Ministry of Higher Education and Scientific Research
Scientific Supervision and Scientific Evaluation Apparatus
Directorate of Quality Assurance and Academic Accreditation
Accreditation Department

Academic Program and Course Description Guide

Academic Program Description Form

University Name: Northern Technical University

Faculty/Institute: Al-dour Technical Institute

Scientific Department: Mechanical techniques

Academic or Professional Program Name: Technical diploma

Final Certificate Name: Technical diploma in Mechanical techniques

Academic System: Curriculum system

Description Preparation Date: 15/9/2024

File Completion Date: 17/9/2024

Signature:

Head of Department Name:Lec.Dr.Asmaa

Muneam Abdullah

Date:

Signature: _

Scientific Associate

Name: Pro. Dr. Hanan Shihab Ahmed

Date:

The file is checked by: Ass.Lec. Haider Ali Muhsen

Department of Quality Assurance and University Performance

Director of the Quality Assurance and University Performance Department:

Date:

Signature:

Approval of the Dean

1. Program Vision

The Department of Mechanical Engineering is one of the main technological departments. The department is working towards expanding the base of technical education and its modern applications, becoming a leader in providing certified technical services, in a spirit of competition and cooperation with the community

2. Program Mission

The Department of Mechanical Technology has adopted a general mission based in its general form on the framework of technical education in Iraq, which it seeks to achieve every year to highlight the department's distinguished aspect. The general objectives focus on graduating national technical cadres at a level of education and training that are capable of absorbing technology systems and supporting the process of technical development to keep pace with rapid global technical developments. The department's mission includes.

3. Program Objectives

The Production Branch aims to prepare technical staff to serve as a link between specialists and skilled workers. The department prepares and equips graduates with theoretical, practical and applied information to enable them to carry out the tasks assigned to them

4. Program Accreditation

No program accreditation

5. Other external influences

The labor market, through its follow-up, aims to qualify our students in a manner that suits them, in addition to the summer training program.

6. Program Structure											
Program Structure	Number of Courses	Credit hours	Percentage	Reviews*							
Institution Requirements	10	20	17.39%	essential							
College Requirements	4	12	10.4%	essential							
Department Requirements	23	83	72.1%	essential							
Summer Training	_	_	_	achieved							
Other	_	_	_	_							

7. Program De	escription			
Year/Level	Course Code	Course Name		Credit Hours
			practical	theoretical
	METP125	alloys casting	2	-
	METP121	dynamic mechanics	2	2
	NTU102	computer	1	1
	METP120	(static mechanic	2	2
	TIMO110	mathematics 1	2	-
VEL	TIMO111	mathematics 2	2	-
LE	NTU 101	English language	2	-
FIRST LEVEL	NTU 100	Democracy and human rates	2	-
=	NTU 105	sport	1	1
	METP122	Welding and measurements	2	2
	METP123	casting	2	2
	METP126	2-D engineering drawing	-	3
	METP127	3-D engineering	-	3

		drawing		
	TIOM112	Mechanical workshops	_	6
	METP129	Electricity technology	1	2
	NTU 104	Arabic language	2	-
	METP131	Summer training	_	-
	METP128	Advanced workshops	_	6
	METP124	Metal material properties	2	_
	METP210	principals of machines parts	2	-
	METP212	(tolerances engineering	2	2
	METP211	crystal metallurgy science	2	2
	METP214	primary machining workshops	_	6
	NTU 204	occupational ethics	2	-
	NTU 201	computer	1	1
	METP218	principals of industrial drawings	_	3
	NTU 203	Baath crimes in Iraq	2	_
eve	TUDO203	principles of occupational ethics	2	_
<u> </u>	METP223	welding processes	2	-
Second leve	METP211	advanced machine parts)	2	_
ν̈́	METP213	operation processes	2	2
	MTP212	physical metals properties	2	2
	METP215	advanced machining workshops	_	6
	METP216	project	_	2
	METP219	advanced(industrial drawing	2	-
	TUDO204	industrial management	2	-
	NTU202	Arabic language	2	_
	METP224	metal forming processes	2	2

