Lateral Earth Pressure

Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheetpile walls, and other,
similar structures. The proper design of those structures requires an estimation of lateral earth pressure,
which is a function of several factors, such as (a) the type and amount of wall movement, (b) the shear
strength parameters of the soil, (c) the unit weight of the soil, and (d) the drainage conditions in the backfill.
Figure 12.1 shows a retaining wall of height H. For similar types of backfill,

a. The wall may be restrained from moving (Figure 12.1a). The lateral earth pressure on the wall at any
depth is called the at-rest earth pressure.

b. The wall may tilt away from the soil that is retained (Figure 12.1b). With sufficient wall tilt, a triangular
soil wedge behind the wall will fail. The lateral pressure for this condition is referred to as active earth
pressure.

c. The wall may be pushed into the soil that is retained (Figure 12.1c). With sufficient wall movement, a soil
wedge will fail. The lateral pressure for this condition is referred to as passive earth pressure.
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Figure 12.71 Nature of lateral earth pressure on a retaining wall

Lateral Earth Pressure at Rest

Consider a vertical wall of height H, as shown in Figure 12.3, retaining a soil having a
unit weight of y. A uniformly distributed load, ¢g/unit area, is also applied at the ground
surface. The shear strength of the soil is

s=c¢' + o'tand’
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Figure 12.3 At-rest earth pressure



where
c¢'= cohesion
¢’ = effective angle of friction
o, = effective normal stress
At any depth z below the ground surface, the vertical subsurface stress is

o,=q+ Yz

If the wall is at rest and is not allowed to move at all, either away from the soil mass or into the soil mass
(i.e., there is zero horizontal strain), the lateral pressure at a depth z is

o,=K,o, +u

where
U = pore water pressure
Ko = coefficient of at-rest earth pressure
For normally consolidated soil, the relation for K, (Jaky, 1944) is

Ko= 1= SIN @ cooooooerereesseeenesessseeeneens 12.3

The above equation is an empirical approximation.
For overconsolidated soil, the at-rest earth pressure coefficient may be expressed as:

K, = (1 — sin ¢') OCR*" %'

where OCR = overconsolidation ratio.

The total force, Po, per unit length of the wall given in Figure 12.3a can now be obtained from the area of
the pressure diagram given in Figure 12.3b and is

P,= P, + P, = qK,H + SyHK, (12.5)

where

P1 = area of rectangle 1

P> = area of triangle 2

The location of the line of action of the resultant force, Po , can be obtained by taking the moment about the
bottom of the wall. Thus,

o)l

= 12.
Z P, (12.6)
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Figure 72.4 At-rest earth pressure with water table located at a depth z < H

If the water table is located at a depth 7 < H, the at-rest pressure diagram shown in
Figure 12.3b will have to be somewhat modified, as shown in Figure 12.4. If the effective
unit weight of soil below the water table equals y’ (i.e., Y — V,)- then

atz = 0, o, = K,0,= K,
atz:]_119 O-;x:Koo-:):Ko(q_'_yHl)
and

atz = H,, o5, =K,0,=K,(q+ vH, +v'H,)

Note that in the preceding equations, a and g}, are effective vertical and horizontal pressures, respectively.
Determining the total pressure distribution on the wall requires adding the hydrostatic pressure u, which is
zerofromz=0toz=H;and is H.y,, atz=H,. The variation of ¢}, and u with depth is shown in Figure
12.4b. Hence, the total force per unit length of the wall can be determined from the area of the pressure

diagram. Specifically,
Po=Air+A2+As+As+ As
where A = area of the pressure diagram.

So,

Po = qul + %K,,’)/le + Ko(q + YHI)H2 + % ()Y'sz + é“)/szz (127)



Example 12.1

For the retaining wall shown in Figure 12.5a, determine the lateral earth force at rest per unit length of the
wall. Also determine the location of the resultant force. Assume OCR = 1.

| T 'y =16.5 kN/m?
- ¢'=30°
Y ) 25 m c' =0
B l Ground @D
: ;waler tabe | 20.63 kNlm2
I Yo =19.3 kN/m?
25m ' =30° +
- l c'=0
e X 32.49 kN/m2
| (a) (b)
Solution

K,=1—sin¢’'=1—sin30°=0.5
Atz=0,0, =00, =0
Atz=23m o —(165)25) — 4125 KN/m";
o, = K,o, = (0.5)(41.25) = 20.63 kN/m’
Atz =5m, 0, = (16.5)(2.5) + (19.3 — 9.81)2.5 = 64.98 kN/m?;
o, = K,o, = (0.5)(64.98) = 32.49 kN/m’

The hydrostatic pressure distribution is as follows:
Fromz=0toz=25m,u=0.Atz=5m,u = y,2.5) = (9.81)(2.5) = 24.53 KN/m’,
The pressure distribution for the wall is shown in Figure 12.5b.
The total force per unit length of the wall can be determined from the area of the
pressure diagram, or

P,= Areal + Area2 + Area3 + Area4
= 3(2.5)(20.63) + (2.5)(20.63) + 3(2.5)(32.49 — 20.63)
+ $(2.5)(24.53) = 122.85 kN/m

The location of the center of pressure measured from the bottom of the wall (point O) =

(Area 1)(2-5 i 2—5) + (Area 2)(%) + (Area 3 + Area 4)(2?5)

_ 3
<7 P,
_ (25.788)(3.33) + (51.575)(1.25) + (14.825 + 30.663)(0.833)
122.85
k + A ar i
_ 85.87 + 64.47 + 37.89 — 153 m =

122.85



Rankine Active Earth Pressure

If a wall tends to move away from the soil a distance Ax, as shown in Figure 12.6a, the soil pressure on the
!

wall at any depth will decrease. For a wall that is frictionless, the horizontal stress, g}, at depth z will equal
Koo, =koy z when Ax is zero. However, with Ax >0, o, will be less than K, o,

o, = o’ tan? 45 _9 — 2¢’ tan 45—(L
= o'k, — 2'VK,

(12.8)
where K, = tan?(45 —
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Figure 712.6 Rankine active pressure



The variation of the active pressure with depth for the wall shown in Figure 12.6a
is given in Figure 12.6c. Note that o, = 0 at z = 0 and o, = yH at z = H. The pressure
distribution shows that at z = 0 the active pressure equals —2¢'\V/K,, indicating a tensile
stress that decreases with depth and becomes zero at a depth z = z., or

vz K, —2¢'VK, =0

and

2¢'
Z [—
‘" yVK,

(12.9)

The depth z. is usually referred to as the depth of tensile crack, because the tensile
stress in the soil will eventually cause a crack along the soil-wall interface. Thus, the total
Rankine active force per unit length of the wall before the tensile crack occurs is

H H H
P,= I o,dz = J' vzK,dz — f 2¢'VK,dz
0 0 0

= LyH’K, — 2c'HVK, (12.10)

After the tensile crack appears, the force per unit length on the wall will be
caused only by the pressure distribution between depths z = z. and z = H, as shown
by the hatched area in Figure 12.6¢. This force may be expressed as

P, = 5(H - z)(yHK, — 2¢'VK,) (12.11)
or
P, = l(H _ )('yHK = 2c'\/1?) (12.12)
a 2 ‘}'VE“ a a

However, it is important to realize that the active earth pressure condition will be reached
only if the wall is allowed to “yield” sufficiently. The necessary amount of outward
displacement of the wall is about 0.001H to 0.004H for granular soil backfills and about
0.01H to 0.04H for cohesive soil backfills.

Note further that if the total stress shear strength parameters (c, ¢) were used, an
equation similar to Eq. (12.8) could have been derived, namely,

o, =0, tan2(45 - %) - 2c tan(45 - %)



Example 12.2

A 6-m-high retaining wall is to support a soil with unit weight y = 17.4 kN/m?, soil
friction angle ¢’ = 26°, and cohesion ¢’ = 14.36 kN/m?. Determine the Rankine
active force per unit length of the wall both before and after the tensile crack occurs, and
determine the line of action of the resultant in both cases.

Solution
For ¢’ = 26°,

’

K = tan2(45 - %) = tan*(45 — 13) = 0.39
VK, = 0.625
o, = yHK, — 2c'VK,
From Figure 12.6¢, at z = 0,

o, = —2c'"VK, = —2(14.36)(0.625) = —17.95 kN/m’

and atz = 6 m,

o’ = (17.4)(6)(0.39) — 2(14.36)(0.625)
= 40.72 — 17.95 = 22.77 KN/m?>

Active Force before the Tensile Crack Appeared: Eq. (12.10)

Pa= YHZK(J — 2c'HVK,
= 1(6)(40.72) — (6)(17.95) = 122.16 — 107.7 = 14.46 kKN/m

o]—

The line of action of the resultant can be determined by taking the moment of the area
of the pressure diagrams about the bottom of the wall, or

Pz= (122.16)(%) - (107.7)(%)

Thus,
_ 24432 — 323.1
Z= 14.46 = —545m.
Active Force after the Tensile Crack Appeared: Eq. (12.9)
2c’ 2(14.36)

= = =2,
“= VK (140623) %™



Using Eq. (12.11) gives

P, = Y(H - z)(yHK, — 2¢'VK,) = 1(6 — 2.64)(22.77) = 38.25 kN/m

Figure 12.6¢ indicates that the force P, = 38.25 kN/m is the area of the hatched trian-
gle. Hence, the line of action of the resultant will be located at a height 7 = (H — z.)/3
above the bottom of the wall, or

6 — 2.6
Z=%=1.12m u

Example 12.3

Assume that the retaining wall shown in Figure 12.7a can yield sufficiently to develop
an active state. Determine the Rankine active force per unit length of the wall and the
location of the resultant line of action.

Solution
If the cohesion, ¢’, is zero, then

For the top layer of soil, ¢; = 30°, so

'
1

1
K,y = tan2(45 = %) = tan*(45 — 15) = =

a

Similarly, for the bottom layer of soil, ¢;= 36°, and it follows that

36
Ka(z) = tan2 (45 - ?) = 0.26
The following table shows the calculation of o, and u at various depths below the

ground surface.

Depth, Z (m) gy ( kN/m2) Ka g, = Kaag (kN/m2) | U (kN/m?)
0 0 1/3 0 0
3 17x3 =51 1/3 17 0
3* 51 0.26 | 13.26 0
6 17x3 +(19-9.8)x3=78.6 | 0.26 | 20.44 9.81x3 =29.43
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Figure 12.7 Rankine active force behind a retaining wall
The pressure distribution diagram is plotted in Figure 12.7b. The force per unit length is

P,=areal + area2 + area 3 + area 4

:é X3 X 17 +13.26 X 3 +§ (20.44 -13.26)x3 + % X 29.44 X3

= 255 + 39.78 + 10.77 + 44,16 =120.21 kN/m

The distance of the line of action of the resultant force from the bottom of the
wall can be determined by taking the moments about the bottom of the wall (point O
in Figure 12.7a) and is

(25.5)x(3+2)+(39.78)x(2)+(10.77+44.16) 2
x(3+3)+@o78x(3)+( D

7 =
120.21



A Generalized Case for Rankine Active Pressure—Granular Backfill

Frictionless
wall

Figure 12.8 General case for a retaining
wall with granular backfill

For a Rankine active case, the lateral earth pressure (o) at a depth z can be given
as (Chu, 1991),

_ yzcosaV'1 + sin® @' — 2sin¢’ cos i,

ol (12.13)
cosa + Vsin*¢' — sin® a
where , = sin_'(ssi?;) —a + 26. (12.14)

The pressure o, will be inclined at an angle B, with the plane drawn at right angle
to the backface of the wall, and

sing’ siny, ) (12.15)

B. = tan™! —
1 — sing'cosy,



The active force P, for unit length of the wall then can be calculated as

1
&=5H%a (12.16)

where

cos(a — O)V'1 + sin’¢’ — 2sing’ cos ¥,
cosze(cosa + Vsin’¢' — sinza)

= Rankine active earth-pressure coefficient for generalized case (12.17)

a®) =

The location and direction of the resultant force P, is shown in Figure 12.9. Also shown
in this figure is the failure wedge, ABC. Note that BC will be inclined at an angle 7. Or

T ¢ a 1 sina
=2 8 12 gin 12.18
=g "2 7 2mltm¢) (12.18)

Tables 12.1 and 12.2 give the variations of K, [Eq. (12.17)] and B, [Eq. (12.15)] for
various values of a, 0, and ¢'.

Failure
wedge

Figure 12.9 Location and direction
of Rankine active force



Table 712.7 Variation of K, [Eq. (12.17)]

K.y
¢’ (deg)
a /]
(deg) (deg) 28 30 32 34 36 38 40
0 0.361 0.333 0.307 0.283 0.260 0.238 0.217
2 0.363 0.335 0.309 0.285 0.262 0.240 0.220
4 0.368 0.341 0.315 0.291 0.269 0.248 0.228
0 6 0.376 0.350 0.325 0.302 0.280 0.260 0.242
8 0.387 0.362 0.338 0.316 0.295 0.276 0.259
10 0.402 0.377 0.354 0.333 0.314 0.296 0.280
15 0.450 0.428 0.408 0.390 0.373 0.358 0.345
0 0.366 0.337 0.311 0.286 0.262 0.240 0.219
2 0.373 0.344 0.317 0.292 0.269 0.247 0.226
4 0.383 0.354 0.328 0.303 0.280 0.259 0.239
5 6 0.396 0.368 0.342 0.318 0.296 0.275 0.255
8 0412 0.385 0.360 0.336 0.315 0.295 0.276
10 0.431 0.405 0.380 0.358 0.337 0.318 0.300
15 0.490 0.466 0.443 0.423 0.405 0.388 0.373
0 0.380 0.350 0.321 0.294 0.270 0.246 0.225
2 0.393 0.362 0.333 0.306 0.281 0.258 0.236
4 0.408 0.377 0.348 0.322 0.297 0.274 0.252
10 6 0.426 0.395 0.367 0.341 0.316 0.294 0.273
8 0.447 0.417 0.389 0.363 0.339 0.317 0.297
10 0.471 0.441 0414 0.388 0.365 0.344 0.324
15 0.542 0.513 0.487 0.463 0.442 0.422 0.404
0 0.409 0.373 0.341 0.311 0.283 0.258 0.235
2 0.427 0.391 0.358 0.328 0.300 0.274 0.250
4 0.448 0411 0.378 0.348 0.320 0.294 0.271
15 6 0.472 0.435 0.402 0.371 0.344 0.318 0.295
8 0.498 0.461 0.428 0.398 0.371 0.346 0.323
10 0.527 0.490 0.457 0.428 0.400 0.376 0.353
15 0.610 0.574 0.542 0.513 0.487 0.463 0.442
0 0.461 0.414 0.374 0.338 0.306 0.277 0.250
2 0.486 0.438 0.397 0.360 0.328 0.298 0.271
4 0.513 0.465 0.423 0.386 0.353 0.323 0.296
20 6 0.543 0.495 0.452 0.415 0.381 0.351 0.324
8 0.576 0.527 0.484 0.446 0.413 0.383 0.355
10 0.612 0.562 0.518 0.481 0.447 0.417 0.390
15 0.711 0.660 0.616 0.578 0.545 0.515 0.488




Table 12.2 Variation of B, [Eq. (12.15)]

B
¢’ (deg)
a 0
(deg) (deg) 28 30 32 34 36 3s 40
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 3.525 3.981 4.484 5.041 5.661 6.351 7.124
4 6.962 7.848 8.821 9.893 11.075 12.381 13.827
0 6 10.231 11.501 12.884 14.394 16.040 17.837 19.797
8 13.270 14.861 16.579 18.432 20.428 22.575 24876
10 16.031 17.878 19.850 21.951 24.184 26.547 29.039
15 21.582 23.794 26.091 28.464 30.905 33.402 35.940
0 5.000 5.000 5.000 5.000 5.000 5.000 5.000
2 8.375 8.820 9.311 9.854 10.455 11.123 11.870
4 11.553 12.404 13.336 14.358 15.482 16.719 18.085
5 6 14.478 15.679 16.983 18.401 19.942 21.618 23.441
8 17.112 18.601 20.203 21.924 23.773 25.755 27.876
10 19.435 21.150 22.975 24915 26.971 20.144 31.434
15 23.881 25.922 28.039 30.227 32.479 34.787 37.140
0 10.000 10.000 10.000 10.000 10.000 10.000 10.000
2 13.057 13.491 13.967 14.491 15.070 15.712 16.426
4 15.839 16.657 17.547 18.519 19.583 20.751 22.034
10 6 18.319 19.460 20.693 22.026 23.469 25.032 26.726
8 20.483 21.888 23.391 24.999 26.720 28.559 30.522
10 22.335 23.946 25.653 27.460 29.370 31.385 33.504
15 25.683 27.603 29.589 31.639 33.747 35.908 38.114
0 15.000 15.000 15.000 15.000 15.000 15.000 15.000
2 17.576 18.001 18.463 18.967 19.522 20.134 20.812
4 19.840 20.631 21.485 22.410 23.417 24.516 25.719
15 6 21.788 22.886 24.060 25.321 26.677 28.139 29.716
8 23.431 24.778 26.206 27.722 29.335 31.052 32.878
10 24,783 26.328 27.950 29.654 31.447 33.332 35.310
15 27.032 28.888 30.793 32.747 34.751 36.802 38.894
0 20.000 20.000 20.000 20.000 20.000 20.000 20.000
2 21.925 22.350 22.803 23.291 23.822 24.404 25.045
4 23.545 24.332 25.164 26.054 27.011 28.048 29.175
20 6 24.876 25.966 27.109 28.317 29.604 30.980 32.455
8 25.938 27.279 28.669 30.124 31.657 33.276 34.989
10 26.755 28.297 29.882 31.524 33.235 35.021 36.886
15 27.866 29.747 31.638 33.552 35.498 37.478 39.491
Example 12.4
Refer to the retaining wall in Figure 12.9. The backfill is granular soil. Given:
Wall: H=3m
6 =+ 10°
Backfill: a =15°
¢’ =35°
c'=0
y =18 kN/m?3

Determine the Rankine active force, P,, and its location and direction.



Solution
From Table 12.1, for ¢ = 15°and 6 =+ 10°, the value of K, = 0.42. From Eqg. (12.16),

1 1
a=3 ¥ H? Ko = 5 (18) (3)% (0.42) = 102.1 kN/m

Again, from Table 12.2, for @ = 15°and 68 = + 10°, ;. = 30.5°

The force P, will act at a distance of 3.0/3 = 1 m above the bottom of the wall and will be inclined at an
angle of +30.5° to the normal drawn to the back face of the wall.

Rankine Passive Earth Pressure

If the wall is pushed into the soil mass by an amount Ax, as shown in Figure below, the vertical stress at
depth z will stay the same; however, the horizontal stress will increase. The horizontal stress, a},, at this
point is referred to as the Rankine passive pressure, or o3, = 0,
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Now, let

K, = Rankine passive earth pressure coefficient

= tan2(45 + %) (12.57)

Then, from Eq. (12.56), we have

o, = 0.,K, + 2c'VK, (12.58)

Equation (12.58) produces (Figure 12.19c¢), the passive pressure diagram for the wall
shown in Figure 12.19a. Note that at z = 0,

0,=0 and o, =2c"VK,
and at z = H,
o,=yH and o= yHK, +2'VK,

The passive force per unit length of the wall can be determined from the area of the
pressure diagram, or

P, = yyHK, + 2c'HVK, (12.59)

The approximate magnitudes of the wall movements, Ax, required to develop failure under passive
conditions are as follows:

Wall movement for

Soil type passive condition, Ax
Dense sand 0.005H

Loose sand 0.01H

Stiff clay 0.01H

Soft clay 0.05H

If the backfill behind the wall is a granular soil (i.e., ¢'=0), then, from Eq. (12.59), the passive force per unit
length of the wall will be

|
P, =5 YHK, (12.60)



Example 12.13

A 3-m-high wall is shown in Figure 12.20a. Determine the Rankine passive force per
unit length of the wall.

Solution
For the top layer

!’

K, = tan2(45 + %) = tan’(45 + 15) =3

From the bottom soil layer

’

K, = tan2(45 + %) = tan(45 + 13) = 2.56

P

ag,=0,K, +2c'"VK,

P

Y= IST2KN/m'

Yo = 18.86 KN/m*
o = 26°
¢ = 10 kKN/m?

@ 9.81

kN/m?

(a)

Figure 12.20



where

o, = effective vertical stress
atz=0,0,=0,c; = 0,0,’, =0
atz=2m, o, = (15.72)(2) = 31.44kN/m? ¢, = 0

So, for the top soil layer

o, = 31.44K,) + 2(0) VK, = 31.44(3) = 94.32 kN/m’

At this depth, that is z = 2 m, for the bottom soil layer
K, + 2¢5VK ) = 31.44(2.56) + 2(10)V2.56
= 80.49 + 32 = 112.49 kN/m’
Again, at z = 3 m,
o5 = (15.72)(2) + (Y = Y1)
= 31.44 + (18.86 — 9.81)(1) = 40.49 kN/m’
Hence,
o), = 0.K,0) + 205V K o) = 40.49(2.56) + (2)(10)(1.6)
= 135.65 kN/m?

Note that, because a water table is present, the hydrostatic stress, u, also has to be taken into
consideration. Forz=0t02m, u = 0;z = 3 m, u = (1)(y,) = 9.81 kN/m’,

The passive pressure diagram is plotted in Figure 12.20b. The passive force per unit
length of the wall can be determined from the area of the pressure diagram as follows:

Area no. Area
1 (3)(2)(94.32) = 94.32
2 (112.49)(1) = 112.49
3 (%)(])(135.65 — 112.49) = 11.58
4 (3)9.81)(1) = 4905

Pp = 223.3 kN/m

Rankine Passive Earth Pressure—Vertical Backface and Inclined Backfill

Granular Soil
For a frictionless vertical retaining wall (Figure 12.10) with a granular backfill (¢’ = 0), the Rankine passive
pressure at any depth is

o, = vk, (12.61)



and the passive force is

o)

(12.62)

P

where

cos a + Veos® a — cos® ¢’
cos a—V'cos? a — cos® ¢’

K,=cosa (12.63)

As in the case of the active force, the resultant force, P, is inclined at an angle «
with the horizontal and intersects the wall at a distance H/3 from the bottom of the wall.
The values of K, (the passive earth pressure coefficient) for various values of a and ¢ are

given in Table 12.9.

