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Analysis and design of T – beam 

Reinforced concrete floor systems normally consist of slabs and beams 

that are placed monolithically. As a result, the two parts act together to resist 

loads. In effect, the beams have extra widths at their tops, called flanges, and 

the resulting T-shaped beams are called T-beams. The part of a T beam below 

the slab is referred to as the web or stem. (The beams may be L shaped if the 

stem is at the end of a slab.) The stirrups in the webs extend up into the slabs, 

as perhaps do bent-up bars, with the result that they further make the beams 

and slabs act together. 

There is a problem involved in estimating how much of the slab acts as 

part of the beam. If, however, the flanges are wide and thin, bending stresses 

will vary quite a bit across the flange due to shear deformations. The farther a 

particular part of the slab or flange is away from the stem, the smaller will be 

its bending stress. 
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Effective flange width (b) interior beam, code 6.3.2:  

b is the smallest of:  

1.  bw + 16 hf                          (bw is web width; hf is flange thickness)  

2.  l /4                           (l = span length)  

3.  bw + s                       (s = clear transverse span between beams)  

 

 

 

 

  

 

  

In case of external beam (b) is the smallest of: 

1.  bw + 6 hf  

2.  bw + l /12              (l = span length)  

3.  bw + s/2                 (s = clear transverse span)  

 

Usually, the depth of stress block a < hf, in this case the analysis is identical 

to that of wide beam of width b.  

   

≡ 
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If the neutral axis is below the flange, however, as shown for the beam of 

figure the compression concrete above the neutral axis no longer consists of a 

single rectangle, and thus the normal rectangular beam expressions do not 

apply. 

 

 

 

 

 

 

  

Analyzing T Beams: 

First, the value of a is determined, if it is less than the flange thickness, 

hf, rectangular beam and the rectangular beam formulas will apply. And if it 

is greater than the flange thickness, hf, then T section.  

The beam is divided into a set of rectangular parts consisting of the 

overhanging parts of the flange and the compression part of the web. The total 

compression, Cw, in the web rectangle, and the total compression in the 

overhanging flange, Cf, are computed:  

  

Separation of T beam into rectangular parts 
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𝑪𝒘 = 𝟎. 𝟖𝟓 𝒇𝒄′ 𝒂 𝒃𝒘 

𝑪𝒇 = 𝟎. 𝟖𝟓 𝒇𝒄′ (𝒃 −  𝒃𝒘)𝒉𝒇 

Then the nominal moment, Mn, is determined from compression forces 

by multiplying Cw and Cf by their respective lever arms from their centroid to 

the centroid of the steel:  

𝑀𝑛 =  𝐶𝑤  (𝑑 − 
𝑎

2
) + 𝑪𝒇 (𝒅 − 

𝒉𝒇

𝟐
) 

Or from force balanced:  

𝐴𝑠𝑓 =  
0.85 𝑓

𝑐′(𝑏𝑒𝑓𝑓− 𝑏𝑤)ℎ𝑓 

𝑓𝑦
,   and     𝐴𝑠𝑤 =  𝐴𝑠 − 𝐴𝑠𝑓   

Then:  

𝑎𝑛𝑒𝑤 =  
𝐴𝑠 − 𝐴𝑠𝑓

0.85 𝑓𝑐′ 𝑏𝑤
 𝑓𝑦 

𝑀𝑛 =  𝐴𝑠𝑤  𝑓𝑦 (𝑑 − 
𝑎

2
) + 𝑨𝒔𝒇 𝑓𝑦 (𝒅 −  

𝒉𝒇

𝟐
) 

As for rectangular beams, the tensile steel should yield prior to sudden 

crushing of the compression concrete, as assumed in the preceding 

development. Yielding of the tensile reinforcement and Code compliance are 

ensured if the net tensile strain is greater than 𝜀𝑡  ≥ 0.004. 

Setting εu = 0.003 and εt = 0.004 provides a maximum reinforced ratio. 

This will occur if 𝜌𝑤 =  
𝐴𝑠

𝑏𝑤 𝑑
 is less than:  
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𝜌𝑤,𝑚𝑎𝑥 =  𝜌𝑚𝑎𝑥 +  𝜌𝑓 

where: 

𝜌𝑓 =  
𝐴𝑠𝑓

𝑏𝑤𝑑
 

𝜌𝑚𝑎𝑥: as previously defined for a rectangular cross section.  

𝜌𝑤,𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
+ 

𝐴𝑠𝑓

𝑏𝑤𝑑
 

Note: For T or L (ACI-Code - For statically determinate members with 

a flange in tension, As, min shall not be less than the value given by the equation: 

𝐴𝑆,𝑚𝑖𝑛 =  
0.25 √𝑓𝑐′

𝑓𝑦
 𝑏𝑤𝑑  

Except that bw is replaced by either 2bw or the width of the flange, 

whichever is smaller).  

 

Example: Determine the design strength of the T beam shown in figure 

below, with fc' = 25 MPa and fy = 420 MPa. The beam has a 10m span and is 

cast integrally with a floor slab that is 100 mm thick. The clear distance 

between webs is 1250 mm.  
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Effective flange width (b): 

b is the smallest of:  

1.  bw + 16 hf   = 250 + 16 (100) = 1850 mm                      

2.  l /4  = 
10000

4
 = 2500 mm                          

3.  bw + s   = 250 + 1250 =1500 mm    

 

⸫ beff = 1500 mm 

𝐴𝑆,𝑚𝑖𝑛 =  
0.25 √𝑓𝑐′

𝑓𝑦
 𝑏𝑤𝑑 =  

0.25 √25

420
 250 𝑥 530 = 394.34 𝑚𝑚2  

But not less than: 

𝐴𝑆,𝑚𝑖𝑛 =  
1.4

𝑓𝑦
 𝑏𝑤𝑑 =   

1.4

420
 250 𝑥 530 = 𝟒𝟒𝟏. 𝟕 𝒎𝒎𝟐  control 

 𝐴𝑠 > 𝐴𝑆,𝑚𝑖𝑛  

𝑎 =  
𝐴𝑠  𝑓𝑦

0.85 𝑓𝑐′ 𝑏𝑒𝑓𝑓
=   

2950 𝑥 420 

0.85 𝑥 25 𝑥 1500 
= 38.87 𝑚𝑚 <  ℎ𝑓  

⸫ Rectangular section 

𝑀𝑛 =  𝐴𝑠 𝑓𝑦 (𝑑 − 
𝑎

2
)  = 2950 𝑥 420 ( 530 − 

38.87

2
) = 632.59 𝑘𝑁. 𝑚  

Calculate the value of ∅: 

𝑐 =  
𝑎

0.85
= 45.73 𝑚𝑚  

 

𝜀𝑡𝑦  =  
𝑓𝑦

200000
=

420

200000
= 0.0021  

 

𝜀𝑡  =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

530 − 45.73

45.73
) = 0.03177 

⸪ 𝜀𝑡 >  𝜀𝑡𝑦 + 0.003  

⸫ ∅ = 0.9 

𝑀𝑢 =  ∅𝑀𝑛 =  0.9 𝑥 632.59 = 𝟓𝟔𝟗. 𝟑𝟑 𝒌𝑵. 𝒎  



7 
 

Example: A concrete slab with 80mm supports on beams the distance 

between them 1.8 m clc with simply supported span of 5 m, find ultimate 

moment capacity for the interior beam, using fc' = 20.7 MPa and fy = 345 

MPa, d = 600 mm. Use 8 # 32 = 6436 mm2. 

 
 

 

 

 

 

 

 

 Solution: 

Effective flange width (b): 

b is the smallest of:  

1.  bw + 16 hf   = 360 + 16 (80) = 1640 mm                      

2.  l /4  = 
5000

4
 = 1250 mm                          

3.  bw + s   = 360 + 1440 =1800 mm    

 

⸫ beff = 1250 mm 

𝐴𝑆,𝑚𝑖𝑛 =  
0.25 √𝑓𝑐′

𝑓𝑦
 𝑏𝑤𝑑 =  

0.25 √20.7

345
 360 𝑥 600 = 712.13 𝑚𝑚2  

But not less than: 

𝐴𝑆,𝑚𝑖𝑛 =  
1.4

𝑓𝑦
 𝑏𝑤𝑑 =   

1.4

345
 360 𝑥 600 = 𝟖𝟕𝟔. 𝟓 𝒎𝒎𝟐  control 

 𝐴𝑠 > 𝐴𝑆,𝑚𝑖𝑛  

𝑎 =  
𝐴𝑠  𝑓𝑦

0.85 𝑓𝑐′ 𝑏𝑒𝑓𝑓
=   

6436 𝑥 345 

0.85 20.7 𝑥 1250 
= 100.956 𝑚𝑚 >  ℎ𝑓  

 

⸫ T- section 

 



8 
 

 

 

 

   

 

 

 

 

  

𝐴𝑠𝑓 =  
0.85 𝑓

𝑐′(𝑏𝑒𝑓𝑓− 𝑏𝑤)ℎ𝑓 

𝑓𝑦
=  

0.85 𝑥 20.7 (1250 −360)𝑥 80 

345
= 3631 𝑚𝑚2       

𝐴𝑠𝑤 =  𝐴𝑠 − 𝐴𝑠𝑓 = 6436 − 3631 = 2805 𝑚𝑚2  

Then:  

𝑎𝑛𝑒𝑤 =  
𝐴𝑠 − 𝐴𝑠𝑓

0.85 𝑓𝑐′ 𝑏𝑤
 𝑓𝑦 =  

6436 − 3631 

0.85 𝑥 20.7 𝑥 360
 𝑥 345 = 𝟏𝟓𝟐. 𝟖 𝒎𝒎 

𝜌𝑤 =  
𝐴𝑠

𝑏𝑤  𝑑
=  

6436

360 𝑥 600 
= 𝟎. 𝟎𝟐𝟗𝟖  

 

𝜌𝑤,𝑚𝑎𝑥 =  𝜌𝑚𝑎𝑥 +  𝜌𝑓 

𝜌𝑤,𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
+ 

𝐴𝑠𝑓

𝑏𝑤𝑑
 

𝜌𝑤,𝑚𝑎𝑥 = 0.85 𝑥 0.85 
20.7

345
 

0.003

0.003 + 0.004
+ 

3631

360 𝑥 600
 

 

𝜌𝑤,𝑚𝑎𝑥 = 0.01858 + 0.01681 = 𝟎. 𝟎𝟑𝟐𝟓𝟑𝟗 

 

𝜌𝑤  <   𝜌𝑤,𝑚𝑎𝑥 

 

⸫ Under Reinforcement 
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𝑀𝑛 =  𝐴𝑠𝑤  𝑓𝑦 (𝑑 −  
𝑎

2
) + 𝐴𝑠𝑓 𝑓𝑦  (𝑑 − 

ℎ𝑓

2
)

= 2805 𝑥 345 (600 − 
152.8

2
) + 3631 𝑥 345 (600 −  

80

2
)

= 𝟏𝟐𝟎𝟖. 𝟐𝟏 𝒌𝑵. 𝒎𝒎  

 Calculate the value of ∅: 

𝑐 =  
𝑎

0.85
= 179.8 𝑚𝑚 

 

 

𝜀𝑡𝑦  =  
𝑓𝑦

200000
=

345

200000
= 0.0017 

 

 

𝜀𝑡  =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

600 − 179.8

179.8
) = 0.00701 

 

⸪ 𝜀𝑡 >  𝜀𝑡𝑦 + 0.003 

⸫ ∅ = 0.9 

𝑀𝑢 =  ∅𝑀𝑛 =  0.9 𝑥 1208.21 = 𝟏𝟎𝟖𝟕. 𝟑𝟖𝟗 𝒌𝑵. 𝒎 

  

Design of L and T beams: 

For the design of T or L beams, the flange has normally already been 

selected in the slab design, as it is for the slab. The size of the web is normally 

not selected on the basis of moment requirements but probably is given an 

area based on shear requirements; that is, a sufficient area is used so as to 

provide a certain minimum shear capacity. It is also possible that the width of 

the web may be selected on the basis of the width estimated to be needed to 

put in the reinforcing bars. Sizes may also have been preselected, to simplify 

formwork for architectural requirements or for deflection reasons.  

The flanges of most T beams are usually so large that the neutral axis 

probably falls within the flange, and thus the rectangular beam formulas 

apply. Should the neutral axis fall within the web, a trial-and-error process is 
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often used for the design. In this process, a lever arm from the center of gravity 

of the compression block to the center of gravity of the steel is estimated to 

equal the larger of 0.9d or (𝒅 − 
𝒉𝒇

𝟐
), and from this value, called z, a trial steel 

area is calculated (𝑨𝒔 =
𝑴𝒏

𝒇𝒚 𝒛
).  

If there is much difference, the estimated value of z is revised and a 

new As determined. This process is continued until the change in As is quite 

small.  

The bending moment over the support is negative, so the flange is in 

tension. Also, the magnitude of the negative moment is usually larger than 

that of the positive moment near mid span. This situation will control the 

design of the T beam because the depth and web width will be determined for 

this case. Then, when the beam is designed for positive moment at mid-span, 

the width and depth are already known. 

 

Example: Determine the steel area of T beam, with fc' = 20 MPa and 

fy = 400 MPa. The beam has a 7.2 m span and is cast integrally with a floor 

slab that is 75 mm thick. The center distance between webs is 1.2 m. If Mu = 

710 kN.m, bw = 275 mmm and d = 500 mm. 

Effective flange width (b): 

b is the smallest of:  

1.  bw + 16 hf   = 275 + 16 (75) = 1475 mm                      

2.  l /4 = 
7200

4
 = 1800 mm                          

3.  bw + s   = 275 + 925 =1200 mm                         ⸫ beff = 1200 mm 

 

Try a = hf = 75 mm try ∅ = 0.9 

𝑀𝑢,𝑓𝑙𝑎𝑛𝑔𝑒 = ∅ 𝑀𝑛  =  ∅ 𝑥 0.85 𝑓𝑐′ 𝑥 𝑏𝑒𝑓𝑓 𝑥 ℎ𝑓  (𝑑 − 
ℎ𝑓

2
)

= 0.9 𝑥 0.85 𝑥 20 𝑥 1200 𝑥 75 (500 − 
75

2
) = 636.9 𝑘𝑁. 𝑚 

< 710 𝑘𝑁. 𝑚   

Then T- section 
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𝐴𝑠𝑓 =  
0.85 𝑓

𝑐′(𝑏𝑒𝑓𝑓− 𝑏𝑤)ℎ𝑓 

𝑓𝑦
=  

0.85 𝑥 20 (1200 −275)𝑥 75 

400
= 2949 𝑚𝑚2       

𝑀𝑢,𝑓𝑙𝑎𝑛𝑔𝑒 =  ∅ 𝑥 𝐴𝑠𝑓𝑥 𝑓𝑦  (𝑑 − 
ℎ𝑓

2
) = 0.9 𝑥 2949 𝑥 400 (500 − 

75

2
)

= 491.0 𝑘𝑁. 𝑚  

𝑀𝑢,𝑤 = 710 − 491.0 = 219 𝑘𝑁. 𝑚 

𝑀𝑢,𝑤 =  ∅ 𝑥 0.85 𝑓𝑐′ 𝑥 𝑏𝑤 𝑥 𝑎 (𝑑 − 
𝑎

2
) 

219 𝑥 106 =  0.9 𝑥 0.85 𝑥 20 𝑥 275 𝑥 𝑎 (500 − 
𝑎

2
) 

𝑎2 − 1000𝑎 + 104099.82 = 0 

𝑎 = 118.0 𝑚𝑚 >  ℎ𝑓 = 75 𝑚𝑚 

𝐴𝑠𝑤 =  
219 𝑥 106

0.9 𝑥 400 𝑥 (500 − 
118

2
)

= 1380 𝑚𝑚2 

As-total = 2949 + 1380 = 4329 mm2 

Check the value of ∅: 

 

𝑐 =  
𝑎

0.85
= 138.82 𝑚𝑚 

 

𝜀𝑡  =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

500 − 138.82

138.82
) = 0.0078 

 

𝜀𝑡𝑦  =  
𝑓𝑦

200000
=

400

200000
= 0.002 

 

⸪ 𝜀𝑡 >  𝜀𝑡𝑦 + 0.003 

⸫ ∅ = 0.9 
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Example: Find the area of steel required for the simply supported 

beams B-1 and B-2 for the plan shown, using fc
' = 20 MPa, and fy = 400 MPa. 

