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* A fluid is a substance which deforms CONTINUOUSLY when
subjected to external shearing force.

* A fluid is a substance which is capable of flowing.

* Or, it has no definite shape of its own, but conforms to the shape of the containing vessel.
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Solid, and Fluid (Liquid & Gas)
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* In solids, the molecules are very closely spaced whereas in liquids
(such as water, oil, and gasoline) the spacing between the different
molecules is relatively large and in gases (such as CO2 and
methane) the spacing between the molecules is still large.
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Fluid characteristics  Ideal fluid
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An ideal fluid is one which has no viscosity and surface

tension and is incompressible. In true sense no such fluid exists in
nature.

* However fluids which have low viscosities such as water and air can
be treated as ideal fluids under certain conditions.

* The assumption of ideal fluids helps in simplifying the mathematical
analysis.




Fluid Mechanics Classification

The fluid mechanics may be divided into three parts:

» Fluid Statics. The study of incompressible fluids under static conditions is called
hydrostatics, and that dealing with the compressible static gases is fermed as
aerostatics.

» Fluid Dynamics. It deals with the relations between velocities, accelerations of
fluid with the forces or energy causing them.

» Fluid Kinematics. It deals with the velocities, accelerations and the patterns of
flow only. Forces or energy causing velocity and acceleration are not dealt
under this heading.
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Dimensions and Units

Table 1.1 Basic Dimensions and Their Units

“Quantity | Dimension | StUnits___| Eagih Umis_
I R T
Mm% (e swowe
Cseoond © | econd_se

:
emporae T | 6 | kelin K| Rankine R

Plane angle radian rad

o : 9
K = C+ 27315 F:EOC+32

°C is Celsius F is Fahrenheit




Important terms and relationships

1. Velocity (v)

V = Length/ Time OR v=L/T OR V=LT!

m/sec, ft/sec

2. Discharge or Flowrate (Q)

Q = Volume / Time (Q=Vol./T) (Volume also can be denoted by &)
Q = Velocity . Area (Q=v.A)
Q=L3T!

m3/sec , cm?/sec




Important terms and relationships

3. Acceleration (a)

a=Velocity/Time OR a=v/T OR a=VT!
butV=LT! so a=LT?

m/sec? , m/sec?

4. Force (F)

Force = Mass X Acceleration (F=M X a)

F=MLT-?

N =kg.m/ sec?
Dyne = gm . cm / sec?
Ibf = slug . ft / sec?

Kg. =slug . ft / sec?




Important terms and relationships

5. Pressure (P). Shear stress (1)

P =Force/Area OR Port =F/A
Port=F L~ =ML!T2 (Prove it)
Pa=N/m? (Pascal)

psi=Ib/inch? (Pound per square inch)
psf=1Ib/inch? (Pound per square foot)

1 psi = 144 psf




Important terms and relationships

6. Momentum

Momentum = Mass X Velocity

Momentum = M LT-!

L
Momentum = M =

L T
Momentum = M = X -

Momentum = (M iz) X T
T

Momentum = F X T = Force x Time




Important terms and relationships

7. Work (W)

Work = Force X Distance

W=FL =M L2 T2 (Prove it)
If the force 1s being exerted at an angle 0 to the displacement, the work done 1s W= FL cos 6.

The unit of Work (W) is Joule (dJ)

One Joule 1s equivalent to one Newton of force causing a displacement of one meter.

8. Power (W)
W =Work / Time

W = (Force x Length) / Time
W=FLT! =M L2T3 (Prove it)
Watt (W) = N.m /sec or (J/ sec), Horse power HP = Watt / 735

Also, Power = Force x Velocity




Length (L)

1ft=12 inch.

1 yard =3 ft
I1m=100cm
1 inch = 2.54 cm

1 mile =1760 yard

Volume (Vol.)

1 m3=1000 liter

1 gallon = 3.785 liter

Some conservation units

Gravitational acceleration (g)
g=9.81 m/sec?

g =322 ft/sec?

Force (F)

1 N=105dyne

1Kg, =9.81 N
1Ibf=4.45N

1 Kg, =2.2051b

Mass (M)
1 slug = 14.594 kg

1 pound = 0.4536 kg




= Density,

= Specific weight,

= Viscosity,

FI U Ids AN D = Compressibility,
TH EI R = Surface tension,
P RO P E RTI ES = Capillarity,

= Cohesion,

" Adhesion etc.




Mass density (also known as specific mass,
or Density)

Defined as mass per unit volume
(mass/Volume), at a standard temperature
and pressure.

It is usually denoted by p.

Units is kg/m3 (in SI Units)




Weight density (also known as Specific weight)
FLUIDS AND THEIR PROPERTIES

g Defined as weight per unit volume (weight/Volume),
at a standard temperature and pressure.

1. Density
b. Weight density

It is usually denoted by y. Mathematically is (pg)

Units is kN/m3 ( in SI Units),
The specific weight of water is taken as follows:

In S.I. Units: y = 9.81 kN/m3 (or 9.81x 10—6 N/mm3)




FLUIDS AND THEIR PROPERTIES

1. Density

c. Specific volume

Defined as volume per unit mass
(Volume/mass)

It is usually denoted by v,
mathematically is (1/p)

Unit is m3/kg ( in SI Units)




FLUIDS AND THEIR PROPERTIES
Specific gravity defined as is the ratio of the specific
weight of the liquid to the specific weight of a standard

fluid.

Specificweightof liquid ~ Wyiguia
Specificweightof purewater

Specific gravity =

warer

2. Specific gravity

® It is usually denoted by s.g or sp.gror S

It is dimensionless and has no units.




\-/ % FLUIDS AND THEIR PROPERTIES
- 3. VISCOSITY (n) v

'
compressional stress
pr

tensional stress

./ * Viscosity may be defined as the property of a fluid il ;?
a.

which determines its resistance to shearing stresses.

* It is a measure of the internal fluid friction which
causes resistance to flow (shearing stresses between

the moving layers of fluid)

* Viscosity of fluids is due to cohesion and interaction

between particles.
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\/ _  FLUIDS AND THEIR PROPERTIES
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Factors Effecting Viscosity (1)

Temperature

* The viscosity of liquids (pq,igs) decreases with increase in temperature (T). But, the viscosity of gases
(Mgases) INCreases with increase in temperature (T).

This is due to the reason that in liquids the shear stress is due to the inter-molecular cohesion which
decreases with increase of temperature.

AsT ﬁ Cohesive force@ then pwiquids @

* In gases the inter-molecular cohesion is negligible and the shear stress is due to exchange of
momentum of the molecules. The molecular activity increases with rise in temperature and so does the
viscosity of gas.

¢ As Tﬁ Cohesive force (Negligible), Exchange of momentum of the molecules ﬁ F

then Rgases | |

7 N N/
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FLUIDS AND THEIR PROPERTIES
3. VISCOSITY
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\—/ | FLUIDS AND THEIR PROPERTIES | 3.VISCOSITY

"’
Newton’s Law Of Viscosity
o, -
Velocity = Distance / Time
" Distance = Velocity . Time
For very small (U iy dU) dt Upper layer
layer Lower layer
dy /
u .dt ' U + du
' u
(u+du).dt —u.dt d
Tan (dB) = .
2y T r— Solid boundary
),’
du .dt e X
1an (dB) =
dy Fig. 1.1 Velocity variation near a solid boundary.
» For small angles Tan 6= 6 L
du.dt
e 46 = P
dy | I §
« d6 is angular deformation t \/ ' |

| L B e ~& .
S L = ey
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FLUIDS AND THEIR PROPERTIES [ 3.VISCOSITY

Newton’s Law Of Viscosity

ae .
—: Rate of angular deformation (Or Rate of shear stress)

d ! _ . : :
ﬁ: Velocity gradient (Change in velocity w.r.t. distance)

Shear force per unit area on a surface is proportional to the rate of
angular deformation.

F _de
A G
r o3
dt
r ot
dy
o« T =

(u + du).dt

dy

u.dt

* Wis Dynamic viscosity

&l&
S I

= ng% = pa.sec (Sl units)

e

1 pa.sec (Sl units) = 10 Poise (CGS units)

H=t

%]
o}

10-! pa.sec = 1 poise

e = 8.90 x 1074 pa-s at about 25 °c

. N/




J FLUIDS AND THEIR PROPERTIES

~ 3. VISCOSITY

'

—* Kinematic viscosity v

ov::&
o)

v in Sl units: m?/sec (prove it)

v in British units: ft?/sec

1 stoke = 104 m?/sec

e v ...=10% m?/sec = 102 stokes

water
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) FLUIDS AND THEIR PROPERTIES
3. VISCOSITY - EXAMPLES
- EXAMPLE 1.3. A plate 0.05 mm distant from a fixed plate moves at 1.2 m/s and requires a force of 2.2/

N/m? to maintain this speed. Find the viscosity of the fluid between the plates.

Solution: Velocity of the moving plate, u= 1.2 m/s
Distance between the plates, dy =0.05 mm = 0.05 x 10~ m
Force on the moving plate, F =2.2 N/m”

Moving plate B
Viscosity of the fluid, pi: L ‘E _________________ E& /s
T ORI Y T
We know, T=p E dy=0.05mm
where 1= shear stress or force per l '''''''''''''''''''''''''''''''''''''''''''''''
unit area = 2.2 N/m”, L Fixed plate
du = change of velocity Fig. 1.3
= u—0=1.2m/'s and
dy = change of distance
= 0.05 x 10~°m.
1.2 "’
22= ux
005 %1073
2.2x0.05x107 5 )
1= =9 16x 10 “N.s/m"~ £ o
* 12 Rurg
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% FLUIDS AND THEIR PROPERTIES

& 3. VISCOSITY - EXAMPLES
Example 1.4. A plate having an area of 0.6 m> is sliding down the inclined plane at 30° to the oy
horizontal with a velocity of 0.36 m/s. There is a cushion of fluid 1.8 mm thick between the plane
and the plate. Find the viscosity of the fluid if the weight of the plate is 280 N.
Solution:  Area of plate, 4 = 0.6 m”
Weight of plate, W =280 N

Velocity of plate, u = 0.36 m/s
Thickness of film, r=dy=18mm=18x 10" m

Viscosity of the fluid, p:
Component of # along the plate

= Wsin 6 =280 sin 30°=140 N

= Z :%z 233 33N/m’ .
We know, T = p.@
dy
Where, du = change of velocity =« —0=0.36 m/s
dy =t=18x10"m
- 0.36 4
233.33 pxl 210"

-3
23333 x1.8x10 166N .s/m2

0.36

h,
%
T
¥
¥
¥
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Important terms and relationships

10. Arc Length Formula

ISl 15 the arc lenagth
- o If & is measured in degrees then
central
A angle )
“angle arc length =——x27r

- of more succinctly 360

éngth = radius

S = r. 9 If & is measured in radians then

where the angle § must be
measured in radians arc length =6r

www.1728.com




Important terms and relationships

11. Linear velocity or speed (v) (v 1s a linear displacement per unit time)

v=Ax/At (m/sec, ft/sec, km/hr, mph, etc.)

12. Angular velocity or speed (®) (w 1s an angular displacement per unit time)

D=AO/At (rad./sec (SI units), °/sec, rpm, etc.)

(1 rpm = 27/60 rad/s.)
® =2ntN/60 (Where N is number of rpm)

Counter-clock wise (CCW) rotation is Positive angular velocity (CCW 1s +Ve o)
Clockwise (CW) rotation i1s Negative angular velocity (CW 1is -Ve ®)

13. Relation between Angular and Linear velocity

U—=—Vr @ Whererisradius)




Important terms and relationships

Relation between Angular and Linear velocity

U —TFr W (Whererisradius) How?

v=S/At (where S is arc length) ------- Eq. 1 Arc length S
S=rAO© Eq. 2

Substituting Eq. 2 into Eq. 1 yields: | 9\[
v=rAO/At

But D=AO/At . Eq.3

U=I®




Important terms and relationships

14. Angular acceleration (a) (aisachange in angular velocity per unit time)

o=A®/At (rad/sec?)

15. Torque (M) (M or T is a measure of how much a force acting on an object causes that
object to rotate.)

M=Frsin© (N.m, Where r is radius)




~ 3. VISCOSITY

Two concentric cylinders _ Linear movement e/

\—/ \_/ FLUIDS AND THEIR PROPERTIES ~—

o
") 1. Inner cylinder moving with uniform linear velocity
V
F=puZa
“y
A=2nr, L
L : :
y=r,-1; - . Fixed cylinder
il Y B 287 ) sl S e e i 4 )]
S e W o g B
O | Moving cylinder
/- F v
=gy lb ________________ 5 == fr_Q—>
L
I
y
‘ C




-/ FLUIDS AND THEIR PROPERTIES N

\—/ -/ 3. VISCOSITY - EXAMPLES
| Two concentric cylinders _ Linear movement w0

~ 2. Outer cylinder moving with uniform linear velocity while inner cylinder fixed

~ N v
F—uyA

A=2rnr,L

y=»r,-n

Moving cylinder

Fixed cylinder /
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\/ — FLUIDS AND THEIR PROPERTIES
| v ')
~ 4, Cohesion: Cohesion means intermolecular attraction between molecules of the

same liquid. Cohesion is a tendency of the liquid to remain as one assemblage of

particles.