8. Expected learning outcomes of the program									
Knowledge									
	Learning Outcomes Statement 1								
	A1. Understanding metallic materials and non-								
	metallic structures.								
	A2. Understanding chemical and physical properties								
Knowledge and	of metallic and non-metallic materials.								
Understanding .A	A3. Understand computer architect								
3	A4. Understand Allocation techniques								
	A5. Understand the operating system, basic tasks,								
	memory storage and management								
	A6. Understanding of the importance of								
	manufacturing process to the economy and design								
Skills	, , ,								
<u></u>	B1. Classified metallic and non-metallic materials								
	B2. Heat treatments for aluminum, magnesium and								
	copper alloys and ceramics material								
Subject-specific skills .B	B3. Use the drawing instruments; draw two								
	dimensional drawings, isometric drawings								
	B4. Present with basic skills for 2-D and 3-D								
	vectors and concept of force, moment and equilibrium								
Ethics									
	professional and academic ethics among students and								
	faculty. The program emphasizes integrity,								
	responsibility, and respect in all academic and								
	professional activities. Students are expected to:								
	Adhere to honesty and transparency in assignments,								
	projects, and research.								
	Respect intellectual property rights and avoid								
	plagiarism in any form.								
	Follow safety regulations, environmental								
	sustainability principles, and professional codes of								
	conduct in engineering practice.								
	Demonstrate respect, fairness, and inclusiveness in								

interactions with peers, faculty, and the community.
By integrating ethical principles into coursework,
laboratory work, and practical training, the program
ensures that graduates are prepared to uphold the
highest standards of professionalism in the mechanical
engineering field.

9. Teaching and Learning Strategies

Through the presentation of a theoretical explanation with the aid of white board and 'Data Show', to illustrate syllabus (examples and exercises) and using text books

10. Evaluation methods

Written examination: To assess knowledge, understanding and skills

- 1.(First half of the academic year, Mid-year exam, Second half of the academic year, final exam the academic year).
- 2. Oral examination: To assess knowledge, skills and intellectual functions, and attitude, written exams
- 3. Assignments & other activities
- 4. Quizzes (Shock exams homework. and reports

11. Faculty **Faculty Members Special Specialization** Number of the Academic Rank Requirements/Skills teaching staff (if applicable) General **Special** Staff Lecturer PhD Mechanics lecturer applied permanent

			engineering		
lecturer	Mechanics	Internal ignition	PhD Engineering	permanent	
Assistant lecturer	Mechanics	production	MSc Engineering	permanent	
Assistant lecturer	Mechanics	production	MSc Engineering	permanent	
MSc electricity engineering	electricity	electricity	MSc Engineering		Lecturer

Professional Development

Mentoring new faculty members

The admission criteria is through central admission within the Ministry's plan, according to the student's branch in middle school and his GPA

Professional development of faculty members

The department adopts a comprehensive academic and professional development plan for faculty, focusing on modern teaching strategies, continuous assessment, and ongoing growth. Faculty are encouraged to use student-centered and technology-driven teaching methods, while learning outcomes are regularly evaluated through diverse assessment tools to ensure quality education. Professional development is supported through workshops, research opportunities, industry collaboration, and training in instructional design and outcome-based education, ensuring faculty remain current and effective in their roles.

12. Acceptance Criterion

(The textbook, auxiliary materials, external Internet sources, scientific

research and its latest developments

13. The most important sources of information about the program

- 1. Developing the mechanics department's laboratories and developing the curriculum through deletion, addition, and substitution.
- 2. Learning about recent scientific developments.
- 3. Participating in international and local conferences.
- 4. Participating in scientific workshops inside and outside Iraq.
- 5. Hosting scientific experts in the field of specialization

14. Program Development Plan

- 1. Developing the mechanics department's laboratories and developing the curriculum through deletion, addition, and substitution.
- 2. Learning about recent scientific developments.
- 3. Participating in international and local conferences.
- 4. Participating in scientific workshops inside and outside Iraq.
- 5. Hosting scientific experts in the field of specialization