Table 12.9 Passive Earth Pressure Coefficient K, [from Eq. (12.63)]

¢’ (deg)—
la (deg) 28 30 32 34 36 38 40
0 2.770 3.000 3.255 3.537 3.852 4.204 4.599
5 2.715 2.943 3.196 3.476 3.788 4.136 4.527
10 2.551 2.775 3.022 3.295 3.598 3.937 4.316
15 2.284 2.502 2.740 3.003 3.293 3.615 3.977
20 1.918 2.132 2.362 2.612 2.886 3.189 3.526
25 1.434 1.664 1.894 2.135 2.394 2.676 2.987

c’-¢' Soil

If the backfill of the frictionless vertical retaining wall is a c— ¢ soil (see Figure 12.10),

then (Mazindrani and Ganjali, 1997)
o, = vzK, = yzK, cos a

where

2 C’ (S ’
2cos” a + 2(?)cos ¢' sin ¢

1
K, = ey N2 :
cos” 5 5 5 ik c O i il ;
= \/4c05' a(cos” a — cos™ ¢') + 4(;) cos~ ¢’ + 8(;)cos*a sin ¢’ cos ¢

(12.64)

~1 {12165)

The variation of K, with ¢, @, and ¢’/yz is given in Table 12.10 (Mazindrani and

Ganijali, 1997).



Table 12.10 Values of K,’,

c/yz

¢’ (deg) a (deg) 0.025 0.050 0.100 0.500

15 0 1.764 1.829 1.959 3.002
5 1.716 1.783 1.917 2971
10 1.564 1.641 1.788 2.880
15 1.251 1.370 1.561 2,732
20 0 2111 2.182 2.325 3.468
5 2.067 2.140 2.285 3.435
10 1.932 2.010 2,162 3.339
15 1.696 1.786 1.956 3.183
25 0 2.542 2.621 2.778 4.034
5 2.499 2.578 2.737 3.999
10 2.368 2.450 2.614 3.895
15 2.147 2.236 2.409 3.726
30 0 3.087 3173 3.346 4.732
5 3.042 3.129 3.303 4.674
10 2.907 2.996 3.174 4.579
15 2.684 2711 2.961 4.394
Problems
12.2  Use Eq. (12.3), Figure P12.2, and the following values to determine the at-rest lat-
eral earth force per unit length of the wall. Also find the location of the resultant.
H=5mH =2m H,=3m, y= 155 kNm?, y_, = 18.5 kN/m?, ¢' = 34°,
¢’ =0, g = 20 kN/m?, and OCR = 1.
q
CHy
Z Groundwater
__________ y___lable
H =
v
C
H, &
i I
Figure P12.2
12.4 A vertical retaining wall (Figure 12.6a) is 7 m high with a horizontal backfill. For

the backfill, assume that y = 16.5 kN/m’, ¢’ = 26°, and ¢’ = 18 kN/m’. Determine
the Rankine active force per unit length of the wall after the occurrence of the tensile
crack.
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12.5 Refer to Problem 12.2. For the retaining wall, determine the Rankine active
force per unit length of the wall and the location of the line of action of the
resultant.

12.6

Refer to Figure 12.10. For the retaining wall, H =8 m, ¢’ = 36°, a = 10°,
v = 17kN/m?, and ¢’ = 0.

a. Determine the intensity of the Rankine active force at

z=2m,4 m,and 6 m.
b. Determine the Rankine active force per meter length of the wall and also the
location and direction of the resultant

Figure 12.10 Notations for active
pressure—Eqs. (12.19), (12.20), (12.21)
12.7 Refer to Figure 12.10. Given: H = 7 m, y = 18 kN/m”, ¢' = 25°

’

, = _¢' =12 kN/m?,
and a = 10°. Calculate the Rankine active force per unit length of the wall after the
occurrence of the tensile crack.



12.3 Refer to Figure 12.6a. Given the height of the retaining wall, H is 5.4 m; the backfill
is a saturated clay with @ =0, ¢ =40 KN/m?, yst = 19.5kN/m?®,
a. Determine the Rankine active pressure distribution diagram behind the wall.
b. Determine the depth of the tensile crack, z..
c. Estimate the Rankine active force per meter length of the wall before and after the
occurrence of the tensile crack.

12.13 Refer to Problem 12.3.
a. Draw the Rankine passive pressure distribution diagram behind the wall.
b. Estimate the Rankine passive force per meter length of the wall and also the location
of the resultant.



Pile foundation

Pile foundations are used in the following conditions:

1. When one or more upper soil layers are highly compressible and too weak to support the
load transmitted by the superstructure, piles are used to transmit the load to underlying
bedrock or a stronger soil layer, as shown in Figure 9.1a. When bedrock is not encountered
at a reasonable depth below the ground surface, piles are used to transmit the structural
load to the soil gradually. The resistance to the applied structural load is derived mainly
from the frictional resistance developed at the soil—pile interface. (See Figure 9.1b.)

2. When subjected to horizontal forces (see Figure 9.1c), pile foundations resist by bending,
while still supporting the vertical load transmitted by the superstructure. This type of
situation is generally encountered in the design and construction of earth-retaining
structures and foundations of tall structures that are subjected to high wind or to
earthquake forces.

3. In many cases, expansive and collapsible soils may be present at the site of a proposed
structure. These soils may extend to a great depth below the ground surface.

Expansive soils swell and shrink as their moisture content increases and decreases, and
the pressure of the swelling can be considerable. If shallow foundations are used in such
circumstances, the structure may suffer considerable damage. However, pile foundations
may be considered as an alternative when piles are extended beyond the active zone,
which is where swelling and shrinking occur. (See Figure 9.1d.)

Soils such as loess are collapsible in nature. When the moisture content of these
soils increases, their structures may break down. A sudden decrease in the void ratio of soil
induces large settlements of structures supported by shallow foundations. In such cases,
pile foundations may be used in which the piles are extended into stable soil layers beyond
the zone where moisture will change.

4. The foundations of some structures, such as transmission towers, offshore platforms,
and basement mats below the water table, are subjected to uplifting forces. Piles are
sometimes used for these foundations to resist the uplifting force. (See Figure 9.1e.)

5. Bridge abutments and piers are usually constructed over pile foundations to avoid the
loss of bearing capacity that a shallow foundation might suffer because of soil erosion at
the ground surface. (Figure 9.1f.)
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Figure 9.1 Conditions that require the use of pile foundations

Types of Piles Materials and Installation

Concrete piles

Several types of concrete piles are commonly used; these include cast-in-place concrete
piles, precast concrete piles. Cast —in-place concrete piles are formed by driving a cylindrical
steel shell into the ground to the desired length and then filling the cavity of the shell by
fluid concrete. Various types of cast-in-place concrete piles are currently used in
construction. These piles may be divided into two broad categories:

(a) cased and (b) uncased. Both types may have a pedestal at the bottom.

Cased piles are made by driving a steel casing into the ground with the help of a mandrel
placed inside the casing. When the pile reaches the proper depth the mandrel is withdrawn
and the casing is filled with concrete. Figure 9.4d shows some examples of cased piles
without a pedestal. Figure 9.4e shows a cased pile with a pedestal. The pedestal is an
expanded concrete bulb that is formed by dropping a hammer on fresh concrete. Precast
concrete piles usually have square or circular or octagonal cross section and are fabricated
in construction yard from reinforced or prestressed concrete.

Advantages of concrete piles:

a. Can be subjected to hard driving

b. Corrosion resistant

c. Can be easily combined with a concrete superstructure

2



Disadvantages:
a. Difficult to achieve proper cutoff
b. Difficult to transport

—

fe—2D—>]

Square pile

Octagonal pile

R

—

e e — ——

[fe——D—

Figure 9.3 Precast piles with ordinary reinforcement

Scamless Pile or Franki Cased Western Uncased Franki Uncased
Armco Pile Pedestal Pile Pile without Pedestal Pile
Pedestal

Thin metal casing

Maximum usual
length: 30 m-40 m
(100 fi-130 fr)

Straight steel pile

casing

Maximum usual
length: 30 m-40 m

Maximum usual
length: 15 m-20m
(50 fi-65 f1)

Maximum usual
length: 30 m-40 m
(100 fi=130 fv)

(100 fi-130 fr)

O

(d) (¢) (f)

Figure 9.4 Cast-in-place concrete piles

Continuous Flight Auger (CFA) Piles

The continuous flight auger (CFA) piles are also referred to as auger-cast, auger-cast-
inplace, and auger-pressure grout piles. CFA piles are constructed by using continuous flight
augers and by drilling to the final depth in one continuous process. When the drilling to the
final depth is complete, the auger is gradually withdrawn as concrete or sand/cement grout
is pumped into the hole through the hollow center of the auger pipe to the base of the
auger. Reinforcement, if needed, can be placed in CFA piles immediately after the
withdrawal of the auger. The reinforcement is usually confined to the top 10 to 15 m of the
pile.



In general, CFA piles are usually 0.3 to 0.9 m in diameter with a length up to about 30 m. In
the United States, smaller diameter piles [i.e., 0.3 to 0.5 m] are generally used. However,
piles with larger diameters [up to about 1.5 m] have been used. Typical center-to-center
pile spacing is kept at 3 to 5 pile diameters. Advantages of CFA piles are:

a. Noise and vibration during construction are minimized.

b. Eliminates splicing and cutoff.

e Disadvantages:

a. Soil spoils need collection and disposal.

Steel Piles

Steel pile come in various shapes and sizes and include cylindrical seamless pipe, tapered
and H —piles which is rolled steel sections , concrete-filled steel pile can be done by
replacing the soil inside the tube by concrete to increase the load capacity.

Timber Piles

Timber piles have been used since ancient times with a common length of about 12 meters.

Pile Installation

Piles can be installed in a predrilled hole (bored piles or drilled shafts) by drilling a hole and

either inserting a pile into it or, more commonly, filling the cavity with concrete, which

produces a pile upon hardening.

Alternatively, the piles can be driven into the ground (driven piles). Driving can be done by:

1. Driving with a steady succession of blows on the top of the pile using a pile hammer. This
produces both considerable noise and local vibrations, which may be disallowed by local
codes or environmental agencies and, of course, may damage adjacent property.

2. Driving using a vibratory device attached to the top of the pile. This method is usually
relatively quiet, and driving vibrations may not be excessive. The Method is more
applicable in deposits with little cohesion.

3. Jacking the pile. This technique is more applicable for short stiff members.
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Figure 9.7 (continued) Pile-driving equipment: (e) vibratory pile driver: (f) photograph of a
vibratory pile driver (Courtesy of Reinforced Earth Company, Reston, Virginia)

Axial Capacity of Piles in Compression

Axial capacity of piles primarily depends on how and where the applied loads are transferred into the

ground. Based on the location of the load transfer in deep foundations, they can be classified as follows:

1. End- or point-bearing piles: The load is primarily distributed at the tip or base of the pile.

2. Frictional piles: The load is distributed primarily along the length of the pile through friction between

the pile material and the surrounding soil.

3. Combination of friction and end bearing: The load is distributed both through friction along the length
of the pile and at the tip or base of the pile.

Load Load Load

Wateror Soil Friction R_ Soil Friction R_
soft soil

(KKA’Af LXZZX Bt E T 'y
Rock Very soft soil

Rp R,
End- or point-bearing piles Frictional piles Friction- and end-bearing piles
Puit =P, p +Ps



Pile in Cohesionless Soil

1. Point Capacity
If we incorporate the effect of shape and depth
in determination of the N factors, the equation
for bearing capacity of shallow foundations may
be modified for deep foundations after neglecting
the third part because of the small diameter or
width of the piles as:

Guie = ¢ N¢ + C_IN(;

Py = (cN; +gNg) Ay

Meyerhof Method Cohesionless soil

1000
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400 ¥
200 //
100 - '}/
80 7
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2 4
1
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FIGURE 5.16 Meyerhof (1976) bearing capacity
factors N7 and N (adapted from Das 1999).

Soil friction angle, ¢ (deg)

P,. = qN; A, < (50N, tan@) A, kN

2. SKin friction Capacity

Field studies have shown that the unit frictional resistance of piles embedded in cohesionless soils
increases with depth. However, beyond a certain depth, the unit frictional resistance remains more or less
constant, as illustrated; this depth, beyond which the unit frictional resistance does not increase, is called
the critical depth and has been observed to vary between 15 to 20 times the pile diameter.

Ps = ) A fs
Where:
A; = effective pile surface area on which fs acts
Skin resistance fs = K oy tand’
K= Ko Bored or jetted piles
K= 1.4 Ko Low-displacement driven piles
K= 1.8Kp High-displacement driven piles
where Ko= 1 - sin ¢ for sands.

Unit frictional
}— resistance, f

l

Embedment
length, z

4

Critical depth
= 15-20 diameters

v

|

Constant frictional
resistance beyond
this depth




Example:

A concrete pile is 15 m long and 0.4x0.4 m in cross section, the pile is fully embedded in sand for which y =

15.5 kN/m3, and ¢=30°. Calculate;

1. The ultimate point load of the pile?

2. The frictional resistance force if K=1.3 and friction angle between pile and soil §= 0.8¢?
3. The allowable pile load, FS=47?

Solution:
1.
Using Meyerhof Method
By =N A5
From figure, for =30° N, =55
Ppu=15.5x 15 x 55 (0.4x0.4) = 2046 kN
Check with max. limit (50 Ng tan® ) A, =50 x 55 x 0.577 x 0.4x0.4 = 254 kN
Use Pp, 254 kN

2.

Fs)o =K a’, tand =0
Critical depth = 20x pie diameter =20x0.4 =8m
Fs)s =K @’y tand = 1.3x 15.5 x 8 x tan (0.8x30) = 71.7 kN/m?

0 +717
P, = T(J} xX04x8) +71.7x (1.6 x7)=1262kN
3.
Put= Pp +Ps =254 + 1262 = 1516 kN Pai= Pui/FS = 1516/4 = 379 kN

Pile in Cohesive Soil
1. Point Capacity
Inclay =0 qu= c N

Bearing capacity factor N, is commonly taken as 9
Pu = 9 CAp

2. SKkin friction Capacity

Ps = YA f
fs=ac

Where
a = coefficient from figure
¢ = average cohesion (or S,) for the soil stratum of interest
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. P . - . A ' Saturated clay r,,,,-‘OkNlm;
A driven-pipe pile in clay is shown in figure. 5m = 18 kN/m"
The pipe has an outside diameter of 406 mm - * — _:__'g‘b‘::‘_'d“"‘_'" , —
a. Calculate the net point bearing capacity. ¥ RIS Clay --m o i‘g:‘;‘:‘"‘ _
b. Calculate the skin resistance. oo By n_._
c. Estimate the net allowable pile capacity. R s :

Use FS =4. Fi)

‘““""J‘m o
Cla)'* &@E{g’,—
Solution: V‘x"u\; 100 kN/m? 25
Yo = 19.6 kN/m’
a.
Pou =9 C Ap = 9x 100x (3.14x0.4062%/4)
=116.5 kN
b.

Perimeter of the pile= 0.406x3.14=1.275m

Ps=30x0.95x5x1.275 +30x0.95x5x1.275 +100x0.72x20x1.275 =2200 kN
C.

Puit= Pp +Ps =116.5 +2200= 2316.5 kN

Pai= Puit/FS = 2316.5/4 = 580 kN

Correlations for Calculating Q, with SPT and CPT Results in Granular Soil

On the basis of field observations, Meyerhof (1976) also suggested that the ultimate point resistance qp in
a homogeneous granular soil (L =Lp) may be obtained from standard penetration numbers as

= 4paN60

L
g, = 0.4p,Nqgg D (9.37)

Where

Neo = the average value of the standard penetration number near the pile point (about 10D above and 4D
below the pile point)

pa = atmospheric pressure = 100 kN/m?

Briaud et al. (1985) suggested the following correlation for g, in granular soil with the standard penetration
resistance Neo.

Qo = 19.7pa(N60)°36 (9.38)

9



Meyerhof (1956) also suggested that

Qp = Qc (9.39)
where qc = cone penetration resistance.

Example 9.3

Consider a concrete pile that is 0.305m X 0.305 m in cross section in sand. The pile is
12 m long. The following are the variations of Ng, with depth.

. Depth below ground surface (m) Ngo
15 8
3.0 10
45 9
6.0 12
7.5 14
9.0 18

10.5 11
12.0 17
13.5 20
15.0 28
16.5 29
18.0 32
19.5 30
21.0 27

a. Estimate @, using Eq. (9.37).
b. Estimate Q, using Eq. (9.38).

Solution
Part a
The tip of the pile is 12 m below the ground surface. For the pile, D = 0.305m. The
average of N, 10D above and about 5D below the pile tip is
184+11+17 120

Ng = 7 =165~ 17

10



From Eq. (9.37)

L
Q, = A)q,) = Ap[0-4paNm( D )] = A,(4pNeo)

Ap|:0.4pan(%)] = (0.305 X 0.305)[(0.4)(100)(17)( % )] = 2488.8 kN

A(4pNso) = (0.305 X 0.305)[(4)(100)(17)] = 632.6 kN =~ 633 kN
Thus, Q, = 633 kN

Part b
From Eq. (9.38),

0, =A,q, = A[19.7p,(N&)***]1 = (0.305 X 0.305)[(19.7)(100)(17)**]
= 508.2 kN

Frictional Resistance (Qs) in Sand
Correlation with Standard Penetration Test Results

Meyerhof (1976) indicated that the average unit frictional resistance, f, , for high-
displacement driven piles may be obtained from average standard penetration resistance
values as

fav = 0.02pa(Neo) (9.45)

where

Nso = average value of standard penetration resistance
Pa = atmospheric pressure =100 kN/m?

For low-displacement driven piles

fav = 0.01pa(Neo) (9.46)
Briaud et al. (1985) suggested that

fav ~(0.224 pa(NGO)O'Zg (947)
Thus,
Qs = pLfa
Example 9.4

Refer to the pile described in Example 9.3. Estimate the magnitude of Q, for the pile.

a. Use Eq. (9.45).
b. Use Eq. (9.47).

11



c. Considering the results in Example 9.3, determine the allowable load-carrying
capacity of the pile based on Meyerhof’s method and Briaud’s method. Use a
factor of safety, FS = 3.

Solution
The average Ny, value for the sand for the top 12 mis

= s 10 F9 12 14 T 18 1111
N60= 3

=12.375=12

Part a
From Eq. (9.45),

fov = 0.02p4(No) = (0.02)(100)(12)= 24 'kN/m?
Q, = pLfyy = (4 X 0.305)(12)(24)=351.4 kN

Partb
From Eq. (9.47),

fio = 0.224 p(Ng)°?° = (0.224)(100)(12)°%= 46.05 kN/m?
Q, = pLf,, = (4 X 0.305)(12)(46.05) = 674.17 kKN

Part c
¢, +0; 633+3514
Meyerhof’s method: Q,, = = = =328.1 kN
ES 3
O, +0; 5082+ 674.2
Briaud’s method: Q,, = pFS = 3 =394.1 kN

So the allowable pile capacity may be taken to be about 360 kN. E

12
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Figure 9.6 (a) and (b) Point bearing piles; (c¢) friction piles

Correlation with Cone Penetration Test Results

Nottingham and Schmertmann (1975) and Schmertmann (1978) provided correlations for
estimating Q, using the frictional resistance (f.) obtained during cone penetration tests.

According to this method

f=a, (9.49)

The variations of a’ with L/D for electric cone and mechanical cone penetrometers are
shown in Figures 9.18 and 9.19, respectively. We have

Q, = Zp(AL)f = Zp(AL)a'f, (9.50)

13
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Figure 9.18 Variation of e’ with embedment ratio for pile in sand: electric cone penetrometer
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Figure 9.19 Variation of a' with embedment ratio for piles in sand: mechanical
cone penetrometer
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Example 9.6

Consider an 18-m-long concrete pile (cross section: 0.305 m X 0.305 m) fully embed-
ded in a sand layer. For the sand layer, the following is an approximation of the cone
penetration resistance ¢. (mechanical cone) and the frictional resistance f, with depth.
Estimate the allowable load that the pile can carry. Use FS = 3.

Depth from
ground surface (m) q.(kN/m?  £.(kN/m?)

0-5 3040 73

5-15 4560 102

15-25 9500 226
Solution

e
From Eq. (9.39),
qdp = 4.

At the pile tip (i.e., at a depth of 18 m), g. = 9500 kN/m?. Thus,
0, = A,q. = (0.305 X 0.305)(9500) = 883.7 kN

To determine Q,, the following table can be prepared. (Note: L/D = 18/0.305 = 59.)

r

Depth from a

ground surface (m) AL (m) fc(kNlm"') (Figure 9.19) PALa’ T, (kN)
0-5 5 73 0.44 195.9
5-15 10 102 0.44 547.5
15-18 3 226 0.44 363.95
Q, = 1107.35 kN
Hence,

0. = 0, + O, = 883.7 + 1107.35 = 1991.05 kN

0. = Q. 1991.05
Mg 3

= 663.68 =~ 664 kN E
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Pile Load Test

The purposes of a pile load test are:

e To determine the axial load capacity of a single pile.

* To determine the settlement of a single pile at working load.

e To verify the estimated axial load capacity.

e To obtain information on load transfer in skin friction and end bearing.

The allowable bearing capacity is found by dividing the ultimate load, found from the load settlement curve, by
a factor of safety, usually 2. An alternative criterion is to determine the allowable pile load capacity for a
desired serviceability limit state, for example, a settlement of 10% of the pile diameter. Also pile settlement
under double working load should not be more than 25 mm.

Load T A

Qu:‘l remem—am———
(a)

well-defined ultimate load

ill-defined ultimate load

Quil o

Load- settlement (b)

curve of pile

0 >

Any suitable anchorage system

Two or more steel 1 or W shapes
Bearing plate Hydraulic jack
Anchor plate
e Load plate Load dial /_
TSI rr’ . ' weld
Disturbance-free Displacement dials
anchorage D—%
for dial
gauges Test Reference ledges
Ky Wm pile ATEISERIISE —~— [R
—— Reaction pile

(¢) Typical pile load test sctup using adjacent piles in group for reaction.

EFFICIENCY OF PILE GROUPS

When several pile butts are attached to a common structural element termed a pile cap the result is a pile
group. A question of some concern is whether the pile group capacity is the sum of the individual pile
capacities or something different—either more or less. If the capacity is the sum of the several individual
pile contributions, the group efficiency Eg = 1.0.

16



Optimum spacing s seems to be on the order of 2.5 to 3.5D or 2 to 3H for vertical loads where D = pile

diameter; H = diagonal of rectangular shape or HP pile. Group efficiency can be estimated using

m—1m+(m—1)n

E,=1-6

g 90mn

Where m, n are no. of columns and rows of piles 8= tan? D/s in degrees.

D
o —— e e  w— w—
o'
Ly k i
g | | s | |
| | |
p— I
s ____?’

. s

3 piles 4 piles

Function of Pile Cap

1. Transfer column load to pile bed.
2. To substitute the ill effect of one pile to others
3. To take any deviation in the location of piles

Minimum Total Thickness of Pile Cap
150 mm pile penetration in cap
75 mm concrete cover for cap steel above pile
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Twice bar diameter

300 mm minimum concrete thickness above reinforcement

Example:

Estimate the pile group efficiency shown if the load

per pile is as follows

Po =90 kN, P. =45 kN

What should be the minimum required allowable
pile capacity of each Individual pile, then design
the pile cap for the case shown

Footing size =2.6 x 2.6 m.

Column size = 0.4x 0.4 m.

