ð83� 109Þðpd 4=32Þ

from which we obtain d ¼ 48:6� 10�3 m ¼ 48:6 mm.
To satisfy both strength and rigidity requirements, we must choose the larger

diameter—namely,

d ¼ 58:7 mm Answer

1
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Problems

3.1 The steel shaft, 3 ft long and 4 in. in diameter, carries the end torque of
15 kip � ft. Determine (a) the maximum shear stress in the shaft; and (b) the angle
of twist of the shaft. Use G ¼ 12� 106 psi for steel.

3.2 The 12 kN � m torque is applied to the free end of the 6-m steel shaft. The angle of
rotation of the shaft is to be limited to 3�. (a) Find the diameter d of the smallest shaft that can
be used. (b) What will be the maximum shear stress in the shaft? Use G ¼ 83 GPa for steel.

3.3 The torque of 100 kip � ft produces a maximum shear stress of 8000 psi in the
16-ft-long hollow steel shaft. Note that the inner diameter of the shaft is two-thirds of
its outer diameter D. (a) Determine the outer diameter D. (b) Find the angle of twist
of the shaft. Use G ¼ 12� 106 psi for steel.

3.4 The inner diameter of the hollow shaft is one-half its outer diameter D. Show that
the maximum torque that can be carried by this shaft is 15/16th of the maximum torque
that could be carried by a solid shaft of diameter D that is made of the same material.

3.5 The 16-ft solid steel shaft is twisted through 4�. If the maximum shear stress is
8000 psi, determine the diameter d of the shaft. Use G ¼ 12� 106 psi for steel.

3.6 Two forces, each of magnitude P, are applied to the wrench. The diameter of
the steel shaft AB is 15 mm. Determine the largest allowable value of P if the shear
stress in the shaft is not to exceed 120 MPa and its angle of twist is limited to 5�. Use
G ¼ 80 GPa for steel.

3.7 The 1.25-in.-diameter steel shaft BC is built into the rigid wall at C and sup-
ported by a smooth bearing at B. The lever AB is welded to the end of the shaft.
Determine the force P that will produce a 2-in. vertical displacement of end A of the
lever. What is the corresponding maximum shear stress in the shaft? Use
G ¼ 12� 106 psi for steel, and neglect deformation of the lever.

4 in.

15 kip • ft

3 ft

FIG. P3.1

12 kN • m

6 m

d

FIG. P3.2

100 kip • ft
2
3

D

D

16 ft

FIG. P3.3

T

D

D/2

L

FIG. P3.4

T

d

16 ft

FIG. P3.5

B

P
P

A

500 mm

300 mm

FIG. P3.6
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3.8 The steel shaft is formed by attaching a hollow shaft to a solid shaft.
Determine the maximum torque T that can be applied to the ends of the shaft with-
out exceeding a shear stress of 70 MPa or an angle of twist of 2:5� in the 3.5-m
length. Use G ¼ 83 GPa for steel.

3.9 The compound shaft consists of bronze and steel segments, both having
120-mm diameters. If the torque T causes a maximum shear stress of 100 MPa in the
bronze segment, determine the angle of rotation of the free end. Use G ¼ 83 GPa for
steel and G ¼ 35 GPa for bronze.

3.10 The stepped steel shaft carries the torque T. Determine the maximum allow-
able magnitude of T if the working shear stress is 12 MPa and the rotation of the free
end is limited to 4�. Use G ¼ 83 GPa for steel.

3.11 The solid steel shaft carries the torques T1 ¼ 750 N �m and T2 ¼ 1200 N �m.
Using L1 ¼ L2 ¼ 2:5 m and G ¼ 83 GPa, determine the smallest allowable diameter
of the shaft if the shear stress is limited to 60 MPa and the angle of rotation of the
free end is not to exceed 4�.

3.12 The solid compound shaft, made of three di¤erent materials, carries the two
torques shown. (a) Calculate the maximum shear stress in each material. (b) Find the
angle of rotation of the free end of the shaft. The shear moduli are 28 GPa for alu-
minum, 83 GPa for steel, and 35 GPa for bronze.

A

P

B

12 in.

75 in.

C

FIG. P3.7 FIG. P3.8

FIG. P3.9 FIG. P3.10

FIG. P3.11 FIG. P3.12
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3.13 The shaft consisting of steel and aluminum segments carries the torques T

and 2T . Find the largest allowable value of T if the working shear stresses are 14 000
psi for steel and 7500 psi for aluminum, and the angle of rotation at the free end must
not exceed 8�. Use G ¼ 12� 106 psi for steel and G ¼ 4� 106 psi for aluminum.

3.14 Four pulleys are attached to the 50-mm-diameter aluminum shaft. If torques
are applied to the pulleys as shown in the figure, determine the angle of rotation of
pulley D relative to pulley A. Use G ¼ 28 GPa for aluminum.

3.15 The tapered, wrought iron shaft carries the torque T ¼ 2000 lb � in. at its free
end. Determine the angle of twist of the shaft. Use G ¼ 10� 106 psi for wrought
iron.

3.16 The shaft carries a total torque T0 that is uniformly distributed over its
length L. Determine the angle of twist of the shaft in terms of T0, L, G, and J.

3.17 The steel shaft of length L ¼ 1:5 m and diameter d ¼ 25 mm is attached to
rigid walls at both ends. A distributed torque of intensity t ¼ tAðL� xÞ=L is acting
on the shaft, where tA ¼ 200 N �m/m. Determine the maximum shear stress in the
shaft.

FIG. P3.13 FIG. P3.14

FIG. P3.15 FIG. P3.16

FIG. P3.17
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3.18 The compound shaft is attached to a rigid wall at each end. For the bronze
segment AB, the diameter is 75 mm and G ¼ 35 GPa. For the steel segment BC, the
diameter is 50 mm and G ¼ 83 GPa. Given that a ¼ 2 m and b ¼ 1:5 m, compute the
largest torque T that can be applied as shown in the figure if the maximum shear
stress is limited to 60 MPa in the bronze and 80 MPa in the steel.

3.19 For the compound shaft described in Prob. 3.18, determine the torque T and
the ratio b=a so that each material is stressed to its permissible limit.

3.20 The ends of the compound shaft are attached to rigid walls. The maximum
shear stress is limited to 10 000 psi for the bronze segment AB and 14 000 psi for the
steel segment BC. Determine the diameter of each segment so that each material is
simultaneously stressed to its permissible limit when the torque T ¼ 16 kip � ft is ap-
plied as shown. The shear moduli are 6� 106 psi for bronze and 12� 106 psi for steel.

3.21 Both ends of the steel shaft are attached to rigid supports. Find the distance a

where the torque T must be applied so that the reactive torques at A and B are equal.

3.22 The compound shaft, composed of steel, aluminum, and bronze segments,
carries the two torques shown in the figure. If TC ¼ 250 lb � ft, determine the max-
imum shear stress developed in each material. The moduli of rigidity for steel, alu-
minum, and bronze are 12� 106 psi, 4� 106 psi, and 6� 106 psi, respectively.

3.23 The stepped solid steel shaft ABC is attached to rigid supports at each end.
Determine the diameter of segment BC for which the maximum shear stress in both
segments will be equal when the torque T is applied at B. Note that the lengths of
both segments are given and the diameter of segment AB is 60 mm.

3.24 The steel rod fits loosely inside the aluminum sleeve. Both components are at-
tached to a rigid wall at A and joined together by a pin at B. Because of a slight mis-
alignment of the pre-drilled holes, the torque T0 ¼ 750 N �m was applied to the steel rod
before the pin could be inserted into the holes. Determine the torque in each component
after T0 was removed. Use G ¼ 80 GPa for steel and G ¼ 28 GPa for aluminum.

FIG. P3.24

B
T

1200

800

A

Dimensions in mm

C

60

FIG. P3.23

FIG. P3.18, P3.19 FIG. P3.20

FIG. P3.21 FIG. P3.22
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3.25 A composite shaft is made by slipping a bronze tube of 3-in. outer diameter
and 2-in. inner diameter over a solid steel shaft of the same length and 2-in. diameter.
The two components are then fastened rigidly together at their ends. What is the
largest torque that can be carried by the composite shaft if the working shear stresses
are 10 ksi for bronze and 14 ksi for the steel? For bronze, G ¼ 6� 106 psi, and for
steel, G ¼ 12� 106 psi.

3.26 If the composite shaft described in Prob. 3.25 carries a 2000-lb � ft torque,
determine the maximum shear stress in each material.

3.27 The two identical shafts, 1 and 2, are built into supports at their left ends.
Gears mounted on their right ends engage a third gear that is attached to shaft 3.
Determine the torques in shafts 1 and 2 when the 500-N � m torque is applied to
shaft 3.

3.28 Each of the two identical shafts is attached to a rigid wall at one end and
supported by a bearing at the other end. The gears attached to the shafts are in mesh.
Determine the reactive torques at A and C when the torque T is applied to gear B.

3.29 The two steel shafts, each with one end built into a rigid support, have
flanges attached to their free ends. The flanges are to be bolted together. However,
initially there is a 6� mismatch in the location of the bolt holes as shown in the figure.
Determine the maximum shear stress in each shaft after the flanges have been bolted
together. The shear modulus of elasticity for steel is 12� 106 psi. Neglect deforma-
tions of the bolts and the flanges.

3.30 A solid steel shaft transmits 20 hp while running at 120 rev/min. Find the
smallest safe diameter of the shaft if the shear stress is limited to 5000 psi and the
angle of twist of the shaft is not to exceed 9� in a length of 10 ft. Use G ¼ 12� 106

psi for steel.

2

80

40

60

3

Dimensions in mm

500 Nm

1

FIG. P3.27 FIG. P3.28

FIG. P3.29
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3.31 A hollow steel shaft, 6 ft long, has an outer diameter of 3 in. and an inner
diameter of 1.5 in. The shaft is transmitting 200 hp at 120 rev/min. Determine (a) the
maximum shear stress in the shaft; and (b) the angle of twist of the shaft in degrees.
Use G ¼ 12� 106 psi for steel.