Loads B-1 B-2 Nots 

Wd kN/m 55 27.5 (including its own weight) 

WL kN/m 100 50 ------ 

 

 

 

 

 

 

 

 

For interior beam B-1: 

Effective flange width (b): 

b is the smallest of:  

4.  bw + 16 hf   = 250 + 16 (75) = 1450 mm                      

5.  l /4  = 
5000

4
 = 1250 mm                          

6.  bw + s   = 250 + 2750 =3000 mm                         ⸫ beff = 1250 mm 

Wu= 1.2 x 55 + 1.6 x 100 = 226 kN/m 

𝑀𝑢 =  
𝑤𝑙2

8
=  

226 𝑥 25

8
= 706.25 𝑘𝑁. 𝑚 

Try a = hf  = 75 mm try ∅ = 0.9 

𝑀𝑢,𝑓𝑙𝑎𝑛𝑔𝑒 = ∅ 𝑀𝑛  =  ∅ 𝑥 0.85 𝑓𝑐′ 𝑥 𝑏𝑒𝑓𝑓 𝑥 ℎ𝑓  (𝑑 − 
ℎ𝑓

2
)

= 0.9 𝑥 0.85 𝑥 20 𝑥 1250 𝑥 75 (500 − 
75

2
) = 663.4 𝑘𝑁. 𝑚 

< 706.3 𝑘𝑁. 𝑚   

Then T- section 
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𝐴𝑠𝑓 =  
0.85 𝑓

𝑐′(𝑏𝑒𝑓𝑓− 𝑏𝑤)ℎ𝑓 

𝑓𝑦
=  

0.85 𝑥 20 (1250 −250)𝑥 75 

400
= 3188 𝑚𝑚2       

𝑀𝑢,𝑓𝑙𝑎𝑛𝑔𝑒 =  ∅ 𝑥 𝐴𝑠𝑓𝑥 𝑓𝑦  (𝑑 − 
ℎ𝑓

2
) = 0.9 𝑥 3188 𝑥 400 (500 − 

75

2
)

= 530.8 𝑘𝑁. 𝑚  

𝑀𝑢,𝑤 = 706.3 − 530.8 = 175.5 𝑘𝑁. 𝑚 

𝑀𝑢,𝑤 =  ∅ 𝑥 0.85 𝑓𝑐′ 𝑥 𝑏𝑤 𝑥 𝑎 (𝑑 − 
𝑎

2
) 

175.5 𝑥 106 =  0.9 𝑥 0.85 𝑥 20 𝑥 250 𝑥 𝑎 (500 − 
𝑎

2
) 

𝑎2 − 1000𝑎 + 91764.7 = 0 

𝑎 = 102.2 𝑚𝑚 >  ℎ𝑓 = 75 𝑚𝑚 

𝐴𝑠𝑤 =  
175.5 𝑥 106

0.9 𝑥 400 𝑥 (500 − 
102.2

2
)

= 1086 𝑚𝑚2 

As-total = 3188 + 1086 = 4274 mm2 

Check the value of ∅: 

 

 

 

 

𝑐 =  
𝑎

0.85
= 120.235 𝑚𝑚 

 

𝜀𝑡  =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

500 − 120.235

120.235
) = 0.00948 

𝜀𝑡𝑦  =  
𝑓𝑦

200000
=

400

200000
= 0.002 

 

⸪ 𝜀𝑡 >  𝜀𝑡𝑦 + 0.003 

⸫ ∅ = 0.9 
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For exterior beam B-2: 

In case of external beam (b) is the smallest of: 

1.  bw + 6 hf = 250 + 6(75) = 700 mm 

2.  bw + l /12 = 250 + 
5000

12 
= 𝟔𝟔𝟕 𝒎𝒎 

3. bw + s/2 = 250 + 
2750

2 
= 1625 𝑚𝑚  

⸫ beff = 667 mm 

Wu= 1.2 x 27.5 + 1.6 x 50 = 113 kN/m 

 

𝑀𝑢 =  
𝑤𝑙2

8
=  

113 𝑥 25

8
= 353.13 𝑘𝑁. 𝑚 

 

Try a = hf  = 75 mm try ∅ = 0.9 

 

𝑀𝑢,𝑓𝑙𝑎𝑛𝑔𝑒 =  ∅ 𝑥 0.85 𝑓𝑐′ 𝑥 𝑏𝑒𝑓𝑓  𝑥 ℎ𝑓  (𝑑 − 
ℎ𝑓

2
)

= 0.9 𝑥 0.85 𝑥 20 𝑥 667 𝑥 75 (500 − 
75

2
) = 353.98 𝑘𝑁. 𝑚 

≈ 353.13 𝑘𝑁. 𝑚   

Then rectangular- section 

𝑀𝑢,𝑤 =  ∅ 𝑥 0.85 𝑓𝑐′ 𝑥 𝑏 𝑥 𝑎 (𝑑 − 
𝑎

2
) 

353.13 𝑥 106 =  0.9 𝑥 0.85 𝑥 20 𝑥 667 𝑥 𝑎 (500 − 
𝑎

2
) 

𝑎2 − 1000𝑎 + 69206.6 = 0 

𝑎 = 74.8 𝑚𝑚 < ℎ𝑓 = 75 𝑚𝑚           ok. 

𝐴𝑠𝑤 =  
0.85 𝑥 20 𝑥 667 𝑥 74.8

400
= 2121 𝑚𝑚2 
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Check the value of ∅: 

𝑐 =  
𝑎

0.85
= 88 𝑚𝑚  

 

 

 

 

 

 

 

  

 

 

𝜀𝑡  =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

500 − 88

88
) = 0.01405 

𝜀𝑡𝑦  =  
𝑓𝑦

200000
=

400

200000
= 0.002  

 

⸪ 𝜀𝑡 >  𝜀𝑡𝑦 + 0.003  

 

⸫ ∅ = 0.9 
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Analysis and design of doubly reinforced rectangular beam 

If the beam cross-section is limited and the moment is high, 

reinforcement is added in the compression zone as well as tension 

reinforcement. This will permit using reinforcement ratio ρ > ρmax and failure 

will not be sudden. Also, this compression reinforcement reduces the long-

term deflections which result from creep of concrete. 

 

Analysis of doubly reinforced beam (tension and compression 

reinforcement) 

Calculation of resisting Moment of Double Reinforced Beam: 

 

 If ρ < ρmax the strength of beam may be approximated by disregarding 

(neglecting) the compression bars and analysis is done as for single reinforced 

beam. 

 

 If ρ > ρmax then the total resisting moment can be assumed as sum of 

two parts: 
 

  

 

 

 

 

 

 

 

  

 

𝑀𝑛1 =  𝐴𝑠́𝑓𝑦 (𝑑 − 𝑑́) 

𝑀𝑛2 = (𝐴𝑠 − 𝐴𝑠́)𝑓𝑦 (𝑑 − 
𝑎

2
) 

 Then total resisting moment Mn = Mn1 + Mn2 

Mn = Mn1 + Mn2 Mn2 Mn1 

doubly reinforced rectangular 

beam 
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𝑀𝑛 =  𝑀𝑛1 + 𝑀𝑛2  

𝑀𝑛 =  𝐴𝑠́𝑓𝑦 (𝑑 − 𝑑́) + (𝐴𝑠 −  𝐴𝑠́)𝑓𝑦 (𝑑 − 
𝑎

2
)  

𝑎 =  
𝐴𝑠 −  𝐴𝑠′

0.85 𝑓𝑐′ 𝑏
 𝑓𝑦 

If the compression steel is not yielded at failure (i.e.  𝒇𝒔́   <   𝒇𝒚) then: 

𝑀𝑛 =   0.85 𝑓𝑐́  𝑎 . 𝑏 (𝑑 − 
𝑎

2
) + 𝐴𝑠́ 𝑓𝑠́ (𝑑 − 𝑑́) 

Where: 

𝑓𝑠́ =  𝜀𝑠 ́  𝐸𝑠 

𝜀
𝑠′

c−𝑑′
=  

εu

c
   ,  𝜀𝑠′ =

c−d′

c
 εu 

To calculate a: 

𝑁𝑡  =  𝑁𝑐1  +  𝑁𝑐2 

𝐴𝑆𝑓𝑦 =  0.85 𝑓𝑐′ 𝑎 . 𝑏 + 𝐴𝑠́ 𝑓𝑠́ 

𝐴𝑆𝑓𝑦 =  0.85 𝑓𝑐′ 𝛽1𝑐 . 𝑏 + 𝐴𝑠́  
c − d′

c
 εu. 𝐸𝑠  

Solve the above equation using Quadratic formula we get c. 

𝑋1,2 =  
−𝐵 ∓ √𝐵2 − 4𝐴. 𝐶

2𝐴
 

Then calculate a where: 

𝑎 =  𝛽1𝑐 

Or calculate c from the following formula: 

𝑐 =  √𝑄 + 𝑅2 − 𝑅 

Where:          𝑄 =  
600 𝑑′ 𝐴𝑠′

0.85𝛽1  𝑓𝑐′ 
    and   𝑅 =  

600  𝐴𝑠′− 𝐴𝑆𝑓𝑦 

1.7𝛽1 𝑓𝑐′ 𝑏 
 

  

εs′ d′ 

𝐶 − d′ 
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To check if compression steel yielded (𝑓𝑠́  =   𝑓𝑦) ρ is compared with 𝜌̅𝑐𝑦 

where: 

𝜌̅𝑐𝑦 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦

𝑑′

𝑑
  

𝜀𝑢

𝜀𝑢− 𝜀𝑦
+ 𝜌′   , where: 𝜌′ =  

𝐴
𝑠′

𝑏𝑑
 

If 𝜌 ≥  𝜌̅𝑐𝑦  then compression steel yielded (𝑓𝑠́ =  𝑓𝑦) 

If 𝜌 <  𝜌̅𝑐𝑦  then compression steel (𝑓𝑠́ <  𝑓𝑦),  𝑓𝑠́ =  
c−d′

c
 εu𝐸𝑠 

To avoid sudden failure ACI code limits  𝜌̅𝑚𝑎𝑥 to the following limit: 

𝜌̅𝑚𝑎𝑥 =  𝜌max +  𝜌
′ >  𝜌 

𝜌𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
 

Example:  Compute the design moment capacity for the section below, using  

fy = 400 MPa and fc
′= 20.7 MPa. 

𝐴𝑠 = (5)
𝜋 𝑑2

4
= (5)

𝜋 322

4
= 4021 𝑚𝑚2 

𝜌 =  
𝐴𝑠

𝑏 𝑑
=  

4021

360 𝑥 600
= 0.01862 

𝐴𝑠′ = (2)
𝜋 𝑑2

4
= (2)

𝜋 252

4
= 981.7 𝑚𝑚2 

𝜌′ =  
𝐴𝑠′

𝑏 𝑑
=

981.7

360 𝑥 600
= 0.00455 

Check ρ with ρmax to see if the beam can be analyzed as single reinforced. 

 

𝜌𝑚𝑎𝑥 =  0.85 𝑥 0.85 
20.7

400
  

0.003

0.003 + 0.004
= 0.01602 

 

⸪ 𝜌 >  𝜌𝑚𝑎𝑥 

⸫ The beam must be analyzed as doubly reinforced. 

Now, check if compression steel stress  𝑓𝑠′ = fy 
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𝜌̅𝑐𝑦 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦

𝑑′

𝑑
  

𝜀𝑢

𝜀𝑢− 𝜀𝑦
+ 𝜌′,      𝜀𝑦 =  

𝑓𝑦

𝐸𝑠
=  

400

200000
= 0.002 

𝜌̅𝑐𝑦 =  0.85 𝑥 0.85 
20.7

400

60

600
  

0.003

0.003 −  0.002
+  0.00455 = 0.01577 

𝜌 >  𝜌̅𝑐𝑦 

∴  𝑓𝑠′ =  𝑓𝑦 

𝜌̅𝑚𝑎𝑥 =  𝜌𝑚𝑎𝑥 + 𝜌′  = 0.01602 + 0.00455 = 0.02057 >  𝜌   ⸫ ok. 

Total resisting moment 𝑀𝑛 =  𝑀𝑛1 +  𝑀𝑛2 

 

𝑀𝑛1 =  𝐴𝑠́𝑓𝑦 (𝑑 −  𝑑́) = 981.7 𝑥 400 (600 − 60) = 212.0 𝑥 106  𝑘𝑁. 𝑚𝑚 

 

𝑀𝑛2 = (𝐴𝑠 − 𝐴𝑠́)𝑓𝑦 (𝑑 − 
𝑎

2
) 

Where: 

 𝑎 =  
𝐴𝑠 − 𝐴𝑠′

0.85 𝑓𝑐′ 𝑏
 𝑓𝑦 =  

4021−981.7

0.85 𝑥 20.7 𝑥 360
 400 = 𝟏𝟗𝟐 𝒎𝒎 

 

𝑀𝑛2 = (4021 −  981.7) 𝑥 400 𝑥 (600 − 
192

2
) =   𝟔𝟏𝟐. 𝟕 𝒙 𝟏𝟎𝟔 𝑵. 𝒎𝒎 

𝑀𝑛 =  212.0 𝑥  106  +  612.7 𝑥 106 = 𝟖𝟐𝟒. 𝟕 𝒙 𝟏𝟎𝟔 𝑵. 𝒎𝒎 

  

𝑐 =  
192

0.85
= 225.88 𝑚𝑚  

 

 

𝜀𝑡  =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

600 − 225.88

225.88
) = 𝟎. 𝟎𝟎𝟒𝟗𝟕  

⸪ 𝜀𝑡𝑦  < 𝜀𝑡 <  𝜀𝑡𝑦 + 0.003 (0.005) 

∴  ∅ = 0.65 + 0.25(
𝜀𝑡 − 𝜀𝑡𝑦 

0.003
) = 0.65 + 0.25(

0.00497 − 0.002 

0.003
) 
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∅ = 0.898 

∴ The design moment  𝑀𝑢 = 𝜙 𝑀𝑛  = 0.898 𝑥 824.7 = 𝟕𝟑𝟗. 𝟕𝟔 𝒌𝑵. 𝒎 

 

Example.: Find the ultimate moment capacity for the section below, using, fy 

= 345 MPa and fc′ = 27.6 MPa. 