Pile diameter = 0.3 m.

c/c spacing between piles= 0.9 m

fc' =30 MPa
Solution:
B m—1m+(m—1)n
E,=1-0
90mn
8 =tan 122 = 18.43°
0.9
o= j— igaat- 0t 1l . oo
g9 : 90Xx3x3 :

Total working load on each pile =90 + 45 = 135 kN

critical section
for beam action | _

Required allowable individual pile capacity = 135/0.72 = 187.5 kN

Design of pile cap:

Ultimate Pile Load

Pu.=1.2x90+1.6 x45 =180 kN

Find Depth of Footing Using Shear Strength

1. Wide Beam Shear — Section at d from column face

Vy =3 x180 =540 kN

@Ve=0.75x0.17 \/f7 b d =0.75 x 0.17 x V30 x 2.6 x d x1000 = 1815 d

d =540/1815=0.3 m

2. Two- Way Shear — Section at d/2 from column face

Vu=8x 180 = 1440 kN

critical section
for two-way
-~ - -
( CO (S
o - ‘o~
———_ 4
| | dr
- - -
SHOKES:
' | [P~~~ |~
d I
f{ ~ !’\] ("\_
\ ‘. \

@V =0.75x0.33,/f) bod =0.75x 0.33 x V30 x 4(0.4 + d) d x1000 = 1356 (1.6d +4d?)

1440 = 1356 (1.6d +4d?)
d=0.35m

3. Check Punching Shear Strength at Corner pile.

Pu= 180 kN
@Vc=0.75x0.33,/f/ bod

=0.75x0.33 x V30 x3.14 (0.3 + d)x d x1000 = 4257 (0.3d + d?)

d=0.1m
Use d =350 mm

Total thickness of pile cap = 150 + 75 + 25+ 350 = 600 mm



EXPLORATION, SAMPLING, AND
IN SITU SOIL MEASUREMENTS

The process of identifying the layers of deposits that underlie a proposed structure and their
physical characteristics is generally referred to as subsurface exploration. The purpose of
subsurface exploration is to obtain information that will aid the geotechnical engineer in

1. Selecting the type and depth of foundation suitable for a given structure.

2. Evaluating the load-bearing capacity of the foundation.

3. Estimating the probable settlement of a structure.

4. Determining potential foundation problems (e.g., expansive soil, collapsible soil, and so on).
5. Determining the location of the water table.

6. Predicting the lateral earth pressure for structures such as retaining walls, sheet pile, and
braced cuts.

7. Establishing construction methods for changing subsoil conditions.

Subsurface exploration may also be necessary when additions and alterations to existing
structures are contemplated

METHODS OF EXPLORATION

The most widely used method of subsurface investigation is boring holes into the ground, from
which samples may be collected for either visual inspection or laboratory testing. Several
procedures are commonly used to drill the holes and to obtain the soil samples.

SOIL BORING

Exploratory holes into the soil may be made by hand tools, but more commonly truck- or
trailer-mounted power tools are used.

1- Hand Tools

The earliest method of obtaining a test hole was to excavate a test pit using a pick and shovel.
Because of economics, the current procedure is to use power excavation equipment such as a
backhoe to excavate the pit and then to use hand tools to remove a block sample or shape the site
for in situ testing. This is the best method at present for obtaining quality undisturbed samples or
samples for testing at other than vertical orientation. For small jobs, where the sample disturbance
Is not critical, hand or powered augers (Fig. 3-1) held by one or two persons can be used. Hand-
augered holes are usually drilled to depths of the order of 2 to 5 m, as on roadways or airport
runways, or investigations for small buildings.



2- Mounted Power Drills

For numerous borings to greater depths and to collect samples that are undisturbed, the only
practical method is to use power-driven equipment.

2.1 Wash boring is a term used to describe one of the more common methods of advancing a hole
into the ground. A hole is started by driving casing (Fig. 3-2) to a depth of 2 to 3.5 m. Casing is
simply a pipe that supports the hole, preventing the walls from sloughing off or caving in. The
casing is cleaned out by means of a chopping bit fastened to the lower end of the drill rod. Water
is pumped through the drill rod and exits at high velocity through holes in the bit. The water rises
between the casing and drill rod, carrying suspended soil particles, and overflows at the top of
the casing. The hole is advanced by raising, rotating, and dropping the bit into the soil at the
bottom of the hole. This method is quite rapid for advancing holes in all but very hard soil strata.
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Drill rod
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i
Figure 3-1 Hand tools for soil exploration | l
(a), (b) Hand augers T T Chopping bit
iyl
‘k'ii\: Driving shoe
\-A\ Water jet at
high velocity

Figure 3.2 Wash boring



2.2 Rotary drilling

Rotary drilling is another method of advancing test holes. This method uses rotation of the drill
bit, with the application of pressure to advance the hole. Rotary drilling is the most rapid method
of advancing holes in rock unless it is badly fissured; however, it can also be used for any type of
soil. Drilling mud may be used in soils where the sides of the hole tend to cave in. Drilling mud
Is usually a water solution of a special kind of clay (such as bentonite), with or without other
admixtures, that is forced into the sides of the hole by the rotating drill. The mud cake thus formed
provides sufficient strength in conjunction with the hydrostatic pressure of the mud suspension
so that the cavity is maintained. When soil samples are needed, the drilling rod is raised and the
drilling bit is replaced by a sampler.

2.3 Continuous-flight augers

Continuous flight augers with a rotary drill are probably the most popular method of soil
exploration at present (Fig. 3-3). The flights act as a screw conveyor to bring the soil to the
surface. The method is applicable in all soils. Borings up to nearly 100 m can be made with these
devices, depending on the driving equipment, soil, and auger diameter.

Figure 3-3 Soil drilling using a
continuous-flight auger.

SOIL SAMPLING

The most important engineering properties for foundation design are strength, compressibility,
and permeability. Reasonably good estimates of these properties for cohesive soils can be made
by laboratory tests on undisturbed samples, which can be obtained with moderate difficulty. It is

3



nearly impossible to obtain a truly undisturbed sample of soil, so in general usage the term
undisturbed means a sample where some precautions have been taken to minimize disturbance
of the existing soil skeleton. The following represent some of the factors that make an undisturbed
sample hard to obtain:

1. The sample is always unloaded from the in situ confining pressures, with some unknown
resulting expansion

2. Samples collected are disturbed by volume displacement of the tube or other collection device.
The presence of gravel greatly aggravates sample disturbance.

3. Sample friction on the sides of the collection device tends to compress the sample during
recovery. Most sample tubes are swaged so that the cutting edge is slightly smaller than the inside
tube diameter to reduce the side friction.

Cohesionless Soil Sampling

It is nearly impossible to obtain undisturbed samples of cohesionless material for strength testing.
Sometimes samples of reasonable quality can be obtained using thin-walled piston samplers in
medium- to fine-grained sands. In gravelly materials, and in all dense materials, samples with
minimal disturbance are obtained only with extreme difficulty. Some attempts have been made
to recover cohesionless materials by freezing the soil, freezing a zone around the sample (but not
the sample), or injecting asphalt that is later dissolved from the sample.

Since it is nearly impossible to recover undisturbed samples from cohesionless deposits, density,
strength, and compressibility estimates are usually obtained from penetration tests or other in
situ methods. Permeability may be estimated from well pumping tests or, approximately, by
bailing the boring and observing the time for the water level to rise some amount.

Disturbed Sampling of All Soils

Disturbed samples are adequate to locate suitable borrow, where compaction characteristics and
index tests for classification are usually sufficient. In this case a larger-diameter auger (usually
only shallow depths) may be used so that bags of representative soil may be obtained for
laboratory compaction tests, sieve analyses, and Atterberg limits.

In recognizing the difficulty and expense of obtaining undisturbed samples, it is common practice
on most foundation projects to rely on penetration tests and, disturbed samples for obtaining an
estimate of the soil conditions. The standard penetration test (SPT) is nearly universally used,
even though highly disturbed samples are recovered. Other types of tests, particularly cones, are
also widely used, although these latter devices do not recover a soil sample. For very complex
projects, more than one type of test equipment may be used (such as the standard penetration test
together with a cone penetration test).

Figure 3-5 illustrates the sampling device (also called a split spoon) most commonly used with
the SPT. It is made up of a driving shoe. The barrel consists of a piece of tube split lengthwise
(split spoon) with a coupling on the upper end to connect the drill rod to the surface. Inserts (see
Fig. 3-5b) are used when samples of thin mud and sand are to be recovered.



In a test the sampler is driven into the soil a measured distance, using some kind of falling weight
producing some number of blows (or drops). The number of blows N to drive the specified
distance is recorded as an indication of soil strength.

The sampler is then slightly twisted to shear the soil at the base of the tube and withdrawn.

The shoe and coupling are unscrewed and the two halves of the barrel are opened to expose the
sample (unless a liner is used). If a liner is used, both ends are sealed—usually with melted wax—
for later laboratory testing. If a liner is not used, on-site unconfined compression q, tests are
routinely made on cohesive samples. The wall thickness of the driving shoe (Fig. 3-5a) indicates
that any samples recovered by this device are likely to be highly disturbed.

Representative samples from the soil in the sampler barrel are stored in sample jars and returned
to the laboratory for inspection and classification. The field technician marks the jar with the job
and boring number, sample depth, and penetration blow count.

These samples are used for determining the Atterberg limits and natural water content. In routine
work these index properties, used with correlation tables and charts and with q,, are sufficient to
select the foundation type, estimate the allowable bearing capacity, and make some kind of
estimates of probable settlement.

The penetration number N (a measure of resistance) is usually sufficient for making estimates of
both strength and settlement in cohesionless soils. Where the geotechnical consultant has obtained
sufficient experience, strength/settlement predictions made in this manner are quite adequate for
about 85 to 90 percent of foundation work.

I‘_ﬂézi::n __|__7?32i::n "l

Unassembled split-spoon sampler after
sampling
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Figure 3.5 (a) Standard split-spoon sampler; (b) spring core catcher



Undisturbed Sampling in Cohesive Soils

As the field boring progresses and soft layers are encountered that may influence the foundation
selection/design, undisturbed samples are usually taken so that consolidation and more refined
laboratory strength tests can be made.

Recovery of "undisturbed" samples in cohesive soils is accomplished by replacing the split spoon
on the drill rod with specially constructed thin-walled tubes, sometimes referred to as Shelby
tubes. They are made of seamless steel (1.63 to 3.25 mm thick) and are frequently used to obtain
undisturbed clayey soils. The most common thin-walled tube samplers have outside diameters of
50.8 mm (2 in.) and 76.2 mm (3 in.). The bottom end of the tube is sharpened. The tubes can be
attached to drill rods (Figure 3.6). The drill rod with the sampler attached is lowered to the bottom
of the borehole, and the sampler is pushed into the soil. The soil sample inside the tube is then
pulled out. The two ends are sealed, and the sampler is sent to the laboratory for testing.
Samples obtained in this manner may be used for consolidation or shear tests. Friction holds the
sample in the tube as the sample is withdrawn; however, there is also special valve or piston (Fig.
3-6) arrangement that use a pressure differential (suction) to retain the sample in the tube.

i °

Fig. 3-6 Thin walled tube

Drill rod
Thin-walled tube

The degree of disturbance for a soil sample is usually expressed as
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where

Ar = area ratio (ratio of disturbed area to total area of soil)

D, = outside diameter of the sampling tube

D;i = inside diameter of the sampling tube

When the area ratio is 10% or less, the sample generally is considered to be undisturbed.
For a standard split-spoon sampler,

(50.8)% — (34.93)2
(34.93)>

Ap(%) = (100) = 111.5%



Hence, these samples are highly disturbed. Split-spoon samples generally are taken at intervals
of about 1.5 m.

THE STANDARD PENETRATION TEST (SPT)

The standard penetration test, developed around 1927, is currently the most popular and
economical means to obtain subsurface information (both on land and offshore). It is estimated
that 85 to 90 percent of conventional foundation design in North and South America is made
using the SPT. This test is also widely used in other geographic regions. The method has been
standardized as ASTM D 1586. The test consists of the following:

1. Driving the standard split-barrel sampler of dimensions shown in Fig. 3-5a a distance of
460mm into the soil at the bottom of the boring.

2. Counting the number of blows to drive the sampler the last two 150 mm distances (total = 300
mm) to obtain the N number.

3. Using a 63.5-kg driving mass (or hammer) falling "free” from a height of 760 mm. Several
hammer configurations are shown in Fig. 3-7.

The exposed drill rod is referenced with three chalk marks 150 mm apart, and the guide rod (see
Fig. 3-7) is marked at 760 mm (for manual hammers). The assemblage is then seated on the soil
in the borehole (after cleaning it of loose cuttings). Next the sampler is driven a distance of 150
mm to seat it on undisturbed soil, with this blow count being recorded. The sum of the blow
counts for the next two 150-mm increments is used as the penetration count N unless the last
increment cannot be completed. In this case the sum of the first two 150-mm penetrations is
recorded as N.

The boring log shows refusal and the test is halted if

a. 50 blows are required for any 150-mm increment.
b. 10 successive blows produce no advance.

It should be evident that the blow count would be directly related to the driving energy, which is
theoretically computed as follows:

Ein = Wh

where W = weight or mass of hammer and h = height of fall.

It was found that the actual input driving energy E, to the sampler to produce penetration ranged
from about 30 to 80 percent. From the several recent studies cited it has been suggested that the

SPT be standardized to some energy ratio E, which should be computed as

_Actual hammer energy to sampler, E,

= X
Er Input energy, Ei, 100




For example, N70=25 means that the SPT number (N) is 25 for E, = 70%, and Neo = 44 means
that means SPT number (N) is 44 for E, = 60% for and so on.

lW 63.5 kg
63.5k 9
"
:g
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E Anvil &
o or drive 'g
head 3 l l
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(a) Early style “pinweight” b
hammer. (¢) Donut or center-hole
t- Drill rod hammer.

Figure 3-7 Schematic diagrams of the three commonly used hammers. Hammer (b) is used about 60 percent;

(a) and (c) about 20 percent each in the United States. Hammer (c) is commonly used outside the United States.
Note that the user must be careful with (b) and (c) not to contact the limiter and "pull” the sampler out of the soil.
Guide rod X is marked with paint or chalk for visible height control when the hammer is lifted by rope off the
cathead (power takeoff)

In the field, the magnitude of E, can vary from 30 to 90%. The standard practice now in

the U.S. is to express the N-value to an average energy ratio of 60% ~ (N60).

to correct or standardize the field penetration number as a function of the input driving energy
and its dissipation around the sampler into the surrounding soil, we use the following equation:



_ NngMpNs Mg
60

Neo

where

N, = standard penetration number, corrected for field conditions
"N = measured penetration number
ny = hammer efficiency (%)
ng = correction for borehole diameter

ns = sampler correction

Mg = correction for rod length

Values of M M- Ms. and ng,,

are in tables below.

Table 3.5 Variations of n.m,. 15, and 1 [Eq. (3.6)]

1. Variation of gy

2. Variation of 7,

Diameter
mm in. N8
60-120 2447 1
150 6 1.05
200 8 1.15

Country Hammer type Hammer release ny (%0)

Japan Donut Free fall 78
Donut Rope and pulley 67

United States Safety Rope and pulley 60
Donut Rope and pulley 45

Argentina Donut Rope and pulley 45

China Donut Free fall 60
Donut Rope and pulley 50

3. Variation of ngs

Variable Ns

Standard sampler 1.0

With liner for dense sand and clay 0.8

With liner for loose sand 0.9

SPT CORRELATIONS

4. Variation of ny

Rod length
=10 >30 1.0
6-10 20-30 0.95
4-6 12-20 0.85
0-4 0-12 0.75

The SPT has been used in correlations for unit weight y, relative density D,, angle of internal
friction ¢, and undrained compressive strength q,. It has also been used to estimate the bearing
capacity of foundations and for estimating the stress-strain modulus E.



Relative Density

In granular soils, the degree of compaction in the field can be measured according to the
relative density, defined as

€max — €
D/%) = —*—— X 100 (2.23)

max min

where

€max = Void ratio of the soil in the loosest state
€min = Void ratio in the densest state
e = in situ void ratio

Unconfined Compression Test

The unconfined compression test (Figure 2.29a) is a special type of unconsolidated-
undrained triaxial test in which the confining pressure o; = 0, as shown in Figure 2.29b.

In this test, an axial stress Ao is applied to the specimen to cause failure (i.e., Ao = Aoy). W
The corresponding Mohr’s circle is shown in Figure 2.29b. Note that, for this case,
Major principal total stress = Agy = g,
Minor principal total stress = 0
The axial stress at failure, Aoy = g, is generally referred to as the unconfined com- Shear
pression strength. The shear strength of saturated clays under this condition (¢p = 0), from stress
Eq. (2.85), is
s=cu=% (2.100) i; \
o3=0 oy i A(r: :l‘::

Hara, et al. (1971) also suggested the following correlation between the undrained
shear strength of clay (cu) and Ng,.

C
o = 0.29Ng” (3.8)

where p, = atmospheric pressure (= 100 kN/m?; = 2000 1b/in?).

Cubrinovski and Ishihara (1999) also proposed a correlation between Ngo and the
relative density of sand (Dy) that can be expressed as
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1.7 L=
Nm(0.23 " %)
Ds,

D(%) = (100) (3.23)

9 a,

where
Pa = atmospheric pressure (= 100 kN/m?)
Dso = sieve size through which 50% of the soil will pass (mm)

Correlation between Angle of Friction and Standard Penetration Number
The peak friction angle, @', of granular soil has also been correlated with Ngo by several
investigators. Some of these correlations are as follows:
1. Peck, Hanson, and Thornburn (1974) give a correlation between Ngo and @ in a
graphical form, which can be approximated as:

@'(deg) = 27.1 + 0.3Neo - 0.00054[Ngo]? (3.29)

2. Schmertmann (1975) provided the correlation between Ngo, gy , and @'. Mathematically,
the correlation can be approximated as:

0.34
N6O

o,
122+203(—)

a

¢’ = tan™'

where

Neo = field standard penetration number

g, = effective overburden pressure

pa = atmospheric pressure in the same unit as gy
@' = soil friction angle

The following notes should be considered when standard penetration resistance values are used
in the preceding correlations to estimate soil parameters:
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1. The equations are approximate.

2. Because the soil is not homogeneous, the values of Ngo obtained from a given borehole vary
widely.

3. In soil deposits that contain large boulders and gravel, standard penetration numbers may be
erratic and unreliable.

*Very loose  Loose Medium dense Dense Very dense

| I | | | |

| I | | | |
*D, (%) 0 15 35 65 85 100
*Neo 4 10 30 50
o' (deg) 28 30 36 41

Fig. 3.17 Approximate borderline values for D;, Ngo, and ¢

Example:

Following are the results of a standard penetration test in sand. Note that the water table was not
observed within a depth of 10.5 m below the ground surface. Assume that the average unit weight
of sand is 17.3 kN/m?. Using Eq. (3.30), estimate the average soil friction angle, @'. Fromz =0

toz=7.5m.

Depth, z (m) N;,

L5 8
3.0 7
4.5 12
6.0 14
1.5 13

12



Solution
From Eq. (3.30)

N 0.34
¢’ =tan™' L
Ua
122 1 20.3(—)
Pa
p. = 100 kKN/m*
Now the following table can be prepared.
Depth, z (m) o, (kN/m?) Ngo ¢' (deg) [Eq. (3.30)]
[ f 25.95 8 375
3.0 51.9 7 338
45 77.85 12 36.9
6.0 103.8 14 36.7
15 129.75 13 34.6
Average ¢' =~ 36° 4

TABLE 3-4

Empirical values for ¢, D,, and unit weight of granular soils based on
the SPT at about 6 m depth and normally consolidated [approximately,

¢ = 28° + 15°D, (=2°)]

Description Very loose Loose Medium Dense Very dense
Relative density D, 0 0.15 0.35 0.65 0.85
SPT Ny fine 1-2 3-6 7-15 16-30 ?
medium 2-3 4-7 8-20 2140 > 40
coarse 3-6 5-9 10-25 2645 > 45
¢: fine 26-28 28-30 30-34 33-38
medium 27-28 30-32 32-36 3642 <50
coarse 28-30 30-34 3340 40-50
Ywer, KN/m? 11-16* 14-18 17-20 17-22 20-23

* Excavated soil or material dumped from a truck has a unit weight of 11 to 14 kN/m? and must be quite dense
to weigh much over 21 kN/m>. No existing soil has a D, = 0.00 nor a value of !.00. Common ranges are from
0.3t00.7.
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Consistency of saturated cohesive soils*

Consistency N3, ¢, kPa Remarks

Very soft O é" = 0-2 <25 Squishes between fingers when squeezed

Soft Z < 3-5 25- 50 Very easily deformed by squeezing

Medium e 6-9 50- 100 72

Suff £ w3 5 10-16  100- 200  Hard to deform by hand squeezing

Very stiff g 8 ?o § 17-30 200- 400  Very hard to deform by hand squeezing

Hard <3 >30 >400  Nearly impossible to deform by hand
—a

* Blow counts and OCR division are for a guide—in clay “exceptions to the rule” are very common.

A correlation for N versus q, is in the general form of
qgu=kN

Where the value of k tends to be site-dependent; however, a value of k = 12 has been used (i.e.,
for N7o= 10, qu= 120 kPa). Correlations for N7o and consistency of cohesive soil deposits
(soft, stiff, hard, etc.) are given in Table above.

The overconsolidation ratio, OCR, of a natural clay deposit can also be correlated with the
standard penetration number. On the basis of the regression analysis of 110 data points, Mayne
and Kemper (1988) obtained the relationship.

’
00

N 0.689
OCR = o.193< 6")

where o, = effective vertical stress in MN/m®.

Vane Shear Test

The vane shear test (ASTM D-2573) may be used during the drilling operation to determine the
in situ undrained shear strength (cu) of clay soils—particularly soft clays. The vane shear
apparatus consists of four blades on the end of a rod, as shown in Figure 3.23. The height, H, of
the vane is twice the diameter, D. The vane can be either rectangular or tapered (see Figure 3.23).
The dimensions of vanes used in the field are given in Table 3.8.

The vanes of the apparatus are pushed into the soil at the bottom of a borehole without disturbing
the soil appreciably. Torque is applied at the top of the rod to rotate the vanes at a standard rate
of 0.18/sec. This rotation will induce failure in a soil of cylindrical shape surrounding the vanes.
The maximum torque, T, applied to cause failure is measured. Note that

T=1f(cu, H, and D) (3.33)
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Figure 3.23 Geometry of field
vane (After ASTM, 2014)
(Based on Annual Book of
ASTM Standards, Vol. 04.08.)



Table 3.8 ASTM Recommended Dimensions of Field Vanes® (Based on Annual Book of ASTM
Standards, Vol. 04.08.)