3.32 A hollow steel propeller shaft, 18 ft long with 14-in. outer diameter and
10-in. inner diameter, transmits 5000 hp at 189 rev/min. Use G ¼ 12� 106 psi for
steel. Calculate (a) the maximum shear stress; and (b) the angle of twist of the shaft.

3.33 The figure shows an inboard engine, 8-ft long steel drive shaft, and propeller
for a motor boat. The shaft is to be designed to safely transmit 200 hp at 3500 rev/
min. Determine the diameter of the smallest shaft that can be used and its corre-
sponding angle of twist. For the steel, use a working shear stress of 12 000 psi and
G ¼ 12� 106 psi.

3.34 The steel shaft with two di¤erent diameters rotates at 4 Hz. The power sup-
plied to gear C is 55 kW, of which 35 kW is removed by gear A and 20 kW is re-
moved by gear B. Find (a) the maximum shear stress in the shaft; and (b) the angle of
rotation of gear A relative to gear C. Use G ¼ 83 GPa for steel.

3.35 The motor A delivers 3000 hp to the shaft at 1500 rev/min, of which 1000 hp
is removed by gear B and 2000 hp is removed by gear C. Determine (a) the maximum
shear stress in the shaft; and (b) the angle of twist of end D relative to end A. Use
G ¼ 12� 106 psi for steel, and assume that friction at bearing D is negligible.

3.3 Torsion of Thin-Walled Tubes

Although torsion of noncircular shafts requires advanced methods of analy-
sis, fairly simple approximate formulas are available for thin-walled tubes.
Such members are common in construction where light weight is of para-
mount importance, such as in automobiles and airplanes.

FIG. P3.33
FIG. P3.34

FIG. P3.35
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Consider the thin-walled tube subjected to the torque T shown in Fig.
3.7(a). We assume the tube to be prismatic (constant cross section), but the
wall thickness t is allowed to vary within the cross section. The surface that
lies midway between the inner and outer boundaries of the tube is called the
middle surface. If t is small compared to the overall dimensions of the cross
section, the shear stress t induced by torsion can be shown to be almost
constant through the wall thickness of the tube and directed tangent to the
middle surface, as illustrated in Fig. 3.7(b). It is convenient to introduce
the concept of shear flow q, defined as the shear force per unit edge length of
the middle surface. Thus, the shear flow is

q ¼ tt (3.7)

If the shear stress is not constant through the wall thickness, then t in
Eq. (3.7) should be viewed as the average shear stress.

We now show that the shear flow is constant throughout the tube. This
result can be obtained by considering equilibrium of the element shown in
Fig. 3.7(c). In labeling the shear flows, we assume that q varies in the lon-
gitudinal (x) as well as the circumferential (s) directions. Thus, the terms
ðqq=qxÞ dx and ðqq=qsÞ ds represent the changes in the shear flow over the
distances dx and ds, respectively. The force acting on each side of the ele-
ment is equal to the shear flow multiplied by the edge length, resulting in the
equilibrium equations

SFx ¼ 0 qþ qq

qs
ds

� �
dx� q dx ¼ 0

SFs ¼ 0 qþ qq

qx
dx

� �
ds� q ds ¼ 0

which yield qq=qx ¼ qq=qs ¼ 0, thereby proving that the shear flow is con-
stant throughout the tube.

To relate the shear flow to the applied torque T, consider the cross
section of the tube in Fig. 3.8. The shear force acting over the infinitesimal

FIG. 3.7 (a) Thin-walled tube in torsion; (b) shear stress in the wall of the tube;
(c) shear flows on wall element.
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edge length ds of the middle surface is dP ¼ q ds. The moment of this force
about an arbitrary point O in the cross section is r dP ¼ ðq dsÞr, where r is
the perpendicular distance of O from the line of action of dP. Equilibrium
requires that the sum of these moments must be equal to the applied torque
T; that is,

T ¼
þ

S

qr ds (a)

where the integral is taken over the closed curve formed by the intersection
of the middle surface and the cross section, called the median line.

The integral in Eq. (a) need not be evaluated formally. Recalling that q

is constant, we can take it outside the integral sign, so that Eq. (a) can be
written as T ¼ q

Þ
S

r ds. But from Fig. 3.8 we see that r ds ¼ 2 dA0, where
dA0 is the area of the shaded triangle. Therefore,

Þ
S

r ds ¼ 2A0, where A0 is
the area of the cross section that is enclosed by the median line. Con-
sequently, Eq. (a) becomes

T ¼ 2A0q (3.8a)

from which the shear flow is

q ¼ T

2A0
(3.8b)

We can find the angle of twist of the tube by equating the work done
by the shear stress in the tube to the work of the applied torque T. Let us
start by determining the work done by the shear flow acting on the element
in Fig. 3.7(c). The deformation of the element is shown in Fig. 3.9, where g
is the shear strain of the element. We see that work is done on the element
by the shear force dP ¼ q ds as it moves through the distance g dx. If we as-
sume that g is proportional to t (Hooke’s law), this work is

dU ¼ 1

2
ðforce� distanceÞ ¼ 1

2
ðq dsÞðg dxÞ

Substituting g ¼ t=G ¼ q=ðGtÞ yields

dU ¼ q2

2Gt
ds dx (b)

The work U of the shear flow for the entire tube is obtained by
integrating Eq. (b) over the middle surface of the tube. Noting that q and G

are constants and t is independent of x, we obtain

U ¼ q2

2G

ðL

0

þ
S

ds

t

� �
dx ¼ q2L

2G

þ
S

ds

t
(c)

Conservation of energy requires U to be equal to the work of the applied
torque; that is, U ¼ Ty=2. After substituting the expression for q from
Eq. (3.8b) into Eq. (c), we obtain

T

2A0

� �2
L

2G

þ
S

ds

t
¼ 1

2
Ty

FIG. 3.8 Calculating the resultant
of the shear flow acting on the cross
section of the tube. Resultant is a
couple equal to the internal torque T.

FIG. 3.9 Deformation of element
caused by shear flow.
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from which the angle of twist of the tube is

y ¼ TL

4GA2
0

þ
S

ds

t
(3.9a)

If t is constant, we have
Þ

S
ðds=tÞ ¼ S=t, where S is the length of the median

line. Therefore, Eq. (3.9a) becomes

y ¼ TLS

4GA2
0 t
ðconstant tÞ (3.9b)

If the tube is not cylindrical, its cross sections do not remain plane but
tend to warp. When the ends of the tube are attached to rigid plates or sup-
ports, the end sections cannot warp. As a result, the torsional sti¤ness of the
tube is increased and the state of stress becomes more complicated—there
are normal stresses in addition to the shear stress. However, if the tube is
slender (length much greater than the cross-sectional dimensions), warping is
confined to relatively small regions near the ends of the tube (Saint Venant’s
principle).

Tubes with very thin walls can fail by buckling (the walls ‘‘fold’’ like
an accordion) while the stresses are still within their elastic ranges. For this
reason, the use of very thin walls is not recommended. In general, the shear
stress that results in buckling depends on the shape of the cross section and
the material properties. For example, steel tubes of circular cross section re-
quire r=t < 50 to forestall buckling due to torsion.

Sharp re-entrant corners in the cross section of the tube should also be
avoided because they cause stress concentration. It has been found that the
shear stress at the inside boundary of a corner can be considerably higher
than the average stress. The stress concentration e¤ect diminishes as the
radius a of the corner is increased, becoming negligible when a=t > 2:5,
approximately.
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Sample Problem 3.6

A steel tube with the cross section shown carries a torque T. The tube is 6 ft long and
has a constant wall thickness of 3/8 in. (1) Compute the torsional sti¤ness k ¼ T=y of
the tube. (2) If the tube is twisted through 0:5�, determine the shear stress in the wall
of the tube. Use G ¼ 12� 106 psi, and neglect stress concentrations at the corners.

Solution

Part 1

Because the wall thickness is constant, the angle of twist is given by Eq. (3.9b):

y ¼ TLS

4GA2
0 t

Therefore, the torsional sti¤ness of the tube can be computed from

k ¼ T

y
¼ 4GA2

0 t

LS

The area enclosed by the median line is

A0 ¼ average width� height ¼ 6þ 4

2

� �
ð5Þ ¼ 25 in:2

and the length of the median line is

S ¼ 6þ 4þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 52

p
¼ 20:20 in:

Consequently, the torsional sti¤ness becomes

k ¼ 4ð12� 106Þð25Þ2ð3=8Þ
ð6� 12Þð20:20Þ ¼ 7:735� 106 lb � in:=rad

¼ 135:0� 103 lb � in:=deg Answer

Part 2

The torque required to produce an angle of twist of 0:5� is

T ¼ ky ¼ ð135:0� 103Þð0:5Þ ¼ 67:5� 103 lb � in:

which results in the shear flow

q ¼ T

2A0
¼ 67:5� 103

2ð25Þ ¼ 1350 lb=in:

The corresponding shear stress is

t ¼ q

t
¼ 1350

3=8
¼ 3600 psi Answer

1
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Sample Problem 3.7

An aluminum tube, 1.2 m long, has the semicircular cross section shown in the figure.
If stress concentrations at the corners are neglected, determine (1) the torque that
causes a maximum shear stress of 40 MPa, and (2) the corresponding angle of twist
of the tube. Use G ¼ 28 GPa for aluminum.