 

 

 

𝐴𝑠 = (6)
𝜋 𝑑2

4
= (6)

𝜋 322

4
= 4826 𝑚𝑚2 

 

𝜌 =  
𝐴𝑠

𝑏 𝑑
=  

4826

300 𝑥 530
= 0.03035 

 

𝐴𝑠′ = (3)
𝜋 𝑑2

4
= (3)

𝜋 322

4
= 2413 𝑚𝑚2 

 

𝜌′ =  
𝐴𝑠′

𝑏 𝑑
=

2413

300 𝑥 530
= 0.01518 

to see if the beam can be analyzed as single reinforced. 
max

ρwith ρ Check  

𝜌𝑚𝑎𝑥 =  0.85 𝑥 0.85 
27.6

345
  

0.003

0.003 + 0.004
= 0.02477 

𝜌 > 𝝆̅𝑚𝑎𝑥 

⸫ The beam must be analyzed as doubly reinforced. 

y
f= 𝑓𝑠′ Now, check if compression steel stress   

𝜌̅𝑐𝑦 =  0.85 𝛽1 
𝑓𝑐′

𝑓𝑦

𝑑′

𝑑
  

𝜀𝑢

𝜀𝑢 −  𝜀𝑦
+  𝜌′ 
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 𝜀𝑦 =  
𝑓𝑦

𝐸𝑠
=  

345

200000
= 0.00173 

𝜌̅𝑐𝑦 =  0.85 𝑥 0.85 
27.6

345

70

530
  

0.003

0.003 −  0.00173
+  0.01518 = 𝟎. 𝟎𝟑𝟑𝟐𝟏 

𝜌 <  𝜌̅𝑐𝑦 

∴  𝒇𝒔′ <  𝒇𝒚 

𝑀𝑛 =   0.85 𝑓𝑐́ 𝑎 . 𝑏 (𝑑 −  
𝑎

2
) + 𝐴𝑠́ 𝑓𝑠́ (𝑑 −  𝑑́) 

𝐴𝑆𝑓𝑦 =  0.85 𝑓𝑐′ 𝑎 .  𝑏 +   𝐴𝑠́ 𝑓𝑠́ 

𝐴𝑆𝑓𝑦 =  0.85 𝑓𝑐′ 𝛽1𝑐 .  𝑏 + 𝐴𝑠́ 
c − d′

c
 εu. 𝐸𝑠  

4826 𝑥 345 =  0.85 𝑥 27.6 𝑥 0.85 𝑐 𝑥 300 +  2413 𝑥 
𝑐 − 70

𝑐
 𝑥 0.003 𝑥 200000 

1664970𝑐 =  5982.3 𝑐2 + 1447800 𝑐 − 101346000 

 5982.3 𝑐2 − 217170 𝑐 − 101346000 = 0 

𝑐2 − 36.3 𝑐 − 16940.98 = 0 

𝑋1,2 =  
−𝐵 ∓  √𝐵2 − 4𝐴. 𝐶

2𝐴
 

𝑐1,2 =  
36.3 ∓  √36.32 − 4𝑥 (1) 𝑥(−16940.98)

2𝑥 1
 

𝒄 = 𝟏𝟒𝟗. 𝟔 𝒎𝒎 

 
𝑎 = 𝛽1𝑐 = 0.85 𝑥 149.6 = 127.13 𝒎𝒎 

𝑓𝑠́ =  𝜀𝑠 ́  𝐸𝑠 

𝑓𝑠́ =  
c − d′

c
 εu𝐸𝑠 =  

149.6 − 70

149.6
 𝑥 0.003 𝑥 200000 = 319.25 𝑴𝒑𝒂 

𝑀𝑛 =   0.85 𝑓𝑐́ a . 𝑏 (𝑑 −  
𝑎

2
) + 𝐴𝑠́ 𝑓𝑠́ (𝑑 −  𝑑́) 
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𝑀𝑛 =   0.85 𝑥 27.6 𝑥 127.13 𝑥 300 (530 −  
127.13

2
)

+ 2413 𝑥  319.25 (530 − 70) = 𝟕𝟕𝟏. 𝟕 𝒌𝑵. 𝒎 

 

𝜀𝑡 =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

530 − 149.6

149.6
) = 0.00763 

⸪ 𝜀𝑡 >  𝜀𝑡𝑦 + 0.003 (0.004725) 

∴  ∅ = 𝟎. 𝟗 

𝑀𝑢 = 0.9 𝑥 771.7 = 𝟔𝟗𝟒. 𝟓𝟑 𝑵. 𝒎𝒎 
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Design of Doubly reinforced concrete rectangular beams       

Sufficient tensile steel can be placed in most beams so that compression steel 

is not needed. But if it is needed, the design is usually quite straight forward. 

The design procedure follows the theory used for analyzing doubly reinforced 

sections. 

 

Example: Design a rectangular beam for MD = 200 kN.m and ML = 350 kN.m 

if fc′ = 25 MPa and fy = 410 MPa. The maximum permissible beam dimensions 

are shown in below. 

𝑀𝑢  =  1.2 𝑀𝐷 + 1.6 𝑀𝐿 

𝑀𝑢  =  1.2 𝑥 200 + 1.6 𝑥 350 = 800 𝑘𝑁. 𝑚 

 

 

 

 

 

 For checking ∅ = 0.9 , then 𝜀𝑡 = 0.005, there is no economic 

efficiency of using 𝜀𝑡  ≤  0.005 Then use: 

𝜌 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.005
= 0.01652 

𝐴𝑠1(𝐴𝑠) =  𝜌 𝑏 𝑑 = 0.01652 𝑥 350 𝑥 530 = 𝟑𝟎𝟔𝟓 𝒎𝒎𝟐 

𝑀𝑢 =  ∅𝑀𝑛 = ∅ 𝜌 𝑓𝑦 𝑏 𝑑2   (1 −  0.59 
𝜌 𝑓𝑦

 𝑓𝑐′ 
) =  ∅ 𝑘𝑛𝑏 𝑑2 

 

𝑘𝑛 =  𝜌 𝑓𝑦  (1 −  0.59 
𝜌 𝑓𝑦

 𝑓𝑐′ 
) = 0.01652 𝑥 410 (1 − 0.59 

0.01652 𝑥 410

25
)

= 5.69052 

𝑀𝑢1 =  ∅𝑀𝑛 =  ∅ 𝑘𝑛𝑏 𝑑2 = 0.9 𝑥 5.69052 𝑥 350 𝑥 5302 =
𝟓𝟎𝟑. 𝟓𝟐 𝒌𝑵. 𝒎𝒎  ˂ 800 kN.m 

 

⸫ Compression reinforcement required 
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𝑎 =  
𝐴𝑠1 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

3065 𝑥 410 

0.85 𝑥 25 𝑥 350
= 168.96 𝑚𝑚 

𝑐 =  
𝑎

𝛽1
=  

168.96

0.85
= 198.8 𝑚𝑚 

𝑀𝑢2 = 800 − 503.52 = 296.48 𝑘𝑁. 𝑚𝑚 

 
εs′

c−d′
=  

εu

c
   ,  εs′ =

c−d′

c
 εu =  

198.8−60

198.8 
 𝑥 0.003 = 0.00209 

𝑓𝑠́ =  𝜀𝑠 ́  𝐸𝑠 = 0.00209 𝑥 200000 = 418.9 𝑀𝑝𝑎 

𝑓𝑠́  >  𝑓𝑦 

∴ 𝒇𝒔́ =  𝒇𝒚 = 𝟒𝟏𝟎 𝑴𝒑𝒂 

𝐴𝑠2 (𝐴𝑠′) =    
𝑀𝑢2

∅ 𝑓𝑦(𝑑 − 𝑑′)
=  

296.48 𝑥 106

0.9 𝑥 410 𝑥 (530 − 60)
= 𝟏𝟕𝟏𝟎 𝒎𝒎𝟐 

 

For tension reinforcement  𝐴𝑠 =  𝐴𝑠1(𝐴𝑠) + 𝐴𝑠2(𝐴𝑠′) 

= 3065 + 1710 = 𝟒𝟕𝟕𝟓 𝒎𝒎𝟐 
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Example: Find total area of steel required for the section below which 

supports Mu = 400 kN.m, using fy = 420 MPa, fc′ = 21MPa and d′= 65 mm if 

you need compression reinforcement. 

 

 

 

 

 

 

 

For checking ∅ = 0.9 , then 𝜀𝑡 = 0.005, there is no economic 

efficiency of using 𝜀𝑡  ≤  0.005 Then use: 

𝜌 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.005
= 0.01355 

𝐴𝑠1(𝐴𝑠) =  𝜌 𝑏 𝑑 = 0.01355 𝑥 300 𝑥 475 = 𝟏𝟗𝟑𝟏 𝒎𝒎𝟐 

𝑀𝑢 =  ∅𝑀𝑛 = ∅ 𝜌 𝑓𝑦 𝑏 𝑑2   (1 −  0.59 
𝜌 𝑓𝑦

 𝑓𝑐′ 
) =  ∅ 𝑘𝑛𝑏 𝑑2 

 

𝑘𝑛 =  𝜌 𝑓𝑦  (1 −  0.59 
𝜌 𝑓𝑦

 𝑓𝑐′ 
) = 0.01355 𝑥 420 (1 − 0.59 

0.01355 𝑥 420

21
)

= 4.781 

𝑀𝑢1 =  ∅𝑀𝑛 =  ∅ 𝑘𝑛𝑏 𝑑2 = 0.9 𝑥 4.781 𝑥 300 𝑥 4752 = 𝟐𝟗𝟏. 𝟐𝟓 𝒌𝑵. 𝒎𝒎  

˂ 400 kN.m 

⸫ Compression reinforcement required 

 

𝑎 =  
𝐴𝑠1 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

1931 𝑥 420 

0.85 𝑥 21 𝑥 300
= 151.5 𝑚𝑚 

𝑐 =  
𝑎

𝛽1
=  

151.5

0.85
= 178.2 𝑚𝑚 

𝑀𝑢2 = 400 − 291.25 = 108.75 𝑘𝑁. 𝑚𝑚 
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εs′

c−d′
=  

εu

c
   ,  εs′ =

c−d′

c
 εu =  

178.2−65

178.2
 𝑥 0.003 = 0.00191 

𝑓𝑠́ =  𝜀𝑠 ́  𝐸𝑠 = 0.00191 𝑥 200000 = 381.14 𝑀𝑝𝑎 

𝑓𝑠́  <  𝑓𝑦 

∴ 𝒇𝒔́ =  𝟑𝟖𝟏. 𝟏𝟒 𝑴𝒑𝒂 

𝐴𝑠2 (𝐴𝑠′) =    
𝑀𝑢2

∅ 𝑓𝑠́(𝑑 − 𝑑′)
=  

108.75 𝑥 106

0.9 𝑥 381.14 𝑥 (475 − 65)
=  𝟕𝟕𝟒 𝒎𝒎𝟐 

 

For tension reinforcement  𝐴𝑠 =  𝐴𝑠1(𝐴𝑠) + 𝐴𝑠2(𝐴𝑠′) 

= 1𝟗𝟑𝟏 + 𝟕𝟕𝟒 = 𝟐𝟕𝟎𝟓 𝒎𝒎𝟐 

 

 

  

  

 

 

 

 

 



  

1 
 

Bond, Anchorage and development length 
Concept of Bond Stress: 

 Bond stresses are existent whenever the tensile stress or force in a reinforcing bar 

changes from point to point along the length of the bar in order to maintain equilibrium. 

Without bond stresses, the reinforcement will pull out of the concrete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∑ 𝐹 = 0 

𝑇2 − 𝑇1 =  𝐹𝑏𝑜𝑛𝑑 

 

If this equation is not true (bond force Fbond is not strong enough), the bar will pull out 
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Mechanism of Bond Transfer 

A smooth bar embedded in concrete develops bond by adhesion between concrete 

and reinforcement, and a small amount of friction. This is different in a deformed bar. 

Once adhesion is lost at high bar stress and some slight movement between the 

reinforcement and the concrete occurs, bond is then provided by friction and bearing on 

the deformations of the bar. At much higher bar stress, bearing on the deformations of the 

bar will be the only component contributing to bond strength. 

 

 

 

 

Concept of development Length  

The concept of development length of a reinforcing bar which could be defined as 

that length of embedment necessary to develop the full tensile strength of the bar, 

controlled by either pullout or splitting. 

ACI code 25.4.2.1: Development length ℓd for deformed bars and deformed wires in 

tension shall be the greater of (a) and (b): 

a. Length calculated in accordance with 25.4.2.3 or 25.4.2.4 using the applicable 

modification factors of 25.4.2.5 

b.  300 mm. 
 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 
 



  

3 
 

𝑙𝑑 =  
𝑓𝑦

1.1 𝜆 √𝑓𝑐′
 
𝜓𝑡 𝜓𝑒𝜓𝑠 𝜓𝑔

(
𝑐𝑏+𝐾𝑡𝑟

𝑑𝑏
)

 𝑑𝑏            25.4.2.4 

 In which the confinement term (
𝐶𝑏+ 𝐾𝑡𝑟

𝑑𝑏
) shall not exceed 2.5,  (

𝑪𝒃+ 𝑲𝒕𝒓

𝒅𝒃
)  ≤ 𝟐. 𝟓  

and, 

𝐾𝑡𝑟 =  
40 𝐴𝑡𝑟

𝑠𝑛
  

           The values of √𝒇𝒄′ used to calculate development length shall not exceed 8.3 

MPa. 

√𝒇𝒄′   ≤ 𝟖. 𝟑 

Where n is the number of bars or wires being developed or lap spliced along the 

plane of splitting. It shall be permitted to use Ktr = 0 as a design simplification even if 

transverse reinforcement is present or required. 

 

K
tr
 = transverse reinforcement index. 

Atr: total cross-sectional area of transverse reinforcement that is within the spacing s and 

that crosses plane of splitting through the reinforcement being developed (mm2)  

 

s: Maximum spacing of transvers reinforcement within ld center to center (mm)  

 

cb: Is a factor that represents the least of the side cover, the concrete cover to the bar or 

wire (in both cases measured to the center of the bar or wire), or one-half the center-to-

center spacing of the bars or wires. 

 

 

 

 

 

 

 

cb is the lesser of 

1.  c1  

2. c2 

3.  
C3

2
. 
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For the calculation of ℓd, modification factors shall be in accordance with Table 

25.4.2.5. 