5. Adhesion: Adhesion means attraction between the molecules of a liquid and the

molecules of a solid boundary surface in contact with the liquid. This property enables a

liquid to stick to another bodly.
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/ FLUIDS AND THEIR PROPERTIES
e/ 6. Surface Tension
- Surface tension is caused by the force of Free surface Moleeule

cohesion at the free surface. Paval
N>

At liquid—air interfaces, surface tension results S

from the greater attraction of liquid molecules S '

to each other (due to cohesion) than to the :_ T)_']_ ;

molecules in the air (due to adhesion). Q@g}

Fig.1.18
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./ FLUIDS AND THEIR PROPERTIES
6. Surface Tension
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*) Pressure Inside a Water Droplet, Soap Bubble and a Liquid Jet
Case 1. Water droplet:

Let, p = Pressure inside the droplet above outside pressure (i.e., Ap = p — 0 = p above
atmospheric pressure)

d = Diameter of the droplet and
¢ = Surface tension of the liquid. %
p G
From free body diagram (Fig. 1.19 d), we have:

. m
(i) Pressure force = p x Zd 2 ,and (a) Water droplet  (5) Pressure forces  (¢) Surface tension
(ii) Surface tension force acting around the circumference = ¢ * 7 d. Atmospheric
pressure _T_
Under equilibrium conditions these two forces will be equal and opposite, d
- 8]
: s -2
ie., pxIdz = ox nd _L
(d) Free body diagram
_ oxnd |40 i /
p Edz - d Fig. 1.19. Pressure inside a water droplet.
4

P ol v < \/ _*\ /

The equation above shows that,
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~/ FLUIDS AND THEIR PROPERTIES

6. Surface Tension

-’
./ Case IIL Soap (or hollow) bubble:

Soap bubbles have two surfaces on which
surface tension G acts.

From the free body diagram (Fig. 1.20), we
have
{_

px%dzz@x(gxnd)

_2oxmnd |8c
Edz d
4

P .(1.18)

A —3
<_
<_
‘.._

d <
<_
‘_
‘._.
A —
Free body diagram

Fig. 1.20. Pressure inside a soap bubble.

aq

QaQ
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") FLUIDS AND THEIR PROPERTIES
6. Surface Tension

-

Case III. A Liquid jet:

Let us consider a cylindrical liquid jet of diameter 4 and length /.

Fig. 1.21 shows a semi-jet.
Pressure force = p x 1 x d
Surface tension force = o x 2/

Equating the two forces. we have:

pxlxd=cx2l

- G x 2] _25
PI=Sread [T 12

[

e)

Y
| ¥
Y

Y/

VAR,
Y%

Semi-jet

Fig. 1.21. Forces on liquid jet.
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) FLUIDS AND THEIR PROPERTIES
7. Capillarity e
~e Capillarity is a phenomenon by which a liquid (depending upon its specific gravity) rises into a thin glass Il
-’ tube above or below its general level. This phenomenon is due to the combined effect of Cohesion and

i
$
2
g
-
¥
g
¥
¥

Adhesion of liquid particles.

Fig. 1.22 shows the phenomenon of rising water in the tube of smaller diameters.

Let, d = Diameter of the capillary tube, - -
6 = Angle of contact of the water surface, —
c = Surface tension force for unit length, and
w = Weight density (pg). 0 0/ bcns
<

Now, upward surface tension force (lifting
force) = weight of the water column in the tube

(gravity force)

W:
nd.c cos O = Edz x h x m/ Y

usually use the symbol vy
to refer to the weight density

5 = i¢cos6 = = FZzzZ==-= ;q/

1o Capillary tube

wd
For water and gl-:iiss: 0 = 0. | Ailliaiica’s Cakaiios /
Hence the capillary rise of water in the glass (Miniscus concave)
tube,
4c O Fig. 1.22. Effect of capillarity.

b (12D N Y



./ FLUIDS AND THEIR PROPERTIES

7. Capillarity

In case of mercury there is a capillary depression
as shown in Fig. 1.23, and the angle of depression is
6 = 140°. (It may be noted that here cos 6 = cos 140°
=cos (180—40°)=—cos 40°, therefore, / is negative
indicating capillary depression).

cos(180° — &) = — cos(x)

«—d—>
/ Glass tube
_
h = Capillary Mercury
v depression
0>m/2

el

c Mercury
Cohesion > Adhesion
(Miniscus convex)

Fig. 1.23

T A v I
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O Pressure Measurement

en a fluid is contained in a vessel, it exerts force at all points on the sides and bottom and top of the container.
The force per unit area is called pressure.
L’ 5
P=—
A
F = The force (N), and

A = Area on which the force acts (m?), and
P = Pressure (or intensity of pressure)

Pressure head of liquid:

A liquid is subjected to pressure due to its own weight, this pressure increases as the depth of the liquid increases.
Let, h = Height of liquid in the cylinder,

A = Area of the cylinder base, /Cylinder
y = Specific weight of the liquid, and ) r
P = Intensity of pressure. ESETE gl (Tl T
Total pressure force on the base of the cylinder = Weight of liquid in the cylinder |- - -—— - -+ —— -1 .
PA=y Ah =)
p = 14k EEES I Ei Rt
A il o k
P=y11 Vessel — Liquid < v —>| |
P= ( (o, g) h Fig. 2.1. Pressure head.



~
J \/W, Pressure Measurement

S
_ As the pressure at any point in a liquid depends on height of the free surface above that
point, it is sometimes convenient to express a liquid pressure by the height of the free
surface which would cause the pressure,i.e., h=P/y

The height of the free surface above any point is known as the static head at that
point. In this case, static head is h.

Hence, the intensity of pressure of a liquid may be expressed in the following two ways:
1. As a force per unit area (i.e., N/m?, N/mm?, Pa), and

2. As an equivalent static head (i.e., m, mm or cm of liquid).
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Pressure Measurement — Hydrostatic Paradox
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~ According to the hydrostatic equation P= (p g) h, pressure (p) depends ONLY on the height of the columi

s and NOT at all upon the size of the column.
Thus, in all these vessels of different shapes and sizes, the same intensity of pressure would be exerted on

the bottom of each of these vessels.

rl’rcc urfa
h |- Liquid-=- @
l I-_:.__:____:.:__'.I
A (area) A A=Area of the

bottom

Fig. 2.8. Hydrostatic paradox.




O Pressure Measurement
~ ATMOSPHERIC, ABSOLUTE AND GAUGE PRESSURES ~—/
e’

Atmospheric pressure (P,.,.), also known as ‘Barometric pressure’. Standard atmosphere
|01.3 kPa

The atmospheric pressure at sea level is called ‘Standard atmospheric pressure’, 14. 7 psi

local atmospheric pressure may be a little lower than these values if the place is 30 in Hg

higher than sea level, and higher values if the place is lower than sea level, due to T{:: 1111:_'1:"5

the corresponding decrease or increase of the column of air standing, respectively. 1'4 [.1' “_rlm

Absolute pressure (P, ): Pressure measurement with respect to a zero pressure reference, and it is
also called Total pressure.

Gauge pressure (Pg,,40): Pressure measurement higher than P, and referenced to P...

Vacuum pressure (P,,. ) Pressure measurement lower than P, and referenced to P,

o \J - "
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< MEASUREMENT OF PRESSURE

“ 1. Manometers:

~  Barometer is a type of close-end manometer.
A barometer is a scientific instrument used to measure atmospheric pressure which is

called barometric pressure.

P, = Py (The intensity of pressure is the same for the same fluid at the rest,

connected, and have the same horizontal level.)
pgh+0=2~P,,

13600 X 9.81 X0.76 +0=P

atm

P, =101.3X 10° N/m?(Pa)

atm
P, =1013X 10° N/m?(Pa)
P,,=1013 bar

glass tubing —

mercury

mercury
reservoir

] Vacuum (no pressure of air here,
o
i.e pressure valve is almost zero (P=0))

H (Ivaries with
Atmospheric pressure)

~ 760 mm
(0.76 m)
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~  MEASUREMENT OF PRESSURE

1. Manometers:
Manometers are defined as the devices used for measuring the pressure at a point in a fluid
by balancing the column of fluid by the same or another column of liquid.

These are classified as follows:

(a) Simple manometers:
I.  Plezometer,
ii. U-tube manometer, and
lil. Single column manometer.

(b) Differential manometers.

I. U-tube differential manometer
Il. Inverted U-tube differential manometer »

FYl  https://www.youtube.com /watch2v=MpXhXVF9-HM v Y , &




Pressure Measurement

e/

'

a. Simple manometers _ i. Piezometers

Piezometers measure gauge pressure only (at the surface of the liquid), since the surface of the liquid
in the tube is subjected to atmospheric pressure. A piezometer tube is not suitable for measuring
negative pressure; as in such a case the air will enter in pipe through the tube.

P=pgh (oryh)

Piezometer

Open /—Piezometer tube T~

vessel tube

b — — — — — — - — — - — — — — - -
ot — — —— — —— — v— — — — — — — — — -
——— —— —— — - — — — - — — — — — —
bt - — — — - — — - — — — — -

___________________ h

br  — — - v — . — — - -
e — — - e e e o e o - e

N 5

Fig. 2.10. (a) Piezometer tube fitted to open vessel. Fig. 2.10. (b) Piezometer tube
fitted to a closed pipe.
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\/ Pressure Measurement S~

o i L
. Simple manometers _ ii. U-tube manometer: e ]
lezometers cannot be employed when large pressures in the lighter liquids are to be measured, e

since this would require very long tubes, which cannot be handled conveniently. Furthermore gas
~pressures cannot be measured by the piezometers because a gas forms no free atmospheric
surface. These limitations can be overcome by the use of U-tube manometers.
For positive pressure h, = Height of the light liquid in the left Limb above the datum line,
h, = Height of the heavy liquid in the right limb above the datum line,
h = Pressure in pipe, expressed in terms of head, (h is pressure head at A)
§, = Specific gravity of the light liquid, and
S, = Specific gravity of the heavy liquid.

(The intensity of pressure is the same
for the same fluid at the rest, connected
and have the same horizontal level.)

Assume the head above the datum is +Ve
and the head below the datum is - Ve

Pressure head above X—X in the left limb=h + h, S, /
Pressure head above X=X in the right limb = h, S,
Equating these two pressures, we get: sy

h+hS =h,S, or h=h,58—hS;



\'/;/ Pressure Measurement

Imple manometers _ ii. U-tube manometer:

- For negative pressure  Pressure head above X=X 1n the left limb=h + h, S, + h,S,
Pressure head above X—X i the right limb = 0.
Equating these two pressures, we get:

h+hS+hS,=0 or h=—(h S +mhsS,)

(h is pressure head at A)

(The intensity of pressure is the same
for the same fluid at the rest, connected
and have the same horizontal level.)

Assume the head above the datum is +Ve
and the head below the datum is - Ve L

¥ NS ./ "’ ! /
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\

@) Pressure Measurement

a. Simple manometers _ iii. Single column manometer

O
=
g
g
<
g
g
g
¥
R’

—’

The U-tube manometer described above usually requires
reading of fluid levels at two or more points since a change
In pressure causes a rise of liquid in one limb of the
manometer and a drop in the other. This difficulty is
however overcome by using single column manometers.

Light liquid

A single column manometer is a modified form of a U-tube
manometer in which a shallow reservoir having a large
cross-sectional area (about 100 times) as compared to the

__________ Y
area of the tube is connected to one limb of the T ST S S .
manometer, as shown in Fig. 2.18.
Area of Reservoir >> Area of Limb hy iz
For any variation in pressure, the change in the liquid level l T e
in the reservoir will be so small that it may be neglected, S e __iﬁ

and the pressure is indicated by the height of the liquid in £ » oy
the other limb. As such only one reading in the narrow limb
of the manometer need be taken for all pressure
measurements. The narrow limb may be vertical or

) ] Heavy liquid
inclined. —

S Fig. 2.18. Vertical single column manometer.
v /
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& Pressure Measurement

a. Simple manometers _ iii. Single column manometer
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Let X=X be the datum line in the reservoir when the single column manometer is not connected
~ to the pipe. Now consider that the manometer is connected to a pipe containing light liquid under
a very high pressure. The pressure in the pipe will force the light liquid to push the heavy liquid
in the reservoir downwards. As the area of the reservoir is very large, the fall of the heavy liquid
level will be very small. This downward movement of the heavy liquid, in the reservoir, will cause
a considerable rise of the heavy liquid in the right limb.

Light liquid

h, = Height of the centre of the pipe above X-X,

Delta h appears
h, = Rise of heavy liquid (after experiment) in the right limb, PP

. . . at the right
oh = Fall of heavy liquid level in the reservoir, i J
_ _ _ limb because 7\ Qe
h = Pressure in the pipe, expressed in terms of head of water, ST S
, . . we changed the
4 = Cross-sectional area of the reservoir, -
datum line hy hy

a = Cross-sectional area of the tube (right limb), from X-X to z-7

S, = Specific gravity of light liquid in pipe, and

8 e 5h
S, = Specific gravity of the heavy liquid. g * oy
We know that fall of heavy liquid in reservoir will cause a rise of heavy liquid level in the right
limb. Heavy liquid
3 a % JE’.' eavy liqui
TIIHS. A- 2 bh — hg Oor ah = : Fig. 2.18. Vertical single column manometer.

s =0 v/



O Pressure Measurement

ca. Simple manometers _ iii. Single column manometer /

~ Let us now consider pressure heads above the datum line Z—Z as shown in Fig. 2.18.
Light liquid

Pressure head in the right limb = (h, + &h)S, and the head below the datumis - Ve

Delta h appears
at the right limb
because we
changed the
datum line from
X-X 10 z-Z.

Equating the pressure heads, we get:
h +(h, + dh)S; = (h, + 6h)S,
h=(hy+0h)S,—(h,+3h)S,
=0h (S, —S,) + h,S, — h,S,

Sh B e s o Sh
7

But, e 25
-- H liquid
eavy liqui
Jis a th (Sg o Sl) 1 thz - hlsl (28) Fig. 2.18. Vertical single column manometer.
-

When the area A is very large as compared to a, then the ratio % becomes very small, and thus

al

is neglected. Then the above equation becomes

h = hyS;—h,S,; 542.9) @ J
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| Pressure Measurement ~— B
"’
b. Differential manometers i esson

IS used to measure the difference in pressures between two points in a pipe, or in two different pipes. In

~ its simplest form a differential manometer consists of a U-tube, containing a heavy liquid, whose two
ends are connected to the points, whose difference of pressures is required to be found out.

Following are the most commonly used types of differential manometers:
I. U-tube differential manometer.
li. Inverted U-tube differential manometer.

I. U-tube differential manometer.

Liquid A (S)) Liquid B (S,)

Case |. Fig. 2.21 (a) shows a differential manometer whose two

ends are connected with two different points A and B at the same
level and containing same liquid.
i.e.,Difference of pressure head,

h,—hy, =h(S—S)

H.W: Prove it.