Solution

Part 1

Because the shear flow is constant in a prismatic tube, the maximum shear stress
occurs in the thinnest part of the wall, which is the semicircular portion with t ¼ 2 mm.
Therefore, the shear flow that causes a maximum shear stress of 40 MPa is

q ¼ tt ¼ ð40� 106Þð0:002Þ ¼ 80� 103 N=m

The cross-sectional area enclosed by the median line is

A0 ¼
pr2

2
¼ pð0:025Þ2

2
¼ 0:9817� 10�3 m2

which results in the torque—see Eq. (3.8a):

T ¼ 2A0q ¼ 2ð0:9817� 10�3Þð80� 103Þ ¼ 157:07 N �m Answer

Part 2

The cross section consists of two parts, labeled z1 and z2 in the figure, each having a
constant thickness. Hence, we can writeþ

S

ds

t
¼ 1

t1

ð
S1

dsþ 1

t2

ð
S2

ds ¼ S1

t1
þ S2

t2

where S1 and S2 are the lengths of the median lines of parts z1 and z2 , respectively.
Therefore, þ

S

ds

t
¼ pr

t1
þ 2r

t2
¼ pð25Þ

2
þ 2ð25Þ

3
¼ 55:94

and Eq. (3.9a) yields for the angle of twist

y ¼ TL

4GA2
0

þ
S

ds

t
¼ 157:07ð1:2Þ

4ð28� 109Þð0:9817� 10�3Þ2
ð55:94Þ

¼ 0:0977 rad ¼ 5:60� Answer

1
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Problems

Neglect stress concentrations at the corners of the tubes in the following problems.

3.36 Consider a thin cylindrical tube of mean radius r, constant thickness t, and
length L. (a) Show that the polar moment of inertia of the cross-sectional area can be
approximated by J ¼ 2pr3t. (b) Use this approximation to show that Eqs. (3.8b) and
(3.9b) are equivalent to t ¼ T r=J and y ¼ TL=ðGJÞ, respectively.

3.37 A cylindrical metal tube of mean radius r ¼ 5 in., length L ¼ 14 ft, and shear
modulus G ¼ 11� 106 psi carries the torque T ¼ 320 kip � in. Determine the smallest
allowable constant wall thickness t if the shear stress is limited to 12 ksi and the angle
of twist is not to exceed 2�.

3.38 A cylindrical tube of constant wall thickness t and inside radius r ¼ 10t

carries a torque T. Find the expression for the maximum shear stress in the tube
using (a) the torsion formula for a hollow shaft in Eq. (3.5d); and (b) the thin-walled
tube formula in Eq. (3.8b). What is the percentage error in the thin-walled tube
approximation?

3.39 A torque of 800 N �m is applied to a tube with the rectangular cross section
shown in the figure. Determine the smallest allowable constant wall thickness t if the
shear stress is not to exceed 90 MPa.

3.40 The constant wall thickness of a tube with the elliptical cross section shown is
0.12 in. What torque will cause a shear stress of 6000 psi?

3.41 The constant wall thickness of a steel tube with the cross section shown is
2 mm. If a 600-N �m torque is applied to the tube, find (a) the shear stress in the wall
of the tube; and (b) the angle of twist per meter of length. Use G ¼ 80 GPa for steel.

3.42 Two identical metal sheets are formed into tubes with the circular and square
cross sections shown. If the same torque is applied to each tube, determine the ratios
(a) tcircle=tsquare of the shear stresses; and (b) ycircle=ysquare of the angles of twist.

3.43 A steel tube with the cross section shown carries a 50-kip � in. torque.
Determine (a) the maximum shear stress in the tube; and (b) the angle of twist per
foot of length. Use G ¼ 11� 106 psi for steel.

FIG. P3.39 FIG. P3.40

10 mm
10 mm

30 mm

FIG. P3.41

FIG. P3.42 FIG. P3.43
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3.44 An aluminum tube with the hexagonal cross section shown is 2.5 ft long and
has a constant wall thickness of 0.080 in. Find (a) the largest torque that the tube can
carry if the shear stress is limited to 7200 psi; and (b) the angle of twist caused by this
torque. Use G ¼ 4� 106 psi for aluminum.

3.45 A 4-ft-long tube with the cross section shown in the figure is made of alumi-
num. Find the torque that will cause a maximum shear stress of 10 000 psi. Use G ¼
4� 106 psi for aluminum.

3.46 A steel tube with the cross section shown is 6 ft long and has a wall thickness
of 0.12 in. (a) If the allowable shear stress is 8000 psi, determine the largest torque
that can be applied safely to the tube. (b) Compute the corresponding angle of twist.
Use G ¼ 12� 106 psi for steel.

3.47 The segment AB of the steel torsion bar is a cylindrical tube of constant
2-mm wall thickness. Segment BC is a square tube with a constant wall thickness
of 3 mm. The outer dimensions of the cross sections are shown in the figure. The tubes
are attached to a rigid bracket at B, which is loaded by a couple formed by the forces P.
Determine the largest value of P if the shear stress in either tube is limited to 60 MPa.

*3.48 The tapered, circular, thin-walled tube of length L has a constant wall
thickness t. Show that the angle of twist caused by the torque T is

y ¼ 20

9p

TL

Gtd 3
A

(Hint: Apply Eq. (3.9b) to an infinitesimal length dx of the shaft.)

FIG. P3.44

FIG. P3.45

2 in. 2 in.

2 in.

2 in.

FIG. P3.46

FIG. P3.47 FIG. P3.48
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*3.4 Torsion of Rectangular Bars

The analysis of circular shafts in Sec. 3.2 was based upon the assumption that
plane cross sections remain plane and are undistorted. If the cross section of
the shaft is not circular, experiments show that the cross sections distort and do
not remain plane. Therefore, the formulas for shear stress distribution and
torsional rigidity derived in Sec. 3.2 cannot be applied to noncircular members.

Figure 3.10 shows the distortion of a rectangular bar caused by the
torque T. The two significant features of the deformation are:. The cross sections become distorted.. The shear strain (and thus the shear stress) is zero at the edges of the

bar and largest at the middle of the sides.

The reason for the shear strain vanishing at the edges of the bar is illus-
trated in Fig. 3.11. The small element labeled A in Fig. 3.11(a) is located at the
edge of the bar. The shear stresses acting of the faces of this element, shown in
Fig. 3.11(b), are denoted by t1; t2, and t3 (recall that shear stresses acting on
complementary planes have the same magnitude but opposite sense). The two
sides of the element that are shaded must be stress-free because they are free
surfaces. Therefore, t1 ¼ t2 ¼ t3 ¼ 0, which proves that there are no shear
stresses, and therefore no shear strains, at the corners of the bar.

The maximum shear stress tmax occurs on element B in Fig. 3.11(a),
which is located at the centerline of the wider face of the bar. This stress is
shown in Fig. 3.11(c).

T

T

Fig. 3.10 Deformation of a rectangular bar due to torsion.

T

T
(a)

  max

τ1

(b) (c)

A

A B

B

 2  1

 1

 3
 3

 2   max

Fig. 3.11 Rectangular bar in torsion showing locations of zero and
maximum stresses.
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The analytical analysis of the torsion of noncircular bars lies in the
realm of the theory of elasticity, a topic that is beyond the scope of this text.
For the rectangular bar in Fig. 3.12 that carries the torque T, results
obtained by numerical methods2 determine that the maximum shear stress
tmax and the angle of twist y are given by

tmax ¼
T

C1ab2
(3.10a)

and

y ¼ TL

C2ab3G
(3.10b)

where G is the shear modulus. As shown in Fig. 3.12, a and b (a� b) are the
cross-sectional dimensions of the bar and L is its length. The coe‰cients C1

and C2, which depend on the ratio a/b, are listed in Table 3.1.

a/b C1 C2

1:0 0:208 0:141

1.2 0.219 0.166

1.5 0.231 0.196

2.0 0.246 0.229

2.5 0.258 0.249

3.0 0.267 0.263

4.0 0.282 0.281

5.0 0.291 0.291

10.0 0.312 0.312

1 0.333 0.333

Table 3-1

T

T

L

b

a
a ≥ b

  max

Fig. 3.12 Rectangular bar in torsion showing the dimensions used in Eqs. (3.10).

2S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3e, McGraw-Hill, New York, 1970.
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Sample Problem 3.8

The wooden bar consists of two segments, each of length L. One segment has a
square cross section of width d; the cross section of the other segment is a circle of
diameter d. The working stress for the wood is tw ¼ 5 MPa and the shear modulus is
G ¼ 0:5 GPa. Using L ¼ 0:6 m and d ¼ 50 mm, determine (1) the largest torque T

that can be safely applied; and (2) the corresponding angle of twist for the bar.

d

d
L

L

T

Solution

Part 1

Assuming the circular segment governs, the largest safe torque from Eq. (3.5c) is

T ¼ twpd3

16
¼

5� 106
� �

p 0:05ð Þ3

16
¼ 122:7 N �m

Assuming the square segment is critical, Eq. (3.10a) yields for the largest safe torque

T ¼ C1d3tw ¼ 0:208 0:05ð Þ3 5� 106
� �

¼ 130:0 N �m

where C1 ¼ 0:208 was obtained from Table 3.1.
Comparing the above two values for T, we see that the stress in the circular

segment governs. Therefore, the largest torque that can be applied safely is

T ¼ 122:7 N �m Answer

Part 2

The angle of twist of the bar is obtained by adding the contributions of the two seg-
ments using Eqs. (3.4b) and (3.10b):

y ¼ TL

GJ
þ TL

C2d4G
¼ TL

G pd4=32ð Þ þ
TL

0:141ð Þd4G

¼ TL

Gd4

32

p
þ 1

0:141

� �
¼ 17:28

TL

Gd4

¼ 17:28
122:7 0:6ð Þ

0:5� 109ð Þ 0:05ð Þ4
¼ 0:4071 rad ¼ 23:3̊ Answer

1
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Problems

3.49 (a) Determine the largest torque that can be safely applied to the rectangular
steel bar if the maximum shear stress is limited to 120 MPa. (b) Compute the corre-
sponding angle of twist using G ¼ 80 GPa for steel.