 

 

  

.  
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According to ACI code 25.4.10: Reduction in development length ld shall be 

permitted by the ratio of:  

 

 

When the provided tensile flexural reinforcement exceeds the required 

reinforcement, but with exceptions of five cases:  

 

a. At noncontiguous supports.  

b. At locations where anchorage or development for fy is required. 

c. Where bars are required to be continuous. 

d. For headed and mechanically anchored deformed reinforcement  

e. In seismic-force-resisting systems in structures assigned to seismic design 

categories D, E, or F.  

f. Anchorage of concrete piles and concrete filled pipe piles to pile caps in structures 

assigned to Seismic Design Categories C, D, E, or F. 

 

Example: Determine the development length required for the epoxy coated bottom 

bars shown in figure. 

1. Assuming ktr = 0 

2. Computing Ktr with the appropriate equation, fy = 420 Mpa and fc
′ = 21 Mpa. 
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Solution: 

 √𝑓𝑐′ = 4.582 𝑀𝑝𝑎 < 8.3 𝑀𝑝𝑎     ∴ 𝑂𝐾. 

From table 25.4.2.5: 

Ψg = 1.0 (Grad 420) 

Ψt = 1.0 (For bottom bars) 

Ψe = 1.5 (for epoxy – coated bars with clear spacing < 6db)  

ΨtΨe = 1.0 x 1.5 = 1.5 < 1.7     OK. 

Ψs = 1.0 (Bar size more than 22) 

𝞴 = 1.0 (Normal concrete) 

cb : The lesser of: 

1. Side cover of bar = 80 mm 

2. Bottom cover of bar = 80 mm 

3. ½ the center-to-center spacing of the bars = ½ (80) = 40 mm (Control)  

⸫ cb = 40 mm 

1. Assuming ktr = 0 
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=  

40 + 0

25
= 1.6 < 2.5     ∴ 𝑂𝐾. 

𝑙𝑑 =  
𝑓𝑦

1.1 𝜆 √𝑓𝑐′

 
𝜓𝑡 𝜓𝑒𝜓𝑠 𝜓𝑔

(
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
)

 𝑑𝑏 

𝑙𝑑 =  
420

1.1 𝑥 1 𝑥 √21
 
(1.0) 𝑥 (1.5) 𝑥 (1.0) 𝑥 (1.0)

1.6
 𝑥 25 = 𝟏𝟗𝟓𝟐. 𝟖 𝒎𝒎 

2. Computing Ktr with the appropriate equation: 

𝐾𝑡𝑟 =  
40 𝐴𝑡𝑟

𝑠𝑛
=  

40 𝑥 2 (79)

4 𝑥 200
= 7.9 𝑚𝑚 

𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=  

40 + 7.9

25
= 1.916 < 2.5     ∴ 𝑂𝐾. 

𝑙𝑑 =  
𝑓𝑦

1.1 𝜆 √𝑓𝑐′

 
𝜓𝑡 𝜓𝑒𝜓𝑠 𝜓𝑔

(
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
)

 𝑑𝑏 

𝑙𝑑 =  
420

1.1 𝑥 1 𝑥 √21
 
(1.0) 𝑥 (1.5) 𝑥 (1.0) 𝑥 (1.0)

1.916
 𝑥 25 = 𝟏𝟔𝟑𝟎. 𝟕𝟑𝟐 𝒎𝒎 
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Example: The figure below shows a beam-column joint, the negative steel required 

at the end of the beam is 1300 mm2, two No. 32 mm bars are used providing 1608 mm2. 

The design will include No. 10 stirrups with s =125 mm, fc
′ =30 MPa, fy = 420 MPa. Find 

the minimum distance ld at which the negative bars can be cut off. 

 

 

 

 

 

 

 

 

 

 

Solution:  

𝑙𝑑 =  
𝑓𝑦

1.1 𝜆 √𝑓𝑐′

 
𝜓𝑡 𝜓𝑒𝜓𝑠 𝜓𝑔

(
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
)

 𝑑𝑏 

√𝑓𝑐′ = 5.477 ≤ 8.3 Mpa         OK. 

From table 25.4.2.5: 

Ψg = 1.0 (Grad 420) 

Ψt = 1.3 (more than 300 mm concrete below reinforcement) 

Ψe = 1.0 (Uncoated bars) 

ΨtΨe = 1.0 x 1.3 = 1.3 < 1.7     OK. 

Ψs = 1.0 (Bar size more than 22) 

𝞴 = 1.0 (Normal concrete) 

cb : The lesser of: 

1. C1 = 525 – 450 = 75 mm 

2. C2 = 40 + 10 + 32/2 = 66 mm 
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3. C3 = ½ the center-to-center spacing of the bars = 59 mm (Control)  

 

𝐾𝑡𝑟 =  
40 𝐴𝑡𝑟

𝑠𝑛
=  

40 𝑥 2 (79)

2 𝑥 125
= 25.28 𝑚𝑚 

𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=  

59 + 25.28

32
= 2.633 > 2.5    

⸫ Take   
𝑐𝑏+ 𝐾𝑡𝑟

𝑑𝑏
= 2.5 

  

𝑙𝑑 =  
420

1.1 𝑥 1 𝑥 √30
 
1.3 𝑥 1.0 𝑥 1 𝑥 1

2.5
 𝑥 32 = 1160 𝑚𝑚 

𝑙𝑑 can be reduced by the ratio (
𝐴𝑠𝑟𝑒𝑞

𝐴𝑠𝑝𝑟𝑜.
) 

⸫  𝑙𝑑 = 1160 𝑥 
1300

1608 
= 𝟗𝟑𝟕. 𝟖𝟏 𝒎𝒎 
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Development of Deformed Bars in Compression: 

The development length ldc in compression is smaller than in tension because of two 

reasons. First, there are no tensile cracks present to encourage splitting, and second, there 

is some bearing of the ends of the bars on concrete, which also helps develop the load.  

 

ACI 318 -19 (25.4.9.1) Development length ℓdc for deformed bars and deformed 

wires in compression shall be the greater of (a) and (b): 

a. Length calculated in accordance with 25.4.9.2 

b.  200 mm. 
 

ACI 318 -19 (25.4.9.2) ℓdc shall be the greater of (a) and (b), using the modification 

factors of 25.4.9.3: 

 

𝒂. 𝑙𝑑𝑐 = (
0.24𝑓𝑦𝛹𝑟

𝜆√𝑓𝑐′

) 𝑑𝑏 

 

𝒃. 𝑙𝑑𝑐 = 0.043 𝑓𝑦𝛹𝑟𝑑𝑏 

ACI 318 -19 (25.4.9.3) For the calculation of ℓdc, modification factors shall be in 

accordance with Table 25.4.9.3, except ψr shall be permitted to be taken as 1.0. 
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Reduction in development length ldc shall be permitted by the ratio of: 

 

 

When the provided tensile flexural reinforcement exceeds the required 

reinforcement. 

 

Example: Find the development length for dowel bars for the separate footing 

shown and check the provided length inside the footing for the bars, use fc
′ = 30 MPa and 

fy = 400 MPa. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

𝒂. 𝑙𝑑𝑐 = (
0.24𝑓𝑦𝛹𝑟

𝜆√𝑓𝑐′

) 𝑑𝑏 =  (
0.24 𝑥 400 𝑥 1

1 𝑥 √30
) 25 =  𝟒𝟑𝟖. 𝟏𝟖 𝒎𝒎 

 

𝒃. 𝑙𝑑𝑐 = 0.043 𝑓𝑦𝛹𝑟𝑑𝑏 = 0.043 𝑥 400 𝑥 1 𝑥 25 =  430 𝑚𝑚 

 

 

𝑙𝑑𝑐 = 438.18 𝑚𝑚 > 200 𝑚𝑚   
  

⸫ OK. 

 

Lprovide = 600 – 75 – 25 – 25 = 475 mm > 438.18 mm   ⸫ OK 

 

 

 

 

 



  

11 
 

 

Development of standard hooks in tension: 

   When sufficient space is not available to anchor the tension bars to the required 

development lengths, hooks maybe used. The figure below shows the standard 90o and 

180o hooks as specified in the ACI 318-19 (25.3.1). 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

ACI 318-19 (25.4.3.1) Development length ℓdh for deformed bars in tension 

terminating in a standard hook shall be the greater of (a) through (c): 

 

𝒂. ( 
𝑓𝑦𝛹𝑒  𝛹𝑟 𝛹𝑜𝛹𝑐  

23 𝜆 √𝑓𝑐′

) 𝑑𝑏
1.5

 

 

𝒃. 8𝑑𝑏 

 

𝒄. 150 𝑚𝑚 

 

ACI 318-19 (25.4.3.2) For the calculation of ℓdh, modification factors ψe, ψr, ψo, ψc, 

and λ shall be in accordance with Table 25.4.3.2. At discontinuous ends of members, 

25.4.3.4 shall apply. 
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ACI 318 - 19 (25.4.3.3) The total cross-sectional area of ties or stirrups confining 

hooked bars Ath shall consist of (a) or (b): 

a. Ties or stirrups that enclose the hook and satisfy 25.3.2. 

b.  Other reinforcement enclosing the hook, that extends at least 0.75ℓdh from the 

enclosed hook in the direction of the bar in tension, and is in accordance with (1) or 

(2). For members with confining reinforcement that is both parallel and 

perpendicular to ℓdh, it shall be permitted to use the value of Ath based on (1) or (2) 

that results in the lower value of ℓdh. 

1. Two or more ties or stirrups shall be provided parallel to ℓdh enclosing the hooks, 

evenly distributed with a center-to-center spacing not exceeding 8db, and within 

15db of the centerline of the straight portion of the hooked bars, where db is the 

nominal diameter of the hooked bar. 
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2. Two or more ties or stirrups shall be provided perpendicular to ℓdh, enclosing the 

hooked bars, and evenly distributed along ℓdh with a center-to-center spacing not 

exceeding 8db, where db is the nominal diameter of the hooked bar. 

 

 

 

 

 

 

 

 

 

  

 

  

  

 

 

 

ACI 318 – 19 (25.3.2) Minimum inside bend diameters for bars used as transverse 

reinforcement and standard hooks for bars used to anchor stirrups, ties, hoops, and spirals 

shall conform to Table 25.3.2. Standard hooks shall enclose longitudinal reinforcement. 
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ACI 318 – 19 (25.4.1.2) Hooks and heads shall not be used to develop bars in 

compression. 

 

ACI 318 – 19 (25.4.3.4) For bars being developed by a standard hook at discontinuous 

ends of members with both side cover and top (or bottom) cover to hook less than 65 mm, 

(a) and (b) shall be satisfied: 

a.  The hook shall be enclosed along ℓdh within ties or stirrups perpendicular to 

ℓdh at s ≤ 3db 

b.  The first tie or stirrup shall enclose the bent portion of the hook within 2db 

of the outside of the bend where db is the nominal diameter of the hooked bar. 

 

 

 

 

 

 

 

 

 

 

 

 

Example: Referring to the beam-column joint of that is represented below for 

convenience, the No. 25 negative bars are to be extended into the column and terminated 

in a standard 90° hook, keeping 50 mm clear to the outside face of the column. The 

column width in the direction of beam width is 500 mm. Find the minimum length of 

embedment of the hook past the column face, and specify the hook details. As required 

is 1870 mm2, assume that normal weight concrete is to be used, with 𝑓𝑐′ = 28 𝑀𝑃𝑎, and 

𝑓𝑦 = 420 𝑀𝑃𝑎. 

 

 

 

 

 

 

  

 

 

 

 

 

4#25 

650 

280 mm 

525 mm 

Cover 40 mm 
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Solution: 

A. 𝒍𝒅𝒉 = ( 
𝑓𝑦𝛹𝑒 𝛹𝑟 𝛹𝑜𝛹𝑐 

23 𝜆 √𝑓𝑐′
) 𝑑𝑏

1.5
 

 

𝛹𝑒 = 1.0 (𝑈𝑛𝑐𝑜𝑎𝑡𝑒𝑑) 

𝛹𝑟 = 1.6  
𝛹𝑜 = 1.0  
𝛹𝑐 = 0.87 

𝜆 = 1.0 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 
 

𝒍𝒅𝒉 = ( 
420 𝑥 1.0 𝑥 1.6 𝑥 1.0 𝑥 0.87 

23 𝑥 1 𝑥 √28
) 251.5 = 600.5 𝑚𝑚 

 

⸪ As provide > As required 

 

⸫ Reduction in development length ldc shall be permitted by the ratio of:  

 

 

 

𝑙𝑑ℎ =  𝑙𝑑ℎ  
𝐴𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝐴𝑠𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑
= 600.5 𝑥 

1870

1964
= 𝟓𝟕𝟏. 𝟖 𝒎𝒎  

 

 

 

B. 𝑙𝑑ℎ =  8𝑑𝑏 = 8 𝑥 25 = 200 𝑚𝑚 

 

𝒄. 150 𝑚𝑚 

 

 

⸫ 𝒍𝒅𝒉 =  𝟓𝟕𝟏. 𝟖 𝒎𝒎 

 

 

 

 

 

 

 

 

600 > 571.8 

12db = 12(25) = 300 mm  
D = 6db = 6(25) = 150 mm 
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Example: Determine the development length or anchorage required for the uncoated 

top bars of the beam shown in the figure. The beam frames into an exterior 800 mm × 660 

mm column (the bars extend parallel to the 800 mm side), fc
′ = 28 MPa and fy = 420 MPa. 

Show the details if: 

a. Using straight bar. 

b. Using 180 - degree hook.  

c. Using 90 - degree hook. 

 

 

 

Solution: 

 

a. Using straight bar. 

 

𝑙𝑑 =  
𝑓𝑦

1.1 𝜆 √𝑓𝑐′

 
𝜓𝑡 𝜓𝑒𝜓𝑠 𝜓𝑔

(
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
)

 𝑑𝑏 

√𝑓𝑐′ = 5.29 𝑀𝑝𝑎 < 8.3 𝑀𝑝𝑎     ∴ 𝑂𝐾. 

From table 25.4.2.5: 

Ψg = 1.0 (Grad 420) 

Ψt = 1.3 (For more than 300 mm) 

Ψe = 1.0 (uncoated)  

ΨtΨe = 1.0 x 1.3 = 1.3 < 1.7     OK. 

Ψs = 1.0 (Bar size more than 22) 

𝞴 = 1.0 (Normal concrete) 

 

cb : The lesser of: 

4. Side cover of bar = 66 mm 

5. Bottom cover of bar = 66 mm 

6. ½ the center-to-center spacing of the bars = ½ (89.3) = 44.7 mm (Control)  

⸫ cb = 44.7 mm 

 

𝐾𝑡𝑟 =  
40 𝐴𝑡𝑟

𝑠𝑛
=  

40 𝑥 2 (113)

4 𝑥 150
= 15.1𝑚𝑚 

𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=  

44.7 + 15.1

28
= 2.135 < 2.5     ∴ 𝑂𝐾. 