Heavy liquid
or mercury (S)

|
-

X___

Assume the head above the datum is +Ve
and the head below the datum is - Ve

N Fig. 2.21. (a) Two pipes at same level. /

%
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O Pressure Measurement

b. Differential manometers -
~ I. U-tube differential manometer.

S’ 51

Case ll. Fig. 2.21 (b) shows a differential manometer

whose two ends are connected to two different points A and B
at different levels and containing different liquids.

Difference of pressure heads at 4 and B,
h,—hg = h(S—S)) +h,S,—hS

H.W: Prove it.

Assume the head above the datum is +Ve
and the head below the datum is - Ve

Fig. 2.21. (b) U-tube differential manometers.




: Pressure Measurement
J|

\ Example 2.27. From the Fig. 2.30 determine the absolute pressure in pipe A that contains oil :
of specific gravity = 0.88. Take Z; = 0.66 m, Z, = 0.33m, Z; = 0.165mand Z, = 0.11 m. ~ w@.ﬁ@m.
Assume an atinospheric pressure 105 kPa. (Madras University) ‘ '

St
Solution. Starting from F.W.S (free water surface) in tank (at atmospheric pressure), we get

Fall +Ve
Pam T WyZy =Wy = WyZ3 t Wy (231 Zy) = py Rise -Ve
EW.S.
&
105 +9.81 x 0.66 —9.81 » 0.33 —13.6 x 9.81 x 0.165 +0.88 x 9.81 x (0.165 + 0.11) = p, et
b=
Py = 105+6.475-3.237-22.014 +2.374
= 88.6 kN/m’ (absolute) (Ans.) Z,

Fig. 2.30



O Pressure Measurement
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Example 2.28. Find the pressure difference between L and M in Fig. 2.31.

e’ : _ .
Solution. p;—p,,: 0il (S=0.8)

PL i h%15-015%08 +(0.15+02-h)x1.5= M

Fall +Ve Liquid (5= 1.5)

PL L 15h-012+0525-15h=2M Rise -Ve
W w

PL”PM — _0405m
W

Negative sign indicates p, > p;

0.2 m

ie., Py—p; = 0405 x 981

= 3.97 kN/m’ (Ans.)

Liquid (§= 1.5) /
Fig. 2.31

\J > J,



® Pressure Measurement
Example 2.29. In the Fig. 2.32, if the local atmmospheric pressure is 755 mmn of mercury { ST
(sp. gravitv = 13.6), calculate: i

(7) Absolute pressure of air in the tank:

Open end
e (i1) Pressure gauge reading at L. ‘ i
Solution. (/) Absolute pressure of air, (p ;) ;. Fall 4+Ve
Starting from the open end. we have: Rise -Ve
0—(13.6 x w) x 0.6 = p,;, (pressure of air)
ie, p,. =—13.6 x9.81 x 0.6 =— 80 kKN/m’ Air
DPam = (@tmospheric pressure)
= 733 13,6 % 9.81 = 100.73 kN/m®

1000
(pabs.)nir ~ Pair TP atm. Ezcﬁm'}é] ,_-i

S ) ! Wat

— 80+ 100.73 = 20.73 kN/m” OFR: ° 7

Hence, (1, )= 20.73 kKN/m” (Ans.) P _ L

- gauge (L) — @_
(i7) Pressure gauge reading at L: -80 +2*9.81
Pressure at L = p_,  (air) + wh = - 60.38 KN/m?
' ~’
p;= 20.73 +9.81 x 2 =40.35 kKN/m” abs. Fig. 2.32
Now, 40.35= +
- > Peauge ™ Pam. i.e., Vacuum pressure = 60.38 kN/m? J

Peauga(t) = 40-35 —Pypy, :
— 40.35 — 100.73 Hence. pressure gauge reading at L = 60.38 KN/m" (vacuum) (Ans.) 0, /

= _ 60.38 kN/m? - N/ 3
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HYDROSTATIC FORCES ON SURFACES

TOTAL PRESSURE AND CENTRE OF PRESSURE

* Total pressure. It is defined as the force exerted by static fluid on a surface
(either plane or curved) when the fluid comes in contact with the surface. This
force is always at right angle ( or normal) to the surface.

» Centre of pressure. It is defined as the point of application of the total
pressure on the surface.

The immersed surfaces may be:
1. Horizontal plane surface;
2.Vertical plane surface;

3. Inclined plane surface;
4. Curved surface.




HORIZONTALLY IMMERSED SURFACE
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Total Pressure (P):
Refer to Fig. 3.1. Consider a plane horizontal sutface @~ === %0 ST - - -—-—- - - =

immersed 1n a liquid. [l

Let, A = Area of the immersed surface, -

x = Depth of horizontal surface from the liquid.
and

w = Specific weight of the liquid. L

The total pressure on the surface, Total Force

P = Weight of the liquid above the immersed surface

= Specific weight of liquid % volume of liquid
= Specific weight of liquid x area of surface x depth of liquid Fig. 3.1. Horizontally immersed surface.

=|wAdx

L)



VERTICALLY IMMERSED SURFACE

Consider a plane vertical surface of arbitrary shape
immersed in a liquid as shown in Fig. 3.2.

Let, A = Total area of the surface,
G = Centre of the area of the surface,
x = Depth of centre of area,
OO = Free surface of liquid, and
h = Distance of centre of pressure from free
surface of liquid.

(a) Total pressure (P):

Consider a thin horizontal strip of the surface of
thickness dx and breadth b. Let the depth of the strip be x.
Let the intensity of pressure on strip be p: this may be taken
as uniform as the strip is extremely small. Then.

P = wx Pressure
where, w = specific weight of the liquid.
Total pressure on the strip = p.b.dx. Force
= wx . bdx

0  Liquid surface O @Tﬂ:
<— b >
X
x L
h
_ Y
dx
G* /
Cs Y

Fig. 3.2. Vertically immersed surface.

Note that

The Intensity of Pressure = Pressure, (KN/m?)
Total pressure on the whole area. P = j. wx . bdx = 11-J. bdx . x| Force Total Pressure = Total Force, (KN)
But, I bdx . x |= Moment of the surface area about the liquid level |=A4x

P = widx

...[ same as in Art. 3.3] Force @



VERTICALLY IMMERSED SURFACE
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P = wAx

or, the total pressure on a surface is equal to the area multiplied by the intensity of pressure at
the centre of area of the figure.

The eqn..|P = wAx |holds good for all surfaces whether flat or curved. 2 _ifl_fli_‘_j_f’ff_a_{ff“_____‘___ 2
(b) Centre of pressure (f): 5
The intensity of pressure on an immersed surface is not uniform, but increases with depth. As x
the pressure is greater over the lower portion of the figure, therefore the resultant pressure. on any |
mmmersed surface will act at some point, below the centre of gravity of the immersed surface and 4 h
towards the lower edge of the figure. The point through which this resultant pressure acts is known K
as ‘centre of pressure’ and is always expressed in terms of depth from the liquid surface. - dx ¥
Referring to Fig. 3.2, let C be the centre of pressure of the immersed figure. Then the resultant Ce / Y
pressure P will act through the point.
Let, h = Depth of centre of pressure below free liquid surface, and F19-5 % sulically immetsed sulface. o
v
I, = Moment of inertia of the surface about OO. (D Note that
C . . . _— ) ) L The Intensity of Pressure = Pressure, (KN/m?)
Consider the horizontal strip of thickness dx. Total pressure on strip = w.x.b.dx Total Pressure = Total Force, (KN)
. Resultant Pressure = Resultant Force, (KN,
Moment of this pressure about free surface OO = (w.x. b.dx) x = wox.b.dx (KN)
J

Total moment of all such pressures for whole area, M = J. wx”.b.dx. = w J. x> b.dx T <e>



VERTICALLY IMMERSED SURFACE 0 Liquid surfoe

But, J. x°.b.dx = I, = Moment of inertia of the surface about the free surface OO

(or second moment of area)

M = wil, ...(7) oy
The sum of the moments of the pressure is also equal to P x h ..(if)
Now equating eqns. (i) and (ii). we get: v
Pxh = wl,. B
— (v P=wAx) 2 e
wiAx x h = H'fﬂ Fig. 3.2. Vertically immersed surface.
— I
e (i
Ve (iif)
Also, I =\I;+ AW’ (Theorem of parallel axis)
where, I, = Moment of inertia of the figure about horizontal axis through

its centre of gravity, and
= Distance between th? free liquid surface and the centre of

gravity of the figure (x\in this case)

Thus rearranging equation (7ii), we have !
-2 f s, §
;oo A Iy { Lol ;
L Ax IV ER e

_ I, _

Hence, centre of pressure, | h = Ve + x

X




Example 3.3. An isosceles triangular plate of base 3 m and altitude 3 m is immersed vertically in
an oil of specific gravity 0.8. The base of the plate coincides with the free surface of oil. Determine:

(i) Total pressure on the plate; (ii) Centre of pressure.

Solution. Base of the plate, » = 3 m
Height of the plate. 7 = 3 m

b x} 3 x3
Area, A = e =45m’
2 2
Specific gravity of oil, = 0.8
The distance of C.G. from the free surface of oil,
x = lh:l X3=1m
3 3

(/) Total pressure on the plate, P:
We know that, P=wAdx
= (0.8 x9.81)x45x1
P = 35.3 kN (Ans.)
(if) Centre of pressure, h:

Centre of pressure is given by the relation:

T _(bh’/36)

X Ax

-3
_ (3x3/36)

4.5x1

1

e LS,

iE
E{u
“E

E

3m
<—

h = 1.5m (Ans.)

Fig.3.9

©

(-3
»*
e —EREEEELEER™
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Example 3.14. An opening in a dam
is covered by the use of a vertical sluice
gate. The opening is 2 m wide and 1.2
m high. On the upstream of the gate the
liquid of specific gravity 1.45 lies upto
a height of 1.5 m above the top of the
gate. whereas on the downstream side
the water is available upto a height
touching the top of the gate. Find:

(i) The resultant force acting on the

gate and position of centre of

pressure;

(ii)y The force acting horizontally
at the top of the gate which is
capable of opening it.

Assume that the gate is hinged at
the bottom.

Solution. Width of the gate, » = 2 m

Free liquid surface

Free water surface

Upstream

AMANNN

S8=1)
Downstream

Hinge

<12 mPl€E—15m

Fig. 3.22

(Rajasthan University

Depthofthe gate.d = 1.2m Area. 4 = hxd=2x12=24 m>

Specific gravity of liquid = 1.45

Let, P, = Force exerted by the liquid of sp. gravity 1.45 on the gate, and

P, = Force exerted by water on the gate.
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(/) Resultant force, P:

P, = wAx,

w = 9.81 x 1.45=14.22 kN/m’,
4=2x12=24m’

¥, = 1.5+ % =2.1m
P, = 1422 x2.4x2.1=71.67KkN.
Resultant force, P

Similarly,

P, = wdx,

w = 9.81 kKN/m’.

A= 24m%

Xg = % =0.6m

P, = 981 x24x0.6=14.13kN.

= P,—P,=71.67-14.13
= 57.54 kN (Ans.)

The force P, acts at a depth of El from free liquid surface, which 1is given by:

_ I _
;31 o
Ax
3 3
where, I = o = 2x 1.2 =0.288 m*
12
= 0.288
Frl —gp s . LA =2 157 m
24321

. Distance of P, from the hinge = (1.5+1.2)- El

=2.7-2157=0543m

(m,;)

= Free liquid surface
e
g et bt e
2 & Liquid
=
= ﬁ o (S=1.45)
Free water surface 1 ¢ Upstream
A
EresrEo s s A
_______________ =
Water o
(S=1) v
Downstream v
Hinge
= 1.2
241[[2. x=15+ ? =2.1m

A =

&
&
¥
=
=z
<
g
1
s
=




Similarly the force P, acting at a depth of &, from the liquid surface is given by: KFFCC liquid surface
- I = S Sec et e
]’2 — E + ‘rz o e e -
Ax,y = Liquid
AN A i 9 (S=1.45)
I.= (0288 m’ (as above): x, = ? =06m. 4=24 m’ Free water surface hy ¢ Upstream
= 0.288 S e i A
By = —— +0.6=08m (IENEEEN:========2 ;- | 2
24x0.6 Water - Y p ~
s=1 PP B v
Distance of P, from the hinge =12-08=04m | (m,) Downstream
Now the resultant force will act at a distance given by: Hinge

71.67x0543-14.13x04

= 0.578 m above the hinge (Ans.)
57.54

(ii) Force required to open the gate, F:
Taking moments of P, , P, and F about the hinge. we get:

Fx12+P,%x04 = P, *0.543
Fx12+1413 %04 = 71.67 x 0.543

1*9
\‘»"kkk 49):"13
S %
= z
- W
sy

£
I
€
E

71.67 %0543 —14.13x 04
F = 12 =27.72 kN (Ans.)
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HYDROSTATIC FORCES ON SURFACES
INCLINED IMMERSED SURFACE

A = Area of the surface.

0 Liquid surface 0
A

x = Depth of centre of gravity of immersed surface from the free
liquid surface,

6 = Angle at which the immersed surface is inclined with the
liquid surface. and

w = Specific weight of the liquid.

(a) Total pressure (P):
Consider a strip of thickness dx, width b at a

distance / from O (A point, on the liquid surface,
where the immersed surface will meet, if produced).

The intensity of pressure on the strip
= wl sinb Area of the strip = b.dx
Pressure on the strip
= Intensity of pressure * area
= wlsin 0 . b. dx

Now total pressure on the surface, P = f wisin® . b. dx =wsinb I [.b.dx



: . Liquid surf
P= J'wf me.b.a{x:wsmef I.b.dx 0 it . o
But, If . b . dx = moment of surface area about 00
| Ax
sin®

/'m@/ /m =wAx (same as in Arts. 3.3 and 3.4)

Fig. 3.27. Inclined immersed surface.




(b) Centre of pressure (/):
Referring to Fig 3.27, let C be the centre of pressure of the inclined surface.

Let, = Depth of centre of pressure below free liquid surface, 0

Liquid surface 0
== A

h
I, = Moment of inertia of the immersed surface about OO,
x

= Depth of centre of gravity of the surface from the
liquid surface,

6 = Angle at which the immersed surface is inclined with
the liquid surface, and

A = Area of the surface.