3.50 Determine the torque required to produce a 5� twist in the piece of wood.
Use G ¼ 1:0� 106 psi for wood.

3.51 The circular steel bar in Fig. (a) and the square steel bar in Fig. (b) are sub-
jected to the same torque T. (Note that the volumes of the bars are equal.) Determine
(a) the ratio tmaxð Þa= tmaxð Þb of their maximum shear stresses; and (b) the ratio
ymaxð Þa= ymaxð Þb of their angles of twist.

3.52 Equal torques T ¼ 5 kip � ft are applied to the two steel bars with the cross
sections shown. (Note that the cross-sectional areas of the bars are equal.) The length
of each bar is 8 ft. Calculate the maximum shear stress and angle of twist for each
bar. Use G ¼ 12� 106 psi for steel.

3.53 When a bar with the hexagonal cross section shown in Fig. (a) is subjected to
a torque T, numerical analysis shows that the maximum shear stress in the bar is
tmax ¼ 5:7T=c3. Determine the percentage loss in strength that results when a circu-
lar bar of diameter d is machined into the hexagonal shape shown in Fig. (b).

3.54 A steel bar of length L with the cross section shown is twisted through 90�.
Determine the smallest ratio L/b for which the maximum shear stress will not exceed
150 MPa. Use G ¼ 80 GPa for steel.

800 mm

20 mm

6 mm

FIG. P3.49

8 ft

T

1.75 in.3.75 in.

FIG. P3.50

T

aa a

LL

T

(a) (b)

√π

FIG. P3.51

5 in. 10 in.
2 in.

(a) (b)

1.0 in.

FIG. P3.52

c

(a)

Location of

d

(b)

  max

FIG. P3.53

a = 4b

b

FIG. P3.54

102 CHAPTER 3 Torsion



Review Problems

3.55 The torque T is applied to the solid shaft of radius r2. Determine the radius r1

of the inner portion of the shaft that carries one-half of the torque.

3.56 The solid aluminium shaft ABCD carries the three torques shown.
(a) Determine the smallest safe diameter of the shaft if the allowable shear stress is
15 ksi. (b) Compute the angle of rotation of end A of the shaft using G ¼ 4� 106 psi.

3.57 A circular tube of outer diameter D is slipped over a 40-mm-diameter solid
cylinder. The tube and cylinder are then welded together. For what value of D will
the torsional strengths of the tube and cylinder be equal?

3.58 A solid steel shaft 4 m long is stressed to 70 MPa when twisted through 3�.
(a) Given that G ¼ 83 GPa, find the diameter of the shaft. (b) What power does this
shaft transmit when running at 18 Hz?

3.59 Determine the maximum torque that can be applied to a hollow circular steel
shaft of 100-mm outer diameter and 80-mm inner diameter. The shear stress is lim-
ited to 70 MPa, and the angle of twist must not exceed 0.4 � in a length of 1.0 m.
Use G ¼ 83 GPa for steel.

3.60 A 2-in.-diameter steel shaft rotates at 240 rev/min. If the shear stress is lim-
ited to 12 ksi, determine the maximum horsepower that can be transmitted at that
speed.

3.61 The compound shaft, consisting of steel and aluminum segments, carries the
two torques shown in the figure. Determine the maximum permissible value of T

subject to the following design conditions: tst a 83 MPa, tal a 55 MPa, and y a 6�

(y is the angle of rotation of the free end). Use G ¼ 83 GPa for steel and G ¼ 28 GPa
for aluminum.

3.62 The four gears are attached to a steel shaft that is rotating at 2 Hz. Gear B

supplies 70 kW of power to the shaft. Of that power, 20 kW are used by gear A, 20
kW by gear C, and 30 kW by gear D. (a) Find the uniform shaft diameter if the shear
stress in the shaft is not to exceed 60 MPa. (b) If a uniform shaft diameter of 100 mm
is specified, determine the angle by which one end of the shaft lags behind the other
end. Use G ¼ 83 GPa for steel.

T

r1r2

FIG. P3.55

4000 in.

2400 in.

1600 in.

A

B

C

D

36 in.

30 in.
15 in.

FIG. P3.56

40 mm D

FIG. P3.57

FIG. P3.61 FIG. P3.62
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3.63 The composite shaft consists of a copper rod that fits loosely inside an alu-
minum sleeve. The two components are attached to a rigid wall at one end and
joined with an end-plate at the other end. Determine the maximum shear stress in
each material when the 2-kN �m torque is applied to the end-plate. Use G ¼ 26 GPa
for aluminum and G ¼ 47 GPa for copper.

3.64 The torque T is applied to the solid shaft with built-in ends. (a) Show that the
reactive torques at the walls are TA ¼ Tb=L and TC ¼ Ta=L. (b) How would the re-
sults of Part (a) change if the shaft were hollow?

3.65 A flexible shaft consists of a 0.20-in.-diameter steel rod encased in a sta-
tionary tube that fits closely enough to impose a torque of intensity 0.50 lb � in./in. on
the rod. (a) Determine the maximum length of the shaft if the shear stress in the rod
is not to exceed 20 ksi. (b) What will be the relative angular rotation between the
ends of the rod? Use G ¼ 12� 106 psi for steel.

3.66 The shaft ABC is attached to rigid walls at A and C. The torque T0 is dis-
tributed uniformly over segment AB of the shaft. Determine the reactions at A and C.

3.67 A torque of 400 lb � ft is applied to the square tube with constant 0.10-in. wall
thickness. Determine the smallest permissible dimension a if the shear stress is limited
to 6500 psi.

3.68 The cross section of a brass tube is an equilateral triangle with a constant
wall thickness, as shown in the figure. If the shear stress is limited to 8 ksi and the
angle of twist is not to exceed 2� per foot length, determine the largest allowable
torque that can be applied to the tube. Use G ¼ 5:7� 106 psi for brass.

3.69 A torsion member is made by placing a circular tube inside a square tube, as
shown, and joining their ends by rigid end-plates. The tubes are made of the same
material and have the same constant wall thickness t ¼ 5 mm. If a torque T is
applied to the member, what fraction of T is carried by each component?

3.70 A 3-m-long aluminum tube with the cross section shown carries a 200-N �m
torque. Determine (a) the maximum shear stress in the tube; and (b) the relative
angle of rotation of the ends of the tube. For aluminum, use G ¼ 28 GPa.

FIG. P3.63 FIG. P3.64

FIG. P3.66

FIG. P3.67 FIG. P3.68 FIG. P3.69
FIG. P3.70
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Computer Problems

C3.1 An aluminum bar of circular cross section and the profile specified in Prob.
C2.1 is subjected to a 15-N �m torque. Use numerical integration to compute the
angle of twist of the bar. For aluminum, use G ¼ 30 GPa.

C3.2 A steel bar of circular cross section has the profile shown in the figure. Use
numerical integration to compute the torsional sti¤ness k ¼ T=y of the bar. For steel,
use G ¼ 12� 106 psi.

C3.3 The diameter d of the solid shaft of length L varies with the axial coordinate
x. Given L and dðxÞ, write an algorithm to calculate the constant diameter D of a
shaft that would have the same torsional sti¤ness (assume that the two shafts have
the same length and are made of the same material). Use (a) L ¼ 500 mm and

d ¼ ð25 mmÞ 1þ 3:8
x

L
� 3:6

x2

L2

� �

and (b) L ¼ 650 mm and

d ¼

20 mm if x a 200 mm

20 mmþ x� 200 mm

10
if 200 mm a x a 350 mm

35 mm if x b 350 mm

8>>>><
>>>>:

C3.4 The solid shaft ABC of length L and variable diameter d is attached to rigid
supports at A and C. A torque T acts at the distance b from end A. Given L, b, and
dðxÞ, write an algorithm to compute the fraction of T that is carried by segments AB

and BC. Use (a) L ¼ 200 mm, b ¼ 110 mm, and

d ¼ 30 mm� ð20 mmÞ sin
px

L

and (b) L ¼ 400 mm, b ¼ 275 mm, and

d ¼

25 mm if x a 200 mm

25 mmþ ðx� 200 mmÞ2

250 mm
if 200 mm a x a 250 mm

35 mm if x b 250 mm

8>>>><
>>>>:

FIG. C3.2 FIG. C3.3

FIG. C3.4
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C3.5 An extruded tube of length L has the cross section shown in the figure.
The radius of the median line is r ¼ 75 mm, and the wall thickness varies with the
angle a as

t ¼ t1 þ ðt2 � t1Þ sin
a

2

Given L, r, t1, t2, and G, write an algorithm to compute the angle of twist required to
produce the maximum shear stress tmax. Use L ¼ 1:8 m, r ¼ 75 mm, t1 ¼ 2 mm,
t2 ¼ 4 mm, G ¼ 40 GPa (brass), and tmax ¼ 110 MPa.

C3.6 The thin-walled tube in the shape of a truncated cone carries a torque T0 that
is uniformly distributed over its length L. The radius of the median line varies lin-
early from r1 to r2 over the length of the tube. The wall thickness t is constant. Given
L, r1, r2, t, T0, and G, construct an algorithm that (a) plots the shear stress in the tube
as a function of the axial distance x; and (b) computes the angle of rotation at the
free end of the tube. Use L ¼ 10 ft, r1 ¼ 3 in., r2 ¼ 12 in., t ¼ 0:2 in., T0 ¼ 60 kip � ft,
and G ¼ 12� 106 psi (steel).

FIG. C3.5 FIG. C3.6
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4
Shear and Moment in Beams

4.1 Introduction

The term beam refers to a slender bar that carries transverse loading; that is,
the applied forces are perpendicular to the bar. In a beam, the internal force
system consists of a shear force and a bending moment acting on the cross
section of the bar. As we have seen in previous chapters, axial and torsional
loads often result in internal forces that are constant in the bar, or over
portions of the bar. The study of beams, however, is complicated by the fact
that the shear force and the bending moment usually vary continuously
along the length of the beam.