4#25 

#10 @150 
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𝑙𝑑 =  
𝑓𝑦

1.1 𝜆 √𝑓𝑐′

 
𝜓𝑡 𝜓𝑒𝜓𝑠 𝜓𝑔

(
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
)

 𝑑𝑏 

 

𝑙𝑑 =  
420

1.1 𝑥 1 𝑥 √28
 
1.3𝑥 1.0 𝑥 1 𝑥 1

2.135
 𝑥 28 = 𝟏𝟐𝟑𝟎. 𝟐𝟏𝟓  𝒎𝒎 > 300 𝑚𝑚   ⸫ 𝑂𝐾. 

 

Available length = 800 – 40 = 760 mm 

 

𝑙𝑑  > 760      Not good 

 

b. Using 180 - degree hook.  

 

𝒍𝒅𝒉 = ( 
𝑓𝑦𝛹𝑒 𝛹𝑟 𝛹𝑜𝛹𝑐 

23 𝜆 √𝑓𝑐′
) 𝑑𝑏

1.5
  ,  𝒍𝒅𝒉 =  8𝑑𝑏 ,  𝒍𝒅𝒉 = 150 𝑚𝑚 

 

𝛹𝑒 = 1.0 (𝑢𝑛𝑐𝑜𝑎𝑡𝑒𝑑) 

𝛹𝑟 = 1.6  
𝛹𝑜 = 1.0  
𝛹𝑐 = 0.87 

𝜆 = 1.0 𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 

 

a. 𝒍𝒅𝒉 = ( 
420 𝑥 1.0 𝑥 1.6 𝑥 1.0 𝑥 0.87 

23 𝑥 1 𝑥 √28
) 281.5 = 𝟕𝟏𝟏. 𝟕 𝒎𝒎 

 

b. 𝒍𝒅𝒉 =  8𝑑𝑏 = 8 𝑥 28 = 224 𝑚𝑚 

c. 𝒍𝒅𝒉 =  150 𝑚𝑚 

⸫ 𝒍𝒅𝒉 =  𝟕𝟏𝟏. 𝟕 𝒎𝒎 

 𝒍𝒅𝒉  < 𝟕𝟔𝟎 𝒎𝒎 𝒂𝒗𝒊𝒂𝒍𝒃𝒍𝒆 𝒍𝒆𝒏𝒈𝒕𝒉 

⸫ OK. 

 

 

 

 

760 > 711.7 

D = 8db = 8(28) = 224 mm 

lext = 4 db =  112 mm 
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C. Using 90 - degree hook.  

 

 

 

 

 

 

 

Splices of reinforcement 

 

 

 

Need for Splices: 

 In general, reinforcing bars are stocked by suppliers in lengths of 12m. For this 

reason, and because it is often more convenient to work with shorter bar lengths, it is 

frequently necessary to splice bars in the field. 

Splice Types: 

Rebars are spliced to each other by: 

• Lap Splices: In this type, rebars are usually made simply by lapping the bars a 

sufficient distance to transfer stress by bond from one bar to the other. The lapped 

bars are usually placed in contact and lightly wired so that they stay in position as 

the concrete is placed. 

 

 

 

 
 

 
 

 
 
 

 
 

 

760 > 711.7 

12db = 12(28) = 336 mm  
D = 8db = 8(28) = 224 mm 

Reinforcing bar                     

Reinforcing bar 

Reinforcing bar                     

Reinforcing bar 

Splice length 
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• Mechanical Splices: Sample of mechanical splice is presented 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Welding Splice: Splice with welding splice, with fillet weld, 
 

 

 

 

 

 

 

 

 

 

 

 

ACI318 – 19 (25.5.1.1): Lap splices shall not be permitted for bars larger than No. 

36, except as provided in 25.5.5.3 (compression lap splices of No. 43 and No. 57 bars with 

smaller bars). This because of lack of adequate experimental data on lap splices for larger 

diameters. 
 

ACI318 – 19 (25.5.1.4): Reduction of development length in accordance with 

25.4.10.1 is not permitted in calculating lap splice lengths 
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Splice of Tension Reinforcement 

ACI318 – 19 (25.5.2.1): Tension lap splice length ℓst for deformed bars and 

deformed wires in tension shall be in accordance with Table 25.5.2.1, where ℓd shall be in 

accordance with 25.4.2.1(a). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACI318 – 19 (25.5.2.2): If bars of different size are lap spliced in tension, ℓst shall 

be the greater of ℓd of the larger bar and ℓ of the smaller bar. 
 

For calculating ℓ𝑑 for staggered splices, the clear spacing is taken as the minimum 

distance between adjacent splices, as illustrated in Figure below. 
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               Example: Design the tension lap splice for the continuous grade beam shown 

below using the general equation. From beam analysis, the required reinforcement area at 

section A is 1910 mm2 and the required reinforcement area at section B is 650 mm2, fc′ = 

28 = MPa and fy = 420 Mpa. Cover = 75 mm. 

 

 

 

 

 

 

 

 

 

 

 

Solution: 

1- Lap splice of reinforcement at section A: 

 

a- Assuming all bars are spliced at the same location: 
 

𝑙𝑑 =  
𝑓𝑦

1.1 𝜆 √𝑓𝑐′

 
𝜓𝑡 𝜓𝑒𝜓𝑠 𝜓𝑔

(
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
)

 𝑑𝑏 

√𝑓𝑐′ = 5.29 ≤ 8.3 Mpa         OK. 

From table 25.4.2.5: 

Ψg = 1.0 (Grad 420) 

Ψt = 1.0(bottom bars) 

Ψe = 1.0 (Uncoated bars) 

ΨtΨe  < 1.7     OK. 

 

Ψs = 1.0 (Bar size more than 22) 

𝞴 = 1.0 (Nor,al concrete) 

cb : The lesser of: 

4. C1 = 75 + 12+ 14 = 101 mm 

5. C2 = 101 mm 

6. C3 = ½ the center-to-center spacing of the bars = ½(66) = 33 mm (Control)  
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𝐾𝑡𝑟 =  
40 𝐴𝑡𝑟

𝑠𝑛
=  

40 𝑥 2 (113)

4 𝑥 350
= 6.45 𝑚𝑚 

𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=  

33 + 6.45

28
= 1.41 < 2.5    

⸫ OK. 

  

𝑙𝑑 =  
420

1.1 𝑥 1 𝑥 √28
 
1.0 𝑥 1.0 𝑥 1.0 𝑥 1.0

1.41
 𝑥 28 = 1433 𝑚𝑚 

 
𝐴𝑠𝑝𝑟𝑜.

𝐴𝑠𝑟𝑒𝑞.
=  

2463

1910
= 1.29 < 2.0 

⸫ Class B splice must be used  
 

⸫ splice length = 1.3𝑙𝑑   or 300 mm 

 

Splice = 1.3 x 1433 = 1862.9 mm > 300 mm      OK. 
 

⸫ The required splice length = 1862.9 mm 

 

 

b- Assuming alternate lap spliced bars are staggered by ld (As spliced = 50 %).  

 

𝑙𝑑 =  
𝑓𝑦

1.1 𝜆 √𝑓𝑐′

 
𝜓𝑡 𝜓𝑒𝜓𝑠 𝜓𝑔

(
𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
)

 𝑑𝑏 

√𝑓𝑐′ = 5.29 ≤ 8.3 Mpa         OK. 

From table 25.4.2.5: 

Ψg = 1.0 (Grad 420) 

Ψt = 1.0(bottom bars) 

Ψe = 1.0 (Uncoated bars) 

ΨtΨe  < 1.7     OK. 

Ψs = 1.0 (Bar size more than 22) 

𝞴 = 1.0 (Nor,al concrete) 



  

23 
 

cb : The lesser of: 

1. C1 = 75 + 12+ 14 = 101 mm 

2. C2 = 101 mm 

3. C3 = ½ the center-to-center spacing of the bars = ½ (132) = 66 mm (Control)

  

𝐾𝑡𝑟 =  
40 𝐴𝑡𝑟

𝑠𝑛
=  

40 𝑥 2 (113)

2 𝑥 350
= 12.91 𝑚𝑚 

𝑐𝑏 + 𝐾𝑡𝑟

𝑑𝑏
=  

66 + 12.91

28
= 2.818 > 2.5    

⸫  𝑡𝑎𝑘𝑒 
𝑐𝑏+ 𝐾𝑡𝑟

𝑑𝑏
= 2.5 

 𝑙𝑑 =  
420

1.1 𝑥 1 𝑥 √28
 
1.0 𝑥 1.0 𝑥 1.0 𝑥 1.0

2.5
 𝑥 28 = 808 𝑚𝑚 

 
𝐴𝑠𝑝𝑟𝑜

𝐴𝑠𝑟𝑒𝑞.
=  

2463

1910
= 1.29 < 2.0 

⸫ Class B splice must be used  
 

⸫ Splice length = 1.3𝑙𝑑   or 300 mm 

 

Splice = 1.3 x 808 = 1050.6 mm > 300 mm      OK. 
 

⸫ The required splice length = 1050.4 mm 

 

⸫ Use 1050.4 mm lap splice at section A and stagger alternate lap splices. 

 

 

 

H.W. 
2- Lap splice of reinforcement at section B: 
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Lap splice lengths of deformed bars in compression 

ACI318 – 19 (25.5.5.1): Compression lap splice length ℓsc of No. 36 or smaller 

deformed bars in compression shall be calculated in accordance with (a), (b), or (c): 

a.  For fy ≤ 420 MPa: ℓsc is the longer of (0.071 fy db) and 300 mm. 

b. For 420 MPa < fy ≤ 550 MPa: ℓsc is the longer of (0.13fy – 24) db and 300 

mm. 

c. For fy > 550 MPa, ℓsc is the longer of (0.13fy – 24) db and ℓst calculated in 

accordance with 25.5.2.1. 

For fc′ < 21 MPa, the length of lap shall be increased by one-third. 
 

ACI318 – 19 (25.5.5.2): Compression lap splices shall not be used for bars larger 

than No. 36, except as permitted in 25.5.5.3. 

 

ACI318 – 19 (25.5.5.3): Compression lap splices of No. 43 or No. 57 bars to No. 

36 or smaller bars shall be permitted and shall be in accordance with 25.5.5.4. 

ACI318 – 19 (25.5.5.4): Where bars of different size are lap spliced in compression, 

ℓsc shall be the longer of ℓdc of larger bar calculated in accordance with 25.4.9.1 and ℓsc of 

smaller bar calculated in accordance with 25.5.5.1 as appropriate. 
 

Example: In the figure below, 4 No.36mm column bars for the floor below are to 

be lap spliced with 4 No. 32mm column bars from above. The transverse reinforcement 

consists of No.12mm ties at 200mm spacing. All vertical bars may be assumed to be fully 

stressed. Calculate the required splice length of No. 32mm bars fc
′ = 30 MPa and fy = 400 

MPa.  
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Solution:  

The length of the splice must be larger of the development length of No. 36 bars 

and the splice length of No.32 bars. For No. 36 bars, the development length is the greater 

of: 

𝒂. 𝑙𝑑𝑐 = (
0.24𝑓𝑦𝛹𝑟

𝜆√𝑓𝑐′

) 𝑑𝑏 =  (
0.24 𝑥 400 𝑥 1

1 𝑥 √30
)  36 = 𝟔𝟑𝟏 𝒎𝒎 

 

𝒃. 𝑙𝑑𝑐 = 0.043 𝑓𝑦𝛹𝑟𝑑𝑏 = 0.043 𝑥 400 𝑥 1 𝑥 36 = 619.2 𝑚 

 

𝒄. 𝑙𝑑𝑐 = 200 𝑚𝑚 

⸫ 𝒍𝒅𝒄 = 𝟔𝟑𝟏 𝒎𝒎 

Calculate splice length: 𝑓𝑦 = 400 𝑀𝑝𝑎 < 420 𝑀𝑝𝑎 

∴ splice length for No 32 bars 𝒍𝒔𝒄 = 0.071 𝑓𝑦 𝑑𝑏 = 0.071 𝑥 400 𝑥 32 = 908.8 𝑚𝑚 >

300 𝑚𝑚      OK. 

The required splice length = 908.8 mm. 

 

Development of Flexural Reinforcement – General 

ACI318 – 19 (9.7.3.2): Critical locations for development of reinforcement are 

points of maximum stress and points along the span where bent or terminated tension 

reinforcement is no longer required to resist flexure. 

 

ACI318 – 19 (9.7.3.3): Reinforcement shall extend beyond the point at which it is 

no longer required to resist flexure for a distance equal to the greater of d and 12db, except 

at supports of simply-supported spans and at free ends of cantilevers. 

 

ACI318 – 19 (9.7.3.4): Continuing flexural tension reinforcement shall have an 

embedment length at least ℓd beyond the point where bent or terminated tension 

reinforcement is no longer required to resist flexure. 
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 والشكل الخبرة على يعتمدون المصممين ومعظم ودقيقة طويلة حسابات  تتطلب  الحديد  ثني او قطع عملية ان

 .المعتمدة التقريبية القطع نقاط يوضح ادناه

 

 

 

 

 

 

 

 

 

 

 

 

 
Cutoff and bend points for bars in approximately equal spans with 

uniformly distributed loads 
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Design of under singly reinforced rectangular beams 

Before the design of an actual beam is attempted, several miscellaneous 

topics need to be discussed. These include the following:  

1. Beam proportions. The most economical beam sections are usually 

obtained for shorter beams (up to 6.0 m or 7.6 m in length), when the ratio of 

d to b is in the range of 1.5 to 2. For longer spans, better economy is usually 

obtained if deep, narrow sections are used. The depths may be as large as 3*b 

or 4*b. However, today’s reinforced concrete designer is often confronted 

with the need to keep members rather shallow to reduce floor heights. As a 

result, wider and shallower beams are used more frequently than in the past.  

2. Deflections. The ACI Code in its table 9.3.1.1 provides minimum 

thicknesses of beams for which such deflection calculations are not required. 

The minimum thicknesses provided apply only to members that are not 

supporting or attached to partitions or other construction likely to be damaged 

by large deflection.  

 

 

 

 

 

 

 

 

 

 

 

Note: According to (ACI Code318 – 19) 9.3.1.1.1 For fy other than 420 MPa, 

the expressions in Table 9.3.1.1 shall be multiplied by (0.4 +
𝑓𝑦

700
). 
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3. Estimated beam weight. The weight of the beam to be selected must be 

included in the calculation of the bending moment to be resisted, because the 

beam must support itself as well as the external loads. For instance, calculate 

the moment due to the external loads only, select a beam size, and calculate 

its weight. Another practical method for estimating beam sizes is to assume a 

minimum overall depth, h, equal to the minimum depth specified by [ACI-

318-19, Table 9.3.1.1] if deflections are not to be calculated. Then the beam 

width can be roughly estimated equal to about one-half of the assumed value 

of hand the weight of this estimated beam calculated = b  x h x 24 times the 

concrete weight per cubic meter. After M is determined for all of the loads, 

including the estimated beam weight, the section is selected. If the dimensions 

of this section are significant different from those initially assumed, it will be 

necessary to recalculate the weight and Mu and repeat the beam selection.  