Consider a strip of thickness of dx. width b and at distance / from OO.

The intensity of pressure on the strip = w/sin 0

Area of strip = b.dx
: Pressure on the strip = Intensity of pressure x area = w/ sinf b . dx Fig. 3.27. Inclined immersed surface.
Moment of the pressure about 00 = (wlsin 8 . b.dx) [ =wl’ sin® . b . dx

Now sum of moments of all such pressures about O,

M = IH'!ESiﬂe.bdX’ :11,r5jjle.|-fz_b_d‘x'

But. J. I .b.dx=1I, = moment of inertia of the surface about the point 0 (or
the second moment of area)

M = wsinb.I, (1)




M = wsm0.]; =)

B _ h
The sum of moments of all such pressures about O is also equal to i?e ..(if) sinb = i
sin

where, P is the total pressure on the surface.

Equating eqns. (7) and (i7), we get: _
].Jh = wsin 6. I,
sin©

PARE .. gl 1, (s P=wAX)
sin O
1 Zysin”©
h = 2 —— ..(ifi
Ax ()
Also. Iy = I+ AW’ ... Theorem of parallel axes.

where, I, = Moment of inertia of figure about horizontal axis through its centre of gravity, and

. . X o
h = Distance between 0 and the centre of gravity of the figure = I( =500 J in this case. 7
sin

o
AL

&
s o
o AR

Rearranging equation (ii7), we have:

==
B = 51; © @, +4P)




- 2
B o= 51; 0 U+ 4P)

O Liquid surface 0
= A =
.2 — 2 - 2
sin- o6 E I-.sin" 06 _
TS
Ax sin 6 Ax
-2
—  I.sm"06
Hence, centre of pressure h = GA_ + X
X

It will be noticed that if 6 = 90° eqn (3.3) becomes
the same as equation (3.2).

_
h = A—G? +x -32)

&
*
>
=
-
<




Example 3.24. An inclined rectangular
sliuice gate AB 1.2 m by 5 m size as shown in
Fig. 3.33 is installed to control the discharge
of water. The end A is hinged. Determine the
force normal to the gate applied at B to open
it.

Area of the gate=12x5 =6 m’
Depth of c.g. of the gate from free water
surface,
X =5 — BG sin 45°
=5-0.6%x0.707=4.576 m

The total pressure force (P) acting on
the gate,

P=wAx
=9.81 x6x4.576=269.3 kN
This force acts at a depth /, given by the relation:
= Fug®y 2
ko= 20— SIE + X
Ax

—  0.72 xsin®45°
6 x 4.576

Free water surface

I, = M.O.I of gate =

+4.576 =4.589 m

bd> 5x1.2°

Fig. 3.33

—0.72 m".
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Free water surface

: h :
From Fig. 3.33, we have —— =sin 45°
ocC B
Distance, OC = — i = e = 6.49 m;
sin45°  0.707
5

=7.072 m

Distance, OB = —
sin 45°

Distance, BC = OB-0C=7.072-649=0.582m
Distance, AC = AB—-BC=12-0582=0.618m

Taking moments about the hinge 4, we get:
FxAB = P x AC
Px AC
AB

| 269.3x0.618
B 1.2

= 138.69 kN (Ans.)

(-3
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Example 3.25. 4 6 m x 2 m rectangular gate is hinged at the base and is inclined at an angle
of 60° with the horizontal. The upper end of the gate is kept in position by a weight of 60 kN acting
at angle of 90° as shown in Fig. 3.34. Neglecting the weight of the gate, find the level of water when

the gate begins to fall.

Solution. Length of the gate, / = 6 m

Width of the gate, b =2 m

Inclination, 6 = 60°
Weight, W = 60 kN

Level of water when the gate begins to fall:

Let, 7 = Height of free water surface from the bottom when the gate just begins to fall.

Then, length of gate in the shape of plate, submerged in water,

AC h h
AD = = = -
sin® sin60° 0866 13477
. Area of the gate immersed in
water,

A=AD » width
=1.1547 h x2=2309 h m*
Also depth of c.g. of the immersed

area. Total pressure on the gate,
g P=wAX =981 %2309 h x 0.5 h
Y= 5 S0 = 11.326 kN

60 kN

Water surface

=

-
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HYDROSTATIC FORCES ON SURFACES
CURVED IMMERSED SURFACE

Liquid surface \

At any point on the curved surface, the pressure acts normal to the surface.

Thus if dA is the area of a small element of the curved surface lying at a

vertical depth of h from surface of the liquid, then the total pressure on the
elemental area is,

dp = p *dA=(wh) x dA ..(34)
This force dP acts normal to the surface.
integration of eqn. (3.4) would provide the total pressure S
on the curved surface and hence,
p= fu-;;d.»q (35

But, is case of curved surface the direction of the total pressures on the elementary areas are
not in the same direction (varies from point to point).

Thus the integration of eqn. (3.5) for curved surface is impossible.




The problem, however, can be solved by resolving the
force P into horizontal and vertical components Py and Py,
Then total force on the curved surface is,

P= P} + P .(3.6)

Liquid surface \

5 : : g B
The direction of the resultant force P with the horizontal is given by: tan 6 = —X
H
sl B
0 = tan [—V] W37
Iy
P, = Total pressure force on the projected area of the curved Fig. 3.42

surface on vertical plane, and

P, = Weight of the liquid supported by the curved surface upto free
surface of liquid.

T ER
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Example 3.34. Fig. 3.45. shows a curved surface LM, which is in the form of a quadrant of a
circle of radius 3 m. immersed in the water. If the width of the gate is unity. calculate the horizontal
and vertical components of the total force acting on the curved surface.

Solution. Radius of the gate = 3 m
Width of the gate = 1m Free water surface E
Refer to Fig. 3.45. L O ¥ mnn e A
Distance LO = OM =3 m e e S S R X X Ixm
20
Horizontal component of fotal force, Py: X L
Horizontal force (P) exerted by water on gate
1s given by, Y s
Py = Total pressure force on the projected area p
of curved surface LM on vertical plane ;
= Total pressure force on OM \ 4
: . VITER LA
(projected area of curved surface on vertical M
plane Curved surface
AT PR ————— Fig. 3.45. Curved surface (gate).
=wAdx A — % A = 3N
3
x=1+—=—=25m
2

P,, = 9.81 x (3 x 1) x 2.5="73.57 kN (Ans.)

L)



The point of application of P, is given by: PS— E
- I TE S T 5 AY
o = Fotmmmemey
X Sl /L :
bd> 1x3 =
I, = M.O.I of OM about its c.g. = = —2.95m " A
12 12 v i
h 25 + 2.5 = 2.8 m from water surface (Ans.) P“!
- i) e 4 L : € (AIS.
(B3x1)y=x2.5 v

i A i i M
Curved surface

Fig. 3.45. Curved surface (gate).

Vertical component of total force, Py
Vertical force (P)) exerted by water is given by:
P, = Weight of water supported by LM upto free surface

= weight of portion ULMOS
= weight of ULOS + weight of water in LOM
= w (volume of ULOS + volume of LOM)

s el soniore BE M@ gl _ g biser s FEI o g il
4 4 § TTes |

aulnuil AuaiN deolall

= 9.81 (3 + 7.068) kN = 98.77 kN (Ans.)




Example 3.38. Fig. 3.49 shows a radial gate. If it is 3 m long, find the magnitude and direction
of the resultant force acting on it.

Solution. Length of radial gate =3 m
Refer to Fig. 3.49.

Water surface L T

MU = 3sm60°=2.6m

Horizontal force on the curved surface,

Py = wAx
= 9.81 x (2.6 x 3) %
= 9947 kN
It will act at % or 0.867 m above M. OR|" = % + X
ST

Vertical force, P, = Weight of water displaced

If & is measured in degrees then

= weight of volume equal to LMU * 3.
Now, Area LMU = area LOM — area MUQ

area of sector =

xar

1
E x 2.6 x 3 cos60° Fig. 3.49

B |

—Tt:>'<32><1;’6—5 x26%x3x05 =4712-195=2.762m" @
P, = 2762 x 3 x 9.81 = 81.28 kKN;




Water surface L

P = JP§ + B} =/99.47% +81.28% =128.45kN

6 = Inclination of P with horizontal.

P .
tan6 = 2 -3128 _ 5017 or 9=39.250 (Ans.)

Py 99.47

and P must pass through O.

As Py acts at (2.6 — 0.867) = 1.733 m below water surface,

gy — B B-18 sqonn ond
tan39.25° 0.817

UTI' = OT-0U=2.12-3cos 60°=0.62 m

Hence point of application of P is 0.62 m to the left of MU and 1.733 m below water surface.

If & is measured in degrees then

£y

%) A
area of sector =——xr’
360°

If & is measured in radians then

|
area of sector = Erzﬁ
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Mechanics

The study of fluids in motion / When the ﬂuids are at rest,
mobves o consderationcl | Dynamics || Statics || heent MSPRPETSL
kinematics | weight of the fluids.
e -
Kinetics Kinematics

The science which deals with the
action of the forces in producing or
changing motion of fluids is known
as “hydrokinetics” (or simply
kinetics).

The science which deals with the
geometry of motion of fluids without
reference to the forces causing the
motion is known as “hydrokinematics”
(or simply kinematics).




TYPES OF FLOW

1. Steady and Unsteady Flows

= Steady flow: The type of flow in which the fluid characteristics like velocity, pressure, density, etc. at a
point do not change with time is called steady flow. Mathematically, we have:

2], o) o),
Ot )y 30.2 < = R—— ot

*o-Yp-Zp
o ;
2

where (x,. v,.Z,) 1s a fixed point in a fluid field where these variables are being measured w.z7. time.

= 0: and so on

where u. v and w are velocity components in x, y and = directions respectively.
Example. Flow through a prismatic or non-prismatic conduit at a constant flow rate O m’/s is

steady.

= Unsteady flow: It is that type of flow in which the velocity, pressure or density at a point change w.r.t.
time. Mathematically, we have:

(%] = 0; {ﬂ ::D:(ﬂw =0
ot ot ot

* Xp.3p-Zp * Xp-¥0-20 /X ¥g-Zp

A

La_p] T (G_pJ = 0: and so on
ot

oF.

Xp-Yo-20 Xp-Yo-Zo

Example. The flow in a pipe whose valve is being opened or closed gradually

(-




TYPES OF FLOW

2. Uniform and Non-uniform Flows

= Uniform flow: The type of flow, in which the velocity at any given time does not change with
respect to space is called uniform flow. Mathematically, we have:

v e
—— =
os f = constant

where, ¢V = Change in velocity, and
s = Displacement in any direction.

Example. Flow through a straight prismatic conduit (i.e. flow through a straight pipe of
constant diameter).

= Non-uniform flow: It is that type of flow in which the velocity at any given time changes with
respect to space. Mathematically,

- ™
cV ,
e — {]

¢

=
cs f = constant

Example. (i) Flow through a non-prismatic condluit.

(ii) Flow around a uniform diameter pipe-bend or a canal bend.




TYPES OF FLOW

3. One, Two and Three Dimensional Flows:

i. One dimensional flow. It is that type of flow in which the _, .«:;_/\:i,/ L »
. : : — I
flow parameter such as velocity is a function of time and one % | 5
, - P
space co-ordinate only. p p!
— —
— PR R R R AR
SN "‘\'“‘i"ﬁ"(\\ ‘
Mathematically: Fig. 5.2. One dimensional flow.
u = f(x),
v=20
w=0

where u, v and w are velocity components in x, y and z directions respectively.

Example: Flow in a pipe considered 1-D when the change (variation) of flow parameters (such as
velocity, or pressure, etc.) occur along the length of the pipe, but any change (or variation) over the
cross-section is assumed negligible.)

@



TYPES OF FLOW

ii. Two dimensional flow: The flow in which the velocity is

a function of time and two rectangular space coordinates is

called two dimensional flow.

Fig. 5.3. Two dimensional flow.

Mathematically: i = £, (xp)
JT A
ve=2f (. 5)
w = 0

Examples. (i) Flow between parallel plates of infinite extent.

(i) Flow in the main stream of a wide river.




TYPES OF FLOW

iii. Three dimensional flow: It is that type of flow in which the
Velocity is a function of time and three mutually perpendicular

directions.

Fig. 5.4. Thee dimensional flow.

Mathematically: u = f (x.y.2)

v = fy ()
w = f3(x,y,2)

Examples. (i) Flow in a converging or diverging pipe or channel.
(ii) Flow in a prismatic open channel in which the width and the water depth are

of the same order of magnitude.



TYPES OF FLOW

4. Rotational and Irrotational Flows
i. Rotational flow. A flow is said to be rotational if the fluid particles
while moving in the direction of flow rotate about their mass centres.

Example. Motion of liquid in a rotating tank.

ii. Irrotational flow. A flow is said to be irrotational if
the fluid particles while moving in the direction of flow

do not rotate about their mass centres.

Example. Flow above a drain hole of a stationary tank or a wash basin.

Fluid Flow

Rotational Flow

Fluid Flow

Irrotational Flow

()



TYPES OF FLOW

5. Laminar and Turbulent Flows

= Laminar flow: A laminar flow is one in which paths taken by the individual particles do not

cross one another and move along well defined paths (Fig. 5.5), This type of flow is also called

stream-line flow or viscous flow.

v

Examples. (i) Flow through a capillary tube.
(if) Flow of blood in veins and arteries.
(iii) Ground water flow.

L J

Laminar Flow Flow in a Pipe

.
>

A 4

L 4

= Turbulent flow: A turbulent flow is that flow in which fluid particles move in a zig zag way.
Due to the movement of fluid particles in a zigzag manner, eddies are formed which are

responsible for the high energy loss. y@

Turbulent Flow ——

e I )

Flow in a Pipe

Example. High velocity flow in a conduit of large size. Nearly all fluid flow problems
encountered in engineering practice have a turbulent character.