The internal forces give rise to two kinds of stresses on a transverse
section of a beam: (1) normal stress that is caused by the bending moment

Power-generating turbines on a wind farm.

The supporting columns can be modeled as

beams subjected to wind loading. The

determination of shear forces and bending

moments in beams caused by various load

conditions is the topic of this chapter.

Courtesy of 2009fotofriends/Shutterstock.2
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and (2) shear stress due to the shear force. This chapter is concerned only
with the variation of the shear force and the bending moment under various
combinations of loads and types of supports. Knowing the distribution of
the shear force and the bending moment in a beam is essential for the com-
putation of stresses and deformations, which will be investigated in sub-
sequent chapters.

4.2 Supports and Loads

Beams are classified according to their supports. A simply supported beam,
shown in Fig. 4.1(a), has a pin support at one end and a roller support at the
other end. The pin support prevents displacement of the end of the beam,
but not its rotation. The term roller support refers to a pin connection that is
free to move parallel to the axis of the beam; hence, this type of support
suppresses only the transverse displacement. A cantilever beam is built into
a rigid support at one end, with the other end being free, as shown in
Fig. 4.1(b). The built-in support prevents displacements as well as rotations
of the end of the beam. An overhanging beam, illustrated in Fig. 4.1(c), is
supported by a pin and a roller support, with one or both ends of the beam
extending beyond the supports. The three types of beams are statically
determinate because the support reactions can be found from the equilibrium
equations.

A concentrated load, such as P in Fig. 4.1(a), is an approximation of
a force that acts over a very small area. In contrast, a distributed load is
applied over a finite area. If the distributed load acts on a very narrow area,
the load may be approximated by a line load. The intensity w of this loading
is expressed as force per unit length (lb/ft, N/m, etc.). The load distribution
may be uniform, as shown in Fig. 4.1(b), or it may vary with distance along
the beam, as in Fig. 4.1(c). The weight of the beam is an example of dis-
tributed loading, but its magnitude is usually small compared to the loads
applied to the beam.

Figure 4.2 shows other types of beams. These beams are over-supported
in the sense that each beam has at least one more reaction than is necessary
for support. Such beams are statically indeterminate; the presence of these
redundant supports requires the use of additional equations obtained by
considering the deformation of the beam. The analysis of statically
indeterminate beams will be discussed in Chapter 7.

FIG. 4.1 Statically determinate beams.
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4.3 Shear-Moment Equations

and Shear-Moment Diagrams

The determination of the internal force system acting at a given section of a
beam is straightforward: We draw a free-body diagram that exposes these
forces and then compute the forces using equilibrium equations. However,
the goal of beam analysis is more involved—we want to determine the shear
force V and the bending moment M at every cross section of the beam. To
accomplish this task, we must derive the expressions for V and M in terms of
the distance x measured along the beam. By plotting these expressions to
scale, we obtain the shear force and bending moment diagrams for the beam.
The shear force and bending moment diagrams are convenient visual refer-
ences to the internal forces in a beam; in particular, they identify the max-
imum values of V and M.

a. Sign conventions

For consistency, it is necessary to adopt sign conventions for applied load-
ing, shear forces, and bending moments. We will use the conventions shown
in Fig. 4.3, which assume the following to be positive:

. External forces that are directed downward; external couples that are
directed clockwise.. Shear forces that tend to rotate a beam element clockwise.. Bending moments that tend to bend a beam element concave upward
(the beam ‘‘smiles’’).

The main disadvantage of the above conventions is that they rely on
such adjectives as ‘‘downward,’’ ‘‘clockwise,’’ and so on. To eliminate this
obstacle, a convention based upon a Cartesian coordinate system is some-
times used.

FIG. 4.2 Statically indeterminate beams.
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b. Procedure for determining shear force and bending

moment diagrams

The following is a general procedure for obtaining shear force and bending
moment diagrams of a statically determinate beam:

. Compute the support reactions from the FBD of the entire beam.. Divide the beam into segments so that the loading within each segment
is continuous. Thus, the end-points of the segments are discontinuities
of loading, including concentrated loads and couples.

Perform the following steps for each segment of the beam:

. Introduce an imaginary cutting plane within the segment, located at a
distance x from the left end of the beam, that cuts the beam into two
parts.. Draw a FBD for the part of the beam lying either to the left or to the
right of the cutting plane, whichever is more convenient. At the cut
section, show V and M acting in their positive directions.. Determine the expressions for V and M from the equilibrium equa-
tions obtainable from the FBD. These expressions, which are usually
functions of x, are the shear force and bending moment equations for
the segment.. Plot the expressions for V and M for the segment. It is visually desir-
able to draw the V-diagram below the FBD of the entire beam, and
then draw the M-diagram below the V-diagram.

The bending moment and shear force diagrams of the beam are
composites of the V- and M-diagrams of the segments. These diagrams are
usually discontinuous and/or have discontinuous slopes at the end-points of
the segments due to discontinuities in loading.

FIG. 4.3 Sign conventions for external loads, shear force, and bending moment.
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Sample Problem 4.1

The simply supported beam in Fig. (a) carries two concentrated loads. (1) Derive the
expressions for the shear force and the bending moment for each segment of the
beam. (2) Draw the shear force and bending moment diagrams. Neglect the weight of
the beam. Note that the support reactions at A and D have been computed and are
shown in Fig. (a).

Solution

Part 1

The determination of the expressions for V and M for each of the three beam seg-
ments (AB, BC, and CD) is explained below.

Segment AB (0H xH2 m) Figure (b) shows the FBDs for the two parts of the beam
that are separated by section z1 , located within segment AB. Note that we show
V and M acting in their positive directions according to the sign conventions in
Fig. 4.3. Because V and M are equal in magnitude and oppositely directed on the
two FBDs, they can be computed using either FBD. The analysis of the FBD of the
part to the left of section z1 yields

SFy ¼ 0 þ" 18� V ¼ 0

V ¼ þ18 kN Answer

SME ¼ 0 þ

m

�18xþM ¼ 0

M ¼ þ18x kN �m Answer
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Segment BC (2 mH xH 5 m) Figure (c) shows the FBDs for the two parts of the
beam that are separated by section z2 , an arbitrary section within segment BC. Once
again, V and M are assumed to be positive according to the sign conventions in Fig.
4.3. The analysis of the part to the left of section z2 gives

SFy ¼ 0 þ" 18� 14� V ¼ 0

V ¼ þ18� 14 ¼ þ4 kN Answer

SMF ¼ 0 þ

m

�18xþ 14ðx� 2Þ þM ¼ 0

M ¼ þ18x� 14ðx� 2Þ ¼ 4xþ 28 kN �m Answer

Segment CD (5 mH xH7 m) Section z3 is used to find the shear force and bending
moment in segment CD. The FBDs in Fig. (d) again show V and M acting in their
positive directions. Analyzing the portion of the beam to the left of section z3 , we
obtain

SFy ¼ 0 þ" 18� 14� 28� V ¼ 0

V ¼ þ18� 14� 28 ¼ �24 kN Answer

SMG ¼ 0 þ

m

�18xþ 14ðx� 2Þ þ 28ðx� 5Þ þM ¼ 0

M ¼ þ18x� 14ðx� 2Þ � 28ðx� 5Þ ¼ �24xþ 168 kN �m Answer
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Part 2

The shear force and bending moment diagrams in Figs. (f ) and (g) are the plots of
the expressions for V and M derived in Part 1. By placing these plots directly below
the sketch of the beam in Fig. (e), we establish a clear visual relationship between the
diagrams and locations on the beam.

An inspection of the V-diagram reveals that the largest shear force in the beam
is �24 kN and that it occurs at every cross section of the beam in segment CD. From
the M-diagram we see that the maximum bending moment is þ48 kN �m, which oc-
curs under the 28-kN load at C. Note that at each concentrated force the V-diagram
‘‘jumps’’ by an amount equal to the force. Furthermore, there is a discontinuity in
the slope of the M-diagram at each concentrated force.

1
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Sample Problem 4.2

The simply supported beam in Fig. (a) is loaded by the clockwise couple C0 at B.
(1) Derive the shear force and bending moment equations, and (2) draw the shear
force and bending moment diagrams. Neglect the weight of the beam. The support
reactions A and C have been computed, and their values are shown in Fig. (a).

Solution

Part 1

Due to the presence of the couple C0, we must analyze segments AB and BC sepa-
rately.

Segment AB (0H xH3L/4) Figure (b) shows the FBD of the part of the beam to
the left of section z1 (we could also use the part to the right). Note that V and M

are assumed to act in their positive directions according to the sign conventions in
Fig. 4.3. The equilibrium equations for this portion of the beam yield

SFy ¼ 0 þ" �C0

L
� V ¼ 0 V ¼ �C0

L
Answer

SMD ¼ 0 þ

m C0

L
xþM ¼ 0 M ¼ �C0

L
x Answer

Segment BC (3L/4H xH L) Figure (c) shows the FBD of the portion of the beam to
the left of section z2 (the right portion could also be used). Once again, V and M are
assumed to act in their positive directions. Applying the equilibrium equations to the
beam segment, we obtain

114



SFy ¼ 0 þ" �C0

L
� V ¼ 0 V ¼ �C0

L
Answer

SME ¼ 0 þ

m C0

L
x� C0 þM ¼ 0 M ¼ �C0

L
xþ C0 Answer

Part 2

The sketch of the beam is repeated in Fig. (d). The shear force and bending moment
diagrams shown in Figs. (e) and (f) are obtained by plotting the expressions for V and
M found in Part 1. From the V-diagram, we see that the shear force is the same for
all cross sections of the beam. The M-diagram shows a jump of magnitude C0 at the
point of application of the couple.