Diameter, d Height, h Thickness of blade Diameter of rod
Casing size mm (in.) mm (in.) mm (in.) mm (in.)
AX 38.1 (13) 76.2.3) 1.6 (&) 12.7 (3
BX 50.8 (2) 101.6 (4) 1.6 (]1_6) 12.7 (%)
NX 63.5 (23) 127.0.(5) 32 () 12.7 %)
101.6 mm (4 in.)° 92.1 (33) 184.1 (79 3.2 () 12.7 3)

“The selection of a vane size is directly related to the consistency of the soil being tested; that is, the
softer the soil, the larger the vane diameter should be.
®Inside diameter.

According to ASTM (2014), for rectangular vanes,

md* d
= - 3.
K 5 h + 3) (3.35)
If h/d = 2,
Tmd’
K=" (3.36)
6
Thus,
6T
= 3.37
Co =713 (3.37)
For tapered vanes,
2
g=TE(d A, (3.38)
12 \coszT cosip

The angles iy and ip are defined in Figure 3.23.

For actual design purposes, the undrained shear strength values obtained from field vane shear
tests [cucvsT)] are too high, and it is recommended that they be corrected according to the equation:

Cu(corrected) = A Cu(vsT) (3.39)

where 4 = correction factor.
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Several correlations have been given previously for the correction factor A. The most commonly
used correlation for 4 is that given by Bjerrum (1972), which can be expressed as:

A=1.7-054log [Pl (%)] (3.40a)

Mitchell (1988) derived the following empirical relationship for estimating the preconsolidation
pressure of a natural clay deposit:

O-c" =k -04[Cu(field)] 083

Here,
o, = preconsolidation pressure (kN/m?)
Cu(rield) = field vane shear strength (kKN/m?)

The overconsolidation ratio, OCR, also can be correlated to cuielq) according to the equation

Cu(field)

OCR = (3.42)

0y

where @ = effective overburden pressure.
The magnitudes of B developed by Mayne and Mitchell (1988) is given below.

B = 22[PI(%)] °“8

Example 3.3
Refer to Figure 3.23. Vane shear tests (tapered vane) were conducted in the clay layer. The vane
dimensions were 63.5 mm (d) x 127 mm (h), and it = ig = 45°. For a test at a certain depth in the
clay, the torque required to cause failure was 20 N.m. For the clay, liquid limit was 50 and
plastic limit was 18. Estimate the undrained cohesion of the clay for use in the design:

a. Bjerrum’s A relationship (Eq. 3.40a)

b. Estimate the preconsolidation pressure of clay, o

17



Solution

Part a

Given: h/d=127/63.5 =2
From Eq. (3.38),

2
s (L T
12 \ cosi;y oS ig

7(0.0635)*[ 0.0635 i 0.0635
12 L cos45  cos45

= (0.001056)(0.0898 + 0.0898 + 0.762)
= 0.000994

+ 6(0. 127)]

From Eq. (3.34),
T 20
Vs = g = 0.000994
= 20,121 N/m? = 20.12 kN/m?
From Eqgs. (3.40a) and (3.39),

cu(correcled) = [17 - 054 lOg (PI%)]Cu(VST)
=[1.7 — 0.54 log(50 — 18)](20.12)

= 17.85 kN/m?
Part b

From Eq. (3.41)

o. = 7.04[(‘,,(\,ST,]°'83 = 7.04(20.12)°%* = 85 kN/m?
H.W: Resolve the previous example for the case it = ig = 30° and the torque was 35 N.m

CONE PENETRATION TEST (CPT)

The CPT is a simple test that is now widely used in lieu of the SPT—particularly for soft clays,
soft silts, and in fine to medium sand deposits. The test is not well adapted to gravel deposits or
to stiff/hard cohesive deposits. This test has been standardized by ASTM. In outline, the test
consists in pushing the standard cone (see Fig. 3-14) into the ground at a rate of 10 to 20 mm/s
and recording the resistance. The total cone resistance is made up of side friction on the cone
shaft and tip pressure. Data usually recorded are the cone side resistance gs, point resistance q.,
and depth. The tip (or cone) usually has a projected cross-sectional area of 10 cm?.

A CPT allows nearly continuous testing at many sites, which is often valuable and no boreholes
are necessary to perform it.

Generally, two types of penetrometers are used to measure . and Qs:
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1. Mechanical friction-cone penetrometer

The original mechanical cone test is illustrated in Fig. 3-14b with the step sequence as
follows:

A: The cone system is stationary at position 1.

B: The cone is advanced by pushing an inner rod to extrude the cone tip and a short length
of cone shaft. This action measures the tip resistance qc.

C: The outer shaft is now advanced to the cone base, and skin resistance is measured as the
force necessary to advance the shaft qs.

D: Now the cone and sleeve are advanced in combination to obtain position 4 and to obtain
a Qwotal Which should be approximately the sum of the gc + gs just measured. The cone is
now positioned for a new position 1.

Tip pressure
q. in kPa

0 1 2 3 4x10°

Pos. 1 0 —
‘F( WT| |
=1
Pos. 3 Pos. 4 3 ‘ A
E — >
sl 'Y o3
cdi . §° <
it I o A atb 2 9 @
B !E Al N E B >0
A N ‘ 3 12 &3
NIN N Y I\ 2 @
NN N[N o4 A o ]
i fafd N A 2 1sHS
AR T RIE Tal 3 ¥ 2
A f £ 18 3
‘2‘; ] 1. : s { g
2 T 1 5 ‘ ]
‘)
24
(b) Positions of the Dutch (¢) Typical output (usually
cone during a pressure electronically made).

record.

Figure 3-14 Mechanical (or Dutch) cone, operations sequence, and tip resistance data.
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2. Electric friction-cone penetrometer

The tip of this penetrometer is attached to a string of steel rods. The tip is pushed into the
ground at the rate of 20 mm/sec. Wires from the transducers are threaded through the center
of the rods and continuously measure the cone and side resistances. Figure 3.15 shows a
photograph of an electric friction-cone penetrometer.

Figure 3.15 Photograph of an electric
friction-cone penetrometer

CPT Correlations for Cohesive Soil
One correlation between the cone bearing resistance gc and undrained shear strength ¢, is based
on the bearing capacity equation and is as follows:
qc = Nk Cu + 0-6
Solving for the undrained shear strength c¢,, one obtains
!

__qc—0y

where @ = yz = overburden pressure point where g, is measured as previously defined and
used. This parameter is in the units of q..
Nk = cone factor (a constant for that soil). Nk has been found to range from 5 to 75; however,
most values are in the 15 to 20 range.

Figure 3-16 is a correlation based on the plasticity index I, which might be used.
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CPT Correlations for Cohesionless Soils.

Figure 3-17 is a plot of the correlation between cone pressure g. and relative density Dy.

Cone tip resistance g., MPa
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N\ ‘
N
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Figure 3-17 Approximate relationship -
between cone g and relative density Dy, 200

for normally consolidated saturated
recent (noncemented) deposits.
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The relative density of normally consolidated sand, D,, and g. can be correlated according to
the formula:

q.
D,(%) = 68 log[ ———\ - 1

Vp,* o

Where p, = atmospheric pressure (= 100 kN/m?)
g, = vertical effective stress

Correlation between gc and Drained Friction Angle ( @") for Sand

On the basis of experimental results, Robertson and Campanella (1983) suggested the variation
of ay, and ¢ for normally consolidated quartz sand. This relationship can be expressed as

¢ = tan“[o.l +0.38 log(q—i)]
Uﬂ

The figure below shows graphical correlation between angle ¢ and gc for uncemented quartz

sands.
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Example:
Given. For CPT test g = 200 kg/cm? at depth z =17 min sand, y' = 11.15 KN/md,
Required. Estimate relative density and angle of internal friction ¢ for the soil

Solution:
0o=17 X 11.15 = 189.55 kN/ m? (kPa) (effective pressure)

gc = 200 X 98.07 = 19610 kPa (98.07 converts kg/cm? to kPa)
qc
D/(%) = 68| 1 -1
o) = 19610, ,q- 0
D, (%) =68 [ log ( W) 1]=78.44%
¢ = tan“[o.l +0.38 log(q—‘;)]
Uﬂ

19610
189.55

¢ =tan*[ 0.1+ 0.38 log ( )] =tan0.8656 =40.88°

From Fig. 3-22 and gc = 200 X 98.07/1000 = 19.61 MPa, we obtain ¢ ~ 41°
H.W: Resolve the same example for g. = 150 kg/ mm? and z=22m

ROCK SAMPLING

In rock, except for very soft or partially decomposed sandstone or limestone, blow counts are at
the refusal level (N > 100). If samples for rock quality or for strength testing are required it will
be necessary to replace the soil drill with rock drilling equipment. Of course, if the rock is close
to the ground surface, it will be necessary to ascertain whether it represents a competent rock
stratum or is only a suspended boulder. Where rock is involved, it is useful to have some
background in geology.

Rock cores are necessary if the soundness of the rock is to be established.

Unconfined and high-pressure triaxial tests can be performed on recovered cores to determine the
elastic properties of the rock. These tests may give much higher compressive strengths in
laboratory testing than the field strength for the rock mass.

The figure below illustrates several commonly used drill bits, which are attached to a piece of
hardened steel tube (casing) 0.6 to 3 m long. In the drilling operation the bit and casing rotate
while pressure is applied, thus grinding a groove around the core. Water under pressure is forced
down the barrel and into the bit to carry the rock dust out of the hole as the water is circulated.
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Figure: Rock coring equipment

The term recovery ratio L, is used in estimating the degree of disturbance of a cohesive or rock
core sample.

_Actual length of recovered sample
"~ Theoretical length of recovered sample

L,

A recovery ratio near 1.0 usually indicates good-quality rock. In badly fissured or soft rocks the
recovery ratio may be 0.5 or less.

Rock quality designation (RQD) is an index or measure of the quality of a rock mass used by
many engineers. RQD is computed from recovered core samples as:

> Lengths of intact pieces of core > 100 mm

RQD = Length of core advance

For example, a core advance of 1500 mm produced a sample length of 1310 mm consisting of
dust, gravel, and intact pieces of rock. The sum of lengths of pieces 100 mm or larger (pieces
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vary from gravel to 280 mm) in length is 890 mm. The recovery ratio L, = 1310/1500 = 0.87 and
RQD = 890/1500 = 0.59.

The rating of rock quality may be used to approximately establish the field reduction of modulus
of elasticity and/or compressive strength and the following may be used as a guide:

RQD Rock description EIIEM,*
<0.25 Very poor 0.15
0.25-0.50 Poor 0.20
0.50-0.75 Fair 0.25
0.75-0.90 Good 0.3-0.7
>0.90 Excellent 0.7-1.0

* Approximately for ficld/laboratory compression strengths
also.

GROUNDWATER TABLE (GWT) LOCATION

Groundwater affects many elements of foundation design and construction, so the GWT should
be established as accurately as possible if it is within the probable construction zone; otherwise,
the location within £0.3 to 0.5 m is usually adequate.

Soil strength (or bearing pressure) is usually reduced for foundations located below the water
table. Foundations below the water table will be uplifted by the water pressure, and of course
some kind of dewatering scheme must be employed if the foundations are to be constructed "in
the dry."

The GWT is generally determined by lowering a weighted tape down the hole until water contact
Is made. An alternative is to install a piezometer (small vertical pipe) with a porous base and a
removable top cap in the borehole. Backfill is then carefully placed around the piezometer so that
surface water cannot enter the boring. This procedure allows continuous checking until the water
level stabilizes.

In theory we might do the following:

Fill the hole and bail it out. After bailing a quantity, observe whether the water level in the hole
Is rising or falling. The true level is between the bailed depth where the water was falling and the
bailed depth where it is rising.

NUMBER AND DEPTH OF BORINGS

There are no criteria for determining directly the number and depth of borings required on a
project for subsurface exploration. For buildings a minimum of three borings, where the surface
is level and the first two borings indicate regular stratification, may be adequate. Five borings are
generally preferable (at building corners and center), especially if the site is not level. On the
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other hand, a single boring may be sufficient for an antenna or industrial process tower base in a
fixed location with the hole made at the point.

Additional borings may be required in very uneven sites or where fill areas have been made and
the soil varies horizontally rather than vertically.

Borings should extend for 2 x the least lateral plan dimensions of the building or 10 m below the
lowest building elevation.

If the 2 x width is not practical as, say, for a one-story warehouse or department store, boring
depths of 6 to 15 m may be adequate. On the other hand, for important (or high-rise) structures
that have small plan dimensions, it is common to extend one or more of the borings to bedrock
or to competent (hard) soil regardless of depth.

Summarizing, there are no binding rules on either the number or the depth of exploratory soil
borings.

THE SOIL REPORT

When the borings or other field work has been done and any laboratory testing completed, the
geotechnical engineer then assembles the data for a recommendation to the client. Computer
analyses may be made. The necessary engineering properties of the soil are the following:

1. Soil strength parameters of angle of internal friction ¢ and cohesion ¢
2. Allowable bearing capacity (considering both strength and probable settlements)
3. Engineering parameters such as Es, u .

A plan and profile of the borings may be made as on Fig. 3-37, or the boring information may be
compiled from the field and laboratory data sheets as shown on Fig. 3-38.

On the left is the visual soil description as given by the drilling supervisor. The depth scale is
shown to identify stratum thickness. The SS indicates that split spoon samples were recovered.
The N column shows for each location the blows to seat the sampler 6 in. (150 mm) and to drive
it for the next two 6-in. (150-mm) increments. At the 3-ft depth it took five blows to drive the
split spoon 6 in., then 10 and 15 each for the next two 6-in. increments— the total N count = 10
+ 15 =25 as shown. The next column is the laboratory-determined Q, = g, values, and for the 3-
ft depth g, = 7.0 tsf (670 kPa). The GWT appears to be at about elevation 793.6 ft.
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0m Boring No. §
Elevation 92.5

Boring No. 4
Elevation
9.0

O = Borings
performed
August, 1908

Approximate | property line

]
& Road. Q
Legend

BFine to medium brown silty sand—some small to medium gravel

mTopsoil mFine brown silty sand—small to medium gravel

Brown silty clay Fine brown silty sand—trace of coarse sand

Boring No. §
Boring No. 1  Boring No. 2 Boring No. 3 Boring No. 4 :
. Elevation 92.5 7
Elevation g5
Elevation 9.9

90.2

16
88
g 147
>
2
w
86
34
® 4 B 39
84 :
4 32 Notes: )
s 1. All elevations are in accordance with plot plan lurnished by architect.

X 2. Borings were made using standard procedures with 50.8 mm OD split spoon.
*$-69 3. Figures 1o the right of each boring log indicate the number of blows required
:'..‘,-74 to drive the split spoon 300 mm using a 63.5 kg mass falling 760 mm.

4. No water encountered in any of the borings.

Figure 3-37 A method of presenting the boring information on a project. All dimensions are in meters
unless shown otherwise.
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WHITNEY & ASSOCIATES
BORING NOB-04
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WHITNEY & ASSOCIATES
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Figure 3-38  Boring log as furnished to client. N = SPT value; Q, = pocket penetrometer; O, = unconfined compression
test; Dy = estimated unit weight y,; M. = natural water content wy in percent.
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BEARING CAPACITY
OF FOUNDATIONS

INTRODUCTION

The soil must be capable of carrying the loads from any engineered structure placed upon it
without a shear failure and with the resulting settlements being acceptable for that structure.

A soil shear failure can result in excessive building distortion and even collapse whereas
excessive settlements can result in structural damage to a building frame.

It is necessary to investigate both base shear resistance and settlements for any structure.

The recommendation for the allowable bearing capacity g, to be used for design is based on the
minimum of either
1. Limiting the settlement to acceptable amount.
2. The ultimate bearing capacity, which considers soil strength, as computed in the following
sections.
The allowable bearing capacity based on shear control g, is obtained by reducing (or dividing)
the ultimate bearing capacity g.r (based on soil strength) by a safety factor SF that is deemed
adequate to avoid a base shear failure to obtain
_ G
9a = SF

BEARING CAPACITY

From Fig. 4-1a and Fig. 4-2 it is evident we have two potential failure modes, where the footing,
when loaded to produce the maximum bearing pressure qur, Will do one or both of the following:
a. Rotate as in Fig. 4-1a about some center of rotation (probably along the vertical line Oa) with
shear resistance developed along the perimeter of the slip zone shown as a circle.

b. Punch into the ground as the wedge agb of Fig. 4-2 or the approximate wedge ObQO' of Fig. 4-
la.

It should be apparent that both modes of potential failure develop the limiting soil shear strength
along the slip path according to the shear strength equation given as

Ss=c+otang
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(@) Footing on ¢ = 0" soil.
Note: §= p. = y'D, but use § since this is the accepted symbol for bearing capacity computations.

Tu
l .
e cet+o.f

} ¢

Area = dA
Friction = g, tan ¢ = ¢, f 932 0130y,

. cdA
Cobesics = —=~ (€) Mohr's circle for (a) and for a ¢~ soil.

(b) Physical meaning of
Eq. 2-52) for shear
streagth.

Figure 4-1  Bearing capacity approximation on a ¢ = 0 soil.
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Figure 4-2  Simplified bearing capacity for a ¢— soil.

BEARING-CAPACITY EQUATIONS

There is currently no method of obtaining the ultimate bearing capacity of a foundation other
than as an estimate.

The Terzaghi Bearing-Capacity Equation

One of the early sets of bearing-capacity equations was proposed by Terzaghi (1943) using the
theory of plasticity to analyze the punching of a rigid base into a softer (soil) material as shown
in Table 4-1.

Terzaghi's bearing-capacity equations were intended for "shallow" foundations where D <B
Note that the original equation for ultimate bearing capacity is derived only for the plane-strain
case (i.e., for continuous foundations).

Since the soil wedge beneath round and square bases is much closer to a triaxial than plane strain
state, the adjustment of ¢ to ¢ps is recommended only when L/B > 2

bps = 1.500y, - 17° (e > 34°)

¢ps = ¢tr (¢tr < 340)

31



TABLE 4-1
Bearing-capacity equations by the several authors indicated

Terzaghi (1943). See Table 4-2 for typical values and for K,, values.

al
a cos2(45 + ¢/2)
a= e(0.751'l'— ¢/2)tan ¢

N, = (N; — 1)cotd

Gox = cNesc + GN, + 0.5yBNys, N, =

_tand( Ky _
M== (cos%b l)
For: strip round square
se=10 13 1.3
sy =10 0.6 0.8

Meyerhof (1963).* See Table 4-3 for shape, depth, and inclination factors.
Qult = CNCSCdCiC + q Nqudqiq + O.SYBNySydyiy

N, = "™ tan’ (45 + %)

N. = (N, — )cot
Ny = (N, — 1)tan (1.4¢)

Hansen (1970).* See Table 4-5 for shape, depth, and other factors.
General: { Quie = cNcscdcicgcb: + GN,ys,dyiggeb, + 0.5yB'N,s,d, i, g, b,
when =0
use g = S.14s,(1 +s,.+d. —i.—b.—g.)+q
N, = same as Meyerhof above

N, = same as Meyerhof above
N, = L5(N, — Dtan¢

Vesié (1973, 1975).* See Table 4-5 for shape, depth, and other factors.
Use Hansen’s equations above.

N, = same as Meyerhof above
N, = same as Meyerhof above
N, = 2(N, + Dtan¢

*These methods require a trial process to obtain design base dimensions since width B and
length L are needed to compute shape, depth, and influence factors.

tSee Sec. 4-6 when i; < 1.
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Table 4-2 Terzaghi Bearing capacity factors —Eqs. (4.15), (4.13), and (4.11).*

¢ N, N, N ¢ N, N, N®
0 5.70 1.00 0.00 26 27.09 14.21 9.84
1 6.00 1.10 0.01 27 20.24 15.90 11.60
2 6.30 1.22 0.04 28 31.61 17.81 13.70
3 6.62 1.35 0.06 29 34.24 19.98 16.18
4 6.97 1.49 0.10 30 37.16 22.46 19.13
5 7.34 1.64 0.14 31 4041 25.28 22.65
6 7.73 1.81 0.20 32 44.04 28.52 26.87
7 8.15 2.00 0.27 33 48.09 32.23 31.94
8 8.60 2.21 0.35 34 52.64 36.50 38.04
9 9.09 2.44 044 35 57.75 41.44 45.41
10 9.61 2.69 0.56 36 63.53 47.16 54.36
11 10.16 2.98 0.69 37 70.01 53.80 65.27
12 10.76 3.29 0.85 38 77.50 61.55 78.61
13 1141 3.63 1.04 39 85.97 70.61 95.03
14 12.11 4.02 1.26 40 95.66 81.27 115.31
15 12.86 445 1.52 41 106.81 93.85 140.51
16 13.68 4.92 1.82 42 119.67 108.75 171.99
17 14.60 5.45 2.18 43 134.58 126.50 211.56
18 15.12 6.04 2.59 44 151.95 147.74 261.60
19 16.56 6.70 3.07 45 172.28 173.28 325.34
20 17.69 7.44 3.64 46 196.22 204.19 407.11
21 18.92 8.26 431 47 224.55 241.80 512.84
22 20.27 9.19 5.09 48 258.28 287.85 650.67
23 21.75 10.23 6.00 49 298.71 344.63 831.99
24 23.36 11.40 7.08 50 347.50 415.14 1072.80
25 25.13 12.72 8.34
*From Kumbhoikar (1993)

The bearing capacity factors N, Ny, and N, are, respectively, the contributions of cohesion,
surcharge, and unit weight of soil to the ultimate load-bearing capacity.

BEARING-CAPACITY EXAMPLES
Example 4-0. Compute the allowable bearing pressure using the Terzaghi equation for the square
footing and soil parameters shown in Figure below. Use a safety factor of 3 to obtain Qa..

P

I

7] Ve
v = 17.30 kN/m?
_ ¢ =20°
b=12m ¢ = 20 kPa

P —
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Solution.

Find the bearing capacity. Note that this value is usually what a geotechnical consultant would
have to recommend (B not known but D is).

Since the footing is square (B=L), no adjustment of ¢ value is required.

From Table 4-2 obtain

Nc=17.7 Ng=74 N,=3.64
sce=1.3 s, =0.8 (from table 4-1, square footing)

=20 (17.7) (1.3) + 1.2(17.3)(7.4) + 0.5 (17.3) (B)(3.64)(0.8)
= (613.8 + 25.2 B) kPa

The allowable pressure (a SF = 3 is commonly used when ¢ > 0) is
_ qu
9% = SF

_ 613.8+25.2B

- = (205 + 8.4B) kPa

Since B is likely to range from 1.5t0 3 m
at B=15m ga= 205 + 8.4(1.5) = 218 kPa (rounding)
at B=3m 0a=205+8.4(3) =230kPa
Recommend g, = 215~230 kPa

Example 4.1

A square foundation is 2 m x 2 m in plan. The soil supporting the foundation has a friction angle
of ¢ = 25°% and ¢ = 20 kN/m?. The unit weight of soil, y, is 16.5 kN/m?3.

Determine the allowable gross load on the foundation using Terzaghi Bearing Capacity
Equations with a factor of safety (FS) of 3.

Assume that the depth of the foundation (Dy) is 1.5 m and that general shear failure occurs in
the soil.