 

4. Selection of bars. Select an appropriate reinforcement ratio between ρmin 

and ρmax. Often a ratio of about 0.60 ρmax, will be an economical and practical 

choice. Selection of ρ ˂ ρ0.005 ensures that φ will remain equal to 0.90. For 

ρ0.005 ˂ ρ ˂ ρmax an iterative solution will be necessary.  

After the required reinforcing area is calculated, select diameter of and 

numbers of bar that provide the necessary area. For the usual situations, bars 

of sizes and smaller are practical. It is usually convenient to use bars of one 

size only in a beam, although occasionally two sizes will be used. Bars for 

compression steel and stirrups are usually a different size. 
 

5. Cover. The reinforcing for concrete members must be protected from the 

surrounding environment; that are, fire and corrosion protection need to be 

provided. To do this, the reinforcing is located at certain minimum distances 

from the surface of the concrete so that a protective layer of concrete, 

called cover is provided. In addition, the cover improves the bond between 

the concrete and the steel. In Section 7.7 of the ACI Code, specified cover 

is given for reinforcing bars under different conditions. Values are given for 

reinforced concrete beams, columns, and slabs; for cast-in-place members; for 

precast members; for pre-stressed members; for members exposed to earth 

and weather.  
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Concrete protection for reinforcement 

Cast-in-place concrete (non-prestress), cover for reinforcement shall 

not be less than the following: 

 
 

 

 

 

 

 

 

  

6. Minimum spacing of bars. The code (25.2) states that the clear distance 

between parallel bars cannot be less than 25 mm or less than the nominal bar 

diameter. If the bars are placed in more than one layer, those in the upper 

layers are required to be placed directly over the ones in the lower layers, and 

the clear distance between the layers must be not less than 25 mm.  

 

Spacing limits for reinforcement 

The minimum clear spacing between parallel bars in a layer shall be but 

not less than 25 mm, db and (4/3)dagg.  

Where parallel reinforcement is placed in two or more layers, bars in 

the upper layers shall be placed directly above bars in the bottom layer with 

clear distance between layers not less than 25 mm.  

In walls and slabs other than concrete joist construction, primary 

flexural reinforcement shall not be spaced farther apart than (3h) three times 

the wall or slab thickness, nor farther apart than 450 mm.  

A major purpose of these requirements is to enable the concrete to pass 

between the bars. The ACI Code further relates the spacing of the bars to the 

maximum aggregate sizes for the same purpose. In the code maximum 

permissible aggregate sizes are limited to the smallest of (a) 1/5 of the 

narrowest distance between side forms, (b) 1/3 of slab depths, and (c) 3/4 of 

the minimum clear spacing between bars. 

 

  



4 
 

Example: Design the simply supported rectangular beam with clear span of 

6 m support service dead load of 10 kN/m and service live load of 22 kN/m, 

fc
′ = 30 MPa and fy = 420 MPa. 

 

 

 

 

 

 

Solution:  

Assume b = 250 mm , and h = 600 mm 

Weigth of beam (Wb) = 0.25 x 0.6 x 24 = 3.6 kN/m , take Wb = 4.0 kN/m 

DL = 10 + 4 = 14 kN/m 

𝑤𝑢 =  1.2 𝐷𝐿 + 1.6 𝐿𝐿 

 

𝑤𝑢 =  1.2 (14) + 1.6 (22) = 52.0 𝑘𝑁/𝑚 

 

𝑀𝑢 =  
𝑤𝑢 𝑙2

8
=  

52.0 𝑥 36

8
= 234 𝑘𝑁. 𝑚 = 234 x 106 N.mm 

 

To use the strength reduction factor (Φ = 0.9), we put steel tensile 

strain εt ≥ (εty + 0.003) in the equation below. 

 

𝜌𝑚𝑖𝑛 =  
0.25 √𝑓𝑐′

𝑓𝑦
=  

0.25 √30

420
= 0.00326 

Or  

𝜌𝑚𝑖𝑛 =  
1.4

𝑓𝑦
=  

1.4

420
= 𝟎. 𝟎𝟎𝟑𝟑          control 

𝜌𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
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𝜌𝑚𝑎𝑥 =  0.85 𝑥 0.835 
30

420
  

0.003

0.003 + 0.004
= 0.0217   

 
 

𝜌 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦

𝜀𝑢

𝜀𝑢 + 0.005
= 0.85 𝑥 0.835

30

420

0.003

0.003 + 0.005

= 0.01901    
 

𝜌𝑚𝑖𝑛  < 𝜌 <  𝜌𝑚𝑎𝑥 

 

𝑀𝑢 =  ∅𝑀𝑛 = ∅ 𝜌 𝑓𝑦 𝑏 𝑑2   (1 −  0.59 
𝜌 𝑓𝑦

 𝑓𝑐′ 
) =  ∅ 𝑘𝑛𝑏 𝑑2 

 

𝑘𝑛 =  𝜌 𝑓𝑦  (1 −  0.59 
𝜌 𝑓𝑦

 𝑓𝑐′ 
) = 0.0194 𝑥 420 (1 − 0.59 

0.0194 𝑥 420

30
)

= 6.842 

𝑀𝑢 =  ∅𝑀𝑛 =  ∅ 𝑘𝑛𝑏 𝑑2 = 6.158 𝑏 𝑑2 

 

𝑀𝑢 =  6.158 𝑏 𝑑2 

 

234 𝑥 106  =  6.158 𝑏 𝑑2 

 

 𝒃 𝒅𝟐 = 𝟑𝟖 𝒙 𝟏𝟎𝟔 

 

𝒅 = √
𝟑𝟖 𝒙 𝟏𝟎𝟔

𝒃
 

 

⸫ Use b = 250 m, d 390 mm 

 ℎ = 𝑑 + 𝑐. 𝑐𝑜𝑣𝑒𝑟 + 𝑑𝑖𝑎. 𝑜𝑓 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 +  
1

2
 𝑑𝑖𝑎. 𝑜𝑓 𝑏𝑎𝑟 

ℎ = 390 + 70 = 460 𝑚𝑚 

Check the weight of beam 

(Wb) = 0.25 x 0.46 x 24 = 2.76 kN/m < 4.0 kN/m     ⸫ O.K. 

b mm d mm d/b 

200 435 2.2 

250 390 1.6 

300 356 1.2 
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∴  𝐴𝑠 =  𝜌 𝑏 𝑑 = 0.0194 𝑥 250 𝑥 390 = 𝟏𝟖𝟗𝟐 𝒎𝒎𝟐 

Use 3#28 mm 

 

 

 

 

 

 

Clear space between bar S = 
250−100−3(28)

2
= 33 𝑚𝑚 > 28 mm   O.K. 1 lyer. 

 

 

 

 

 

 

 

 

H.W: (Redesign the beam assuming εt = 0.008) 

Example: Find the steel area (As) required to resist a moment Mu = 210 kN.m 

if the beam dimensions are (b = 300 mm, d = 440 mm and h = 500 mm), fc
′ = 

25 MPa and fy = 300 MPa. 

 

 

 

 

440 mm 

300 mm 

As =? 

500 mm 

390 mm 

250 mm 

As 

1892 mm2 

460 mm 

S S 

1. 25 mm = 28 mm  )
b
d2. Diameter of bar ( 3. 

4

3
 maximum aggregate size 
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Solution:  

Nt = Nc 

𝐴𝑠 𝑓𝑦 = 0.85 𝑓𝑐′  𝑎 𝑏  

 

𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
… … … … … … . (1) 

𝑀𝑛 =  𝑁𝑡 (𝑑 −  
𝑎

2
) = 𝐴𝑠 𝑓𝑦 (𝑑 − 

𝑎

2
) 

𝐴𝑠 =  
𝑀𝑛

𝑓𝑦 (𝑑 −  
𝑎
2

)
… … … … … … . . (2) 

By solving equations (1) and (2), we get the values of a and, As. 

Or: 

Assume a ≈ (0.15 – 0.3) d 

Let a = 130 mm then: 

 

𝐴𝑠 =  
𝑀𝑛

𝑓𝑦 (𝑑 − 
𝑎
2

)
=  

𝑀𝑢

∅ 𝑓𝑦 (𝑑 − 
𝑎
2

)
=  

210 𝑥 106

0.9 𝑥 300 𝑥 (440 − 
130

2
)

= 2074 𝑚𝑚2 

Check the assumed value of a. 

𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

2074 𝑥 300

0.85 𝑥 25 𝑥 300
= 97.6 𝑚𝑚 

Now assume a = 98 mm 

𝐴𝑠 =  
𝑀𝑛

𝑓𝑦 (𝑑 − 
𝑎
2

)
=  

𝑀𝑢

∅ 𝑓𝑦 (𝑑 −  
𝑎
2

)
=  

210 𝑥 106

0.9 𝑥 300 𝑥 (440 − 
98
2

)

= 1989 𝑚𝑚2 

Check the assumed value of a. 
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𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

1989 𝑥 300

0.85 𝑥 25 𝑥 300
= 93.6 𝑚𝑚 

(No further iteration is required),       ⸫ a = 94 mm 

∴  𝐴𝑠 =  
𝑀𝑛

𝑓𝑦 (𝑑− 
𝑎

2
)

=  
210 𝑥 106

0.9 𝑥 300 𝑥 (440− 
94

2
)

= 1979 𝑚𝑚2 

ρ =
𝐴𝑠

𝑏 𝑑
=  

1979

300 𝑥 440
 0.01499 

∴   𝜌𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
 = 0.85 𝑥 0.85 

25

300
 

0.003

0.003 + 0.004

= 0.0258  

𝜌𝑚𝑖𝑛 =
0.25 √𝑓𝑐′

𝑓𝑦
=  

0.25 𝑥 5

300
= 0.00417 

𝜌𝑚𝑖𝑛 =
1.4

𝑓𝑦
= 𝟎. 𝟎𝟎𝟒𝟔𝟕 Control 

𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥   ⸫ O.K. 

Check value of ϕ 

𝑐 =  
𝑎

𝛽
1

=  
94

0.85
= 110.6 𝑚𝑚 

𝜀𝑡  =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

440 − 110.6

110.6
) = 0.009 > 𝜀𝑡𝑦 +  0.003 

⸫ ϕ = 0.9 (as assumed) 

        O.K. 
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Example: Find the minimum dimension of the cross section for the beam 

shown with b = 300 mm, use fc
′ = 25MPa and fy = 400 MPa, then find area of 

steel for the whole beam, bars with 25 mm. 

 

Solution:  

𝑤𝑢 =  1.2 𝐷𝐿 + 1.6 𝐿𝐿 

 

𝑤𝑢 =  1.2 (30) + 1.6 (18) = 64.8 𝑘𝑁/𝑚 

 

𝑀𝑢 =  302.29 𝑘𝑁. 𝑚 = 302.29 x 106 N.mm 

 

To use the strength reduction factor (Φ 

= 0.9), we put steel tensile strain εt ≥ εty + 

0.00 in the equation below: 

 

 

 

 

 

 

𝜌 = 0.85 𝛽1  
𝑓𝑐′

𝑓𝑦

𝜀𝑢

𝜀𝑢 + 0.005
= 0.85 𝑥 0.85

25

400
 

0.003

0.003 + 0.005

= 0.01693    
 

 

𝜌𝑚𝑖𝑛 =  
0.25 √𝑓𝑐′

𝑓𝑦
=  

0.25 √25

400
= 0.00313 

Or  

𝜌𝑚𝑖𝑛 =  
1.4

𝑓𝑦
=  

1.4

420
= 𝟎. 𝟎𝟎𝟑𝟓          control 

𝜌𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
   

𝜌𝑚𝑎𝑥 =  0.85 𝑥 0.85 
25

400
  

0.003

0.003 + 0.004
= 0.01935   

 

𝜌𝑚𝑖𝑛 < 𝜌 <  𝜌𝑚𝑎𝑥 
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𝑀𝑢 =  ∅𝑀𝑛 = ∅ 𝜌 𝑓𝑦 𝑏 𝑑2   (1 −  0.59 
𝜌 𝑓𝑦

 𝑓𝑐′ 
) =  ∅ 𝑘𝑛𝑏 𝑑2 

 

𝑘𝑛 =  𝜌 𝑓𝑦  (1 −  0.59 
𝜌 𝑓𝑦

 𝑓𝑐′ 
) = 0.01693 𝑥 400 (1 − 0.59 

0.01693 𝑥 400

25
)

= 5.689 

𝑀𝑢 =  ∅𝑀𝑛 =  ∅ 𝑘𝑛𝑏 𝑑2 = 0.9 𝑥 5.689 𝑥 300 𝑥 𝑑2 

 

302.29 𝑥 106 =  1536.2 𝑑2 

 

d = 443.6 mm  

∴ Use d = 450 mm 

ℎ = 𝑑 + 𝑐. 𝑐𝑜𝑣𝑒𝑟 + 𝑑𝑖𝑎. 𝑜𝑓 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 + 
1

2
 𝑑𝑖𝑎. 𝑜𝑓 𝑏𝑎𝑟 

ℎ = 450 + 70 = 520 𝑚𝑚 

ℎ𝑚𝑖𝑛 =
𝐿

18.5
(0.4 +

𝑓𝑦

700
) =

7000

18.5
(0.4 +

400

700
) = 367.6𝑚𝑚 

ℎ >  ℎ𝑚𝑖𝑛      ⸫ O.k. 

∴  𝐴𝑠 =  𝜌 𝑏 𝑑 = 0.01693 𝑥 300 𝑥 450 = 𝟐𝟐𝟖𝟓. 𝟓𝟓 𝒎𝒎𝟐 

𝐴𝑏𝑎𝑟(25𝑚𝑚) = 491 𝑚𝑚2 , 𝑛𝑜. 𝑜𝑓 𝑏𝑎𝑟 𝑟𝑒𝑞. =
𝐴𝑠

𝐴𝑏𝑎𝑟
=

2285.55

491
= 𝟒. 𝟕   

⸫ Use 5 # 25 mm 

Check one or two layers of steel at tension zone. 

1. 25 mm 

2. Diameter of bar (db) = 25 mm 

3. 
4

3
 maximum aggregate size. 

 

300 − 2 ∗ 40 − 2 ∗ 10 − 5 ∗ 25

4
= 18.75 𝑚𝑚 < 25 𝑚𝑚 𝑡ℎ𝑒𝑛 𝒕𝒘𝒐 𝒍𝒂𝒚𝒆𝒓𝒔  

 

300 − 2 ∗ 40 − 2 ∗ 10 − 3 ∗ 25

2
= 62.5 > 25𝑚𝑚 
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Example: Find the steel area (As), if the service dead moment Md = 100 kN.m 

(including weight of the beam) and service live moment ML = 150 kN.m. The 

beam dimensions are (b = 300 mm, h = 700 mm), fc
′= 20 MPa and fy = 400 

MPa. 