(e)

(f)

(d)

1
Sample Problem 4.3

The overhanging beam ABC in Fig.(a) carries a concentrated load and a uniformly
distributed load. (1) Derive the shear force and bending moment equations; and (2)
draw the shear force and bending moment diagrams. Neglect the weight of the beam.

200 lb

4 ft 10 ft

(a)

120 lb/ft
y

A

B C
x
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Solution

Inspection of the beam in Fig. (a) reveals that we must analyze segments AB and BC

separately.

Part 1

The FBD of the beam is shown in Fig. (b). Note that the uniformly distributed load
has been replaced by its resultant, which is the force 120ð10Þ ¼ 1200 lb (area under
the loading diagram) acting at the centroid of the loading diagram. The reactions
shown at the supports at B and C were computed from the equilibrium equations.

200 lb

1 2

200 lb

4 ft

x ft

RB = 880 lb

RB = 880 lb

RC = 520 lb
10 ft

(b)

(d)

(c)

1200 lb
y

A

A

A

D

M

V

B

B

C
x

5 ft

(x – 4)

120(x – 4) lb
2

ft

4 ft (x – 4) ft

x ft

E

M
200 lb

V

Segment AB (0H xH4 ft) Figure (c) shows the FBD of the portion of the beam that
lies to the left of section z1 . (The part of the beam lying to the right of the section
could also be used.) The shearing force V and the bending moment M that act at
the cut section were assumed to act in their positive directions following the sign
convention in Fig. 4.3. The equilibrium equations for this part of the beam yield

�Fy ¼ 0 þ " � 200� V ¼ 0 V ¼ �200 lb Answer

�MD ¼ 0 þ

m

� 200xþM ¼ 0 M ¼ �200x lb � ft Answer

Segment BC (4 ftH xH 14 ft) The FBD of the part of the beam that lies to the left
of section z2 is shown in Fig. (d). (The portion of the beam lying to the right
of the section could also be used.) Once again, the shearing force V and the
bending moment M are shown acting in their positive directions. Applying
the equilibrium equations to the beam segment, we obtain

�Fy ¼ 0 þ " � 200þ 880� 120ðx� 4Þ � V ¼ 0 V ¼ 1160� 120x lb Answer

�ME ¼ 0þ

m

200x� 880ðx� 4Þ þ 120ðx� 4Þ ðx� 4Þ
2
þM ¼ 0

M ¼ �60x2 þ 1160x� 4480 lb � ft Answer
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Part 2

The FBD of the beam is repeated in Fig. (e). The plots of the shear force and bending
moment diagrams are shown in Figs. (f) and (g), respectively. Note that the shear
force diagram is composed of straight-line segments, and the bending moment
diagram is a straight line between A and B, and a parabola between B and C.

200 lb
120 lb/ft

y

B C

A
x

4 ft

680

5.667

4 4.333

10 ft

(e)

(f)

(g)

RB = 880 lb

V (lb)

–200

–520

x (ft)

–800

1127

M (lb ·ft)

RC = 520 lb

x (ft)

The location of the section where the shear force is zero is determined as follows:

V ¼ 1160� 120x ¼ 0

which gives
x ¼ 9:667 ft

The maximum bending moment occurs where the slope of the moment diagram is
zero; that is, where dM=dx ¼ 0, which yields

dM

dx
¼ �120xþ 1160 ¼ 0

which again gives x ¼ 9:667 ft. (The reason that the maximum bending moment
occurs at the section where the shear force is zero will be explained in Sec. 4.4.)
Substituting this value of x into the expression for the bending moment, we find that
the maximum bending moment is

Mmax ¼ �60ð9:667Þ2 þ 1160ð9:667Þ � 4480 ¼ 1127 lb � ft
1
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Sample Problem 4.4

The cantilever beam in Fig. (a) carries a triangular load, the intensity of which varies from
zero at the left end to 360 lb/ft at the right end. In addition, a 1000-lb upward vertical load
acts at the free end of the beam. (1) Derive the shear force and bending moment equations,
and (2) draw the shear force and bending moment diagrams. Neglect the weight of the beam.

Solution

The FBD of the beam is shown in Fig. (b). Note that the triangular load has been
replaced by its resultant, which is the force 0:5ð12Þð360Þ ¼ 2160 lb (area under the load-
ing diagram) acting at the centroid of the loading diagram. The support reactions at B

can now be computed from the equilibrium equations; the results are shown in Fig. (b).

Because the loading is continuous, the beam does not have to be divided into
segments. Therefore, only one expression for V and one expression for M apply to
the entire beam.
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Part 1

Figure (c) shows the FBD of the part of the beam that lies to the left of section z1 .
Letting w be the intensity of the loading at section z1 , as shown in Fig. (b), we have
from similar triangles, w=x ¼ 360=12, or w ¼ 30x lb/ft. Now the triangular load in
Fig. (c) can be replaced by its resultant force 15x2 lb acting at the centroid of the
loading diagram, which is located at x=3 ft from section z1 . The shear force V and
bending moment M acting at section z1 are shown acting in their positive directions
according to the sign conventions in Fig. 4.3. Equilibrium analysis of the FBD in
Fig. (c) yields

SFy ¼ 0 þ" 1000� 15x2 � V ¼ 0

V ¼ 1000� 15x2 lb Answer

SMC ¼ 0 þ

m

�1000xþ 15x2 x

3

� �
þM ¼ 0

M ¼ 1000x� 5x3 lb � ft Answer

Part 2

Plotting the expressions for V and M found in Part 1 gives the shear force and bend-
ing moment diagrams shown in Figs. (d) and (e). Observe that the shear force dia-
gram is a parabola and the bending moment diagram is a third-degree polynomial
in x.

The location of the section where the shear force is zero is found from

V ¼ 1000� 15x2 ¼ 0

which gives

x ¼ 8:165 ft

The maximum bending moment occurs where the slope of the M-diagram is zero—
that is, where dM=dx ¼ 0. Di¤erentiating the expression for M, we obtain

dM

dx
¼ 1000� 15x2 ¼ 0

which again yields x ¼ 8:165 ft. (In the next section, we will show that the slope of
the bending moment is always zero where the shear force vanishes.) Substituting this
value of x into the expression for M, we find that the maximum bending moment is

Mmax ¼ 1000ð8:165Þ � 5ð8:165Þ3 ¼ 5443 lb � ft

1
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Problems

4.1–4.18 For the beam shown, derive the expressions for V and M, and draw the
shear force and bending moment diagrams. Neglect the weight of the beam.

FIG. P4.1 FIG. P4.2

FIG. P4.3 FIG. P4.4

FIG. P4.5 FIG. P4.6

4 ft4 ft

B

A

y 400 lb/ft

C
x

FIG. P4.7 FIG. P4.8

y

A

2 m 3 m

B

C
x

50 kN · m

10 kN

FIG. P4.9

3 ft

FIG. P4.10

FIG. P4.11 FIG. P4.12
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FIG. P4.13 FIG. P4.14

y

A
B C

D
x

2 kips 4 kips

6 ft2 ft 4 ft

FIG. P4.15 FIG. P4.16

FIG. P4.17 FIG. P4.18

y

A B D
x

C

120 kN/m

2.2 m 2.4 m 2.2 m

FIG. P4.19

y

A

B

C

w = 200x N/m

x

2 m 3 m

FIG. P4.20

y

A
B C

x

6 lb/ft

6 ft 4 ft
Hinge

FIG. P4.21

4.22–4.23 Derive the shear force and the bending moment as functions of the
angle y for the arch shown. Neglect the weight of the arch.

BM0

A

R

θ
C

O

FIG. P4.22

B

P

A

R

θ
C

O

FIG. P4.23
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4.4 Area Method for Drawing

Shear-Moment Diagrams

Useful relationships between the loading, shear force, and bending moment can
be derived from the equilibrium equations. These relationships enable us to plot
the shear force diagram directly from the load diagram, and then construct the
bending moment diagram from the shear force diagram. This technique, called
the area method, allows us to draw the shear force and bending moment diagrams
without having to derive the equations for V and M. We first consider beams
subjected to distributed loading and then discuss concentrated forces and couples.

a. Distributed loading

Consider the beam in Fig. 4.4(a) that is subjected to a line load of intensity wðxÞ,
where wðxÞ is assumed to be a continuous function. The free-body diagram of an
infinitesimal element of the beam, located at the distance x from the left end, is
shown in Fig. 4.4(b). In addition to the distributed load wðxÞ, the segment carries
a shear force and a bending moment at each end, which are denoted by V and M

at the left end and by V þ dV and M þ dM at the right end. The infinitesimal
di¤erences dV and dM represent the changes that occur over the di¤erential
length dx of the element. Observe that all forces and bending moments are
assumed to act in their positive directions, as defined in Fig. 4.3 (on p. 110).

The force equation of equilibrium for the element is

SFy ¼ 0 þ" V � w dx� ðV þ dVÞ ¼ 0

from which we get

w ¼ � dV

dx
(4.1)

The moment equation of equilibrium yields

SMO ¼ 0 þ m �M � V dxþ ðM þ dMÞ þ w dx
dx

2
¼ 0

FIG. 4.4 (a) Simply supported beam carrying distributed loading; (b) free-body
diagram of an infinitesimal beam segment.
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After canceling M and dividing by dx, we get

�V þ dM

dx
þ w dx

2
¼ 0

Because dx is infinitesimal, the last term can be dropped (this is not an
approximation), yielding

V ¼ dM

dx
(4.2)

Equations (4.1) and (4.2) are called the di¤erential equations of equili-

brium for beams. The following five theorems relating the load, the shear
force, and the bending moment diagrams follow from these equations.

1. The load intensity at any section of a beam is equal to the negative of
the slope of the shear force diagram at the section.
Proof—follows directly from Eq. (4.1).

2. The shear force at any section is equal to the slope of the bending
moment diagram at that section.
Proof—follows directly from Eq. (4.2).