Solution

Since the footing is square (B=L), no adjustment of ¢ value is required.

qult: CNC SC + q Nq + 05yBNySy
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se=1.3 s, =0.8 (from table 4-1, square footing)
At B=2.0m
From Table 4.1, for ¢’ = 25°,
N.=25.13
N,=1272
N, =834
Thus,
quit = (20) (25.13) (1.3) + (1.5x16.5)(12.72) + (0.5)(16.5)(2)(8.34)(0.8)

= 653.38 + 314.82 + 110.09 = 1078.29 kKN/m?
So, the allowable load per unit area of the foundation is

1078.29
Qo = Mt - = 359.5 KN/m?
FS 3

Thus, the total allowable gross load is
Q= (359.5)B? = (359.5)(2 x 2) = 1438 kN

H.W: Resolve the same example assuming the foundation is circular with a diameter of 3m.

Example 4.2

Refer to Example 4.1. Assume that the shear-strength parameters of the soil are the
same. A square foundation measuring B X B will be subjected to an allowable gross
load of 1000 kN with FS = 3 and D; = 1 m. Determine the size B of the foundation.

Solution
Allowable gross load Q =1000 kKN with FS =3. Hence, the ultimate load Quit = (Qu)/(FS)
= (1000)(3) = 3000 kN. So,

_ Qu _ 3000

Quit ~ g gz
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C]ult = CNC S¢ + q Nq + 0.5yBNySy

For ¢’ = 25°, N, = 25.13, N, = 12.72,and N, = 8.34.

Also,
q=yD;= (16.5)(1) = 16.5 kN/m?
Now,
quit = (20) (25.13) (1.3) + (16.5)(12.72) + (0.5)(16.5)(B)(8.34)(0.8)
=863.26 + 55.04 B (b)

Combining Eqgs. (a) and (b),

3000
B = 863.26 + 55.04B (©)
B (m) L.H.S R.H.S
1.0 3000 918.3
1.5 1333 945.8
2.0 750 973.3
Try B=1.75m 979.6 959.6
By trial and error, we have
B=177Tm=18m |

H.W.: Resolve the same example if the allowable gross load iS 2500 kN.

Modification of Bearing Capacity Equations for Water Table

Equations in table 4.1 give the ultimate bearing capacity, based on the assumption that the
water table is located well below the foundation. However, if the water table is close to the
foundation, some modifications of the bearing capacity equations will be necessary. (See Figure
below)
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Y ) Groundwater ‘D-
B 1
Py ety I v bl - Y~ Casel
_} e B > i -
d
l_ Groundwater table v C I
—————————————————————————— ase

Yo = Saturated
unit weight

Case I. If the water table is located so that 0 < D1 < Dy, the factor g in the bearing capacity
equations takes the form

q = effective surcharge=D;y + D, y
where ¥ = ¥Ysat = VYw
Ysat = saturated unit weight of soil
Yw = unit weight of water = 10 kN/m?3

Also, the value of y in the last term of the equations has to be replaced by ¥ = ¥sat—Yw

Case Il. For a water table located sothat 0 < d < B,

q=y Ds
In this case, the factor y in the last term of the bearing capacity equations must be replaced
by the factor

= — 1+£(_r)
Y=Y B’Y')'

Case Ill. When the water table is located so that d = B, the water will have no effect on the
ultimate bearing capacity.

Example 4-8. A square footing that is vertically and concentrically loaded is to be placed on a
cohesionless soil as shown in Figure below. The soil and other data are as shown.
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lo;
= Ysat =20.12 kN//TT?

Required. What is the allowable bearing capacity using the Terzaghi equation and a SF = 2.5?

Solution:
Since the footing is square (B=L), no adjustment of ¢ value is required.

d=195-1.1=0.85m
B=25m and d<B

- — l+£(_f)
Y=Y B'Y Y

14 =181 kN/ﬂ?g VY sat =20.12 kN//TI?
)’/ =VYsat—Yw
v =2012-10=10.12 kN /m®

7 =10.12 +"2'—855(131-10.12) = 12.83 kN/i?

Quit=CNc¢ S¢ +¢q Ng+ 0.5yB N,s,
Fromtable 4.2 N;=57.75 Ny =41.44 N, = 4541
sc=1.3 s, =0.8 (from table 4-1, square footing)
for B=2.5m

Qut=0+1.1x18.1x41.44 +0.5x12.83x2.5x45.41x0.8
= 825.1 + 582.6 = 1407.7 KN/m?
0a = 1407.7 / 2.5 = 563 kN/m? =563 kPa

H.W: Resolve the same example assuming the water table is A: 0.5 m below ground level
B: 4.0 m below ground level
Meyerhof 's Bearing-Capacity Equation

Meyerhof (1951, 1963) proposed a bearing-capacity equation similar to that of Terzaghi but
included a shape factor sq with the depth term Ng. He also included depth factors di and inclination
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factors i for cases where the footing load is inclined from the vertical. These additions produce
equations of the general form shown in Table 4-1, with select N factors computed in Table 4-4.

TABLE 4-3

Shape, depth, and inclination factors for
the Meyerhof bearing-capacity equations

of Table 4-1
Factors Value For
Shape: sc =1+ O.ZK,,g Any ¢
sq—s,,=l+Ole% ¢ > 10°
Sq = S‘Y = 1 ¢ = O
Depth: d =1 +O.2,/Kp% Any ¢
d,=d,=1+0.1 Kpg ¢ > 10
d,=d, =1 =0
6° \
Inclination: e =iy = (l - 900) Any ¢
R |4
° 6°\
i, =|1—-— >0
3 (- %) ¢
H iy =0for0 >0 ¢=0

Where K, = tan®(45 + ¢/2) as in Fig. 4-2

@ = angle of resultant R measured from vertical without
asign; if@ = 0alli; = 1.0.

B, L, D = previously defined
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TABLE 4-4

Bearing-capacity factors for the Meyerhof, Hansen, and Vesi¢ bearing-
capacity equations

Note that N. and N, are the same for all three methods; subscripts identify author for N,

¢ N, ' Nq N'y(H) NT(M) Ny(y) Nq/Nc 2tan (b(l - sin ¢)2
0 5.14* 1.0 0.0 0.0 0.0 0.195 0.000
5 6.49 1.6 0.1 0.1 04 0.242 0.146
10 8.34 2.5 0.4 04 1.2 0.296 0.241
15 10.97 39 1.2 1.1 2.6 0.359 0.294
20 14.83 6.4 2.9 2.9 54 0.431 0.315
25 20.71 10.7 6.8 6.8 10.9 0.514 0.311
26 22.25 11.8 7.9 8.0 12.5 0.533 0.308
28 25.79 14.7 10.9 11.2 16.7 0.570 0.299
30 30.13 18.4 15.1 15.7 224 0.610 0.289
32 35.47 23.2 20.8 22.0 30.2 0.653 0.276
34 42.14 294 28.7 31.1 41.0 0.698 0.262
36 50.55 377 - 400 444 56.2 0.746 0.247
38 61.31 48.9 56.1 64.0 77.9 0.797 0.231
40 75.25 64.1 79.4 93.6 109.3 0.852 0.214
45 133.73 134.7 200.5 262.3 271.3 1.007 0.172
50 266.50 318.5 567.4 871.7 761.3 1.195 0.131

* = o + 2 as limit when ¢ — 0°.

Slight differences in above table can be obtained using program BEARING.EXE on diskette depending on com-
puter used and whether or not it has floating point.

Hansen's Bearing-Capacity Method

Hansen (1970) proposed the general bearing-capacity case and N factor equations shown in Table
4-1. Hansen's shape, depth, and other factors making up the general bearing capacity equation are
given in Table 4-5. The extensions include base factors for situations in which the footing is tilted
from the horizontal b; and for the possibility of a slope g of the ground supporting the footing to
give ground factors gi.

Note that when the base is tilted, V and H are perpendicular and parallel, respectively, to the base,
compared with when it is horizontal as shown in the sketch with Table 4-5c. The bearing capacity
using N factors as given in Table 4-4.

The Hansen equation can be used for both shallow (footings) and deep (piles, drilled caissons)
bases.
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TABLE 4-5a

Shape and depth factors for use in either the Hansen
(1970) or Vesi¢ (1973, 1975b) bearing-capacity equations
of Table 4-1. Use s_, d, when ¢ = 0 only for Hansen
equations. Subscripts H V for Hansen, Vesic, respectively.

Shape factors Depth factors
SL(H) = OZ-B—J (¢) = 0°) dc = 0.4k (¢ = 0°)
L , d. = 10+04k
Sc(H) = 1.0+%—j—-% k = D/B for D/B < 1
N, B k = tan™'(D/B) for D/B > 1
scyy = 1.0+ .-
Ne L k in radians
s = 1.0 for strip
SquHy = 10+-§—,sm¢ dq = l+2taﬂ¢(l—sin¢o)2k
Sqvy = 1.0 + % tan ¢ k defined above
for all ¢
Sy = 1.0 — 04% = 0.6 d, = 1.00 for all ¢

Sy(v) = 1.0 — O.4—L- = 0.6

Notes:
1. Note use of “effective” base dimensions B, L' by Hansen but not by Vesi¢.

2. The values above are consistent with either a vertical load or a vertical load accompa-
nied by a horizontal load Hp.

3. With a vertical load and a load H; (and either Hg = 0 or Hp > () you may have to
compute two sets of shape s; and d; as s; g, s; and d; , d; ;. For i, L subscripts of Eq.
(4-2), presented in Sec. 4-6, use ratio L'/B' or D/L'.
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TABLE 4-5b

Table of inclination, ground, and base factors for the
Hansen (1970) equations. See Table 4-5¢ for equivalent
Vesi¢ equations.

Inclination factors Ground factors (base on slope)
’ Hl' ' Bo
le =0.5-0.5 1 Afca & = 147°
s 1_iq — ﬁo
1 I Nq —1 g = 10— 147°
. 0.5H; ! I s
g = [l V+ Asc,cotd 8¢ = & = (1—-0.5tanB)
2=<a, =5
Base factors (tilted base)
. [ _ O-7Hi 2 [ 77° —
r = hl V+ Afc,,cotd;r be= 1z @=0
[, _ 7= /4507, T bo=1-1_  (6>0)
"= T VT4 G oot ‘ 147°
by, = exp(—2ntan¢)
2=a=<5
b, = exp(—2.7Tntan¢)
7 in radians
Notes:

1. Use H, as either Hg or H;, or both if H; > 0.

2. Hansen (1970) did not give an i, for ¢ > 0. The value above is from Hansen (1961)
and also used by Vesié.

3. Variable ¢, = base adhesion, on the order of 0.6 to 1.0 X base cohesion.

4. Refer to sketch for identification of angles n and 8, footing depth D, location of H;
(parallel and at top of base slab; usually also produces eccentricity). Especially note
V = force normal to base and is not the resultant R from combining V and H;.
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TABLE 4-5c
Table of inclination, ground, and base factors for the Vesic (1973, 1975) bearing-capacity equations.
See notes below and refer to sketch for identification of terms.

Inclination factors Ground factors (base on slope)
o1 MH,' _ . B . .
i =1 A, c.N. (=0 8: = zy; P inradians
._ . 11 (6> 0) g =i - 1= $>0
AR A ¢~ %7 S1aans
iy, and m defined below i, defined with i,
_lio_ H;. e 10— 2
7 [1'0 V+Afcacotqb]m 8 = & = (1.0~ tanB)
Base factors (tilted base)
m+1
i, = [1.0— H, ] b=g. (=0
Y V+ Agc,cotd 28
= = 2B b= 1" S1dung
" I+BIL b, = by, = (1.0 — ntang)’
m=m = 2+ L/B
L 1+L/B

Notes:

1. Wheno¢ = 0(and 8 # 0)use Ny = —2sin(+8) in Ny term.

2. Compute m = mg when H; = Hpg (H parallel to B) and m = m; when H; =
H} (H parallel to L). If you have both Hg and H  use m = _/ m% + m}. Note
use of Band L, not B', L'.

3. Refer to Table sketch and Tables 4-5a,b for term identification.

4. Terms N., N4, and N, are identified in Table 4-1.

5. Vesi¢ always uses the bearing-capacity equation given in Table 4-1 (uses B’
in the N, term even when H; = Hp).

6. H; term =< 1.0 for computing iy, i, (always).
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Notes: S+ 1 90° (Both 8 and 7) have signs (+) shown.)
B ¢

\
~
¢ Hpox = Vian 8+ c, Ay
¢
d = friction angle between
For: L/B<?2 use ¢, base and soil (59 <5< ¢)
L/B > 2 use ¢P5 =15 ¢u.— 17° Af =B'L' (effective afea)
Pu S 347 use Py = Py ¢, = base adhesion (0.6 to 1.0c)
B
!
— ez
|
L ! H
: B
v . t
| Hy
|
e B’ —>
R — |
col
- M
RS T
|4
N Wl‘-
}{"B \\ - \\PP
p MeHS [
= H. ~ Chap 11

Hpyax + Py 2 SF X (Hp)
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Example 4-2: A footing load test made produced the following data:

D=05m B=05m L=20m
7'=9.31 kKN/m® Otriaxial = 42.5° Cohesionc =0
Puit = 1863 KN (measured) quit = Pule _ 1861 = 1863 kPa (computed)

BL 0.5x

Required: Compute the ultimate bearing capacity by both Hansen and Meyerhof equations and
compare these values with the measured value.

Solution:
a. Since ¢ = 0, any factors with subscript ¢ do not need computing. All gi; and b; factors are 1.00;

with these factors identified, the Hansen equation simplifies to

Quit = )/"DNqudq + 0.5}" BNySy dy

I/B=2 =4 bps = 1.5(42.5) — 17 = 46.75°

0.5
Use ¢ = 47°
From a table of ¢ in 1° increments (table not shown) obtain
N, = 187 N, = 299

Using linear interpolation of Table 4-4 gives 208.2 and 347.2. Using Table 4-5a one obtains [get
the 2 tan ¢(1 — sin ¢)? part of d, term from Table 4-4] the following:
B . B’
SqHy = 1+ E Sln¢ = |18 SyH) = 1 - 0.4E = 0.9
dy, =1+ 2tand(l - sind))z-g =1 +0.155§

0.5

)= 1155 d, = 10

With these values we obtain
quit = 9.31(0.5)(187)(1.18)(1.155) + 0.5(9.31)(0.5)(299)(0.9)(I)
= 1812 kPa vs. 1863 kPa measured

b. By the Meyerhof equations of Table 4-1 and 4-3, and ¢ps = 47°, we can proceed as follows:
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Step 1. Obtain N, = 187

Ny = (N, — D)tan (1.4¢) = 413.6 - 414
K, = m2(45 + §)= 6.44 > /K, = 2.54

Sq =Sy = l+0.lK,,§ = l+0.l(6.44)(2):—(5) = 1.16

dy = dy = 1+o.1JE;§ = 1+o.1(2.54)g§ = 1.25

Step 2. Substitute into the Meyerhof equation (ignoring any ¢ subscripts):

quw = Y DNys,d, + 0.5yBN,s,d,
= 9.31(0.5)(187)(1.16)(1.25) + 0.5(9.31)(0.5)(414)(1.16)(1.25)
= 1262 + 1397 = 2659 kPa

Example 4-3:

A series of large-scale footing bearing-capacity tests were performed on soft saturated clay (¢
=0). One of the tests consisted of a 1.05-m-square footing at a depth D = 1.5 m. At a 25 mm.
settlement the load was approximately 16.1 tons from interpretation of the given load-settlement
curve. Unconfined compression and shear tests gave values as follows:

u = 3.0 ton/m? ¢ =1.92 ton/m?, the unit weight of soil is 17.5 kN/m?3

Required: Compute the ultimate bearing capacity by the Hansen equations and compare with
the load-test value of 16.1 tons.
Solution: Obtain N, s';, and d’; factors. Since ¢= 0°, we have N = 5.14 and Ny= 1.0

- D _ a LS
d. = (0.4tan 5" 0.4 tan 105 0.38 (D> B)
Quit=5.14sy (L +s'c+d'o)+q Table 4-1 for ¢= 0 case
¢ =1.92 x10 = 19.2 kN/m? (10 converts ton to kN)

qQuit=5.14(19.2)(1 + 0.2 + 0.38) + 17.5x1.5 = 182.2 kN/m?

From load test, Qacwai= 16.1/1.052 = 14.6 ton/m? = 146 kN/m?
If we use the unconfined compression tests and take ¢ = g, /2, we obtain
Quit = (1.5/ 1.92) x182.2 = 142.4 KN/m?
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Example 4.5

A square column foundation (see figure below) is to be constructed on a fine sand
deposit. The allowable load Q will be inclined at an angle 8 = 20° with the vertical. The
standard penetration numbers N7o obtained from the field are as follows.

Depth (m) N70

1.5
3.0
4.5
6.0
7.5
9

c=0
y = 18 kN/m’

le——B = 1.25 m—>

© 0o N O D,
. .

Determine Q using Meyerhof bearing capacity equations, use F.S =3

Solution:

The average SPT numberis(5+4+9+7+8+8)/6=6.83

From table 3-4, the soil can be classified as medium density fine sand and the angle of internal
friction (¢ ) is estimated to be = 30°

Since the footing is square (B=L), no adjustment of ¢ value is required

The general form of Meyerhof B.C equation is:

quit = CNCSCdCiC + q Nqudqiq + O.SYBNySydyiy

From table 4-4 and for ¢ = 30°, we have N. =30.13, Nq=18.4 and N,=15.7
Since ¢ = 0, any factors with subscript ¢ do not

need computing. Factors Value For
B
B Shape: 5c = 1+0.2K = Any ¢
forg>100 s, =5, =1+0.1K,—~ L
L .~r,‘,=ar,——l+0ll{,,E ¢ > 10°
where K, = tan? (45 +¢ /2) = tan? (45 + 30/2) = N ¢
Depth: d. =1 +0.2J1T,,§ Any ¢
1.25
g Sq—Sy—1+01X3XE—1.3 d,,=d,,=l+0.l‘/f,,—g ¢ > 10
dy=d, =1 =0
o \2
for ¢ > 10° dy=d, =1+01/K,— Inclination: i =i, = (1 - ;;0;) Any ¢
R Vv
v i = (1 - 2;)2 $>0
dq—dy—1+01\/_——1097~11 S _ ¢
H iy =0for8 >0 ¢=0
6° \
forany ¢ i=i =[1- Where K, = tan®(45 + ¢/2) as in Fig. 4-2
€ 9 9(0° @ = angle of resultant R measured from vertical without
asign;if@ = Oalli; = 1.0.
B, L, D = previously defined
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ig=(1- %)2:0.605

0 \2
i,=(l—%o-) for $ >0
2

- __O 2=
i,=(1- 2)?=0.111

q=Dxy=0.7x18=12.6 kN/m?
Guir=12.6x184x1.3x1.1x0.605+0.5x18x1.25x 15.7x1.3x1.1x0.111 =200.5 + 28.03
= 228.3 kN/m?

(Ja= 228.3/3 = 76.2 KN/m?
Q=0aXxBxL=76.2x1.25>=119kN

Example 4-4:
Given: A series of unconfined compression tests in the zone of interest (from SPT samples)
from a boring-log give an average gy = 200 kPa. The soil is fully saturated (¢ = 0)

Required: Estimate the allowable bearing capacity for square footings located at somewhat
uncertain depths ( let D =0 m) and B dimensions unknown using both the Meyerhof and
Terzaghi bearing-capacity equations. Use safety factor SF = 3.0.

Solution: (The reader should note this is the most common procedure for obtaining the
allowable bearing capacity for cohesive soils with limited data.)

a: By Meyerhof equations,
from table 4.1

quw = cN.s.d. + GN,s,d, + 0.5yB'N,s,d,

¢ = qu/2 (for both equations)
fromtable 4.3 sc=1+0.2K, %
Kp=tan? (45 + @/ 2) = tan? (45) = 1.0
Sc=1.2
D

d. = 1+02/K,5
¢c=1.+0=1.0
5, =8y =1 ¢ =0
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d,=d, =1 ¢=0
Que = 1.2¢N, + aNq
_ G _ | pdu s 1)
ga = 3 1.2 > (5.14)3 +
b. By Terzaghi equations, we can take s = 1.3 for ¢= 0.

W

= 1.03q, + 0.33

9 =3 = 2(5.7)(].3)3 + 3 1.24¢q, + 0.3g

FOOTINGS WITH ECCENTRIC

OR INCLINED LOADINGS

A footing may be eccentrically loaded from a concentric column with an axial load and moments
about one or both axes as in Fig. 4-4. The eccentricity may result also from a column that is
initially not centrally located.

Footings with Eccentricity

Research and observation [Meyerhof and Hansen] indicate that effective footing dimensions
obtained (refer to Fig. 4-4) as

L' = L-2ex B' = B- 2ey

should be used in bearing-capacity analyses to obtain an effective footing area defined as
Ar=B'L’

and the center of pressure when using a rectangular pressure distribution of q' is the center of area
B'L' at point A'; i.e., from Fig 4-4a:

2ex+L"'=L
ex+c=1L/2

Substitute for L and obtain ¢ = L'/2. If there is no eccentricity about either axis, use the actual
footing dimension for that B' or L".

For design the minimum dimensions (to satisfy ACI 318 code) of a rectangular footing with a
central column of dimensions wx X wy are required to be

Bmin = 4ey+ Wy B'= 2€y + Wy
Lmin = 4ex + Wx L' = 2ex + wy
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Final dimensions may be larger than Bmin Or Lmin based on obtaining the required allowable
bearing capacity.

The ultimate bearing capacity for footings with eccentricity, using Hansen/Vesic equations, is
found by either the Hansen or Vesic bearing-capacity equation given in Table 4-1 with the
following adjustments:

L Gune

=

B’

V = qu(B’L’)/SF

M,
g’ using L'

Qmas

—— — —

e
R=V

(a) Rectangular base

Figure 4-4. Method of computing effective footing dimensions when footing is eccentrically
loaded for rectangular bases.

a. Use B' in the yBN, term.
b. Use B' and L' in computing the shape factors.
c. Use actual B and L for all depth factors.

The computed ultimate bearing capacity quit is then reduced to an allowable value ga with an
appropriate safety factor SF as

Ja = qui/SF (and Pa = gaB'L")
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Example 4-5. A square footing is 1.8 X 1.8 m with a 0.4 X 0.4 m square column. It is loaded
with an axial load of 1800 kN and My = 450 kN * m; My = 360 kN » m. Undrained triaxial tests
(soil not saturated) give ¢ = 36° and ¢ = 20 kPa. The footing depth D = 1.8 m; the soil unit weight
y = 18.00 kN/m?3; the water table is at a depth of 6.1 m from the ground surface.

Required: What is the allowable soil pressure, if SF = 3.0, using the Hansen bearing-capacity
equation with B', L'?