(=)



TYPES OF FLOW

6. Compressible and Incompressible Flows

= Compressible flow: It is that type of flow in which the density (p) of the fluid changes from

point to point (or in other words density is not constant for this flow). /\

. 1T >
Mathematically: p = constant. I = >
Example. Flow of gases through orifices. nozzles, gas turbines, etc. C o

Compressible Flow

= Incompressible flow: It is that type of flow in which density is constant for the fluid flow.
Liquids are generally considered flowing incompressibly.

>
Mathematically: p = constant. A T
»

]
%ot NS

Incompressible Flow @

Example. Subsonic aerodynamics.



TYPES OF FLOW LINES

Whenever a fluid is in motion, its innumerable particles move along certain lines depending

upon the conditions of flow.

1. Path line: A path line (Fig. 5.7) is the path followed —;“““"m\
by a fluid particle in motion. / M/*‘ =t —@ S ':H"‘%H—jﬁ;m
2 ._,._./” E

Fig. 5.7. Path lines.

2. Stream line: A stream line way be defined as an B ey
. [ . //"“d_\\
imaginary line within the flow so that the tangent at any B s \3\
/ o
. T . . P
point on it indicates the velocity at that point. _//////j_
/

Fig. 5.8. Stream line.

o



TYPES OF FLOW LINES
STREAM LINE -

= k,-/!,,, g »3\
— _/zm,—ﬂ 7_*’ii

-
—
e

1. A streamline cannot intersect itself, nor two streamlines can cross.

2. There cannot be any movement of the fluid mass across the streamlines. RSN

3. Streamline spacing varies inversely as the velocity; converging of streamliines in any particular
direction shows accelerated flow in that direction.

4. Whereas a path line gives the path of one particular particle at successive instants of time, a
streamline indicates the direction of a number of particles at the same instant.

5. The series of streamlines represent the flow pattern at an instant.

] In steady flow, the pattern of streamlines remains invariant with time. The path lines and
streamlines will then be identical.

I In unsteady flow, the pattern of streamlines may or may not remain the same at the next

instant. @



TYPES OF FLOW LINES

3. Stream Tube: A stream tube is a fluid mass bounded by a group of streamlines.

Examples of stream tube: Pipes and nozzles.

Fig. 5.9. Stream tube.

Following points about stream tube are worth noting:

1. The stream tube has finite dimensions.

2. As there is no flow perpendicular to stream lines, therefore, there is no flow across the surface
(called stream surface) of the stream tube. The stream surface functions as if it were a solid wall.
3. The shape of a stream tube changes from one instant to another because of change in the
position of streamlines.

o



RATE OF FLOW (OR DISCHARGE)

= Rate of flow (or discharge) is defined as the quantity of a liquid flowing per second through a
section of pipe or a channel. It is generally denoted by Q. Let us consider a liquid flowing

through a pipe.
Let,
A = Area of cross-section of the pipe, and
V = Average velocity of the liquid.
. Discharge, Q = Area X average velocity i.e., Q =A.V ...(5.21)
If area is in m? and velocity is in m/s, then the discharge,

Q = m? X m/s = m3/s = cumecs.

o




= The continuity equation is based on the principle of conservation of mass. It states as follows:

“If no fluid is added or removed from the pipe in any length then the mass passing across

different sections shall be same.”

Consider two cross-sections of a pipe as shown in Fig 5.13

Let, A, = Area of the pipe at section 1-1,
V, = Velocity of the fluid at section 1-1,

p, = Density of the fluid at section 1-1,

and 4,., V,. p, are corresponding values at sections 2-2.

The total quantity of fluid passing through section 1-1= p, 4, 7
and, the total quantity of fluid passing through section 2-2 = p, 4,7V,

From the law of conservation of mass (theorem of continuity), we have:

p AV, = pAV, -(5.22)

Eqn. (5.22) 1s applicable to the compressible as well as
incompressible fluids and is called Continuity Equation. In case
of incompressible fluids, p, = p, and the continuity eqn. (5.21)

reduces to:
A,V = AV, ..(5.23)

mwm
©

Fig. 5.13. Fluid flow through

a pipe.




Example 5.11. The diameters of a pipe at the sections 1-1and
2-2 are 200 mm and 300 mm respectively. If the velocity of water
flowing through the pipe at section 1-1 is 4m/s. find.

(1) Discharge through the pipe, and
(if) Velocity of water at section 2-2

Solution. Diameter of the pipe at section 1-1,
D, = 200 mm = 0.2 m

Area, 4, = ;Df = ; x 0.22 =0.0314 m’

Velocity, V; = 4m/s

Diameter of the pipe at section 2-2,
D, = 300 mm

Area, 4, = %Dzz - % x 0.3% = 0.0707 m?

(/) Discharge through the pipe, Q:
Using the relation,
Q = A4,V;, we have:
Q = 0.0314 = 4=10.1256 m’/s

(i) Velocity of water at section 2-2, V.
Using the relation,
A,V, = A,V,, we have:
A4V, 0.0314x 4

v, = =
4, 0.0707

= 1.77 m/s (Ans.) @
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DIFFERENT TYPES OF HEADS (GR ENERGIES) OF A LIQUID IN MOTION

There are three types of energies or heads of flowing liquids:

1. Potential head or potential energy:

&
This is due to configuration or position above some suitable datum line. It is denoted by =.
- . . s
2. Velocity head or kinetic energy: , i)
This 1s due to velocity of flowing liquid and i1s measured as L where, 7 1s the velocity of T
T
flow and ‘g’ is the acceleration due to gravity (g = 9.81) ©
3. Pressure head or pressure energy:
This is due to the pressure of liquid and reckoned as L where, p is the pressure, and w is the Jmine_
! . .. w (Reference line)
weight density of the liquid.

Total head/energy:

Total head of a liquid particle in motion 1s the sum of its potential head, kinetic head and
pressure head. Mathematically,
2

Total head, H = z+ Z— + 2 m of liquid ..[6.1 (a)]
g W

©

FYI https://www.youtube.com/watch?v=CxqM_kkwgU4



DIFFERENT TYPES Of HEADS (OR ENERGIES) OF A LIQUID IN MOTION

Total head/energy:

Total head of a liquid particle in motion is the sum of its potential head, kinetic head and

pressure head. Mathematically,
2

Total head, H = =z + r- +£ mof liquid ..[6-1 (a)]
2g w
A
Total energy line (T.E.L) — Line represents the sum of pressure
head, potential head, and velocity head. 772
F A
Ay 2g 0w
]
) Hydraulic Grade Line H.G.L represents the sum of pressure head
E and potential head P, -
"g w
B
In ideal condition, the T.E.L is Horizontal (means that
‘ Dat¢m line there is NO Losses)
(Reference line)

Diagram of HGL and TEL

Hydraulic Grade Line (H.G.L)
Total Energy Line (T.E.L) Or Energy Grade Line (E.G.L)

https://www.youtube.com/watch?v=mol4DONirAw @



https://www.youtube.com/watch?v=moI4DQNirAw

Energy Head and Head Loss in Real Fluid

e T

| e | https://www.youtube.com/watch?v=mol4DONirAw



https://www.youtube.com/watch?v=moI4DQNirAw

DIFFERENT TYPES OF HEADS (OK EKERGIES) OF A LIGUID IN MOTION

Example 6.1. In a pipe of90 mumn diameter water is flowing with a mean velocity of 2 m/s and
at a gauge pressure of 350 kN/m~. Determine the total head, if the pipe is § metres above the datum

line. Neglect friction.
Solution. Diameter of the pipe = 90 mm
Pressure, p = 350 KN/m’
Velocity of water, V' = 2 m/s
Datum head,z = 8 m
Specific weight of water, w = 9.81 kN/m’

Total head of water, H:

455 350
- +
2x9.81 9381

=43.88 m

H = 43.88m

©



Bernoulli’s equation states as follows:

“In an ideal incompressible fluid when the flow is steady and continuous, the sum of
pressure energy, Kinetic energy and potential (or datum) energy is constant along a stream line.”

Mathematically,
72
£ + — +z = constant
w  2g
where, L - pressure energy,
‘H_.l
2
— = Kinetic energy, and
2g

z = Datum (or elevation) energy.

L7 |

e T

¢ JMLI L: li
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PROOF OF BERNOULLI’S EQUATION

Consider an ideal incompressible liquid through a non-uniform pipe as shown in Fig 6.1.
Let us consider two sections LL and MM and assume that the pipe is running full and there is continuity of

flow between the two sections;

Let, p; = Pressure at LL,

V, = Velocity of liquid at LL,
z. = Height of LL above the datum,
A, = Areaof pipe at LL, and

Py, V5. 2. 4, = Corresponding values at MM.

Assume the entering liquid between the two sections LL and L'L'
equals to the leaving liquid between the two sections MM and
M'M’, where dl.and dl.are the small lengths at these sections,
respectively, as shown in Fig. 6.1.

A4, .dly = A,.dl, A dI= A volume \ 4 \

Work done by pressure at LL, in moving the liquid to L' L' i i

= Force x distance = p, . 4, . dl,

Similarly, work done by the pressure at MM in moving the liquid to MM =—p, 4, . dl, @
(— ve sign 1ndicates that direction of p, 1s opposife to that of p,)



.. Total work done by the pressure
= p -4y dl—p, 4,dl,
=p,.4,dl,—-p, A4, dl, (- A,dl, = 4,dl,)

= 4,.dl (p,—-py)
W B w
= —,(Pl—Pz) ['Al"ﬂl:_J
W w
Loss of potential energy = I (z, —=,) | Potential Energy (PE) = (mg)z =Wz
vy Vi) W
Gain in kinetic energy = W | =2 — L |=— (¥, - ;)
2g 2g) 2g

Also. Loss of potential energy + work done by pressure = Gain in kinetic energy

W W .2 .2
W (z—2,)+— (p; — = —W;, N
(71— 22) i (1 = P») 2g 7 =)

2 2
(BB (&_&) P B
i i woow 2¢ 2g
2 2
or, P, LTl 4z = P2 Vs + zZ5 ...(6.2)
w 2g w 2g
which proves Bernoulli’s equation.




£ Ll L: §
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Assumptions:

It may be mentioned that the following assumptions are made in the derivation of Bernoulli’s
equation:

1. The liquid is ideal and incompressible.

2. The flow 1s steady and continuous.

3. The flow is along the stream line, i.e., it is one-dimensional.

4. The velocity is uniform over the section and is equal to the mean velocity.

5. The only forces acting on the fluid are the gravity forces and the pressure forces.



Example 6.6. Water flows in a circular pipe. At one section the diameter is 0.3 m, the static
pressure is 260 kPa gauge, the velocity is 3 m/s and the elevation is 10 m above ground level.
The elevation at a section downstream is 0 m, and the pipe diameter is 0.15 m. Find out the gauge
pressure at the downstream section.

Frictional effects may be neglected. Assume density of water to be 999 kgfma.

Solution. Refer to Fig. 6.7. D, =03 m; D, =0.15m; z;, =0; z, = 10 m; p, = 260 kPa, ¥, =

3 m/s; p =999 kg/m’.

From continuity equation, 4, ¥V, = 4,V,,

T A2
4 A
sz —¥;| = X 1]
4, ED;’l
4

2 2
D, 0.3
= | 2| x7 =) x3=12m/
(DJ e (0.15) : ’

Weight density of water, w = pg =999 x 9.81 =9800.19 N/m’

Fig.6.7




From Bernoulli’s equation between sections 1 and 2 (neglecting friction effects as given), we

have: 5 5
o
w  2g ! w  2g 2
260 x 1000 3)2 2 PN ks
+ (3) +10 = P2 12) +0 (gauge)
9800.19  2x9.81 9800.19 2 x9.81 ©)
o By
26.53+0459+10 = —F22 1734 2\ T
9800.19 T
p, = 290566 N/m” oy® 10m
Vi N2 l

Fig. 6.7

W ¢
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Bernoulli’s equation earlier derived was based on the assumption that fluid is non-viscous and

therefore frictionless. Practically, all fluids are real (and not ideal) and therefore are viscous as
such there are always some losses in fluid flows. These losses have. therefore, to be taken into

consideration in the a.pplication| of Bernoulli’s equation which gets modified (between sections 1
and 2) for real fluids as follows:

2 2
N e + Vs
w 2g w 2g
h; = Loss of energy between

sections land 2.

+ 2, + hy ..(6.4)

i :
n i P
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Energy Head and Head Loss in Real Fluid
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Example 6.14. In a smooth inclined pipe of uniform diameter 250 mm, a pressure of 50 kPa
was observed at section I which was at elevation 10 m. At another section 2 at elevation 12 m, the
pressure was 20 kPa and the velocity was 1.25 m/s. Determine the direction of flow and the head
loss between these two sections. The fluid in the pipe is water. The density of water at 20°C and 760

mm Hg is 998 kg/m’. (PTU) )
Solution. Given: 3—: 2t
D = 250 mm =025 m. = 5, =20kpa
p; = 50kPa=50x 10° N/m>; 1
z, = 10m;z,=12m: =50 kPa %~ 2m
p, = 20kPa=20x 10’ N/m’, \
vV, = ¥,=125ms. p =998 kg/m’. zi= ml

P ELE L EFE I LTSSl r

Refer to Fig. 6.15.
Total energy at section 11,

72 50 % 10° . 1.25°

B . - +10=15.187 m
Er = 2 T T998%981  2x931

Total energy of section 2—2,

2 3 2
E =2, 200 135 L j4000m
w o 2g 998 x 9.81 2 x9.81
. Loss of head, h; = E,—E, =15.187 - 14.122 =1.065 m

Direction of flow:
Since E, > E, direction of flow is from section 1-1 to section 2-2.




Example 6.19. A siphon consisting of a pipe of 12cm diameter is used to empty kerosene oil
(Sp. gr. = 0.8) from the tank A. The siphon discharges fo the atinosphere at an elevation of 1.2 m.
The oil surface in the tank is at an elevation of 4.2 m. The centre line of the siphon pipe at its highest
point C is at an elevation of 5.7 m. Determine:
(1) The discharge in the pipe.
(i) The pressure at point C.
The losses in the pipe may be assumed to be 0.45 m up to summit and 1.25 m from the summit
to the outlet.