3. The di¤erence between the shear forces at two sections of a beam is
equal to the negative of the area under the load diagram between those
two sections.
Proof—integrating Eq. (4.1) between sections A and B in Fig. 4.5, we
obtain ð xB

xA

dV

dx
dx ¼ VB � VA ¼ �

ð xB

xA

w dx

Recognizing that the integral on the right-hand side of this equation
represents the area under the load diagram between A and B, we get

VB � VA ¼ �area of w-diagram�BA Q:E:D:

FIG. 4.5 (a) Simply supported beam carrying distributed loading; (b) free-body
diagram of a finite beam segment.
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For computational purposes, a more convenient form of this equation
is

VB ¼ VA � area of w-diagram�BA (4.3)

Note that the signs in Eq. (4.3) are correct only if xB > xA.
4. The di¤erence between the bending moments at two sections of a beam

is equal to the area of the shear force diagram between these two sec-
tions.
Proof—integrating Eq. (4.2) between sections A and B (see Fig. 4.5),
we have ð xB

xA

dM

dx
dx ¼MB �MA ¼

ð xB

xA

V dx

Because the right-hand side of this equation is the area of the shear
force diagram between A and B, we obtain

MB �MA ¼ area of V -diagram�BA Q.E.D.

We find it convenient to use this equation in the form

MB ¼MA þ area of V -diagram�BA (4.4)

The signs in Eq. (4.4) are correct only if xB > xA.
5. If the load diagram is a polynomial of degree n, then the shear force

diagram is a polynomial of degree ðnþ 1Þ, and the bending moment
diagram is a polynomial of degree ðnþ 2Þ.
Proof—follows directly from the integration of Eqs. (4.1) and (4.2).

The area method for drawing shear force and bending moment
diagrams is a direct application of the foregoing theorems. For example,
consider the beam segment shown in Fig. 4.6(a), which is 2 m long and is
subjected to a uniformly distributed load w ¼ 300 N/m. Figure 4.6(b) shows
the steps required in the construction of the shear force and bending moment
diagrams for the segment, given that the shear force and the bending
moment at the left end are VA ¼ þ1000 N and MA ¼ þ3000 N �m.

b. Concentrated forces and couples

The area method for constructing shear force and bending moment dia-
grams described above for distributed loads can be extended to beams that
are loaded by concentrated forces and/or couples. Figure 4.7 shows the free-
body diagram of a beam element of infinitesimal length dx containing a point
A where a concentrated force PA and a concentrated couple CA are applied.
The shear force and the bending moment acting at the left side of the ele-
ment are denoted by V�A and M�

A , whereas the notation VþA and Mþ
A is used

for the right side of the element. Observe that all forces and moments in
Fig. 4.7 are assumed to be positive according to the sign conventions in Fig. 4.3.

The force equilibrium equation gives

SFy ¼ 0 þ" V�A � PA � VþA ¼ 0
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VþA ¼ V�A � PA (4.5)

Equation (4.5) indicates that a positive concentrated force causes a negative
jump discontinuity in the shear force diagram at A (a concentrated couple
does not a¤ect the shear force diagram).

FIG. 4.6 (a) Free-body diagram of a beam segment carrying uniform loading;
(b) constructing shear force and bending moment diagrams for the beam segment.

FIG. 4.7 Free-body diagram of an
infinitesimal beam element carrying a
concentrated force PA and a
concentrated couple CA.
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The moment equilibrium equation yields

SMA ¼ 0 þ m

Mþ
A �M�

A � CA � VþA

dx

2
� V�A

dx

2
¼ 0

Dropping the last two terms because they are infinitesimal (this is not an
approximation), we obtain

Mþ
A ¼M�

A þ CA (4.6)

Thus, a positive concentrated couple causes a positive jump in the bending
moment diagram.

c. Summary

Equations (4.1)–(4.6), which are repeated below, form the basis of the area
method for constructing shear force and bending moment diagrams without
deriving the expressions for V and M. The area method is useful only if the
areas under the load and shear force diagrams can be computed easily.

w ¼ � dV

dx
(4.1)

V ¼ dM

dx
(4.2)

VB ¼ VA � area of w-diagram�BA (4.3)

MB ¼MA þ area of V -diagram�BA (4.4)

VþA ¼ V�A � PA (4.5)

Mþ
A ¼M�

A þ CA (4.6)

Procedure for the Area Method The following steps outline the pro-
cedure for constructing shear force and bending moment diagrams by the
area method:

. Compute the support reactions from the FBD of the entire beam.. Draw the load diagram of the beam (which is essentially a FBD) show-
ing the values of the loads, including the support reactions. Use the
sign conventions in Fig. 4.3 to determine the correct sign of each load.. Working from left to right, construct the V- and M-diagrams for each
segment of the beam using Eqs. (4.1)–(4.6).. When you reach the right end of the beam, check to see whether the
computed values of V and M are consistent with the end conditions. If
they are not, you have made an error in the computations.

At first glance, using the area method may appear to be more cumber-
some than plotting the shear force and bending moment equations.
However, with practice you will find that the area method is not only
much faster but also less susceptible to numerical errors because of the self-
checking nature of the computations.
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Sample Problem 4.5

The simply supported beam in Fig. (a) supports a 30-kN concentrated force at B and
a 40-kN �m couple at D. Sketch the shear force and bending moment diagrams by
the area method. Neglect the weight of the beam.

Solution

Load Diagram

The load diagram for the beam is shown in Fig. (b). The reactions at A and E were
found from equilibrium analysis. The numerical value of each force (and the couple)
is followed by a plus or minus sign in parentheses, indicating its sign as established by
the sign conventions in Fig. 4.3.

Shear Force Diagram

We now explain the steps used to construct the shear force diagram in Fig. (c). From
the load diagram, we see that there are concentrated forces at A, B, and E that will
cause jumps in the shear force diagram at these points. Therefore, our discussion of
shear force must distinguish between sections of the beam immediately to the left and
to the right of each of these points.
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We begin by noting that V�A ¼ 0 because no loading is applied to the left of A.
We then proceed across the beam from left to right, constructing the diagram as
we go:

VþA ¼ V�A � RA ¼ 0� ð�14Þ ¼ þ14 kN

Plot point za .

V �B ¼ VþA � area of w-diagram�BA ¼ 14� 0 ¼ 14 kN

Plot point zb .

Because w ¼ �dV=dx ¼ 0 between A and B, the slope of the V-diagram is zero be-
tween these points.

Connect za and zb with a horizontal straight line.

VþB ¼ V�B � PB ¼ 14� ðþ30Þ ¼ �16 kN

Plot point zc .

V�E ¼ VþB � area of w-diagram�EB ¼ �16� 0 ¼ �16 kN

Plot point zd .

Noting that w ¼ �dV=dx ¼ 0 between B and E, we conclude that the slope of the
V-diagram is zero in segment BE.

Connect zc and zd with a horizontal straight line.

Because there is no loading to the right of E, we should find that VþE ¼ 0.

VþE ¼ V�E � RE ¼ �16� ð�16Þ ¼ 0 Checks!

Bending Moment Diagram

We now explain the steps required to construct the bending moment diagram shown
in Fig. (d). Because the applied couple is known to cause a jump in the bending
moment diagram at D, we must distinguish between the bending moments at sections
just to the left and to the right of D. Before proceeding, we compute the areas under
the shear force diagram for the di¤erent beam segments. The results of these com-
putations are shown in Fig. (c). Observe that the areas are either positive or negative,
depending on the sign of the shear force.

We begin our construction of the bending moment diagram by noting that
MA ¼ 0 (there is no couple applied at A).

Plot point ze .

Proceeding across the beam from left to right, we generate the moment diagram in
Fig. (d) in the following manner:

MB ¼MA þ area of V -diagram�BA ¼ 0þ ðþ56Þ ¼ 56 kN �m

Plot point zf .

The V-diagram shows that the shear force between A and B is constant and positive.
Therefore, the slope of the M-diagram between these two sections is also constant
and positive (recall that dM=dx ¼ V ).

Connect ze and zf with a straight line.

M�
D ¼MB þ area of V -diagram�DB ¼ 56þ ð�48Þ ¼ 8 kN �m

Plot point zg .

Because the slope of the V-diagram between B and D is negative and constant, the
M-diagram has a constant, negative slope in this segment.

Connect zf and zg with a straight line.
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Mþ
D ¼M�

D þ CD ¼ 8þ ðþ40Þ ¼ 48 kN �m

Plot point zh .

Next, we note that ME ¼ 0 (there is no couple applied at E ). Our computation based
on the area of the V-diagram should verify this result.

ME ¼Mþ
D þ area of V -diagram�ED ¼ 48þ ð�48Þ ¼ 0 Checks!

Plot point zi .

The shear force between D and E is negative and constant, which means that the
slope of the M-diagram for this segment is also constant and negative.

Connect zh and zi with a straight line.

1
Sample Problem 4.6

The overhanging beam in Fig. (a) carries two uniformly distributed loads and a con-
centrated load. Using the area method, draw the shear force and bending moment
diagrams for the beam. Neglect the weight of the beam.
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Solution

Load Diagram

The load diagram for the beam is given in Fig. (b); the reactions at B and D were
determined by equilibrium analysis. Each of the numerical values is followed by a plus or
minus sign in parentheses, determined by the sign conventions established in Fig. 4.3. The
significance of the section labeled F will become apparent in the discussion that follows.

Shear Force Diagram

The steps required to construct the shear force diagram in Fig. (c) are now detailed. From
the load diagram, we see that there are concentrated forces at B, C, and D, which means that
there will be jumps in the shear diagram at these points. Therefore, we must di¤erentiate
between the shear force immediately to the left and to the right of each of these points.

We begin our construction of the V-diagram by observing that VA ¼ 0 because
no force is applied at A.

Plot point za .

V�B ¼ VA � area of w-diagram�BA ¼ 0� ðþ400Þð2Þ ¼ �800 lb

Plot point zb .