Solution:  

𝑀𝑢 = 1.2 𝑀𝑑 + 1.6 𝑀𝐿 

𝑀𝑢 = 1.2 (100) + 1.6 (150) = 𝟑𝟔𝟎 𝒌𝑵. 𝒎 

Assume a ≈ (0.15 – 0.3) d 

d = 700 – (70) = 630 mm 

Let a = 100 mm then: 

𝐴𝑠 =  
𝑀𝑛

𝑓𝑦 (𝑑 − 
𝑎
2

)
=  

𝑀𝑢

∅ 𝑓𝑦 (𝑑 − 
𝑎
2

)
=  

360 𝑥 106

0.9 𝑥 400 𝑥 (630 − 
100

2
)

= 1724 𝑚𝑚2 

Check the assumed value of a. 

𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

1724 𝑥 400

0.85 𝑥 20 𝑥 300
= 135.2 𝑚𝑚 

Now assume a = 136 mm 

𝐴𝑠 =  
𝑀𝑛

𝑓𝑦 (𝑑 − 
𝑎
2

)
=  

𝑀𝑢

∅ 𝑓𝑦 (𝑑 − 
𝑎
2

)
=  

360 𝑥 106

0.9 𝑥 400 𝑥 (630 − 
136

2
)

= 1780 𝑚𝑚2 

Check the assumed value of a. 

437.5 mm 

300 mm 

520 mm 

5 # 25 
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𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

1780 𝑥 400

0.85 𝑥 20 𝑥 300
= 139.6 𝑚𝑚 

(No further iteration is required),  

⸫ a = 139.6 mm 

∴  𝐴𝑠 =  
𝑀𝑛

𝑓𝑦 (𝑑− 
𝑎

2
)

=  
360 𝑥 106

0.9 𝑥 400 𝑥 (630− 
139.6

2
)

= 1785 𝑚𝑚2 

ρ =
𝐴𝑠

𝑏 𝑑
=  

1785

300 𝑥 630
=  𝟎. 𝟎𝟎𝟗𝟒𝟒 

∴   𝜌𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
 = 0.85 𝑥 0.85 

20

400
 

0.003

0.003 + 0.004

= 𝟎. 𝟎𝟏𝟓𝟒𝟖  

𝜌𝑚𝑖𝑛 =
0.25 √𝑓𝑐′

𝑓𝑦
=  

0.25 𝑥 √20

400
= 0.0028 

𝜌𝑚𝑖𝑛 =
1.4

𝑓𝑦
= 𝟎. 𝟎𝟎𝟑𝟓 Control 

𝜌𝑚𝑖𝑛 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥   ⸫ O.K. 

Check value of ϕ 

𝑐 =  
𝑎

𝛽
1

=  
139.6

0.85
= 155.1 𝑚𝑚 

𝜀𝑡  =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

630 − 155.1

155.1
) = 0.00919 > 𝜀𝑡𝑦 + 0.003 

⸫ ϕ = 0.9 (as assumed) 

        O.K. 
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Flexural Analysis and Design of Beams 

The basic assumptions made in flexural design are: 

1. Sections perpendicular to the axis of bending that are plane before 

bending remains plane after bending. 

2. A perfect bond exists between the reinforcement and the concrete such 

that the strain in the reinforcement is equal to the strain in the concrete at 

the same level. 

3. The strains in both the concrete and reinforcement are assumed to be 

directly proportional to the distance from the neutral axis. 

4. Concrete is assumed to fail when the compressive strain reaches 0.003. 

5. The tensile strength of concrete is neglected. 

6. The stresses in the concrete and reinforcement can be computed from the 

strains using stress-strain curves for concrete and steel, respectively. 

 

Structural Design Requirements: 

The design of a structure must satisfy three basic requirements: 

1. Strength to resist safely the stresses induced by the loads in the various 

structural members. 

2. Serviceability to ensure satisfactory performance under service load 

conditions, which implies providing adequate stiffness to contain deflections, 

crack widths and vibrations within acceptable limits. 
3. Stability to prevent overturning, sliding or buckling of the structure, or 
part of it under the action of loads. 

There are two other considerations that a sensible designer should keep in 

mind: Economy and aesthetics. 

Design Methods (Philosophies) 

Two methods of design have long prevalent. 

Working Stress Method: focuses on conditions at service loads. 

Strength Design Method: focusing on conditions at loads greater than the 

service loads when failure may be imminent. The Strength Design 

Method is deemed conceptually more realistic to establish structural safety. 
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Stress and strain distribution 

The compressive stress-strain relationship for concrete may be assumed to 

be rectangular, trapezoidal, parabolic, or any other shape that results in 

prediction of strength in substantial agreement with the results of 

comprehensive tests outlines the use of a rectangular compressive stress 

distribution which is known as the Whitney rectangular stress block. 

 

 

 

 

 

 

 

 

 

 

Whitney replaced the curved stress block with an equivalent 

rectangular block of intensity 0.85fc′ and depth a = β1c, as shown in figure 

above. The area of this rectangular block should equal that of the curved stress 

block, and the centroids of the two blocks should coincide. Sufficient test 

results are available for concrete beams to provide the depths of the equivalent 

rectangular stress blocks. β1 shall be in accordance with table 22.2.2.4.3:  

 

 

 

 

 

 

 

 

Based on these assumptions regarding the stress block, statics equations 

can easily be written for the sum of the horizontal forces and for the resisting 

c 
a = 
β1c 
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moment produced by the internal couple. These expressions can then be 

solved separately for a and for the moment Mn.  

Mn is defined as the theoretical or nominal resisting moment of a 

section. It was stated that the usable strength of a member equals its theoretical 

strength times the strength reduction factor, or, in this case Φ Mn.  

The usable flexural strength of a member, Φ Mn must at least be equal 

to the calculated factored moment, Mu caused by the factored loads Φ Mn ≥ 

Mu. 

For writing the beam expressions, reference is made to figure equating 

the horizontal forces C and T and solving for a, we obtain: 

 

Internal Equilibrium 

Nc = compression force in concrete = stress x area = 0.85 fc
′ b a 

Nt = tension force in steel = stress x area = As fy 

Nc = Nt        and    𝑀𝑛 =  𝑁𝑡 (𝑑 − 
𝑎

2
)           

Where: 

fc
′ = concrete compression strength  

a = height of stress block  

β1 = factor based on fc
′ 

c = location to the neutral axis.  

b = width of stress block.  

fy = steel yield strength.  

As = area of steel reinforcement  

d = effective depth of section = depth to axis of reinforcement 

Nt = Nc 

𝐴𝑠 𝑓𝑦 = 0.85 𝑓𝑐′  𝑎 𝑏  

 

So, a can be determined with:          𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
 

         Check whether the tension steel is yielding. The yield strain for the 

reinforcing steel is:                     
𝑐

0.003
=

𝑑−𝑐

𝜀𝑡
      →        𝜀𝑡 =

𝑑−𝑐

𝑐
 𝑥 0.003 

Because the reinforcing steel is limited to an amount such that it will 

yield well before the concrete reaches its ultimate strength, the value of the 

nominal moment can be written as:  



4 
 

𝑀𝑛 =  𝑁𝑡 (𝑑 −  
𝑎

2
) = 𝐴𝑠 𝑓𝑦 (𝑑 − 

𝑎

2
) 

∅𝑀𝑛 = ∅ 𝐴𝑠 𝑓𝑦 (𝑑 −  
𝑎

2
) 

If we substitute into this expression the value previously obtained for 

(it was) and equate to we obtain the following expression: 

∅𝑀𝑛 = 𝑀𝑢 =  ∅ 𝜌 𝑏 𝑓𝑦 𝑑2 (1 − 0.59 ∗  𝜌 ∗  
𝑓𝑦

𝑓𝑐′
) 

Replacing As with ρ b d and letting,  𝑅 =
𝑀𝑢

∅𝑏𝑑2
   we can solve this 

expression for ρ (the percentage of steel required for a particular beam) with 

the following results: 

𝜌 =
0.85 𝑓𝑐′

𝑓𝑦
 (1 − √1 − 

2𝑅

0.85 𝑓𝑐′
) 

 

 

 

 

 

 

  

Example: Determine the values a, c, and 𝜺𝒕 for the beam shown in 

figure below. If  𝑓𝑐′ = 21 MPa and fy = 420 MPa. 
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𝐴𝑠 = (3)
𝜋 𝑑2

4
= (3)

𝜋 252

4
= 3 ∗ 491 = 1473 𝑚𝑚2  

𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

1473 𝑥 420 

0.85 𝑥 21 𝑥 350
= 99.025 𝑚𝑚  

 

𝑐 =  
𝑎

𝛽1
 

𝑓𝑐′ = 21 𝑀𝑃𝑎 →  𝛽1 = 0.85    (𝟏𝟕 ≤  𝒇𝒄′  ≤ 𝟐𝟖) 

 

𝑐 =  
𝑎

𝛽1
=  

99.025

0.85
= 116.5 𝑚𝑚 

d = 600 – 40 - 10 - 12.5 = 537.5 

 
𝑐

0.003
=

𝑑 − 𝑐

𝜀𝑡
 → 𝜀𝑡 =  

𝑑 − 𝑐

𝑐
 0.003 =  

537.5 − 116.5

116.5
 0.003 = 𝟎. 𝟎𝟏𝟎𝟖𝟒 

 

Example: Determine the nominal moment strength (𝑴𝒏) of the beam 

shown in figure below if  𝑓𝑐′ = 28 MPa and fy = 420 MPa. 

 

 

 

 

 

𝐴𝑠 = (3)
𝜋 𝑑2

4
= (3)

𝜋 252

4
= 3 ∗ 491 = 1473 𝑚𝑚2  

Nt = Nc, 

As fy = 0.85 fc
′ b a 

430 mm 

3 # 25 bars 

300 mm 

0.003 

εt 

c 

d-c d-c 

0.003 

εt 
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𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

1473 𝑥 420 

0.85 𝑥 28 𝑥 300
= 86.6 𝑚𝑚  

𝑀𝑛 =  𝑁𝑡 (𝑑 −  
𝑎

2
) = 𝐴𝑠 𝑓𝑦 (𝑑 − 

𝑎

2
) 

𝑀𝑛 =  1473 𝑥 420 (430 − 
86.6

2
) = 239.2 𝑥 103 𝑁. 𝑚𝑚 = 239.2 𝑘𝑁. 𝑚 

The balanced rectangular beam 

          A beam that has a balanced steel ratio is one for which the tensile steel 

will theoretically yield at the time the extreme compression concrete fibers 

attain a strain equal to 0.003. 

 

 

 

 

 

 

 

  

From the figure above (using similar triangles): 

𝑐𝑏

𝜀𝑢
=  

𝑑 − 𝑐𝑏

𝜀𝑦
 

𝑐𝑏 𝜀𝑦 =  𝜀𝑢 𝑑 −  𝜀𝑢 𝑐𝑏 

𝑐𝑏 =  
𝜀𝑢

𝜀𝑢 + 𝜀𝑦
 𝑑 

Then from equilibrium requirement we have: 

Ntb = Ncb 

 

Where:        Ntb = tension force in steel at balanced condition  

                    Ncb = compression force in concrete at balanced condition 

Ntb = Asb fy 

Putting: 



7 
 

𝜌 =  
𝐴𝑠

𝑏 𝑑
 

    

ρ is called reinforcement ratio 
 

𝜌𝑏 =  
𝐴𝑠𝑏

𝑏 𝑑
→  𝐴𝑠𝑏 = 𝜌𝑏 𝑏 𝑑  

Where: ρb = balanced reinforcement ratio.  

𝑁𝑡𝑏 =  𝜌𝑏𝑏 𝑑 𝑓𝑦 

𝑁𝑐𝑏 = 0.85 𝑓𝑐′ 𝑎𝑏𝑏  
 

𝑎𝑏 =  𝛽1𝑐𝑏 

 

∴  𝑁𝑐𝑏 = 0.85 𝑓𝑐′𝛽1𝑐𝑏𝑏  
 

Ntb = Ncb 

𝜌𝑏 𝑏 𝑑 𝑓𝑦 =  0.85 𝑓𝑐′𝛽1𝑐𝑏𝑏   
 

𝜌𝑏  𝑑 𝑓𝑦 =  0.85 𝑓𝑐′𝛽1𝑐𝑏  

 

𝜌𝑏  𝑑 𝑓𝑦 =  0.85 𝑓𝑐′𝛽1   
𝜀𝑢

𝜀𝑢 + 𝜀𝑦
 𝑑  

 

∴  𝝆𝒃 =  𝟎. 𝟖𝟓 𝜷𝟏  
𝒇𝒄′

𝒇𝒚
  

𝜺𝒖

𝜺𝒖 + 𝜺𝒚
   

Under-reinforced beams:  

In actual practice, the reinforcement ratio ρ should be < ρb to avoid 

sudden failure of beam (compression failure). Where lower reinforcement 

ratio ρ result in gradual failure and give warning before total collapse. 

ACI provisions for under-reinforced beams: 

To insure under-reinforced behavior, ACI code establishes a minimum 

net tensile strain ϵt = 0.004 at the nominal member strength for members 

subjected to axial loads < 0.1 𝑓𝑐′ 𝐴𝑔 Where Ag = gross area of cross section. 

(For comparison ϵt = 0.002 for grade 400 steel). 

  𝜌 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 𝜀𝑡
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Using 𝜀𝑡 = 0.004 in previous equation provides the maximum 

reinforcement ratio allowed by ACI code for beams. 

∴   𝜌𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
   

Since ϵt ≥ 0.004 then fs = fy at failure for ordinary reinforcing steel.  

⸫ The nominal flexural strength is given by: 

𝑀𝑛 =  𝑁𝑡 𝑍 

 

𝑀𝑛 =  𝐴𝑠 𝑓𝑦 (𝑑 − 
𝑎

2
) 

Where:  

𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
 

And: 

 

𝐴𝑠 = 𝜌 𝑏 𝑑  
 

𝑎 =  
𝜌 𝑏 𝑑 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

𝜌  𝑑 𝑓𝑦

0.85 𝑓𝑐′ 
 

∴  𝑀𝑛 =  𝜌 𝑏 𝑑 𝑓𝑦 (𝑑 − 
𝜌  𝑑 𝑓𝑦

2 𝑥 0.85 𝑓𝑐′ 
) 

∴  𝑀𝑛 =  𝜌 𝑓𝑦 𝑏 𝑑2   (1 −  0.59 
𝜌 𝑓𝑦

 𝑓𝑐′ 
) 

∴  𝑴𝒏 =  𝒌𝒏𝒃 𝒅𝟐 

Where: 

∴  𝒌𝒏 =  𝝆 𝒇𝒚  (𝟏 −  𝟎. 𝟓𝟗 
𝝆 𝒇𝒚

 𝒇𝒄′ 
) 

Values of kn for maximum reinforcement ratio and are given in table 

below. 

 

Table of limiting constants for rectangular beams 
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 The ACI code encourages the use of lower ρ by allowing higher 

strength reduction factors (ϕ) in such beams. 

If the net tensile strain in the extreme tension reinforcement is 

sufficiently large (≥ εty + 0.003), the section is defined as tension-controlled. 

If the net tensile strain in the extreme tension reinforcement is small (≤ 

εty), a brittle compression failure condition is expected. 