Solution. Consider points 1 and 2 at the surface of the oil in the tank 4 and at the outlet as
shown m Fig. 6.20. The velocity ¥, can be assumed to be zero. Applying Bernoulli’s equation at
points 1 and 2, we get:

2 2
ﬂ+ri+;1 — B 8y +:1+F.tm_2}(lusses)

w 2g w 2g
2

0+0+42=0+ % +1.2+(0.45+1.25)
V, = 5.05m/s

(/) The discharge in the pipe, Q:
O=AV,= g x (0.12)% x 5.05=0.057 m’/s

-

=]
42m— I

Kerosene oil
(Sp.gr.=0.8)

<€— Tank A

1.2m

Fig. 6.20

—57m

Siphon
/ (d=12 cm)




(i7) The pressure at point C:

Applying Bernoulli’s equation at points 1 and C, we get:

2 2
n o, _ P Ve |
W + 2g + -1 W 23_ r.’.c h—’i]—{_’,‘:}
_ pc . (5.05)°
0+0+42 = + +5.7+045
w 2=x9281
Pc —_325m

‘H.F
pe= (0.8 x 9.81) x (—3.25)

=—25.5 kKN/m® or — 25.5 kPa (gauge)

£ Ll L: §
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\—57m

L )
1
Idae—
Kerosene oil
(Sp.gr.=08) [€  TankA
1.2m
Fig. 6.20

Siphon
/ (d=12 cm)




Example 6.25. Fig. 6.26 shows a pump drawing a solution (specific gravity =1.8) from a
storage tank through an 8 em steel pipe in which the flow velocity is 0.9 m/s. The pump discharges
through a 6 cm steel pipe to an overhead tank, the end of discharge is 12 m above the level of
the solution in the feed tank. If the friction losses in the entire piping system are 5.5 m and pump

efficiency is 65 per cent, determine:

I

(i) Power rating of the pump.
(i7) Pressure developed by the pump.

Solution. Given: d, =8 cmor 0.08 m; d; =6 cm or 0.06 m;

6cm P |
_ _ dia 12m
V,=09m/s,n,, = 65% y
(i) Power rating of the pump: T —_
From continuity equation, we have: dia. —
_ = {Pump /=
AV, = AV, : W
T torage :
v, 3" (0.08)* x 0.9 ke St Delivery
or, VsV, = = =1.6 m/s ipe pipe
3 A b3 2 pip
3 — x (0.06)
4 Fig. 6.26
Applying Bernoulli’s equation between points 1 and 4, we get:
25 £
_&+__1_+ZI+HP:£4_+_4 +z4+LosseS
w 2g w  2g

(where, Hp = Energy added by the pump per unit weight of liquid in Nm/N or m of the liquid
pumped)

Overhead
tank




(L.6)° '
0+0+0+H, =0+-C20r +12+55 — 4
b

HP = 17.63 m of liquid e Overhead

wOH p
N pump

(9.81x1.8) x (% % 0.082 x 0.9) x17.63

= = 2.167 kW
0.65

(77) Pressure developed by the pump, (p, — pz ): |

. Power rating of the pump =

Applying Bernoulli’s equation between points 2 and 3, we have: Fig. 6.26
2 2

&+V—2+ZE+HP = &+V—3+z3

w  2g w  2g

- 12 2
MJ:uﬂq o
o) (5, o

2 2
_ 09" -6 . 1763 =1754m
2981

- g ps—p, =17.54 % (9.81% 1.8) = 309.72 KN/m® or kPa

e e

§ LTTTCE ¢
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Example 6.26. A pump is 2.2 m above the water level in the sump and has a pressure of —20
cm of mercury at the suction side. The suction pipe is of 20 cm diameter and the delivery pipe is
short 25 cm diameter pipe ending in a nozzle of 8 cm diameter. If the nozzle is directed vertically
upwards at an elevation of 4.2 m above the water sump level, determine: 4 ———orremc-- _T_

(1) The discharge.
(i7) The power input into the flow by the pump.

(iii) The elevation, above the water sump level, to which the jet would reach. Nozzle

Neglect all losses.

Solution. (7) The discharge, Q: ¢ 2 7\ L e T
. : : : : o Pump_—»
Applying Bernoulli’s equation to points 1 and 2 (Fig 6.27), we get A
pply g2 q ‘ P (Fig 6.27). we g A 1‘\ <
1 X
. 5= 224 4 . 23 ‘—:—:Y:—:—:-':-‘ \ o
w 2g w  2g Water ———~ \
Vz sump N
0+0+0 = (-02x13.6)+ ém.z —> V, = 3.194 m/s T

Discharge, O = Ex 0.212 % 3.194=0.1 m%/s

i :
n i P

Auloudl audill aesiall




(i) The elevation, to which the jet will reach, h: LI 515 5 T
O =4V, =431

T 2 T 2
Z > (0-2) bt 3]94 — Z b (008) KV3 I:> V3 — 19962 mJ'rS Nozzle

20 cm dia. s G
— —» [ cm qia.
=2031m ¢ 2 /‘\ 42 m

& Pump] — J

7P (19.962)°
2¢  2x9.38l

X
Hence, the height to which the jet will reach. 7 = 20.31 m Z.i m ?
1 \
______ o R —
Water-::_"::“:j:: §
(iii) The power input to the flow by the pump, P: sump R
Applying Bernoulli’s equation to points 1 and 3. we get: Fig. 6.27
2 2
&+V—1+51+HP = &+V—3+33
w 2g w  2g

0+0+0+H,=0+2031+42 [C—) |Hp=2451m

Power delivered by the pump. p = wOH,
=9.81 < 0.1 x24.51 =24.04 KW

The elevation of point 4, the summit of the jet, is
=42+2031=2451m
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FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

We now to consider the application of Bernoulli's equation to fluid flow through a
few devices used in measuring the flow parameters:

1. Venturimeter 2. Orificemeter 3. Pitot tube
For your information:
https://www.youtube.com/watch?v=0Ud4WxjoHKY @

https://www.youtube.com/watch?v=3zEdtkuNYLU



https://www.youtube.com/watch?v=oUd4WxjoHKY
https://www.youtube.com/watch?v=3zEdtkuNYLU

FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

1. Venturimeter It IS an instrument used to measure the rate of discharge In
a pipeline and is often fixed permanently at different sections of the pipeline
to know the discharges there.

VENTURI METER

¢ =

MANOMETER

©



FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

A venturimeter has been named after the 18th century Italian engineer Venturi, which was the discoverer
VENTURI EFFECT

of the Venturi Effect .

The Venturi Effect is
the reduction in fluid
pressure that results
when a fluid flows
through a constricted
section (or choke) of a

pipe.

Increase in flud speed results in
decrease i internal pressiure




FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

i. Horizontal venturimeters 5 ¢;? 1
- =
- @ r@
Applying Bernoulli’s equation at sections 1 and 2, we get: A — B _?,/:,.”' —» | A
d —> d, —» —» A d
25 vy : : ‘
BoA =B, () v —> e— | U
2g w 2g Conver-
- : Divergent part
Here. Z; = 2, .. since the pipe is horizontal. Inlet git < ( gT 3 3 ))-
P =7.
2 | 2 1
Py 5 - Poy L7 Throat
2g w 2g
T iz (Thmat ratio %vaﬁes% to 3’—1)
— ol N . ...(i7) 1
w 2g 2g Fig. 6.29. Venturimeter.
But, Pr~ P2 _ pifference of pressure heads at sections 1 and 2 and is equal to A.
W
ie.. PL™Pr _

W

Substituting this value of £1 22 in eqn. (if), we get:
W

504

e (i) @

h =



FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

Applying continuity equation at sections 1 and 2, we have:

AV
AV, = AV, or V= j 2
1
Substituting the value of V| in eqn. (7i7), we get:
(5] _n
b = VEE 4 - VEZ [1_‘4_22]
2
2g 2g 2g A
2 42 42
or, i = A 5 or Vi =2gh
2 : ;
g 4

or, V2

or, Q = o e \2gh

I
Q
rJ
0Q
-
S A
N._‘;);
[
\Q_,/
[l
[
2
5]

- l
1o :

5 9 == L OIS /% 5
d, —> b —» | —» A d
v — |~
/ﬁ Divergent part
gent
Inlet ‘W’Z“TMJ"
Throat

(Throat ratio j—f varies}T to ?_1)

Fig. 6.29. Venturimeter.

(6.5




FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

or, Q = Ay X ,/2gh ...(6.5) v/ E“!

/ 2 2

Al _AZ A _—> @ —> — | A

or, O = &fh ‘i? ;j/dz 5 ::&(i
chgfr- ‘Eivergem part

where, C = constant of venturimeter Inlet [ a4 [ =75 47|

Al‘ 2 fz g Throat |
t

L 2 2 o il 3
JAI — Ag (Thmat ratio Z vanesa o 4)

Fig. 6.29. Venturimeter.

Eqn. (6.5) gives the discharge under ideal conditions and is called theoretical discharge. Actual
discharger (Q, ) which is less than the theoretical discharge (Q,, ) is given by:

A A
Q. = C; X —% X f2gh ...(6.6)

where, C, = Co-efficient of venturimeter (or co-efficient of discharge) and its value is less than
unity (varies between 0.96 and 0.98)

® Due fo variation of C,venturimeters are not suitable for very low velocities.



Value of ‘i’ by differential U-tube manometer:

Case. L. Differential manometer containing a liquid heavier than the liquid flowing through the

FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

<>

= Sp. gravity of heavier liquid,

= Sp. gravity of liquid flowing through pipe, and

<« = >

Difference of the heavier liquid column in U-tube.

\\Hl®

Divergent part

C75d) |

o :
Throat ratio —2 varies Lo E)

Fig. 6.29. Venturimeter.

31°%

Case. I1. Differential manometer containing a liquid lighter than the liquid flowing through the

= Sp. gravity of lighter liquid,
Sp. gravity of liquid flowing through pipe, and
Difference of lighter liquid column in U-tube.




FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

Example :
A venturi meter of 15 cm inlet diameter and 10 cm throat is laid horizontally in a pipe to measure the flow of water (1
specific gravity). The reading of a mercury manometer is 20 cm.

1-Calculate the Velocity at throat ? d1=15 cm

2-Determine the discharge? 1

d2=10 cm -

e pp—————— N

-_‘-2 -_7--- '

Solution:— (1) _—

_X-- e —— R .

—tl "/
h = } h_l | y=20cm J
Sp Q
h = o2 {13'6—1] =2.52m
1
. . - — AIA"
Find Q using the equation @ = ———=—= x2gh ...(6.5)
\J Al _AZ
A, =(m/4) d,2 = (m/4) (0.15)°> =0.01767 m?
A, = (m/4) d;? = (m/4) (0.10)> =0.00785 m?
h=252m Find \Velocity at throat using the equation
0.01767 = 0.00785 Velocity, V, = <
Q = X V2 x9.81 x 2.52 4,
v0.017672 — 0.007852 v 0.0616 @
= 0.0616 m¥s 2= 000785 | = /8>m/s




FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

Example :

A venturi meter of 15 cm inlet diameter and 10 cm throat is laid horizontally in a pipe to measure the flow of water (1
specific gravity). The reading of a mercury manometer is 20 cm.

1-Calculate the Velocity at throat ?

2-Determine the discharge?

Solution:— (I1) d1=15 cm
: : . : 1 ; d2=10 —
Applying Bernoulli’s equanon between point 1 and 2, we get: P1 2 CT_ e \|
V:z V —— — T S S S——— — :
BB gty + % -
w 2g w 2g B ———— ).
e—t AN

P p _ Vs W

y=20cm
w W Zg - 2g k
.

N 2 _ 2
Pimpy _ Ve Veo Eq.l
W 2g
Note that ZL-P2 jsp Fall +Ve AP 13.6(02)-1(0.2) =252m
W P, - P Rise -Ve od .
F t tion find 1 £2 -
rom manometer equation fin " or h PiL™Py _ 3 —9282m

P, + + - =P
Wargter (%) & Warater (¥) = Wnercury (¥) Wwa/é &) =F, substituting the value of h into Eq.1 gives

P -P 2 — Whercury (Y) Wivater (Y) ~ Wyater

2 _
PPy 252 = 2L | Eq.2 @
W mercury (Y) Water (Y) g




FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

Applying continuity equation at sections 1 and 2, we have:

AV, = AV,
di1=15cm
B'l.lt Al = (717/4) d12 ,and A2 = (7t/4) d22 1 —~— d2=10 cm R 4 \
P1 el = sl |
- V]Mdlzzvz(MdZZ —+ -j-—-*-*\
> il = e — Al u\/c

V,d;? =V, dy?
V), =V, (d,?/d;?)

V, =V, ((0.10)%(0.15)?) N U

V,=0444V,) | oo, Eq.3

Substituting Eq.3 into Eq.2 gives

V7 — (0.444V,)?
2 +9.81

Q =4,V
= (n/4) d,? (7.85)
= (n/4) (0.1)2 (7.85)

= 0.0616 m3/s @

2.52 =

I:> V, = 7.85 m/s (velocity at throat)




FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

2. Orificemeter

Orificemeter or orifice plate is a device (cheaper than a venturimeter) employed for measuring
the discharge of fluid through a pipe. It also works on the same principle of a venturimeter.

It consists of a flat circular plate having a circular sharp edged hole (called orifice) concentric
with the pipe. A differential manometer is connected at sections (1) and (2).

Flat circular plate

1
| , 1
1 | = | 1
Upstream : = 1_1 : Downstream
()i el —
. : bt Vena
Flow in —» I A v, 2 Contracta —»Flow out
1 - S T
— ! ¢ —
Vl : . H I V}
@‘J EJ @ ¢ =4,4,
= g=
E3
Differential —E
manometer

(=)

Fig. 6.35. Orificemeter



FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

2. Pitot Tube

Pitot tube is one of the most accurate devices for velocity measurement. It works on the

principle that if the velocity of flow at a point becomes zero, the pressure there is increased due to
conversion of kinetic energy into pressure.