Solution. See Fig. E4-5.
ey = 450/1800 = 0.25 m ex=360/1800 = 0.20 m

Both values of e are < B/6 = 1.8/6 = 0.30 m. Also
Bmin = 4(0.25) + 0.4 = 1.4 < 1.8 m given
Lmin =4(0.20) + 0.4 =1.2 < 1.8 m given

Now find

B'=B-2e=18-2(0.25)=13m
L'=L-2e=1.8-2(0.20)=14m (L >B

By Hansen's equation.

From Table 4-4 at ¢ = 36° and rounding to integers, we obtain
Ne=51 Ng=38 N,=40
Ng/N¢ = 0.746 2tan¢ (1-sind)? = 0.247

Compute D/B=1.8/1.8=1.0
Now compute

Sc= 1+ (Ng/Nc)(B'/L") =1+ 0.746(1.3/1.4) = 1.69
d.=1+0.4D/B =1+ 0.4(1.8/1.8) = 1.40

Sq=1+ (B'/L") sin ¢ =1 + (1.3/1.4) sin 36° = 1.55
dg=1+2tan ¢ (I -sing)> D/B =1+ 0.247(1.0) = 1.25
55=1-04B/L =1-04x1.3/1.4=0.62>0.60 (O.K)
d,=1.0

All i;=¢i=Db;=1.0 (not 0.0)

The Hansen equation is given in Table 4-1 as

Quit = C N¢Scde + @ NgSqdgq + 0.5y B' N, s, d,
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I M, =360 kN+m
&~ Iy le,=0.25
- : i)'M 450 kN x
--] =
I I E = m >
= | S \
(-]
5 : M
| 04m o= 2=30 05
| V1800
2e, =04 | M, 450
IL __________ B ] 4=V 1800 0.25
B'=18-2x02=14
2¢,=030 L'=18-2x025=13

Usually backfilled;

36° ¢ =20kPa
y = 18.00 kN/m’

’

Figure E4-5

Inserting values computed above with terms of value 1.0 not shown (except d,) and using
B' = 1.3, we obtain

Quit = 20(51)(1.69)(1.4) + 1.8(18.0)(38)(1.55)(1.25)
+0.5(18.0)(1.3)(40)(0.62)(1.0)

= 2413 + 2385 + 290 = 5088 kPa
For SF = 3.0 the allowable soil pressure ga is

gan = 5088/3 = 1696 kPa — 1700 kPa

52



The actual soil pressure is
1800 1800

Qact = B = 13x1.4

= 989 kPa

Note that the allowable pressure qga is very large, and the actual soil pressure gac is also large.
With this large actual soil pressure, settlement may be the limiting factor. Some geotechnical
consultants routinely limit the maximum allowable soil pressure to around 500 kPa in
recommendations to clients for design whether settlement is a factor or not. Small footings with
large column loads are visually not very confidence-inspiring during construction.

BEARING CAPACITY FROM SPT

The SPT is widely used to obtain the bearing capacity of soils directly. One of the earliest
published relationships was that of Terzaghi and Peck. This has been widely used, but these
curves were overly conservative. Meyerhof published equations for computing the allowable
bearing capacity for a 25-mm settlement. These were also very conservative.

Joseph E. Bowels adjusted the equations to obtain the following:

N S
qnel(kN/mz) = _de(_e) (fOI' B<12m)

0.05 "\25
and
bl N60 B + 03 2 Se
5 o B0 O -
(ol KN/M’) 0.08( P ) FJ(ZS) (for B> 1.22m)
where

gnet = allowable bearing pressure for AH = 25-mm, kPa

D
Fa=1+0.33 ?f < 1.33 [as suggested by Meyerhof]

B = foundation width, in meters
e = settlement, in mm.

In these equations the allowable soil pressure is proportional to settlement. In general the
allowable pressure for any settlement AH; is

, AH;
Ga = 317 4
AH, ™ where AHg = 25 mm.
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Example 4-12

Given. The average Ngo blow count = 6 in the effective zone for a footing located at D = 1.6 m
(blow count average in range from 1- to 4-m depth).

Required. What is the allowable bearing capacity for a 40-mm settlement? Present data as a
table of g, versus B.

Solution. From Figure 3.17 we can see D, is small, soil is "loose," and settlement may be a
problem.
Should one put a footing on loose sand or should it be densified first?

(including Fq4) on a programmable calculator or personal computer and obtain the table, which
can be plotted as required.

forB=1m Fe=1+0.33 % =1.528>1.33 take F3=1.33 OK

+“B<1.2mm

- 3,
qnet(kN/m-) 08(;1: d( )

Cnet = ° %133 x(—) 255.36 KN/m?

0.05
For example forB=2m Fa=1+0.33 % =1.264 < 1.330.K
~ Ng (B+03\ (S,
kN/m") = — F forB>1.22
GrelKN/m') 0.08( p ) 4(25) (for m)
Gret=—o= x(o)2x 1.264x (52) = 200.6 KN/m?

forB=3m Fy=1+0.33 % ~1.176 < 1.33 O.K

6 (3+03
0.08 3

et =—— 2x 1.176x (g) = 170.72 KN/m?

forB=4m Fy=1.32 and et = 157 KN/m?

B (m) 1 2 3 4
Onet (KPa) 255.4 |200.6 |170.7 |157
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DESIGN OF RETAINING WALLS

Retaining wall is used to retain earth or other material in vertical (or nearly vertical)
position at locations where an abrupt change in ground level occurs

*Prevent the retained earth from assuming its natural angle of repose
*The retained carth exerts lateral pressure on the wall —overturn, slide & settlement
*The wall must be designed to be stable under the effects of lateral pressure

Overturning

-IE Settlement

ussaseny [T et
ooisids
o S

Failure in Retaining Wall SRty e

Ieieietettely ietele oty Bl 'o’o’o’ouu
ol

o

Types of Retaining Walls

Gravity Wall
*Depends entirely on its own weight to provide necessary stability

*Usually constructed of plain concrete or stone masonry

*Plain concrete gravity wall —height < 3 m

*In designing this wall, must keep the thrust line within the middle third of the base width —
no tensile stress to be developed



Cantilever Wall
*Economical for height of up to 6 m

*Structure consist of a vertical cantilever spanning from a large rigid base slab

*Stability is maintained essentially by the weight of the soil on the base slab + self-weight of
structure
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Counterfort Wall

*When the overall height of the wall is too large to be constructed economically as a
cantilever

*Wall & base are tied together at intervals by counterfort or bracing walls
*Bracing in tension
*Economical for high wall usually above 6 -7 m of backfill



Buttress Wall
*Similar to counterfort wall, but bracing is constructed in front of the wall

*Bracing in compression
*More efficient than counterforts, but no usable space in front of the wall




Gabion Wall
*Made of rectangular containers

*Fabricated of heavily galvanized wire, filled with stone and stacked on one another, usually
in layers that step back with the slope

*Advantages: conform to ground movement, dissipate energy from flowing water & drain-
freely

Crib Wall

*Interlocking individual boxes made from timber or precast concrete members

*Boxes are filled with crushed stone or other granular materials to create free-draining
structure




Tieback Wall

*Tieback is a horizontal wire or rod, or a helical anchor use to reinforce retaining wall for
stability

*One end of the tieback is secured to the wall, while the other end is anchored to a stable

structure i.e. concrete anchorage driven into the ground or anchored into the earth with
sufficient resistance

*Tieback-anchorage structure resists forces that will cause the wall to lean

S

Keystone Wall
*Made up of segmental block units, made to last

*Based around a system with interlocking fiberglass pins connecting the wall unit and soil
reinforcement

*Combination of these resulted in a strong, stable and durable wall system

eOffers aesthetic appeal, cost efficiency, easy installation & strength




Retaining walls must be designed for lateral earth pressure. The procedures of calculating
lateral earth pressure were discussed previously.
Different types of retaining walls are used to retain soil in different places.

Note:
Structural design of cantilever retaining wall depends on separating each part of wall and

design it as a cantilever, so it’s called cantilever R.W.

Elements of Retaining Walls
Each retaining wall divided into three parts; stem, heel, and toe as shown for
the following cantilever footing (as example):

Stem

o
€ pressure
A 1158 5SS EISIII SIS

Toe slab SRS IISIIEIIISIIIIIIIIISIIIS
’ ‘: % 5 fN‘é’(dOWﬂWGfd
s pressure

:‘ f?i . il

1

Net upward

Heel slab

0.3m(12in.)

0.3m(12in.) min
i . o e
. —

H
v
i Toe N 0.1H
}.;0;]2_4 le——— 051007 H—>|T
]ji 0.5t00.7 H ———

(a) (b)

Approximate dimensions for various components of retaining wall for initial stability
checks: (a) gravity wall; (b) cantilever wall



Application of Lateral Earth Pressure Theories to Design
Rankine Theory:

Rankine theory was modified to be suitable for designing a retaining walls.

This modification is drawing a vertical line from the lowest-right corner till intersection with
the line of backfill, and then considering the force of soil acting on this vertical line.

The soil between the wall and vertical line is not considered in the value of P, so we take
this soil in consideration as a vertical weight applied on the heel of the retaining wall as will
be explained later.

The following are all cases of Rankine theory in designing a retaining wall:

1. The wall is vertical and backfill is horizontal:

Here the active force P.is horizontal and can be calculated as following: P.=0.5yH2Ka,
Ka=tan?(45—¢/2)

2. The wall is vertical and the backfill is inclined with horizontal by
angle (a):




Here the active force Pais inclined with angle (o) and can be calculated as following:
P.=0.5yH 2K,

Why H'?— Because the pressure is applied on the vertical line (according active theory) not
on the wall, so we need the height of this vertical line H'

H'=H+d

d=L tana

Kais calculated from table
Now the calculated value of Pais inclined with an angle (o), so it is analyzed in horizontal

and vertical axes and then we use the horizontal and vertical components in design as will be
explained later.

Pah=Pacos(a) , Pav=Pasin(a)

2. The wall is inclined by angle (0)with vertical and the backfill is inclined with
horizontal by angle (a):

/
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Note that the force Pais inclined with angle () and do not depend on the inclination of the
wall because the force applied on the vertical line and can be calculated as following:

Pa=0.5yH'?K.

What about Ka???
Ka depends on the inclination of the wall and inclination of the backfill because it’s related to

the soil itself and the angle of contact surface with this soil, so Kacan be calculated from the
following equation:



_ cos(a—0) J 1+ sin2¢ — 2 sind cos Y,

cos20(cosa + /sin?¢p — sinZa)

a

i, = sin™? (Sina) —a+ 26
A sing
P,y = P, cos(a) , P,y =P,;sin(a)

Stability of Retaining Wall

A retaining wall may fail in any of the following:
1. It may overturn about its toe.

2. It may slide along its base.
3. It may fail due to the loss of bearing capacity of the soil supporting the base.
4. It may go through excessive settlement.

We will discuss the stability of retaining wall for the first three types of failure (overturning,
sliding and bearing capacity failures).

We will use Rankine theory to discuss the stability of these types of failures

The horizontal component of active force will causes overturning on retaining wall about
point O by moment called “overturning moment”

Mor=P.nXH/3



This overturning moment will be resisted by all vertical forces applied on the base of
retaining wall:

1. Vertical component of active force Pay (if exists).

2. Weight of all soil above the heel of the retaining wall.

3. Weight of each element of retaining wall.

4. Passive force (we neglect it in this check for more safety).

Now, to calculate the moment from these all forces (resisting moment) we prepare the
following table:

Force=Volume Xunit weight but, we take a strip of 1m length

—Force=Area X unit weight

Section Area Weight/unit length | Moment arm Moment
of the wall measured from O about O
]. Al W1=A1 X Yl Xl Ml
Z A, W, = A, Xy, X, M,
3 A3 W3 = A3 X YC X3 M3
4 A4 W4 = A;4 X YC X4 M4
P, ,(if exist). B My
Z Z % Z M = My

Y, = unit weight of the soil above the heel of RW

FSOT:—22

Note:
If you asked to consider passive force— consider it in the resisting moment and the factor of
safety remains 2. (So we neglect it here for safety).



Stability for Sliding along the Base

>|:fr

Also, the horizontal component of active force may cause movement of the wall in
horizontal direction (i.e. causes sliding for the wall), this force is called driving force

Fa=Pan

This driving force will be resisted by the following forces:
1. Adhesion between the soil (under the base) and the base of retaining wall:

ca=adhesion along the base of retaining wall (kN/m)
Ca=caXB=adhesion force under the base of retaining wall (kN)
Ca can be calculated from the following relation:

ca=Kzcz cz=cohesion of soil under the base

So adhesion force is:

Ca=K:c:B

2. Friction force due to the friction between the soil and the base of retaining wall:

Always friction force is calculated from the following relation: Fe=psN

Here N is the sum of vertical forces calculated in the table of the first check (overturning)

—N=ZXV (including the vertical component of active force)
us=coefficient of friction (related to the friction between soil and base)
Hs=tan(42) 62=Ki1¢2 ~ ns=tan(Kidz)

¢d2=friction angle of the soil under the base.

- Fgp = ZV X tan(K; ¢,)

Note:

N

1 2
K; =K, = (5 - 5) if you are not given them — take K; = K, = 3



3. Passive force Pp.(Calculated using rankine theory).
So the total resisting force Fg can be calculated as following:

Fa = ) VX tan(K,2) + KocoB+ By
Factor of safety against sliding:
Fgr

FSg = Fa = 2 (if we consider P, in Fy)

F
FSg = F—R > 1.5 (if we dont consider P, in Fy)
A

Check Stability for Bearing Capacity Failure

O ~— e —
~—— B/2

-—— B2 —=

As we see, the resultant force (R) is not applied on the center of the base of retaining wall, so
there is an eccentricity between the location of resultant force and the center of the base, this
eccentricity may be calculated as following:

From the figure above, take summation of moments about point O:

M0=ZV X X

From the first check (overturning) we calculate the overturning moment and resisting
moment about point O, so the difference between these two moments gives the net moment
at O.

Mo=Mgr—Mor



_ - Mz—-M
->MR—M°T=ZVxx-Hx=%

B _
=—-X= v/ (see the above figure).

Since there exist eccentricity, the pressure under the base of retaining wall is not uniform
(there exist maximum and minimum values for pressure).

Qmin

Omax

We calculate gmax and gmin as in the following:
Eccentricity in B-direction and retaining wall can be considered strip footing

B
Ife < .
>V 6e
Qmax = m( )

qmin =

»Vv . 6e
Bxl( )
B
Ife >E
_ 43V
qmax,new - 3% 1 X (B _ 2e)

Now, we must check for q,,.:
Jmax = Gall = 9max = all (at critical Case)

Qu S 3

max

FSgc =




Examples:

Example 1:
The cross section of the cantilever retaining wall shown below. Calculate the factor of safety

with respect to overturning, sliding, and bearing capacity. Assume the ultimate bearing
capacity (gy)= 566.2 kN/m?

ye=24 kN/m?

C2=40 kN/m? ;
Pp2=24° |
PR _, T e T T T T ‘
P AP R R S A L
F L S e e S ee T ke B0 0.7m
' . . . . T . - . Z .._‘ "

0 7me-oTm-———2.6m-

¥2=19 KN/m3
C2=40 kN/m?
Pp2=24°

Solution
Since it is not specified a method for solving the problem, directly we use Rankine theory.

Now draw a vertical line starts from the right-down corner till reaching the backfill line and
then calculate active force (P.):



Pa H'=7.158m

10°

H'/3=2.38m

)

d
tan10 = 7 ->d=26X%Xtan10 = 0.458m
H =674+d=6.7+0.458 =7.158m

Now we calculate P,:

_1 2
Pa—ixleH X K,

Since the backfill is inclined and the wall is vertical, Kais calculated from Table according
the values of a=10 and ¢$1=30: K.=0.3495

1
=8, = > X 18 X 7.158% x 0.3495 = 161.2 kN

Location of P,:

The force P, 1s inclined with angle « = 10 with horizontal:
P,n = 161.2cos(10) = 158.75 , P,, = 161.2sin(10) = 28



Check for Overturning:

d=0.458m
. i
Payv=28
6.7m Ye—P,,=158.75
41 HY3=2.38m
\‘O 7m .7m—|-—2.6m -
Mot v\/

Mg

Mor=158.75%2.38=337.8 KN.m
Now to calculate Mr we divided the soil and the concrete into rectangles and triangles to find

the area easily (as shown above) and to find the arm from the center of each area to point
O as prepared in the following table:

Section | Area Weight/unit length Moment arm Moment about
of the wall measured from O O
1 0.595]10.595x18=10.71] 4 —? = 3.13 33.52
2 15.6 | 15.6 x18=2808 | 14+13 =27 758.16
3 3 3x24=72 14-025=1.15 82.8
4 0.6 0.6 x24=144 |09- % = 0.833 12
5 2.8 28X 24 =672 %: 2 134.4
P,y = 28 B=4 112
Z ‘ ZV = 470.11 ‘ ‘ Mgr = 1132.88 \

Note that we neglect passive force because it 1s not obligatory.

_ Mp _ 113288 _
FSor = = 5,75 = 299> 20K /.




Check for Sliding:

F
FSg = F—R > 2 (if we consider Pp in FR)
d

It is preferable to consider passive force in this check.
Applying Rankine theory on the soil in the left (draw vertical line till reaching the soil

surface).

1.5m 1

ke is calculated for the soil using Rankine theory without considering any inclination of the
wall, because it is calculated for the soil at L.H.S of wall which is level.

20
kp = tan? (45 5 %) = tan? (45 o 7) = 2.04
P, = (rectangle area) = (2 x 40 X V2.04) X 1.5 = 171.4 kN

1
P, = (triangle area) = 3 X (19 X 1.5 % 2.04) X 1.5 =43.6 kN
Po =P, +P, =171.4 4+ 43.6 = 215kN

Fq = P,, = 158.75Kn

FR = Z VX tan(Kl(I)z) + KzCzB + Pp
Take K =K, =2/3 YV =470.11 (from table of first check)

2 2
Fr = 470.11 X tan (§ x 20) +5X40 X 4+215 = 433.1 kN

=272>2-0K/.

FSc = ——
S 158.75



Check for Bearing Capacity Failure:

T
. ol =0T P DRI
. =

O - & o a,h

2m ——==— 2m —=
As stated previously, X can be calculated as following:

Mg — Mor _ 1132.88 — 377.8

X=—%v 77011 em
B .
e=E—X=2—1.6=0.4m
B—4—0667 =04 -
g-—g— 2 > e=Uu. <€—)—)—)
A S O
q““”“B><1( B>— 4x1( 4 )' Sl
YV (. 6ey 47011/ 6x04 g
qm"‘:m( _E)z 4x1( - )=47kN/m
qu _ 566.2 . -
FSgc = = 3.01 > 3 (slightly satisfied)OK v'.

qmax B 188'04

Example2: A gravity retaining wall shown in the figure below is required to retain 5 m of
soil. The backfill is a coarse grained soil with saturated unit weight =18 kN/m?3, and friction
angle of $=30°. The existing soil below the base has the following properties; Ysat=20 KN/m?,
$=36°. The wall is embedded 1m into the existing soil, and a drainage system is provided as
shown. The ground water table is at 4.5m below the base of the wall. Determine the stability
of the wall for the following conditions (assume Ki=K; = 2/3):



a- Wall friction angle is zero.
b- The drainage system becomes clogged during several days of rainstorm and the ground
water rises to the surface of backfill (use Rankine). yconcrete=24 KN/m3

Drainage blanket

O.Gmﬂ_::_ k;/

A
am
a- (wall friction angle =6=0.0)
Since 6=0.0 (we use Rankine theory).
I:>a,h
Popr P4 i
77 29.97

(The unit weight of the soil (natural) is not given, so we consider the saturated unit
weight is the natural unit weight).

30
K, = tan? (45 - %) = tan® (45 - 7) = 0.333 (for the retained soil)

36
Kp = tan? (45 + %) = Kp = tan? (45 + 7) = 3.85 (for soil below the base)



Calculation of active lateral earth pressure distribution:

Oha = (q + YH)K, — ZC\/ K,
@z = H = 5m (right side)
Opa = (0+ 18 x5) x0.333 — 0 =29.97 kN/m?

Calculation of passive lateral earth pressure distribution:

opp = (q + YH)Kp + 2¢y/Kp
@z = 1m(left side)
opp = (0+20x1)x3.85+0=77kN/m?

Calculation of active force:

P.=(area of right triangle)= % X29.97x5=74.9 kN

Calculation of passive force: Pp=(area of left triangle)= % X77%x1=38.5 kN

Overturning Stability:

o.em—1—+

Mg
Mor =74.9x1.67=125.08 kN.m

Now to calculate Mg we divided the soil and the concrete into rectangles and triangles to find
the area easily (as shown above) and to find the arm from the center of each area to point
O as prepared in the following table:

Note that since there is no heel for the wall, the force is applied directly on the wall.



Section | Area Weight/unit length of Moment arm Moment about

the wall measured from O O
1 3 3x24=72 3.9 280.8
2 9 9x24 =216 2.4 518.4

z Zv — 288 Mg = 799.2

Note that there 1s no vertical component of active force

FS s NN 6.39>2 — OK v
— — = 0. — .

OT ™ Mgr 125.08

Sliding Stability:

F
FSg = F—R > 2 (if we consider Pp in FR)
d

Fq = P, = 74.9 kN/m?

Fy = Zv x tan(K,d,) + K,¢,B + Pp
Take K, =K, =2/3 )V =288 (from table of first check)
P, = 38.5 kN/m? (as calculated above)
2 2
Fg = 288 X tan (— x 36) + 2% 0x42+384=166.62kN.

3 3
166.62
- FSg = 749 =22>2-0K/V.

Bearing capacity check:

A
Y

0.6m




¢ Me—Mor 799212508
~ T yv 288 = co%m

B _ 42
e=-- X = - = 2.34 = —0.24 m (R is at right of base center)

B 4.2 B
g=?=0.7—>e=0.24< g—>—>—>
3V 6e\ 288 6 X 0.24\ )
q“’a"_Bx1(1+B)_4.2x1(1+T)_92'08kN/m
3V 6e\ 288 6 x 0.24\ )
qmin_Bxl(l_B)_4.2x1(1_ 4.2 )_45'06kN/m

b- When the ground water rises to the surface, the retaining wall is shown below:

0.6m WGeWT

What differ???
If we want to use Rankine theory (force from soil is horizontal):
1. Calculation of active force:



(18-10)x5x0.33=13.32 5x10=50 13.32+50=63.32

Don’t forget we calculate effective stress every change, and the we add water alone.

P1=(force due to effective soil)= %x13.32x5=33.3 kN P2=(force due to
water)= ~x50x5=125 KN

Pah=P1+P,=33.3+125=158.33 KN

Loacation of Pap:

Take the moment at the bottom of the wall to get the location, but here the two forces have
the same location, so the resultant of the two forces will have the same location (1.67 from
base).

2. Calculation of passive force:

P, ‘ P, _ Pyp

(20-10)x1x3.69=69.9 1x10=20 69.9+20=89.9

Pph=P1+P2

3. In calculation of vertical forces due to the soil weight always take the effective unit
weight and multiply it by the area to get the effective force but this is not required in
this problem because the force applied directly on the wall.