				Progra	am Sk	ills Ou	ıtline									
				Required program Learning outcomes												
Year /Level	Course Code			Knowledge				Skills				Ethio	Ethics			
	or option al	A1	A2	A3	A4	B1	B2	В3	B4	C1	C2	C3	C4			
First	METP125	Metal alloys	basic	V			V	V	V		V	V	V	V		
level	METP121 Dynamic mechanics	basic	V	V		V	V	V		V	V	V	V	V		
	NTU102	Computer	basic	V	V		V	V	V		V	V	V	V	V	
	METP120	Static mechanics	basic	V	V		V	V	V		V	V	V	V	V	
	TIMO110	Mathematics 1	basic	V	V		V	V	V		V	V	V	V	V	
	TIMO111	Mathematics2	basic	V	V	V	V	V	V		V	V	V	V	V	
	NTU 101	English language	basic	V			V	V			V	V	V	V		
	NTU 100	Democracy and human rates	basic	V			V	V			V	V	V	V		
	NTU 104	Sport	option	V	V	V	V	V	V		V	V	V	V	V	

		al											
METP122	Welding and measurements	basic	V			V	V	V	V	V	V	V	
METP123	Casting	basic	V	V		V	V	V	V	V	V	V	V
METP126	Engineering Drawing 3D	basic	V	V		V	V	V	V	V	V	V	V
METP127	Engineering drawing 2D	basic	V	V		V	V	V	V	V	V	V	V
TIOM112	Mechanical Workshop	basic	V	V		V	V	V	V	V	V	V	V
METP129	Electricity technology	basic	V	V	V	V	V	V	V	V	V	V	V
NTU 103	Arabic language	basic	V			V	V		V	V	V	V	
METP131	Summer training	basic	V			V	V		V	V	V	V	
METP128	Advanced properties	basic	V	V	V	V	V	V	V	V	V	V	V
METP124	Metal material properties	basic	V	V	V	V	V	V	V	V	V	V	V

Second level	METP210	Principles of machine parts	basic	V			V	V	V	V	V	V	V	
	METP212	Engineering tolerance	basic	V	V		V	V	V	V	V	V	V	V
<u> </u>	MTP211	Crystallographic metal science	basic	V	V		V	V	V	V	V	V	V	V
	METP214	Primary workshops	basic	V	V		V	V	V	V	V	V	V	V
	NTU 204	Occupational ethics	basic	V	V		V	V	V	V	V	V	V	V
	NTU 201	Computer	basic	V	V	V	V	V	V	V	V	V	V	V
	METP218	Principles of industrial drawing	basic	V			V	V		V	V	ν	V	
	NTU 203	Baath crimes in iraq	basic	V			V	V		V	V	V	V	
	TUDO203	Occupational safety principles	basic	V	V	V	V	V	V	V	V	V	V	V
	METP223	Welding processes	basic	V	V	V	V	V	V	V	V	V	V	V
	METP211	Advanced machine	basic	V	V	V	V	V	V	V	V	V	V	V

	parts												
METP213	Operation processes	basic	V	V	V	V	V	V	V	V	V	V	V
MTP212	Physical metal properties	basic	V	V	V	V	V	V	V	V	V	V	V
METP215	Advanced workshopes	basic	V	V	V	V	V	V	V	V	V	V	V
MTP216	Project	basic	V	V	V	V	V	V	V	V	V	V	V
METP219	Advanced Industrial drawing	basic	V	V	V	V	V	V	V	V	V	V	V
TUDO204	Industrial management	basic	V	V	V	V	V	V	V	V	V	V	V
NTU202	Arabic language	basic	V			V	V	V	V	V	V	V	
METP224	metal forming processes	basic	V	V		V	V	V	V	V	V	V	V
NTU200	English language	basic	V			V	V	V	V	V	V	V	
NTU201	computer	basic	V	V		V	V	V	V	V	V	V	V