It consists of a glass tube in the form of a 90° bend of short length open at both its ends. It is

placed in the flow with its bent leg directed upstream so that a stagnation point is created immediately
in front of the opening (Fig. 6.38). The kinetic energy at this point gets converted into pressure energy
(dynamic pressure) causing the liquid to rise in the vertical limb, to a height equal to the stagnation

pressure.
A =
:E Pitot
2 -—;‘A/ tulbe
Piezometer —3» \'a :51‘
2g =
_n =
| ¥ AT =
P, [ :?:_’ Pipe
w E___ E_:w /
Liquid in v = Liquid out
> > —— === —""A—""—> For your information:

https://www.youtube.com/watch?v=3zEdtkulNYLU

- * Q-)‘:J
\:. : JJ)“')A
? : :2 “-.} ? @
@@Fuqm_mh Fig. 6.38. Pitot tube.

X
¥
R
=
=
=
M
=
M
¥



https://www.youtube.com/watch?v=3zEdtkuNYLU

FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

Applying Bernoulli’s equation between stagnation point (S) and point (P) in the undisturbed

flow at the same horizontal plane, we get:

2 2
Po VO _ P - by ey
w  2g w 2g

or, V = \2g (h,—hy) or 2g Ah

P, = Pressure at point “P’, i.e. static pressure,

V' = Velocity at point ‘P, i.e. free flow velocity,
p, = Stagnation pressure at point °S”, and
Ah = Dynamic pressure
= Difference between stagnation pressure head () and static
pressure head (h,).

The height of liquid rise in the Pitot tube indicates the
stagnation head. The static pressure head may be measured
separately with a piezometer (Fig. 6.38).

,Lt.‘*’*"l.:)_,
S8 0n0 W
o= 5
- S
g
s \fu
M
¥

E)
¢ LTy
Auloul aUaill Geolall

% )}j’
Z
¥
¥
¥

passSteas ¥

I

(1)

Piezometer —3p|

|<—(,§|<N—>
o~

Il
2=

=
Il
2|
RN

L T T T o T T T

Liquid in vV l

|

Liquid out

— ey L ¢ — ¥ o =—
P S

Fig. 6.38. Pitot tube.



FLUID DYNAMICS _ PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION

Both the static pressure as well as stagnation pressure can be measured in a device known as
Pitot static tube. (Fig. 6.39).

To manometer
(Stagnation pressure)

If a differential manometer is connected to the tubes of a Pitot static tube it will S A
measure the dynamic pressure head. (Static pressure limbjw

If y 1s the manometric difference, then

Ah = )’(S—”’—l)
* % 8

S = Specific gravity of manometric liquid. and
Specific gravity of the liquid flowing through the pipe. 0.34

3
_T_

8dto10d

th 3
Il

Static hole

Direction
of flow

Static hole

Fig. 6.39. Pitot static tube.

V= Cy2gAh +(2)

where, C = A connective coefficient which takes into account the effect of stem and bent leg. @
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FLOW THROUGH ORIFICES AND MOUTHPIECES

Orifices as well as mouthpieces are used to measure
the discharge.

An orifice is an opening in the wall or base of a A mouthpiece is an attachmnent in the form of a
vessel through which the fluid flows. The top edge of small tube or pipe fixed to the orifice (the length of pipe

the orifice is always below the free surface (If the free s ) : : .
i 7 extension is usually 2 to 3 times the orifice diameter) and
surface 1s below the top edge of the orifice, becomes a - .
is used to increase the amount of dischrge.

weir)

Fig. 8.1. Orifice discharging free. Fig. 8.23. External cylindrical mouthpiece.




FLOW THROUGH ORIFICES

Considering points 1 and 2 as shown in Fig. 8.1 and
applying Bernoulli’s theorem, we have:

v vy
w 2g w  2g
But. P.= P =P (p, = atmospheric pressure)
TR TH Or z,-Z,=H

Vena-

Fig. 8.1. Orifice discharging free.

Further, if the cross-sectional area of the tank is very large, the liquid at point 1 is practically

standstill and hence 7, =0

VE
Thus. = =
2g
or. v, = J2gH

Equation (8.1) is know as Torricelli’s theorem.

L&D




FLOW THROUGH ORIFICES - HYDRAULIC CO-EFFICIENTS
HYDRAULIC CO-EFFICIENTS

The hydraulic co-efficients (or orifice co-efficients) are enumerated and discussed below :
1. Co-efficient of contraction, C,

2. Co-efficient of velocity, C,,

3. Co-efficient of discharge, C,

4. Co-efficient of resistance, C,

8.4.1. Co-efficient of Contraction (C )

The ratio of the area of the jet at vena-contracta to the arvea of the orifice is known as
Co-efficient of contraction. It is denoted by C_.

Let, a_ = Area of jet at vena contracta, and

C

a = Area of orifice.

C

Then. ¢ =2 .. (82)
a

The value of C_varies slightly with the available head of the liquid, size and shape of the
orifice: in practice it varies from 0.613 to 0.69 but the average value is taken as 0.64.




FLOW THROUGH ORIFICES - HYDRAULIC CO-EFFICIENTS

8.4.2. Co-efficient of Velocity (C.)

The ratio of actual velocity (V) of the jet at vena-contracta to the theoretical velocity (V) is
known as Co-efficient of velocity. It is denoted by C|, and mathematically, C,, is given as:

c — Actual velocity of jet at vena contracta (V)
Theoretical velocity (V;,)

‘v

; ..(8.3)
2oH

]

where, V' = Actual velocity, and

H = Head under which the fluid flows out of the orifice

The value of C_varies from 0.95 to 0.99.depending upon the shape of orifice and the head of
liquid under which the flow takes place. For sharp-edged orifices the value of C, is taken as 0.98.




FLOW THROUGH ORIFICES - HYDRAULIC CO-EFFICIENTS

8.4.3. Co-efficient of Discharge
The ratio of actual discharge (Q) through an arifice to the theorerical discharge,(Q,,) 1s known

as Co-efficient of discharge. It is dinoted by C,.
Actual discharge (Q)

Theoretical discharge (Q,;, )

Mathematically, C, =

Actual area x actual velocity
Theoretical area x theoretical velocity

_ Actual area 4 actual velocity

Theoretical area  theoretical velocity

.. (8.4)

The value of C, varies from 0.62 to 0.65 depending upon size and the shape of the orifice and
the head of liquid under which the flow takes place.




FLOW THROUGH ORIFICES - HYDRAULIC CO-EFFICIENTS

8.4.4. Co-efficient of Resistance (C))

The ratio of loss of head (or loss of kinetic energy) in the orifice to the head of water (actual
kinetic energy) available at the exit of the orifice is known as Co-efficient of resistance. It is denoted
by €.

r

Loss of head in the orifice

Mathematically, C =

r

Head of water

The loss of head in the orifice takes place, because the walls of the orifice offer some resistance
to the liquid, as it comes out. While solving numerical problems C, is generally neglected.




FLOW THROUGH ORIFICES

Example 8.12. 4 closed tank, having an ovifice of diameter 20 mm at the bottom of the tank,
is partially filled with water upto a height of 2.5 m. The air is pumped into the upper part of the
tank. Determine the pressure required for a discharge of 5 litres per second through the orifice, Take

discharge co-fficient, C,= 0.6 for the orifice.

Solution. Height of water above orifice, H = 2.5 m
Dia. of the orifice, d =20 mm = 0.02 m

. n m
. Area of the orifice, 4 = Zdz = " % (0.02)* = 0.000314 m?

Discharge through the orifice, O = 5 litres/sec.

5
= = —0.005m’/s
1000

Co-efficient of discharge. C, = 0.6
Pressure required
Let p is the intensity of presure required above water surface in

2

kKN/m”.
Then, pressure head of air = £ % = (0.102 p metres of water.
W "

If ¥ 1s the velocity at outlet of orifice, then:
== ng( H+L ] = 2x981(25+0102p)

L

Discharge, 0 = Cy;xax V
0.005 = 0.6 x0.000314 x J2 x981(2.5+0.102p)

or

P =3264kN/m’

A\

Orifice
Fig. 8.8




FLOW THROUGH ORIFICES
DISCHARGE THROUGH A LARGE RECTANGULAR ORIFICE

Water level

+
h
i 7777777777777
|<— b —

Fig. 8.9. Large rectangular orifice.

> €

O = 2/3C;.b+J2g (H;® — H{")

Example 8.13. Find the discharge through a rectangular orifice 3.0 m wide and 2.0 m deep
fitted to a water tank. The water level in the tank is 4-0 m above the top edge of the orifice. Take

C;=0.62

Solution. Width of the orifice. b = 3.0m
Depth of the orifice,d = 2.0 m

Height of water above the top of the orifice, H, = 4.0 m

. Height of the water above the bottom of the orifice, H,=4+d=4+2=6m
Co-efficient of discharge, C, = 0.62
Discharge through the orifice, O:
Using the relation:

2 2 ) .
= 3 C, - bJ2g (H, G 13 & with usual notations

2
= % 062%3.0x J2 %981 (6% - 4%?) =36.78 m’/s

ie. Q = 36.78 m’/s (Ans.)

..(8.9)




FLOW THROUGH ORIFICES
DISCHARGE THROUGH FULLY SUBMEROGED ORIFICE

Fig. 8.10. Fully submerged orifice.

H, = Height of water (on the upstream side) above the top of the orifice,
H, = Height of water (on the upstream side) above the bottom of the orifice,

[~

H = Difference between the two water levels on either side of the orifice,
b = Width of orifice, and
C, = Co-efficent of discharge.

O = C, b(H, —H,) x+2gH ..(8.10)

Sometimes, depth of submerged orifice (d) is given instead of H; and H,. In such cases, the
discharge,

O = C, b-d2gH (8.11)




FLOW THROUGH ORIFICES
DISCHARGE THROUGH FULLY SUBMEROGED ORIFICE

Example 8.15. Find the discharge through a totally drowned orifice 1.5 m wide and 1 m deep,
if the difference of water levels on both the sides of the orifice be 2.5 m. Take C,;= 0.62.

Solution. Width of the orifice, » = 1.5m
Difference of water levels, H = 2.5m

Depth of the orifice,d = 1 m

Co-efficient of dicsharge, C, = 0.62

Discharge, Q:
Using the relation,

O = C,.b.d2gH

= 0.62x15x1x4/2x9.81%2.5=6513m’/s

ie., Q = 6.513 m’/s (Ans.)




DISCHARGE THROUGH AN EXTERNAL MOUTHPIECE

a, = Area of mouthpiece at outlet,

v, = Velocity of liquid at outlet,

a_ = Area of flow at vena-contracta,
v_ = Velocity of liquid at C-C section,

H = Height of liquid above the centre
of the mouthpiece, and

C. = Co-efficient of contraction.
O= C, xax.2gH Cs = 0.855

Fig. 8.23. External cylindrical mouthpiece.

Example 8.29. Find the discharge from a 80 m diameter external mouthpiece, fitted to a side of
a large vessel, if the head over the mouthpiece is 6 m.

Solution. Dia. of the mouthpiece = 80 mm = 0.08 mm

Area, a = % « 0.082 = 0.005026 m>

Head over the mouthpiece. H = 6 m
C, for the mouthpiece = 0.855
Discharge, O = C, x area x velocity

= &, xax,/ZgH

= 0.855 % 0.005026 x /2 x 9.81 x 6 =0.0466 m’/s (Ans.)




DISCHARGE THROUGH AN INTERNAL MOUTHPIECE
(OR RE-ENTRANT OR BORDA’S MOUTHPIECE)

Fig. 8.26. Mouthpiece running free.

Fig. 8.27. Mouthpiece running full.

Free water surface
ettt
H
C 1 1I
) —
A
C

H = Height of the liquid above the mouthpiece,

a = Area of orifice or mouthpiece,

a_ = Area of contracted jet, and
v_ = Velocity through mouthpiece.

If the length of the tube is equal to diameter, the jet of liquid
comes out from mouthpiece without touching the sides of the
tube, the mouthpiece is known as running free.

0= €; X a X f2gH
= 05xax.f2gH ...(8.21)

But if the length of the tube is about 3 times its diameter, the jet
comes out with its diameter equal to the diameter of mouthpiece at
the outlet, the mouthpiece is said to be running full.

O =0.707 x a x J2gH .(8.22)




DISCHARGE THROUGH AN INTERNAL MOUTHPIECE
(OR RE-ENTRANT OR BORDA’S MOUTHPIECE)

Example 8.34. An internal mouthpiece of 100 mm diameter is discharging water under a
constant head of 5 m. Find the discharge through mouthpiece, when :

(/) The mouthpiece is running free, and

(i7) The mouthpiece is running full.

Solution. Dia. of mouthpiece,d = 100 mm=0-1m
Area, a = ;x 0.1> = 0.00785 m’

Constanthead,. H = 5m
Discharge, Q:
(1) When mouthpiece is running free:
Using the relation:

O =05 xax 42eH -.[Eqn. (8.21)]

= 0.5 % 0.00785 x {2 x 9.81x 5
=0-0388 m’ /s (Ans.)

(ii) When mouthpiece is running full.

Using the relation:
Q=0.707 x a x 4J2gH ...|Eqn. (8.22)]
= 0.707 = 0.00785 = \/2 x 9.81x 35
= 0.0549 m’/s (Ans.)
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FLOW OVER NOTCHES AND WEIRS

1. Nappe or Vein. The sheet of water flowing through a notch or over a weir is called Nappe or Vein.

2. Crest or Sill. The bottom edge of a notch or a top of a weir over which the water flows, is known
as the sill or crest.




CLASSIFICATION OF NOTCHES AND WEIRS

The notches are classified as :

1. According to the shape of the opening : v
(a) Rectangular notch, v
(b) Triangular notch,
(c¢) Trapezoidal notch, and e

(d) Stepped notch.

S
/

TRAPEZOIDAL NOTCH

2. According to the effect of the sides on the nappe : r_ B _1
(a) Notch with end contraction. —L —
(b) Notch without end contraction or suppressed notch.

contracted rectangular
wer (L<B

X

RECTANGULAR NOTCH

STEPPIED NOTCH

suppressed rectangular
werr (L=B)
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CLASSIFICATION OF NOTCHES AND WEIRS

Weirs are classified according to the shape of the opening, the shape of the crest, the effect of the
sides on the nappe and nature of discharge. The following are important classifications.