Now you can complete the solution with the same procedures without any problem

Now, If the water table is at distance 2m below the surface, what’s new???



L:;4.2m ——‘

Calculation of Active force:

/ 3x 10=30
18x2x0.33+(18-10)x3x0.33

Here we calculate the effective stress every change, and then added the water alone from its
beginning: Pan=P1+P2+P3+P4
To find the location of P, take summation moment at the base of the wall.

Calculation of passive force will not change

e

(20- 10)x1x3 69=69.9 1x10 20 69. 9+20 89.9

The weight of soil above heel (when heel exist), we divide the soil above the heel for two
areas, soil above water table and soil below water table. The area of soil above water table is
multiplied by natural unit weight, and the area of soil below water table is multiplied by
effective unit weight.



Example 13.1

The cross section of a cantilever retaining wall is shown in Figure 13.12. Calculate the
factors of safety with respect to overturning, sliding, and bearing capacity.

Solution
From the figure,

H'=H,+H2+H3=2.6tan10°+6+0.7
=0458 +6+0.7=7.158 m

The Rankine active force per unit length of wall = P, = %‘y.H’zKa. For ¢} = 30° and
a = 10°, K, is equal to 0.3495. (See Table 12.1.) Thus,

P, = (18)(7.158)%(0.3495) = 161.2 kN/m
P, = P, sin10° = 161.2 (sin10°) = 28.0 kN/m

and

P, = P, cos10° = 161.2 (cos10°) = 158.75 kN/m



|
|
4
|
|
|
v1=18 kN/m* |
¢'|=30° I
C’]=O i
i H,=6m
P # P
a
v
10°
|
|
1.5m=D \ 1 _,:_
A
1 l 0.7m ©) | Hy=07m
c ¢ 3
|*' 0.7m -"l-ﬂ- 07m --l-q— 26m _p| v>,=19 kN/m
¢H=20°
¢, =40 kN/m?

Figure 13.12 Calculation of stability of a retaining wall

Factor of Safety against Overturning
The following table can now be prepared for determining the resisting moment:

Weight/unit Moment arm

Section Area length from point C Moment
no.? (m?) (kN/m) (m) (kN-m/m)
1 6X05=3 70.74 1.15 81.35
2 30.2)6 = 0.6 14.15 0.833 11.79
3 4xX07=28 66.02 2.0 132.04
4 6X26=156 280.80 2.7 758.16
5 12.6)(0.458) = 0.595 10.71 3.13 33.52
P,=28.0 4.0 112.0
2V =47042 1128.86 = ZM,

“For section numbers, refer to Figure 13.12
Yeonerete = 23.58 kKN/m’?

The overturning moment

M, = P,,(H?) = lSS.?S(LBSS) = 378.78 kN-m/m



and
o _ 3Mp 112886
(overtuming) g 378.78

o

=298 > 2,0K

Factor of Safety against Sliding
From Eq. (12.11),

(EV)tan(k,¢3) + Bk, + P,

P cosa

ES (sliding) —

Letk, = k, = 3. Also,

P, = 1K, y.D? + 2c; VK,D

K,= tan2(45 - %) = tan*(45 + 10) = 2.04

and
D=15m
So
P, = 3(2.04)(19)(1.5)* + 2(40)(V/2.04)(1.5)
= 43.61 + 171.39 = 215 kN/m
Hence,
(470.42)tan(2 220) . (4)(%)(40) +215
FS auaing) = 158.75

_ 111.49 + 106.67 + 215
158.75

Note: For some designs, the depth D in a passive pressure calculation may be taken to
be equal to the thickness of the base slab.

=2.73 > 1.5,0K



Home work:

13.1

For the cantilever retaining wall shown in Figure P13.1, let the following data be given:

Wall dimensions: H = 8 m, x; = 04 m, x, = 0.6 m, x; = 1.5 m, x;, = 3.5 m,
x3=096m,D=175m,a = 10°

Soil properties: 7y, = 16.8 kKN/m?, ¢; = 32°, vy, = 17.6 kN/m’, ¢p; = 28°,
¢’y = 30 kN/m?

Calculate the factor of safety with respect to overturning, sliding, and bearing capacity.

-’_
’

H 1

e

13.2

&) Figure P13.1

Repeat Problem 13.1 with the following:

Wall dimensions: H =65 m,x; =03 m, x, = 0.6 m, x3 = 0.8 m, x, = 2 m,
X5=08m,D=15m,a=0°

Soil properties: v, = 18.08 kKN/m’, ¢; = 36°, vy, = 19.65 kKN/m’, ¢p; = 15°,
¢y = 30 kN/m?



1

3.

3 A gravity retaining wall is shown in Figure P13.3. Calculate the factor of safety

with respect to overturning and sliding, given the following data:

Wall dimensions: H=6m,x; =0.6m,x, =2m,x;=2m,x; =0.5m, x5 =0.75m,
X, =08m,D=15m

Soil properties: v, = 16.5 kKN/m?, ] = 32° v, = 18 kKN/m’, ¢p; = 22° ¢; =
40 kN/m?

Use the Rankine active earth pressure in your calculation.

ch N Figure P13.3



Settlement of Shallow Foundations

Introduction

The allowable settlement of a shallow foundation may control the allowable
bearing capacity. Thus, the allowable bearing capacity will be the smaller of the
following two conditions:

KA

{ FS
ant = ) of

\ allowable settlement

The settlement of a shallow foundation can be divided into two major categories:
(a) elastic, or immediate, settlement and (b) consolidation settlement.
Immediate, or elastic, settlement of a foundation takes place during or
immediately after the construction of the structure. Immediate settlement analyses
are used for all fine-grained soils including silts and clays with a degree of
saturation S < 90 percent and for all coarse-grained soils with a large coefficient of
permeability, say, above 107 m/s.
Consolidation settlement comprises two phases: 1-primary and 2-secondary.
primary consolidation settlement occurs over time. In saturated clays, where the
foundation load is gradually transferred from the pore water to the soil skeleton.
Immediately after loading, the entire applied normal stress is carried by the water
in the voids, in the form of excess pore water pressure. With time, the pore water
drains out into the more porous granular soils at the boundaries, thus dissipating
the excess pore water pressure and increasing the effective stresses. Secondary
consolidation settlement occurs after the completion of primary consolidation
caused by slippage and reorientation of soil particles under a sustained load.
Primary consolidation settlement is more significant than secondary settlement in
inorganic clays and silty soils. The total settlement of a foundation is the sum of
the elastic settlement and the consolidation settlement.

Elastic Settlement of Shallow Foundation on Saturated Clay ( us= 0.5)

Janbu et al. (1956) proposed an equation for evaluating the average settlement of
flexible foundations on saturated clay soils (Poisson’s ratio, s =0.5). Referring to
Figure 7.1, this relationship can be expressed as

q,B
E

S

Se = AlA;
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Figure 7.7 Values of A, and A, for elastic settlement calculation—Eq. (7.1)



where
A= f(HIB, LIB)

A= f(Dy/B)

L = length of the foundation

B = width of the foundation

D, = depth of the foundation

H = depth of the bottom of the foundation to a rigid layer

q,= net load per unit area of the foundation

The modulus of elasticity () for saturated clays can, in general, be given as

E,= pc,

where ¢, = undrained shear strength

The parameter [ is primarily a function of the plasticity index and
overconsolidation ratio (OCR). Table 7.1 provides a general range for £ based on

that proposed by Duncan and Buchignani (1976). In any case, proper judgment
should be used in selecting the magnitude of £.

Table 7.1 Range of B for Saturated Clay [Eq. (7.2)]*

B
Plasticity
Index OCR =1 OCR =2 OCR=3 OCR=4 OCR=5
<30 1500-600 1380-500 1200-580 950-380 730-300
30 to 50 600-300 550-270 580-220 380-180 300-150
=50 300-150 270-120 220-100 180-90 150-75

“Based on Duncan and Buchignani (1976)

Natural soil deposits can be normally consolidated or overconsolidated (or
preconsolidated). 1f the present effective overburden pressure ¢’ = g is equal to
the preconsolidated pressure o/ the soil is normally consolidated. However, if
o, < a. , the soil is overconsolidated.

preconsolidation pressure, 0.

OCR = . ;
effective overburden pressure, o,



Example 7.1

Consider a shallow foundation 2 m X 1 m in plan in a saturated clay layer. A rigid rock
layer is located 8 m below the bottom of the foundation. Given:

Foundation: D, = 1 m, g, = 120 kN/m’

Clay: ¢, = 150 kN/m? OCR = 2, and Plasticity index, PI = 35
Estimate the elastic settlement of the foundation.
Solution
From Eq. (7.1),

oB
S, = AA2
E,
Given:
L 2
_——=— = 2
B 1
b_1_,
B 1
H 8
—=—=28
B 1
EY = Bcll

For OCR = 2 and PI = 35, the value of B = 480 (Table 7.1). Hence,
E, = (480)(150) = 72,000 kN/m?
Also, from Figure 7.1, A; = 0.9 and A, = 0.92. Hence,

4,B (120)(1)
= AjA—— = (0.9)(0.92
Se= Ak (0.9)0.92)9=00

=0.00138 m = 1.38 mm n

Elastic Settlement in Granular Soil
Improved Equation for Elastic Settlement

The improved formula for calculating the elastic settlement of foundations takes
into account the rigidity of the foundation, the depth of embedment of the
foundation, the increase in the modulus of elasticity of the soil with depth, and the



location of rigid layers at a limited depth. To use Mayne and Poulos’s equation,
one needs to determine the equivalent diameter B, of a rectangular foundation, or

B = [tB
T

where

B = width of foundation
L = length of foundation
For circular foundations,

B.=B

where B = diameter of foundation.

Figure 7.5 shows a foundation with an equivalent diameter B, located at a depth Dy
below the ground surface. Let the thickness of the foundation be # and the modulus
of elasticity of the foundation material be E;. A rigid layer 1s located at a depth /4
below the bottom of the foundation. The modulus of elasticity of the compressible
soil layer can be given as

E,=E,+kz (7.16)

With the preceding parameters defined, the elastic settlement below the center of
the foundation is

_ qoBelGIFlE s
Se - Eo 1 Mg

I~ |
JE—. 9o ——
N : Dy
t E; 3 E, . E
T . ‘ oLy
Compressible T E =
soil layer H ES + ke
e -~
5
K
Rigid layer Figure 7.5 Improved equation
\/ for calculating elastic settlement:
Depth, z general parameters



Figure 7.6 Variation of I; with B

where
I; = influence factor for the variation of £, with depth

_rp=Fo H
=/ (P =85,

I = foundation rigidity correction factor

I, = foundation embedment correction factor

Figure 7.6 shows the variation of /; with # =E,l kB, and HIB,. The foundation
rigidity correction factor can be expressed as

1
Ip=3+ E; T 7.18
4.6 +10 <E0+0.5 Bek) (K)

Similarly, the embedment correction factor is

1
=4 (7.19)

B,
3.5 exp(1.22p, — 0.4)(F £ l.6)
i

Figures 7.7 and 7.8 show the variation of /- and /; with terms expressed in Egs.
(7.18) and (7.19).



1.0

0.95 —
0.9
= 0.85 -
3
E 2
08+ Kr= E + B. . I\ 'B.
2
= Flexibility factor
0.75
Figure 7.7 Variation of
07 I T TTT I T TTT I TTTT T TTTI I 1Tl I'lgldlty COITGCtiOH factor IF
0.0012 4 001 0.1 Lo 100 100 it flexibility factor K
Kr [Eq. (7.18)]
1.0
0.95
0.9
p,=0.5
= 0.85 0.4
0.3
0.2
0.8
0.1
0.75 - 0
0.7 T T I 1
0 5 10 15 20  Figure 7.8 Variation of
2f embedment correction factor /p
B, with D;/B, [Eq (7.19)]
Example 7.3

For a shallow foundation supported by a silty sand, as shown in Figure 7.5.

Length=L =3 m
Width=B =15m
Depth of foundation = Dy = 1.5 m



Thickness of foundation = f = 0.3 m
Load per unit area = g, = 240 kN/m’
E;= 16 X 10° kN/m’
The silty sand soil has the following properties:
H=37m
me = 0.3
E, = 9700 kN/m?
k = 575 KN/m*/m

Estimate the elastic settlement of the foundation.

Solution
From Eq. (7.14), the equivalent diameter is

g [BL_ [@056)_, .
o w

SO
E, 9700
B= kB,  (575)(2.39) LEL
and
H_37 _ 1.55
B, 239

1
4 f 2t \3
46+10 <E0+0.5 Bek> (Be )
3.1416 1
Ir = + 3 =0.789
4 4.6+ 10 16 x 10 (2x0.3 )3
' 9700 + 0.5 x 2.39 x 575 2.39



From Eq. (7.19),

|

3.5 exp(1.22p, — 0.4)(—” - 1.6)
Dy
1
=1- T = 0.907
3.5 exp[(1.22)(0.3) — 0.4](1‘—5 + 1.6)
From Eq. (7.17),
Bl
Se = %(1 - M‘?)

so, with ¢, = 240 kN/m?, it follows that

g = (240)(2.39)(0.7)(0.789)(0.907)

— 2) =~ =~ 27
- 9700 (1 —0.3%) = 0.02696 m =~ 27 mm n

Settlement of Foundation on Sand Based on Standard
Penetration Resistance Meyerhof’'s Method

Meyerhof (1956) proposed a correlation for the mnet bearing pressure for
foundations with the standard penetration resistance, N60. The net pressure has
been defined as

Anet = q =Y Df
where q = stress at the level of the foundation.

D = depth of foundation

According to Meyerhof’s theory, for 25 mm (1 in.) of estimated maximum
settlement,



Neo S,
=—— =1.
(pet(KN/mM?) = 0.05 (,(25) (for B=1.22m)
and
(kN/ 2)—N B+03) F e (for B > 1.22 m)
G net m-) = 0.08 B d 25 or m
where

F,= depth factor = 1+ 0.33(D;/B)
B = foundation width, in meters

S, = settlement, in mm. Therefore,

S (mm) 1.25¢,,(KN/m?) (for B =< 122 m)
(mm) = or 2m
NeoF 4

and

S, (mm) =

2q,(KN/m? B
Gne ) ( ) (for B> 1.22m)

NoF, \B+03

The N referred to in the preceding equations is the standard penetration resistance
between the bottom of the foundation and 2B below the bottom.

Example 7.6

A shallow foundation measuring 1.75 m x 1.75 m is to be constructed over a layer
of sand. Given D;= 1 m; N 1s generally increasing with depth; Ng, in the depth of
stress influence = 10, g =120 kN/m?. Estimate the elastic settlement of the
foundation. Use the Meyerhof’s method.

Solution

From Eq. (7.41),

24,« [ B )2

“" (Ngo)(F)\B + 0.3
F,=1+033(D/B) = 1 +0.33(1/1.75) = 1.19

@020 ( 175
“7 (10)(1.19)\1.75 + 0.3

2
) = 14.7 mm m

10



Effect of the Rise of Water Table on Elastic Settlement

Terzaghi (1943) suggested that the submergence of soil mass reduces the soil
stiffness by about half, which in turn doubles the settlement. In most cases of
foundation design, it is considered that, if the ground water table is located 1.5B to
2B below the bottom of the foundation, it will not have any effect on the
settlement. The total elastic settlement (S, ) due to the rise of the ground water
table can be given as

Se =8eC, (7.59)
where
S, = elastic settlement before the rise of ground water table

C,, = water correction factor

The following are some empirical relationships for Cw (refer to Figure 7.19).
e Peck, Hansen, and Thornburn (1974):

C,= = | (7.60)

® Teng (1982):

C_= =2

; D 1)_,‘) (7.61)

1 for water table below the’
base of the foundation

05 + 0.5(

® Bowles (1977):

D
= ) (7.62)

=1 —
Co =2 (D,+B

In any case, these relationships could be considered approximate, since there is a
lack of agreement among geotechnical engineers about the true magnitude of C,.

11
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Le B P |
G.WT.
R, 2 y_o_o

Figure 7.19 Effect of rise of ground water table on elastic settlement in
granular soil

Example 7.9

Consider the shallow foundation given in Example 7.6. Due to flooding, the ground
water table rose from D,, = 4 m to 2 m (Figure 7.19). Estimate the total elastic settle-
ment S after the rise of the water table. Use Eq. (7.60).

Solution
From Egq. (7.59),
S.=S.C,
From Eq. (7.60),
Cyp= l D = l = 1.158
w
05+ O'S(D,+ B) 05+ 0.5(1 n l.75)
Hence,
S.=(11.8 mm)(1.158) = 13.66 mm [

12



Problems

1- A flexible foundation measuring 1.5 m x 3 m is supported by a saturated
clay. Given: D¢ = 1.2 m, H =3 m, E; (clay) = 600 kN/m?, and qo =150
kN/m®. Determine the average elastic settlement of the foundation.

2- A planned flexible load area (see Figure P7.2) is to be 3 m x 4.6 m and carries
a uniformly distributed load of 180 kN/m’. Estimate the elastic settlement
below the center of the loaded area. Assume that D, =2 m, H = oo.

Ey = 8500 kN/m’, k = 700 kN/m’/m  t= 0.35m and E; = 18x106 kN/m’.

REN 180 kN/m*

Al

B T mxaem e
2 L Siltysand
g T Eg=8500 kKNfm®
:; 7./-.‘-_ \’-\,Y.‘\T: -\\ L'\_(éF E’ '1\:7;.‘7\" Vi -\\\'_M\/-‘L-;
Rock Figure P7.2

3- Redo Problem 2, assuming that Dy =5 m and H =3 m.

4- A foundation of 3m x 1.9m resting on a sand deposit. The net load per unit area
at the level of the foundation, g,, is 200kN/m?. For the sand, =03, Dy;=0.75m,
and H = 9.5m. Determine the elastic settlement the foundation would undergo.

Ey = 8500 kN/nt’, k = 700 kN/m’/m  t= 0.35m and E;= 18x106 kN/m’.

5- Repeat Problem 4 for a foundation of size =2.1m x 2.1m, with ¢, =230 kN/m?,

D; =1.5m, H= 12 m, and soil conditions of x =0.4, E,=16,000 kN/mz, and
k = 600 kN/m’/m  t= 0.40m and E;= 16x106 kN/m’.

13



7.6 A shallow foundation supported by a silty sand is shown in Figure 7.5. Given:

Length: L =2 m
Width: B=1m
Depth of foundation: D;= 1 m
Thickness of foundation: = 0.23 m
Load per unit area: g, =190 kN/m?
E; = 15 X 10° kN/m*
The silty sand has the following properties:
H=2m
n, =04
E, = 9000 kN/m?
k = 500 kN/m*/m

Using Eq. (7.17), estimate the elastic settlement of the foundation.

7.13 A shallow foundation measuring 1 m X 2 m in plan is to be constructed over a
normally consolidated sand layer. Given: Dy = 1 m, Ng, increases with depth, N
(in the depth of stress influence) = 12, and ¢, = 153 kN/m>. Estimate the elastic
settlement using Burland and Burbidge’s method (Section 7.6).

7.12 The following are the results of standard penetration tests in a granular soil

deposit.
Depth (m) Standard penetration number, N60
1.5 10
3.0 12
4.5 9
6.0 14
7.5 16

What will be the net allowable bearing capacity of a foundation planned to be
meyerhof 1.5m x 1.5m? Let Dy = 0.9m and the allowable settlement = 25 mm.
Use the relationships of Meyerhof presented in Section 7.6.

14



Average Vertical Stress Increase Due to a Rectangularly
Loaded Area

In most cases, the vertical stress below the center of a rectangular area is of impor-
tance. This can be given by the relationship

Ao = gl (6.14)
where
/= g[ myn, I + mi + 2n;
w1+ 4 n? (14 n])(mi + n)
+ sin™! = ] (6.15)
| Vm} + V1 + n} o
L
m= g (6.16)
m = X (6.17)

The variation of /. with m; and n; is given in Table 6.5.

Where L = length of foundation
B = Width of foundation
Z = depth below loaded area

In most practical cases, however, we will need to determine the average stress
increase between z = H; and z =H, below the center of a loaded area.
approximate procedure to determine Acav (H2/H1) is to use the relationship

Ao, + 4A0,, + Ao,y
AUZW(H:,"HI) = 6 (6.29)

15



Table 6.5 Variation of I, with m; and n,

m,

i 1 2 3 4 5 6 7 8 9 10

n
0.20 0.994 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997
0.40 0.960 0.976 0.977 0.977 0.977 0.977 0.977 0977 0.977 0.977
0.60 0.892 0.932 0.936 0.936 0.937 0.937 0.937 0.937 0.937 0.937
0.80 0.800 0.870 0.878 0.880 0.881 0.881 0.881 0.881 0.881 0.881
1.00 0.701 0.800 0.814 0.817 0.818 0.818 0.818 0.818 0.818 0.818
1.20 0.606 0.727 0.748 0.753 0.754 0.755 0.755 0.755 0.755 0.755
1.40 0.522 0.658 0.685 0.692 0.694 0.695 0.695 0.696 0.696 0.696
1.60 0.449 0.593 0.627 0.636 0.639 0.640 0.641 0.641 0.641 0.642
1.80 0.388 0.534 0.573 0.585 0.590 0.591 0.592 0.592 0.593 0.593
2.00 0.336 0.481 0.525 0.540 0.545 0.547 0.548 0.549 0.549 0.549
3.00 0.179 0.293 0.348 0.373 0.384 0.389 0.392 0.393 0.394 0.395
4.00 0.108 0.190 0.241 0.269 0.285 0.293 0.298 0.301 0.302 0.303
5.00 0.072 0.131 0.174 0.202 0.219 0.229 0.236 0.240 0.242 0.244
6.00 0.051 0.095 0.130 0.155 0.172 0.184 0.192 0.197 0.200 0.202
7.00 0.038 0.072 0.100 0.122 0.139 0.150 0.158 0.164 0.168 0.171
8.00 0.029 0.056 0.079 0.098 0.113 0.125 0.133 0.139 0.144 0.147
9.00 0.023 0.045 0.064 0.081 0.094 0.105 0.113 0.119 0.124 0.128
10.00 0.019 0.037 0.053 0.067 0.079 0.089 0.097 0.103 0.108 0.112

Foundation engineers often use an approximate method to determine the increase
in stress with depth caused by the construction of a foundation. The method is
referred to as the 2:1 method. (See Figure 6.7.) According to this method, the
increase in stress at depth z is

_ g, XBXL
B+(L+2

q,,“'

l 1 Foundation B X L
'y - B B R
2 vertical to - 7l 2 vertical to
1 horizontal 1 horizontal
Z
Ao Figure 6.7 2:1 method
| 3 L of finding stress increase
[ B+ >| under a foundation

Note that Eq. (6.18) is based on the assumption that the stress from the foundation
spreads out along lines with a vertical-to-horizontal slope of 2:1.

16



Example 6.2

A flexible rectangular area measures 2.5 m X 5 m in plan. It supports a load of
150 kN/m’.