We observe from Fig. (b) that the applied loading between A and B is constant and
positive, so the slope of the shear diagram between the two cross sections is constant
and negative (recall that dV=dx ¼ �w).

Connect za and zb with a straight line.
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VþB ¼ V�B � RB ¼ �800� ð�1520Þ ¼ 720 lb

Plot point zc .

V�C ¼ VþB � area of w-diagram�CB ¼ 720� 0 ¼ 720 lb

Plot point zd .

Because w ¼ �dV=dx ¼ 0 between B and C, the slope of the V-diagram is zero in
this segment.

Connect zc and zd with a horizontal straight line.

VþC ¼ V�C � PC ¼ 720� ðþ400Þ ¼ 320 lb

Plot point ze .

V�D ¼ VþC � area of w-diagram�DC ¼ 320� ðþ200Þ4 ¼ �480 lb

Plot point zf .

Because the loading between C and D is constant and positive, the slope of the
V-diagram between these two sections is constant and negative.

Connect ze and zf with a straight line.

Our computations have identified an additional point of interest—the point where
the shear force is zero, labeled F on the load diagram in Fig. (b). The location of F

can be found from

VF ¼ VþC � area of w-diagram�FC ¼ 320� ðþ200Þd ¼ 0

which gives d ¼ 1:60 ft, as shown in Fig. (c).
Continuing across the beam, we have

VþD ¼ V�D � RD ¼ �480� ð�880Þ ¼ 400 lb

Plot point zg .

Next, we note that VE ¼ 0 (there is no force acting at E ). The computation based on
the area of the load diagram should verify this result.

VE ¼ VþD � area of w-diagram�ED ¼ 400� ðþ200Þ2 ¼ 0 Checks!

Plot point zh .

From Fig. (b), we see that the applied loading between D and E is constant and
positive. Therefore, the slope of the V-diagram between these two cross sections is
constant and negative.

Connect zg and zh with a straight line.

This completes the construction of the shear force diagram.

Bending Moment Diagram

We now explain the steps required to construct the bending moment diagram shown
in Fig. (d). Because there are no applied couples, there will be no jumps in the
M-diagram. The areas of the shear force diagram for the di¤erent segments of the
beam are shown in Fig. (c).

We begin by noting that MA ¼ 0 because no couple is applied at A.

Plot point zi .

Proceeding from left to right across the beam, we construct the bending moment
diagram as follows:

MB ¼MA þ area of V -diagram�BA ¼ 0þ ð�800Þ ¼ �800 lb � ft

Plot point zj .
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We note from Fig. (c) that the V-diagram between A and B is a first-degree
polynomial (inclined straight line). Therefore, the M-diagram between these two
cross sections is a second-degree polynomial—that is, a parabola. From dM=dx ¼ V ,
we see that the slope of the M-diagram is zero at A and �800 lb/ft at B.

Connect zi and zj with a parabola that has zero slope at zi and negative slope
at zj . The parabola will be concave downward.

MC ¼MB þ area of V -diagram�CB ¼ �800þ ðþ720Þ ¼ �80 lb � ft

Plot point zk .

Because the V-diagram is constant and positive between B and C, the slope of the
M-diagram is constant and positive between those two cross sections.

Connect zj and zk with a straight line.

MF ¼MC þ area of V -diagram�FC ¼ �80þ ðþ256Þ ¼ þ176 lb � ft

Plot point zl .

Using V ¼ dM=dx, we know that the slope of the M-diagram is þ320 lb/ft at C and
zero at F, and that the curve is a parabola between these two cross sections.

Connect zk and zl with a parabola that has positive slope at zk and zero slope
at zl . The parabola will be concave downward.

MD ¼MF þ area of V -diagram�DF ¼ 176þ ð�576Þ ¼ �400 lb � ft

Plot point zm .

The M-diagram between F and D is again a parabola, with a slope of zero at F and
�480 lb/ft at D.

Connect zl and zm with a parabola that has zero slope at zl and negative slope
at zm . The parabola will be concave downward.

Next, we note that ME ¼ 0 because no couple is applied at E. Our computation
based on the area of the V-diagram should verify this result.

ME ¼MD þ area of V -diagram�ED ¼ �400þ ðþ400Þ ¼ 0 Checks!

Plot point zn .

From the familiar arguments, the M-diagram between D and E is a parabola with a
slope equal to þ400 lb/ft at D and zero at E.

Connect zm and zn with a parabola that has positive slope at zm and zero slope
at zn . The parabola will be concave downward.

This completes the construction of the bending moment diagram. It is obvious
in Fig. (d) that the slope of the M-diagram is discontinuous at zj and zm . Not so
obvious is the slope discontinuity at zk : From dM=dx ¼ V , we see that the slope of
the M-diagram to the left of zk equals þ720 lb/ft, whereas to the right of zk the
slope equals þ320 lb/ft. Observe that the slope of the M-diagram is continuous at zl

because the shear force has the same value (zero) to the left and to the right of zl .

1
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Problems

4.24–4.47 Construct the shear force and bending moment diagrams for the beam
shown by the area method. Neglect the weight of the beam.

4 ft 4 ft

6000 lb 4000 lb 2000 lb

4 ft 4 ft

A
B C D

E

FIG. P4.24

4 m 2 m 2 m

D

C

B
40 kN · m

20 kN

20 kN

A

FIG. P4.25

60 kN 40 kN 50 kN

A

B C

D
E

1.5 m 1.5 m 1.5 m 2 m

FIG. P4.26

5 ft 5 ft

600 lb 800 lb 400 lb1500 lb

5 ft 5 ft

A B C D E

FIG. P4.27

A
B

D
C

250 lb/ft
2000 lb2000 lb

16 ft8 ft 8 ft

FIG. P4.28

A

B

D

C

250 lb/ft

16 ft8 ft 8 ft

FIG. P4.29

FIG. P4.30 FIG. P4.31

FIG. P4.32

16 kN 4 kN/m

20 kN 2 kN/m

8 m8 m4 m

B C
A D

FIG. P4.33
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FIG. P4.34

1100 lb 400 lb/ft

6000 lb/ft

2 ft2 ft2 ft
6 ft

FIG. P4.35

140 kN

2 m 2 m3 m

30 kN

m

FIG. P4.36 FIG. P4.37

FIG. P4.38

A

B

D
C Hinge

24 kN/m

2 m5 m 3 m

FIG. P4.39

FIG. P4.40 FIG. P4.41

2000 lb

FIG. P4.42 FIG. P4.43

FIG. P4.44 FIG. P4.45
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4.48–4.52 Draw the load and the bending moment diagrams that correspond to
the given shear force diagram. Assume no couples are applied to the beam.

FIG. P4.46 FIG. P4.47

4
4800

800
2000

–8000

4 46

FIG. P4.48 FIG. P4.49

FIG. P4.50 FIG. P4.51

FIG. P4.52
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Review Problems

4.53–4.67 Draw the shear force and bending moment diagrams for the beam
shown. Neglect the weight of the beam.

600 lb

6 ft 6 ft 6 ft2 ft

800 lb 600 lb

FIG. P4.53 FIG. P4.54

4P

E

4 4 4 4

FIG. P4.55

A B

500 lb/ft

10 ft

8000 lb · ft8000 lb · ft

FIG. P4.56

FIG. P4.57

L

3w0

w0

A B

FIG. P4.58

FIG. P4.59
FIG. P4.60

5 kN

FIG. P4.61 FIG. P4.62

FIG. P4.63
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4.68–4.69 Draw the load and the bending moment diagrams that correspond to
the given shear force diagram. Assume that no couples are applied to the beam.

Computer Problems

C4.1 The cantilever beam AB represents a pile that supports a retaining wall. Due
to the pressure of soil, the pile carries the distributed loading shown in the figure. Use
numerical integration to compute the shear force and the bending moment at B.

C4.2 The overhanging beam carries a distributed load of intensity w0 over its length
L and a concentrated load P at the free end. The distance between the supports is x.
Given L, w0, and P, plot the maximum bending moment in the beam as a function of x

from x ¼ L=2 to L. Use L ¼ 16 ft, w0 ¼ 200 lb/ft, and (a) P ¼ 1200 lb and (b) P ¼ 0.
What value of x minimizes the maximum bending moment in each case?

x

L

A

w0 P

B

FIG. C4.2

FIG. P4.64

2.5 kN/m

4 m4 m

FIG. P4.65

FIG. P4.66 FIG. P4.67

FIG. P4.68 FIG. P4.69

FIG. C4.1
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C4.3 The concentrated loads P1, P2, and P3, separated by the fixed distances a and
b, travel across the simply supported beam AB of length L. The distance between A

and P1 is x. Given the magnitudes of the loads, a, b, and L, write an algorithm to
plot the bending moment under each load as a function of x from x ¼ 0 to L� a� b.
Use (a) P1 ¼ 4000 lb, P2 ¼ 8000 lb, P3 ¼ 6000 lb, a ¼ 9 ft, b ¼ 18 ft, and L ¼ 44 ft;
and (b) P1 ¼ 8000 lb, P2 ¼ 4000 lb, P3 ¼ 6000 lb, a ¼ 5 ft, b ¼ 28 ft, and L ¼ 80 ft.

FIG. C4.3

C4.4 The cantilever beam AB of length L carries a distributed loading w that
varies with the distance x. Given L and wðxÞ, construct an algorithm to plot
the shear force and bending moment diagrams. Use (a) L ¼ 3 m and w ¼
ð50 kN=mÞ sinðpx=2LÞ; and (b) L ¼ 5 m and

w ¼

20 kN=m if x a 1:0 m

ð20 kN=mÞ x

1:0 m
if 1:0 m a x a 4 m

0 if x > 4 m

8>>>><
>>>>:

C4.5 Solve Prob. C4.4 if the beam is simply supported at A and B.

FIG. C4.4, C4.5
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