(a) According to the shape of the opening :
(i) Rectangular weir, (i) Triangular weir, and
(7ii) Trapezoidal weir (Cipolletti weir)

(b) According to the shape of the crest :

(i) Sharp-crested weir, (ii) Broad-crested weir,
(ii1) Narrow-crested weir, and (iv) Ogee-shaped weir.
.
i =
T / N
Sharp Crest
—’ ‘ Vil iddddd
Broad Crested Weir 6Nar row Crested
R A TR AN TR A 2H <5 < 8H <(01-05)H
(1) (D) (iii)
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CLASSIFICATION OF NOTCHES AND WEIRS

(c) According to the effect of sides on the emerging nappe :
(i) Weir with end contraction, and (i) Weir without end contraction.

B

3

Al DS

'G_‘.. -

contracted rectangular suppressed rectangular
' (ii)




DISCHARGE OVER A RECTANGULAR NOTCH OR WEIR

Nappe
Water surface v Gl =TT
:_;:—:_:_:— ::—;:_:::>\ h T LT Z y4 -4 i ;;:_—:;_:;_;_
e e i 4 TETTTTT
----- 4
< L > Sill or crest ?
Sill or crest Section at sill %
7
%
/]
H = Height of water above sill of the notch,
L = Length of notch or weir, and (a) Rectangular notch (b) Rectangular weir

C, = Co-efficient of discharge. Fig. 9.1. Rectangular notch and weir.

Let us consider a horizontal strip of water of thickness dh at a depth s from the water level as
shown in Fig. 9-1.

Area of strip = L x dh
Theoretical velocity of water flowing through strip
The discharge through the strip,

dQ = C, = area of strip < theoretical velocity

= C,;x L xdhx2gh (1)




DISCHARGE OVER A RECTANGULAR NOTCH OR WEIR

The total discharge, over the whole notch, may be found out by integrating the above equation

within the limits 0 and H.

H
0 = Iu Cy;x L xJ2gh x dh

H gm0 ======"1m===Z=c R
= C.xLx«2 Y2 dn SSEsac 220N
d g ls . 2

h”2+1

= CdexJE 1

s i |
2

|
el

= Cdex\/E

_3;’2 5

Water surface

Nappe

___________ —

-H

Sill or crest

-0

H

(a) Rectangular notch

= 2I3I% €% Lxylp (H)j’rz

i dh
h 3T D L . B £ 4 kil s L i ;;‘_:;‘—:—:;';‘
* § TIIIIize
4
//
< L > Sill or crest %

Section at sill

SONNNANN

(b) Rectangular weir

Fig. 9.1. Rectangular notch and weir.

g?::

%Cd L Jae (Y2

(91

WITE The expression for discharge over a rectangular notch or weir is same.




DISCHARGE OVER A RECTANGULAR NOTCH OR WEIR

Bernoulli’s equation along the streamline

Pressure head at point1=H — z,
Pressure head at point2 = 0

/+(H Z +u12'—z +D+u%
1 29 22

2g

U, = JZg(H —2z;) +uf

5Q = thzJZ,g(H —-z) +uf
H w2\ /2
Q= bJEJﬂ (H—z+g) dz
> | u? 2 u? 2 _
Q =2b2g ‘\(H +5) - (Z) } Qideal
[Q ST { (H ) %)3/2 ) ( g)%ﬂ if u, is very small [Q = Zc4b mﬂﬂz]

The expression for discharge over a rectangular notch or weir is same.
Source: https://www.youtube.com/watch?v=gxJWAUqGX9w




DISCHARGE OVER A RECTANGULAR NOTCH OR WEIR

Example. 9.1. 4 rectangular notch 2-0 m wide has a constant head of 500 mm. Find the
discharge over the notch, if co-efficient of discharge for the notch is 0-62.
Solution. Length of the notch, L = 2-0m

Head over notch, H = 500 mm=0-5m
Co-efficient of discharge, C; = 0-62
Discharge, Q:
Using the relation,

2 3/2
O — ng-L«ﬁg (H)
= %x0~62><2-0x,/2x9-81><(0-5)3/2

1-294 m’/s (Ans.)




DISCHARGE OVER A TRIANGULAR NOTCH OR WEIR

777%\ Water :E.urf'ace
I Bt e i N
v i
I
f 0/2 E
dh |
Refer to Fig. 9-2. 4 triangular notch 1s also called a V-notch. O
Let, H = Head of water above the apex of the notch, Apex of (a)
6 = Angle of the notch, and the notch
C, = Co-efficient of discharge. Fig. 9.2. The triangular notch.
8 0 s
= g i B (92)
15 ¢ 2

For a right angled V-notch. if C,= 0-6,
[El =907, .. tan g = 1)

Then. g = Ex(}-Gﬁ/ZXQ-Slxlxﬂj"rz

15
= 1417 B” .(9:3)




DISCHARGE OVER A TRIANGULAR NOTCH OR WEIR

Example 9.4. During an experiment in a laboratory, 0-05 m’ of water flowing over a right-
angled notch was collected in one minute. If the head of the sill is 50 mm calculate the co-efficient
of discharge of the notch.

Solution. Discharge, © = 0-05 m*/min = 0-000833 m’/s
Angle of notch, 6 = 90°
Head of the s1ll, # = 50 mm = 0-05 m

Co-efficient of discharge, C;:
Using the relation:

8 §)
Q = — C 4f2g tan — x H
15 2
- 8 9{:}0 32
0-000833 = l—stdxﬁ/ZXQ-letan 9 x (0-05)

= %x C,;x4-429 x1x0-000559 = 0-00132 Cy

0-000833
= " —0-63
0-00132




Comparison of Rectangular and triangle weirs
4

Advantages

Larger capacity v

b
E 3/2 8 6 5/2
Q =§Cdb‘/29H Q =Ecd tan > V2gH
Nappe shape varies with h X Nappe shape is constant v
cq varies with h X c4 is more constant with h v

More accurate at low Q v/

Source: https://www.youtube.com/watch?v=gxJWAUqGX9w

Sectional side of the rectangular weir




EFFECT ON DISCHARGE OVER A NOTCH OR WEIR DUE TO
ERROR IN THE MEASUREMENT OF HEAD

d0 Kx3/2xHYdH 3 dH

_—

Eqn. (9-5) shows that an error of 1% in measuring H will produce 1-5 % error in discharge
over a rectangular notch or weir.

d0  Kx5/2xH"?dH 5 dH
== = — == == ..(9-6)
O K x H" 2 H

_—

Eqn. (9-6) shows that an error or 1% in measuring H will produce 2-5% error in discharge over
a triangular notch or weir.,

Note: Equations (9.5) and (9.6) are not required.




DISCHARGE OVER A TRAPEZOIDAL NOTCH OR WEIR

Fig. 9:3 shows a trapezoidal notch or weir which i1s a combination of a rectangular and a
triangular notch or weir. As such the discharge over such a notch or weir will be the sum of the

discharges over the rectangular and triangular notches ;777}\ E F /775
or weirs. 4

Let, H = Height of water over the notch,

L = Length of the rectangular portion (or
crest) of the notch.,

C, = Co-efficient of discharge for the

- - : C"
1ecta11ggl:au pomoni and | L |

C, = Co-efficient of discharge for the
triangular portion. Fig. 9.3 The trapezoidal notch.

The discharge through the rectangular portion BCFE is given by (Eqn. 9-1),

2
O, = ECdlL 2g H"”

The discharge through two triangular notches 4BE and FCD is equal to the discharge through
a single triangular notch of angle 6 and is given by [Eqn. 9.2].

0, = % C,y A28 tang < H"

.. Discharge through trapezoidal notch or weir ABCDA.
0 =&, +0,

= —CdIL,/ H 0 3F tmlgxﬁ"“ ..(9-4)




DISCHARGE OVER A STEPPED NOTCH

A stepped notch is @ combination of rectangular notches as shown in Fig. 9-5. The discharge
through a stepped notch 1s equal to the sum of the discharges through the different rectangular
notches.

©
, , | % 3 £

H, = Height of water above sill of notch 1, | @ | 4 fiz H,

L, = Length of notch 1. T © > i
H,.L, = Corresponding values for notch 2. R s 1
H,. L, = Corresponding values for notch 3, and «— L, —

C, = Co-efficient of discharge for all notches. < L, &

* L

The discharge over the notch 1.

- 2 3/2
0, = 3 -1 28 H,

Similarly, discharge over the notch 2.

O, = %Cd-Lgﬁ[Hg“rg_Hff?]

Fig. 9.5. The stepped notch.

and, discharge over the notch 3.

0= Lo, [

Total discharge, © = O, + O, + O
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Francis’s Formula:

— The end contraction decreases the effective ¥ ,n:.:::.:.:,:;:::,:;:::::l,.
length of the crest of weir and hence decreases :‘:::1:4:|:|:|:l'|'|:l'l'l:':':
the discharge. SRR

|

— Each end contraction reduces the crest length H| : : ::: | : .L': M J'
by 0-1 H, where H is the head over the weir. T

+l A b I | l I l‘,
For a rectangular weir there are fvo end contractions only / 'c'-L'_' L, 2' Lty
and hence effective length (L — 0.1nH) 0.1H R ELR T ks - 0.1H
= L-01%x2xH=L-02H
and discharge, 5
Q = SxCyx (L-0-2 H)x2g H* ..(9:8)

If there are » end contractions, we may write the empirical formula proposed by Francis as:

Q = %xCdx(L—OJnH)X\/Zg ik .. 9:8 (a)




Example 9.12. 4 30 metres long weir is divided into 10 equal bays by vertical posts, each
0-6 m wide. Using Francis’s formula, calculate the discharge over the weir under an effective head
of 1 metre.

Solution. Length of the weir = 30 m
Number of bays = 10
Number of vertical posts=10—-1=9
Width of each post = 0-6 m
Effective length. L = 30-9 x 0:6 =246 m
Number of end contractions, n =2 x 10 =20
(one bay has two end contractions)
Head of water, H = 1 m
Discharge, O:
Using Francis’s formula,
O = 184 (L-0-1n H) B°”
= 184 (246 —0-1 x 20 x 1) x (1)*”
= 41-58 m’/s (Ans.)




CIPPOLETTI WEIR OR NOTCH

Fig. 9.8 Cippoletti weir.

Cippoletti weir or notch is a special type of trapezoidal
weir having side slopes of 1 horizontal to 4 vertical.

Discharge over Cipolletti weir

= Discharge over rectangular weir without end contraction at same base leng%

Q= %cﬁ.L 2g x H¥? .(9:15)




DISCHARGE OVER A BROAD CRESTED WEIR

H = height of water above the crest — __tir— = I
L = length of the crest e e 5, Semwnk
R e e S
If 2L > H, the weir is called broad-crested weir //
T & b g Dy s ////

O C, %l %28 e .

3 ‘\/_ Fig. 9.9. Broad-crested weir.
g = 1705% €, %L X H" (9°17)

DISCHARGE OVER A NARROW-CRESTED WEIR

In case of a narrow-crested weir, 2 L < H. This weir is similar to a rectangular weir or notch and
hence, Q is given by:

2
= ;xCdex,/Zg x H*? ..(9-18)




DISCHARGE OVER AN OGEE WEIR

In the Fig. 9-10 1s shown an Ogee weir, in which the crest
of the weir rises upto maximum height of 1-115 H and then
falls as shown (where, H = height of water above inlet of the
weir). The discharge over an Ogee weir 1s the same as that
of a rectangular weir and 1s given by:

2 e 3/2 ; =
Q — EKCJKLK 2g}{H (9'18) » 57 A G e e ng s ;i T
Fig. 9.10. An Ogee weir.




DISCHARGE OVER SUBMERGED
OR DROWNED WEIR

A weir is said to be submerged or drowned weir if the water level on its downstream side is
above its crest. Such a weir 1s shown in Fig. 9-11. The total discharge over the weir is obtained by
dividing the weir into fwo parts. The portion between upstream and downstream water surfaces may
be treated as free weir and portion between downstream water surface and crest as a drowned weir.

H = Height of water on the upstream side of the weir, and

h = Height of water on the downstream side of the weir.
O, = Discharge over upper portion
- f 3/2

Q, = Discharge through drowned portion

= (C,, x area of flow x velocity of flow VA VANV A\

= O .L.h.\/2g (H — h) Fig. 9.11. Submerged weir.
where, C, and C ,are the respective discharge co-efficients.

Total discharge, O = O, + 0,

= % Ca-L.A2g (H —h*?+ Cyp.L.h.\[2g (H—h) ..(919)




DISCHARGE OVER SUBMERGED
OR DROWNED WEIR

Example 9.17. In a submerged weir of 2-5 m length the heights of water on the upstream and
downstream sides are 0-2 m and 0-1 m respectively. Find the discharge over the weir if discharge
co-efficients for free and drowned portions are 0-62 and 0-8 respectively.

Solution. Length of weir, L = 25m
Height of water on upstream side, H = 0.2 m

Height of water on downstream side, 7/ = 0.1 m
C, = 0.62
C, = 08

Discharge over the weir, Q:
Total discharge, O = Q, (discharge through free portion) + 0,
(discharge through the drowned portion)

= 2 Cux Lxy2g (H = 1)+ Cpx L x\[2g (H ~ B .[Eqn. (9-19)]

2
= $%0:62x2:5x J2%9:81(0-2 —0-1)*?

+0:8x%2:5x0-1x,/2%x9:81(0-2~-0-1)

= (0-1447 + 0-2801 = 0-4248 m’/s (Ans.)




Determining the coefficients of discharge (Cd)

1 3
For a rectangular sharp crested weir: Q= %Cd b(2g)? h?
where: . .
Air cavity
Q = Volume flowrate (m3 /s) Aeration pioe (open
, v 3 o pipe (open)
= Volume/time (using volumetric tank) ' c »’
Cd = Coetticient of discharge (Dimensionless)
B = Breadth of weir (m)
h = Head above crest of weir (upstream) (m)
g = Gravitational constant (9.81 m/ %)
P = Height of weir crest above bed (m)

When the rectangular weir extends across the whole width of the channel it is called a
suppressed weir and the Rehbock formula can be applied to determine Cd as follows:

Cd =0.602 +0.083 x %