Determine the vertical stress increase due to the load at a depth of 6.25 m below the
center of the rectangular area.

Solution
From Eq. (6.14),
Ao = gq,l.
L 5
B 25
Z 6.25
n = =

From Table 6.5, form; = 2 and n;, = 5, the value of I. = 0.131. Thus,
Ao = (150)(0.131) = 19.65 kN/m?

Example 6.3

Refer to Figure 6.14. Determine the average stress increase below the center of the
loaded area between z = 3 m to z = 5 m (that is, between points A and A”").

g, = 100 KN/m?

S

I -1
I.5m | 1.5m

3m |

Section

I

|

i
——eo—————Plan

%)
=]

Figure 6.14 Determination of average increase
in stress below a rectangular area

|<_
!
|4
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Solution
The following table can now be prepared.

FE

z(m) L (m) B (m) m, n, I (kN/m?)
3 3 3 1 2 0.336 33.6
4 3 3 1 2.67 0.231 23.1
5 3 3 1 3.33 0.155 15.5
*Table 6.5
**g = 100 kN/m?
From Eq. (6.29),
A 336 + 4(22.1) 155 _ s 8 N/ _
Using the 2.1 method
Solution
From Eq. (6.18) for a square loaded area,
g,B>  (100)(3)’ )
= 25 kN/m
T B+ (3+3)
100)(3)?
e — (100) )2 = 18.37 kN/m®
(3+4)
100)(3)?
N
(3 +5)
25 + 4(18.37) + 14.06 5
AO'“(HZ/HI) = = 18.76 KN/m

6

18



Primary Consolidation Settlement Relationships

As mentioned before, consolidation settlement occurs over time in saturated clayey
soils subjected to an increased load caused by construction of the foundation. (See
Figure 7.20.) On the basis of the one-dimensional consolidation settlement
equations, we write

Sc(p) = Iszdz

where

g. = vertical strain
Ae
T
Ae = change of void ratio

= f(o,, ol, and Ad”")

9o

Groundwater table ’

i s e i s e i i i R —
/

Depth, z

Figure 7.20 Consolidation settlement calculation
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C.H, o, + Aoy, (for normally consolidated

Se) = 1
W]+, %8 o clays)
S C.H, o, + Ao}, (for overconsolidated clays
C = 0o .
P71 +e, & o, with o, + Ao, < o))
CH. o, C.H. o, + Ao,, (for overconsolidated clays
Sc(p) =—— log _r+ log - . ' ' ' '
1 +e, o, 1+e, ol with o, < 0. < o, + Aol,)
where

o, = average effective pressure on the clay layer before the construction of the
foundation
Ag), = average increase in effective pressure on the clay layer caused by the
construction of the foundation
o, = preconsolidation pressure
e, = initial void ratio of the clay layer
C. = compression index
C, = swelling index
H_ = thickness of the clay layer

Compression Index

The compression index, C,, is the slope of the straight-line portion (the latter part)
of the loading curve, or

€ — € € — €
Co= log o — r 4
go; — log oy o
log(—,)
o)

where e; and e, are the void ratios at the end of consolidation under effective
stresses 07 and @5, respectively.

The compression index, as determined from the laboratory e-log ¢’ curve, will be
somewhat different from that encountered in the field. The primary reason is that
the soil remolds itself to some degree during the field exploration. The nature of
variation of the e-log ¢’ curve in the field for a normally consolidated clay is
shown in Figure below. The curve, generally referred to as the virgin compression
curve, approximately intersects the laboratory curve at a void ratio of 0.42¢,

20



Void ratio, e

e +—————- Op = 0¢
Virgin
€& T~ i compression
Laboratory AN\ curve,
consolidation | '\' Slope C,
curve |
e T———————— +--
[ |
[ [
| |
[ [
042 ey +———————— +--4--
| |
[ [ S . _—
! ! Pressure, o’ Figure 2.. 17 Construction of virgin
T (log scale) compression curve for normally
o 0 consolidated clay

The value of C, can vary widely, depending on the soil. Skempton (1944) gave an
empirical correlation for the compression index in which

C.=0.009(LL - 10)
where LL = liquid limit.

Besides Skempton, several other investigators also have proposed correlations for
the compression index. Some of those are given here:

Rendon-Herrero (1983):

1 +e,

2.38
C.=0.141G"?—=2
C 5 ( G )

5

Nagaraj and Murty (1985):

21



Park and Koumoto (2004):

n,

C.=
371.747 — 4.275n,

where n, = in situ porosity of soil.
Wroth and Wood (1978):

C, = O.SGS(PI(%) )

100

Swelling Index C,

The swelling index, C;, is the slope of the unloading portion of the e-log 6’ curve.
In Figure 2.16b, it is defined as

In most cases, the value of the swelling index is 1/4 to 1/50f the compression
index.

Void S]()pe
ratio, e C, o,
€y T ————9=T"
Virgin
compression
curve,
Laboratory \ Slope C,
consolidation ¢
curve
[
: d
1S1
|
| Cs
042e¢y T————7————————— ¢
[
|
p o : :
| (l:)e;il;r:i e;r Figure 2.18 Construction of field
L) consolidation curve for overconsolidated clay

22



The swelling index is also referred to as the recompression index. The
determination of the swelling index is important in the estimation of consolidation
settlement of overconsolidated clays.

Using the modified Cam clay model and Eq. (2.58), Kulhawy and Mayne (1990)
have shown that
_ PI(%)

: 370

(2.61)

Note that the increase in effective pressure, Ac”’, on the clay layer is not constant
with depth: The magnitude of Ao’ will decrease with the increase in depth measured from
the bottom of the foundation. However, the average increase in pressure may be approxi-
mated by

Aol, = Ao, + 4Ac), + Ac}) (6.29)

where Ao, Ao, Ao, = stress increase below the center of the loaded area (L X B), respec-
tively, at depths z = H,, H, + H,/2, and H, + H,.
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Example 7.10

A plan of a foundation 1 m 3 2 m is shown in Figure 7.23. Estimate the
consolidation settlement of the foundation,

[Nt
e ltn vy : '. “Go = 51-50 kN]m'l(net stress increase)
‘*_ Ly v ¥ l Y Y ¥ - P
D T ABR TS IMKIm Y T g T
LSm s e T e T Ly S 16 ke
oy oy ‘Groundwater table: - . e
# Normally consolidated clay

cy=16kN/m* ¢,=08
.= 6,000 kN/m*> C, = 0.32
p, =05 C,=0.09

Figure 7.23 Calculation of primary consolidation settlement for a
foundation

Solution
The clay is normally consolidated. Thus,

S = C.H. log o, + Adyy
1 +e, o),
SO
o’ = (2.5)(16.5) + (0.5)(17.5 — 9.81) + (1.25)(16 — 9.81)
= 41.25 + 3.85 + 7.74 = 52.84 kN/m?
From Egq. (6.29),

Ao}, = %(Aa,’ + 4Ao0,, + Aoy)
Now the following table can be prepared (Note: L =2 m; B = 1 m):

m, = L/B z(m) z/(8/2) = m A Ag’ = g,l."
2 2 4 0.190 28.5 = Ao}
2 2+25/2=325 6.5 ~ 0.085 12.75 = Ao,
2 2+25=45 9 0.045 6.75 = Ao},
*Table 6.5
*Eq. (6.14)
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Now,
Aoy, = +(28.5 + 4 X 12.75 + 6.75) = 14.38 kKN/m?

SO

(0.32)(2.5) (52.84 + 14.38

- — 0.0465
Ped =108 52.84 ) -

= 46.5 mm

Example: The soil profile at a site for a proposed office building consists of a
layer of fine Sand 10.4 m thick above a layer of soft normally consolidated clay
2 m thick. Below the soft clay is a deposit of coarse sand. The groundwater table
was observed at 3 m below ground level. The void ratio of the sand is 0.76 and
the water content of the clay is 43%. The building will impose a vertical stress
increase of 140 kPa at the middle of the clay layer. Estimate the primary
consolidation settlement of the clay. Assume the soil above the water table to be
saturated, C.=0.3 and G, = 2.7.

4 m
k J 1
!
I
Fine sand 7.4 m
|
=9
cray I -
Loarse sand
Solution

For normally consolidated clay

S e C.H. l o, + Aoy,
p) — 1+ &, 08 o’

o

Calculate the current effective stress and void ratio at the middle of the clay layer

Sand layer
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(G, + &)y,

Ysat = 1+e

W (2.7+0.76

Vsar = 5 = (2252) x9.8 = 19.3 kN/m’

Y'= Vet - Yw =19.3 -9.8 = 9.5 kN/m>

Clay layer

e = wG,
e= 042x2.7=1.16

_ (G.! + e)’),u'
Ysat = 1 +e

2.7+1.16

Vsar = (22221%) x9.8 = 17.5 kN/ms?

Y'=Vsat-Yw=17.5-9.8=7.7 kN/m’

Effective stress 0, =19.3x3+9.5x7.4+7.7x1=135.9 kPa

o A o, + Ao!,

Scp) = lo
@+ e, 8 o
0.3x2 135.9+140
op) = Ty log 20118 _ 0.0854 m =85.4 mm
1+1.16 135.9

Example: Assume the same soil stratigraphy and soil parameters as in previous
example except that the clay has an overconsolidation ratio of 1.5, w=38%,
C,=0.05. Determine the primary consolidation settlement of the clay?
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Critical Thinking: Since the soil is overconsolidated, you will have to check
whether the preconsolidation stress is less than or greater than the sum of the
current vertical effective stress and the applied vertical stress at the center of the
clay. This check will determine the appropriate equation to use.

Solution:
Clay layer

e=wGs=0.38x2.7=1.03
(GS + e)yu'

Ysat = 1 +e

2.7+1.03
Vsar = (222) x9.8 = 18.0 kN/ms3

y'=18.0-9.8 = 8.2 kN/m?
Effective stresses 6’,=19.3x3+9.5x 7.4 +8.2x1 =136.4 kPa
o', +0d/,=136.4+140=276.4 kPa

Preconsolidation stress 6’. =1.5%136.4=204.6 kPa < @', + Ad,

C.H. o. C.H. o, + Ao, (for overconsolidated clays
Sc(p) = log - + IOg , . , , , ,
1+e, o, 1+e, o, with o, < o. < o), + Aol,)
0.05 x 2 2046  03x2 276.4
¢ = x log + x log =0.047 m =47 mm
141.03 1364  1+1.03 204.6
Field Load Test

The ultimate load-bearing capacity of a foundation, as well as the allowable
bearing capacity based on tolerable settlement considerations, can be effectively
determined from the field load test, generally referred to as the plate load test. The
plates that are used for tests in the field are usually made of steel and are 25 mm (1
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in.) thick and 150 mm to 762 mm in diameter. Occasionally, square plates that are
305 mm x 305 mm are also used.

To conduct a plate load test, a hole is excavated with a minimum diameter of 48
(B 1is the diameter of the test plate) to a depth of D/, the depth of the proposed
foundation. The plate is placed at the center of the hole, and a load that is about 1/4
to 1/5 of the estimated ultimate load is applied to the plate in steps by means of a
jack.

Reaction
beam

v

Jack

V. Anchor
- pile

Test plate
diameter
=B

(a)
Plate load test arrangement

During each step of the application of the load, the settlement of the plate is
observed on dial gauges. At least one hour is allowed to elapse between each
application. The test should be conducted until failure, or at least until the plate has
gone through 25 mm (1 in.) of settlement.

— > Load/unit area

v

Settlement (b) Nature of load—settlement curve
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For tests in clay,

quit(F)= qulit(p)

where

quir) = ultimate bearing capacity of the proposed foundation

quip) = ultimate bearing capacity of the test plate

the ultimate bearing capacity in clay is virtually independent of the size of the
plate.

For tests in sandy soils,

_ Br
quit(F) — qult(P) B,
where
Br = width of the foundation
Bp = width of the test plate

The allowable bearing capacity of a foundation, based on settlement considerations
and for a given intensity of load, g, , is

B )
S—Sp B—F for clayey soil
P
and
_ 2By \ '
S = S’(Bp n BP) (for sandy soil)

W

=
P

4\
= g
>

. - - ¥

Figure 7.26 Plate load test in the field (Courtesy of Braja M. Das, Henderson, Nevada)
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Consolidation Settlement of Group Piles

The consolidation settlement of a group pile in clay can be estimated by using the 2:1 stress
distribution method. The calculation involves the following steps (see Figure below).

oo e e
B,e ® ® o

oo e @
|(_Lg_>|

Figure 9.50 Consolidation
settlement of group piles

Step 1. Let the depth of embedment of the piles be L. The group is subjected to a total load of
Qq. If the pile cap is below the original ground surface, Qg equals the total load of the
superstructure on the piles, minus the effective weight of soil above the group piles
removed by excavation.

Step 2. Assume that the load Qq is transmitted to the soil beginning at a depth of 2L/3 from the
top of the pile, as shown in the figure. The load Qg spreads out along two vertical to one
horizontal line from this depth. Lines aa’ and bb’ are the two 2:1 lines.

Step 3. Calculate the increase in effective stress caused at the middle of each soil layer by the
load Qg. The formula is

Q
Ao’ $

B+ )L, + ) -



where
Ao = increase in effective stress at the middle of layer i
Ly, B; =length and width, respectively of the planned group piles
zi =distance from z = 0 to the middle of the clay layer i

For example, in Figure 9.50, for layer 2, z; = L1/2; for layer 3, zi=L1 + L2/2; and for layer 4,

zi = L1+ L2 + L3/2. Note, however, that there will be no increase in stress in clay layer 1,
because it is above the horizontal plane (z = 0) from which the stress distribution to the
soil starts.

Step 4. Calculate the consolidation settlement of each layer caused by the increased stress.
The formula is

o Aeg

where
As ;) = consolidation settlement of layer i
As ;) =change of void ratio caused by the increase in stress in layer i
eo(;) = initial void ratio of layer i (before construction)

H; = thickness of layer i (Note: In Figure 9.50, for layer 2, H; = L1 ; for layer 3, Hi= L, ; and for
layer 4, Hi=Ls.)

Step 5. The total consolidation settlement of the group piles is then

AS(.(.Q) - EAS(.(I-) (9140)



Example 9.23

A group pile in clay is shown in Figure 9.51. Determine the consolidation settlement of
the piles. All clays are normally consolidated.

Solution

Because the lengths of the piles are 15 m each, the stress distribution starts at a depth of
10 m below the top of the pile. We are given that Q, = 2000 kN.

Calculation of Settlement of Clay Layer 1
For normally consolidated clays,

(CqyHy) a0 + Aoyyy
Asy=|—F——|log| ———
- eo(,) Oo(1)
Q, 2000
Aoy = = = 51.6 kN/m?
O L +2)B,+2) (3+3522+35) m
and
oy = 2(16.2) + 12.5(18.0 — 9.81) = 134.8 KN/m?
So
0.3)(7 134.8 + 51.6
As.qy = w log| ————|=0.1624 m = 162.4 mm
1+ 0.82 134.8
Qg = 2000 kN -
“Sand ! -
Y= 162KNm 5 3> im
Groundwater ¥ st st 5 ATINRL LA A _
table 55 1
1ay
Yo = 18.0 KN/m?
e, = 0.82
C.=03

Yeu = 18.9 kKN/m?
e,= 0.7

C.=02

Yeur = 19 kKN/m?
e,= 0.75
C.=0.25

(not to scale)

Figure 9.571 Consolidation settlement of a pile group



Settlement of Layer 2
As with layer 1,

CcpH 0o T A0y
AS(.(Z) = lo

1 + e, To2)

oo =2(16.2) + 16(18.0 — 9.81) + 2(18.9 — 9.81) = 181.62 kN/m’

and

2000
Ay = = 14.52 KN/m?
% G3ronarg o2 kNm

Hence,

(0.2)(4) [181.62 + 14.52
AS(.Q) = 10

1+ 0.7 181.62

Settlement of Layer 3
Continuing analogously, we have

o3 = 181.62 + 2(18.9 — 9.81) + 1(19 — 9.81) = 208.99 kN/m*
2000

] = (0.0157 m = 15.7 mm

Agly = — 9.2 KN/m?
707 33+ 1222 + 12) i
(0.25)(2) 208.99 + 9.2
Ag oy = 2= 4 — 0.0054m = 5.4
S = 171075 22\ 20899 m mm

Hence, the total settlement is

AS(‘(g) =162.4 + 15.7 + 5.4 = 183.5 mm



Common Types of Mat Foundations

The mat foundation, which is sometimes referred to as a raft foundation, is a combined
footing that may cover the entire area under a structure supporting several columns and
walls. Mat foundations are sometimes preferred for soils that have low load-bearing
capacities, but that will have to support high column or wall loads.

Under some conditions, spread footings
would have to cover more than half the
building area, and mat foundations might
be more economical.




Several types of mat foundations are used currently.
Some of the common ones are shown schematically Section
In Figure and include the following:

1. Flat plate (Figure a). The mat is of o " Plan
uniform thickness. ] n n ]

(a)

Section
P ———
2. Flat plate thickened under columns (Figure b). ®» & » ®
(@ ® ® @,
N Ll Plan -




3. Beams and slab (Figure c). The beams run both ways, and the columns
are located at the intersection of the beams.

Section
e
] [ [ [
4. Flat plates with pedestals (Figure d). P 1 TR 1 1} A -
] [ (] [
] [w [w] [
(d)

5. Slab with basement walls as a part of the mat (Figure 8.4e). The
walls act as stiffeners for the mat.

Section

1 1 1 1 A
M [T RS B T— Plaﬂ
1

------------

(©)
Section
R E T
I 1 1 I
S 1 S | S
+ R T

I 1] A
ﬂk__4+___u___¢_JPMn
L




Mats may be supported by piles, which help reduce the settlement of a structure built over
highly compressible soil. Where the water table is high, mats are often placed over piles to

control buoyancy.

Bearing Capacity of Mat Foundations

The gross ultimate bearing capacity of a mat foundation can be determined by the same
equation used for shallow foundations, or

Qu =CNsdi. +qNs.di, +0.5yBN,s dji, N /1

The term B in Eq. (4.26) is the smallest dimension of the mat. The net ultimate capacity of a mat
foundation is

G ety = Quir -9



A suitable factor of safety should be used to calculate the net allowable bearing capacity. For mats on

clay, the factor of safety should not be less than 3. For mats constructed over sand, a factor of safety
of 3 should normally be used.

The net pressure applied on a foundation (see Figure below) may be expressed as

Q

qact:Z_ny ...... 8.17 kf\J\/L'J»’

where SRR S
Q = dead weight of the structure and the D, Unit weight = vy
live load

Q

In all cases, q,.; should be less than or equal to -

allowable q,e¢(an-

Figure 8.7 Definition of net pressure on soil caused by a mat foundation



For saturated clays with @ = 0 and a vertical loading condition where ¢, = undrained cohesion.
(Note: N,=5.14, N,=1,and N, =0.)

The net ultimate bearing capacity of raft foundation is

0.195B D
Goer) = GQu — 4 = 5.14{‘”(1 + 3 )(1 + 0.43") (8.12)

The net allowable bearing capacity for mats constructed over granular soil deposits can
be adequately determined from the standard penetration resistance numbers.

(KN/m?) = Vo (B+03 2F % [Eq. (7.39)]
qnet m)= 0.08 B d 25 q' '~
where

Ny, = standard penetration resistance B = width (m)

Fy=1+0.33(Df/B) <1.33 S, = settlement, (mm)



When the width Bis large, the preceding equation can be approximated as

0.08 25

Ne 7\ || S.(mm)
“aa '+ 07(5) 5]

S, (mm)]

Ny _[S.
qnct(kN/m-) - i

< 16. 63N60[ =

(8.14)



Example 8.3

Determine the net ultimate bearing capacity of a mat foundation measuring 20 m X 8 m
on a saturated clay with ¢, = 85 kN/m*, ¢ = 0, and D, = 1.5 m.

Solution
From Eq. (8.12),

0.195B D,
= 5. + +0.4 —

0.195 X 8 04 X 1.5
PR AN LIEL) ANTEETE)

= 506.3 kN/m? &



Compensated Foundation

Figure 8.7 and Eq. (8.17) indicate that the net pressure increase in the soil under a mat foundation can be
reduced by increasing the depth D, of the mat. This approach is generally referred to as the compensated
foundation design and is extremely useful when structures are to be built on very soft clays. In this design,
a deeper basement is made below the higher portion of the superstructure, so that the net pressure
Increase in soil at any depth is relatively uniform. (See Figure below) From Eq. (8.17) and Figure 8.7, the
net average applied pressure on soil is

Q
Qact= Z - ny

For no increase in the net pressure on soil below a
mat foundation, g, should be zero. Thus,

D,=-= (8.21)

I I Figure 8.8 Compensated
foundation



Df=A—% (8.21)

This relation for D, is usually referred to as the depth of a fully compensated foundation.

The factor of safety against bearing capacity failure for partially compensated foundations
(e, D < Q/Ay) may be given as

q q
FS — net(u) _ UYnet(u)

Q
Aact Z_ny

where Qrery = NET Ultimate bearing capacity.



Unit weight =
D, nit weig ¥

Q

Figure 8.7 Definition of net pressure on soil caused by a mat foundation

q q
FS — net(u) - . net(u)
dact 1Y D¢

Example 8.5

The mat shown in Figure 8.7 has dimensions of 20 m X 30 m. The total dead and live
load on the mat is 110 MN. The mat is placed over a saturated clay having a unit weight of
18 kN/m’ and ¢, = 140 kN/m”. Given that D; = 1.5 m, determine the factor of safety
against bearing capacity failure.

Solution
From Eq. (8.23), the factor of safety

We are given that ¢, = 140 kN/m’, Di=15m, B=20m, L=30m, and y=

18 kN/m’. Hence,
(5.14)(140)[1 + (0'195)(20)][1 + 04(2)]

30 20
FS = = 5.36

110,000 kN
( = )—(18)(1.5)




MAT SETTLEMENTS

Mat foundations are commonly used where settlements may be a problem, for
example, where a site contains erratic deposits or lenses of compressible materials,
suspended boulders, etc. The settlement tends to be controlled via the following:

1. Use of a larger foundation to produce lower soil contact pressures.

2. Displaced volume of soil (flotation effect); theoretically if the weight of excavation equals
the combined weight of the structure and mat, the system "floats" in the soil mass and no
settlement occurs.

3. Bridging effects attributable to mat rigidity and contribution of superstructure rigidity to
the mat.

4. Allowing somewhat larger settlements, say, 50 instead of 25 mm.



A problem of more considerable concern is differential settlement. Again the mat tends to reduce
this value. Mat continuity results in a somewhat lower assumed amount of differential settlement
relative to the total expected settlement versus a spread footing as follows

Expected maximum Expected differential
Foundation type settlement, mm settlement, mm
Spread 25 20
Mat 50 20

Computer methods that incorporate frame-foundation interaction can allow one to estimate
both total and differential settlements. The total settlements will be only as good as the soil
data.