Beams and slabs are usually tension-controlled, whereas columns may 

be compression-controlled. Some members, such as those with small axial 

forces and large bending moments, experience net tensile strain in the extreme 

tension reinforcement between the limits of εty and (εty + 0.003). These 

sections are in a transition region between compression-controlled and 

tension-controlled. 

 

 

 

 

 

 

 

  

Variation of Φ with net tensile strain 
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            Example: Calculate the maximum nominal moment (Mn), design 

moment (ϕ Mn) and maximum reinforcement ratio ρmax for fc′ = 25 MPa, and 

fy = 300 MPa. 

𝜌𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
 

                     𝑓𝑐′ = 25 𝑀𝑃𝑎  →  𝛽1 = 0.85         (𝟏𝟕 ≤  𝒇𝒄′  ≤ 𝟐𝟖) 

𝜌𝑚𝑎𝑥 =  0.85 𝑥 0.85 
25

300
  

0.003

0.003 + 0.004
= 0.0258 

 

 𝑀𝑛 =  𝜌 𝑓𝑦 𝑏 𝑑2   (1 −  0.59 
𝜌 𝑓𝑦

 𝑓𝑐′ 
) 

 

 𝑀𝑛 = 0.0258 𝑥 300 𝑥 𝑏 𝑑2   (1 −  0.59 
0.0258 𝑥 300

 25 
) = 6.326 𝑏𝑑2 

OR: 

 𝑀𝑛 =  𝑘𝑛𝑏 𝑑2 

kn = 6.326 (from table): 

 ∴ 𝑀𝑛 =  6.326 𝑏 𝑑2 

Design Moment =  𝜙𝑀𝑛 

ϕ =? 

 ϵt = 0.004 

𝜀𝑡𝑦 =  
𝑓𝑦

𝐸𝑠
=  

300

200000
= 0.0015 

𝜀𝑡𝑦 + 0.003 = 0.0015 + 0.003 =  0.0045 

⸪ 𝜀𝑡𝑦 < 𝜀𝑡 <  𝜀𝑡𝑦 + 0.003   

𝜑 = 0.65 + 0.25 (
𝜀𝑡 − 𝜀𝑡𝑦 

0.003
) = 0.65 + 0.25 (

0.004 − 0.0015 

0.003
) = 𝟎. 𝟖𝟓𝟖 

⸫ Design moment = Φ Mn = 0.858 x 6.326 𝑏 𝑑2 = 𝟓. 𝟒𝟐𝟖 𝒃 𝒅𝟐 

 

 

 

0.0015 0.0045 
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H.W: Resolve the same example using ϵt = 0.005. 

Example: Calculate the design moment for the beam section shown in 

figure below, if the steel reinforcement is 3 No. 25 mm bars. fc′ = 30 MPa and 

fy = 400 MPa. 

 

 

 

 

 

 

 

𝐴𝑠 = (3)
𝜋 𝑑2

4
= (3)

𝜋 252

4
= 3 ∗ 491 = 1473 𝑚𝑚2  

𝜌 =  
𝐴𝑠

𝑏 𝑑
=  

1473

250 𝑥 575
= 0.01025  

The maximum reinforcement ratio is given by: 

𝜌𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
   

fc′ = 30 MPa   (28 < 𝑓𝑐
′  < 55) 

 

∴ 𝛽1 = 0.85 − 
0.05 (𝑓𝑐

′ − 28)

7
= 𝟎. 𝟖𝟑𝟔 

  

𝜌𝑚𝑎𝑥 =  0.85 𝑥 𝟎. 𝟖𝟑𝟔 
30

400
  

0.003

0.003 + 0.004
= 0.0228   

 

The actual reinforcement ratio ρ = 0.01025 < 𝜌𝑚𝑎𝑥                 O.K  

⸫ The member is under-reinforced and will fail by yielding of steel (tension 

failure) 

Nc = Nt 

 

0.85 𝑓𝑐′ 𝑎 𝑏 = 𝐴𝑠 𝑓𝑦    

 

𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

1473 𝑥 400

0.85 𝑥 30 𝑥 250
= 92.4 𝑚𝑚 

 

𝑀𝑛 =  𝑁𝑡 𝑍 

𝑀𝑛 = 𝐴𝑠 𝑓𝑦  (𝑑 − 
𝑎

2
) = 1473 𝑥 400 (575 −

92.4

2
) = 311.6 𝑥 106 𝑁. 𝑚𝑚 

575 mm 

As 

250 mm 
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𝑴𝒏 = 𝟑𝟏𝟏. 𝟔 𝒌𝑵. 𝒎 

The design moment = 𝜙 𝑀𝑛 

 

To find 𝜙 value, the distance to the neutral axis (c) must be known. 

 

𝑐 =  
𝑎

𝛽1
=  

92.4

0.836
= 𝟏𝟏𝟎. 𝟓 𝒎𝒎  

 

𝜀𝑡  =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

575 − 110.5

110.5
) = 0.01261  

𝜀𝑡𝑦  =  
400

200000
= 0.002  

⸪ 𝜀𝑡 >  𝜀𝑡𝑦 + 0.003 (0.005)  →  𝜑 = 0.9 

⸫ Design moment = Φ Mn = 0.9 x 311.6 = 280.44 kN.m 

 

 

 

 

  

 

 

Minimum Reinforcement Ratio 

 If the flexural strength of the cracked section is less than the 

moment that produced cracking of the previously uncracked section, the beam 

will fail immediately and without warning (i.e. sudden failure). Therefore, the 

ACI318-19 (9.6) provides minimum As for flexural members. 

 

𝐴𝑠 𝑚𝑖𝑛 =
0.25 √𝑓𝑐′

𝑓𝑦
𝑏𝑤𝑑     but not less than (≥)    𝐴𝑠 𝑚𝑖𝑛

1.4

𝑓𝑦
𝑏𝑤𝑑 

Where: bw is width of web of beam and, the value of fy shall be limited to a 

maximum of 550 MPa.                                                                                                                                                                                                                                                                   

                                                                                                                                                                          

 

 

 
d 

bw 
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Example: Determine the design moment capacity ΦMn of the beam 

shown in figure below, if fc′= 30 MPa and fy =420 MPa. 

  

 

 

  

 

 

  

𝜌 =  
𝐴𝑠

𝑏 𝑑
=  

2580

350 𝑥 600
= 0.01229 

𝜌𝑚𝑖𝑛 =  
0.25 √𝑓𝑐′

𝑓𝑦
=  

0.25 √30

420
= 0.00326 

Or  

𝜌𝑚𝑖𝑛 =  
1.4

𝑓𝑦
=  

1.4

420
= 𝟎. 𝟎𝟎𝟑𝟑𝟑          control 

𝜌𝑚𝑎𝑥 =  0.85 𝜷𝟏  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
   

fc′ = 30 MPa   (28 < 𝑓𝑐
′  < 55) 

 

∴ 𝛽1 = 0.85 − 
0.05 (𝑓𝑐

′ − 28)

7
= 𝟎. 𝟖𝟑𝟔 

 

𝜌𝑚𝑎𝑥 =  0.85 𝑥 0.836 
30

420
  

0.003

0.003 + 0.004
= 0.0217   

 

𝜌𝑚𝑖𝑛  < 𝜌 <  𝜌𝑚𝑎𝑥 

⸫ The beam is under reinforcement. 

Nc = Nt 

 

0.85 𝑓𝑐′ 𝑎 𝑏 = 𝐴𝑠 𝑓𝑦    
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𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

2580 𝑥 420

0.85 𝑥 30 𝑥 350
= 121.4 𝑚𝑚 

 

𝑀𝑛 =  𝑁𝑡 𝑍 

 

𝑀𝑛 = 𝐴𝑠 𝑓𝑦  (𝑑 − 
𝑎

2
) = 2580 𝑥 420 (600 −

121.4

2
) = 584.4 𝑥 106 𝑁. 𝑚𝑚 

𝑴𝒏 = 𝟓𝟖𝟒. 𝟒 𝒌𝑵. 𝒎 
The design moment = 𝜙 𝑀𝑛 

  

𝑐 =  
𝑎

𝛽1
=  

121.4

0.836
= 𝟏𝟒𝟓. 𝟐 𝒎𝒎  

 
 

 

 𝜀𝑡  =  𝜀𝑢 (
𝑑−𝑐

𝑐
) = 0.003 (

600−145.2

145.2
) = 0.00939  

𝜀𝑡𝑦  =  
420

200000
= 0.0021  

⸪ 𝜀𝑡 >  𝜀𝑡𝑦 + 0.003 (0.0051)  

⸫ 𝜑 = 0.9 

⸫ Design moment = ΦMn = 0.9 x 584.4 = 525.96 kN.m 

Example: A 2.4m span cantilever beam has a rectangular section of b 

= 200 mm and d = 390 mm with 3 bars of 22 mm diameter, carries a uniform 

dead load including its own weight of 12 kN/m and a uniform distributed live 

load of 10.5 kN/m. Check the adequacy of the section, using fc
′ of 28 MPa 

and fy of 280 MPa?  

 

 

 

  

 𝑤𝑢  =  1.2 𝐷𝐿 + 1.6 𝐿𝐿 

Wd +WL 

2.4 m 
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𝑤𝑢  =  1.2 (12) + 1.6 (10.5) = 31.2 𝑘𝑁/𝑚 

𝑀𝑢  =  
𝑤 𝑙2

2
=  

31.2 𝑥 2.42

2
= 𝟖𝟗. 𝟖𝟔 𝒌𝑵. 𝒎 

𝜌 =  
𝐴𝑠

𝑏 𝑑
=  

1140.4

200 𝑥 390
= 0.0146 

𝜌𝑚𝑖𝑛 =  
0.25 √𝑓𝑐′

𝑓𝑦
=  

0.25 √28

280
= 0.00472 

Or  

𝜌𝑚𝑖𝑛 =  
1.4

𝑓𝑦
=  

1.4

280
= 𝟎. 𝟎𝟎𝟓          control 

𝜌𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
   

 

𝑓𝑐′ = 28 𝑀𝑃𝑎  →  𝛽1 = 0.85     (𝟏𝟕 ≤  𝒇𝒄′  ≤ 𝟐𝟖) 

 

𝜌𝑚𝑎𝑥 =  0.85 𝑥 0.85 
28

280
  

0.003

0.003 + 0.004
= 0.03096   

 

𝜌𝑚𝑖𝑛  < 𝜌 <  𝜌𝑚𝑎𝑥 

⸫ The beam is under reinforcement. 

Nc = Nt 

 

0.85 𝑓𝑐′ 𝑎 𝑏 = 𝐴𝑠 𝑓𝑦    

 

𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

1140.4 𝑥 280

0.85 𝑥 28 𝑥 200
= 67.1 𝑚𝑚 

 

𝑀𝑛 =  𝑁𝑡 𝑍 

 

𝑀𝑛 = 𝐴𝑠 𝑓𝑦  (𝑑 − 
𝑎

2
) = 1140.4 𝑥 280 (390 −

67.1

2
) = 113.8 𝑥 106 𝑁. 𝑚𝑚 

𝑴𝒏 = 𝟏𝟏𝟑. 𝟖 𝒌𝑵. 𝒎 
The design moment = 𝜙 𝑀𝑛 
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𝒄 =  
𝒂

𝟎. 𝟖𝟓
= 𝟕𝟖. 𝟗𝟒 𝒎𝒎  

 
 

 

 

  

 

 

 

 

 

𝜀𝑡  =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

390 − 78.94

78.94
) = 0.01182  

𝜀𝑡𝑦  =  
280

200000
= 0.0014  

⸪ 𝜀𝑡 >  𝜀𝑡𝑦 + 0.003 (0.0044)  

⸫ 𝜑 = 0.9 

⸫ Design moment 𝑴𝒖 = ΦMn = 0.9 x 113.8 = 102.42 kN.m 

⸪ Mu provid (102.42 kN.m) > Mu required (89.86 kN.m) 

⸫ The section is adequacy  

 Example: Determine the design moment capacity ΦMn of the 

beam shown in Figure below, if fc′= 21 MPa and fy = 280 MPa. 

  

 

 

  

 

 

  𝐴𝑠 = (3)
𝜋 𝑑2

4
= (3)

𝜋 202

4
= 3 ∗ 314 = 942 𝑚𝑚2  

 

370 mm 

3#20 

200 mm 

70 mm 
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𝜌𝑎𝑐𝑡. =  
𝐴𝑠

𝑏 𝑑
=  

942

200 𝑥 300
= 0.0157 

𝜌𝑚𝑖𝑛 =  
0.25 √𝑓𝑐′

𝑓𝑦
=  

0.25 √21

280
= 0.00409 

Or  

                 𝜌𝑚𝑖𝑛 =  
1.4

𝑓𝑦
=  

1.4

280
= 𝟎. 𝟎𝟎𝟓          control 

𝜌𝑚𝑎𝑥 =  0.85 𝛽1  
𝑓𝑐′

𝑓𝑦
  

𝜀𝑢

𝜀𝑢 + 0.004
   

 

𝑓𝑐′ = 21𝑀𝑃𝑎  →  𝛽1 = 0.85      (17 ≤  𝑓𝑐′  ≤ 28) 

 

𝜌𝑚𝑎𝑥 =  0.85 𝑥 0.85 
21

280
  

0.003

0.003 + 0.004
= 0.02322   

 

𝜌𝑚𝑖𝑛  < 𝜌 <  𝜌𝑚𝑎𝑥 

⸫ The beam is under reinforcement. 

Nc = Nt 

 

0.85 𝑓𝑐′ 𝑎 𝑏 = 𝐴𝑠 𝑓𝑦 

 

𝑎 =  
𝐴𝑠 𝑓𝑦

0.85 𝑓𝑐′ 𝑏
=  

942 𝑥 280

0.85 𝑥 21 𝑥 200
= 73.9 𝑚𝑚 

 

𝑀𝑛 =  𝑁𝑡 𝑍 

 

𝑀𝑛 = 𝐴𝑠 𝑓𝑦  (𝑑 − 
𝑎

2
) = 942 𝑥 280 (300 −

73.9

2
) = 69.4 𝑥 106 𝑁. 𝑚𝑚 

𝑴𝒏 = 𝟔𝟗. 𝟒 𝒌𝑵. 𝒎 
The design moment = 𝜙 𝑀𝑛 

𝒄 =  
𝒂

𝟎. 𝟖𝟓
= 𝟖𝟔. 𝟗𝟒 𝒎𝒎  
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𝜀𝑡  =  𝜀𝑢 (
𝑑 − 𝑐

𝑐
) = 0.003 (

300 − 86.94

86.94
) = 0.00735  

𝜀𝑡𝑦  =  
280

200000
= 0.0014  

⸪ 𝜀𝑡 >  𝜀𝑡𝑦 + 0.003 (0.0044)  

⸫ 𝜑 = 0.9 

⸫ Design moment = ΦMn = 0.9 x 69.4 = 62.46 kN.m 

 

H.W.: Resolve the previous example using As = 3 #28 mm. 

 

 


