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1.1 STRUCTURAL DESIGN

The structural design of buildings, whether of structural steel or reinforced concrete,
requires the determination of the overall proportions and dimensions of the support-
ing framework and the selection of the cross sections of individual members. In most
cases the functional design, including the establishment of the number of stories and
the floor plan, will have been done by an architect, and the structural engineer must
work within the constraints imposed by this design. Ideally, the engineer and archi-
tect will collaborate throughout the design process to complete the project in an effi-
cient manner. In effect, however, the design can be summed up as follows: The
architect decides how the building should look; the engineer must make sure that it
doesn’t fall down. Although this distinction is an oversimplification, it affirms the
first priority of the structural engineer: safety. Other important considerations include
serviceability (how well the structure performs in terms of appearance and deflection)
and economy. An economical structure requires an efficient use of materials and
construction labor. Although this objective can usually be accomplished by a design
that requires a minimum amount of material, savings can often be realized by using
more material if it results in a simpler, more easily constructed project. In fact,
materials account for a relatively small portion of the cost of a typical steel structure
as compared with labor and other costs (Ruby and Matuska, 2009).

A good design requires the evaluation of several framing plans—that is, different
arrangements of members and their connections. In other words, several alternative
designs should be prepared and their costs compared. For each framing plan investi-
gated, the individual components must be designed. To do so requires the structural
analysis of the building frames and the computation of forces and bending moments in
the individual members. Armed with this information, the structural designer can then
select the appropriate cross section. Before any analysis, however, a decision must be
made on the primary building material to be used; it will usually be reinforced concrete,
structural steel, or both. Ideally, alternative designs should be prepared with each.

The emphasis in this book will be on the design of individual structural steel
members and their connections. The structural engineer must select and evaluate the
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overall structural system in order to produce an efficient and economical design but
cannot do so without a thorough understanding of the design of the components (the
“building blocks”) of the structure. Thus component design is the focus of this book.

Before discussing structural steel, we need to examine various types of structural
members. Figure 1.1 shows a truss with vertical concentrated forces applied at the
joints along the top chord. In keeping with the usual assumptions of truss analysis—
pinned connections and loads applied only at the joints—each component of the truss
will be a two-force member, subject to either axial compression or tension. For sim-
ply supported trusses loaded as shown—a typical loading condition—each of the top
chord members will be in compression, and the bottom chord members will be in ten-
sion. The web members will either be in tension or compression, depending on their
location and orientation and on the location of the loads.

Other types of members can be illustrated with the rigid frame of Figure 1.2a.
The members of this frame are rigidly connected by welding and can be assumed to
form a continuous structure. At the supports, the members are welded to a rectan-
gular plate that is bolted to a concrete footing. Placing several of these frames in par-
allel and connecting them with additional members that are then covered with
roofing material and walls produces a typical building system. Many important
details have not been mentioned, but many small commercial buildings are con-
structed essentially in this manner. The design and analysis of each frame in the
system begins with the idealization of the frame as a two-dimensional structure, as
shown in Figure 1.2b. Because the frame has a plane of symmetry parallel to the
page, we are able to treat the frame as two-dimensional and represent the frame
members by their centerlines. (Although it is not shown in Figure 1.1, this same
idealization is made with trusses, and the members are usually represented by their
centerlines.) Note that the supports are represented as hinges (pins), not as fixed sup-
ports. If there is a possibility that the footing will undergo a slight rotation, or if the
connection is flexible enough to allow a slight rotation, the support must be consid-
ered to be pinned. One assumption made in the usual methods of structural analysis
is that deformations are very small, which means that only a slight rotation of the
support is needed to qualify it as a pinned connection.

Once the geometry and support conditions of the idealized frame have been
established, the loading must be determined. This determination usually involves
apportioning a share of the total load to each frame. If the hypothetical structure under
consideration is subjected to a uniformly distributed roof load, the portion carried by
one frame will be a uniformly distributed line load measured in force per unit length,
as shown in Figure 1.2b. Typical units would be kips per foot.
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For the loading shown in Figure 1.2b, the frame will deform as indicated by the
dashed line (drawn to a greatly exaggerated scale). The individual members of the
frame can be classified according to the type of behavior represented by this deformed
shape. The horizontal members AB and BC are subjected primarily to bending, or
flexure, and are called beams. The vertical member BD is subjected to couples trans-
ferred from each beam, but for the symmetrical frame shown, they are equal and
opposite, thereby canceling each other. Thus member BD is subjected only to axial
compression arising from the vertical loads. In buildings, vertical compression mem-
bers such as these are referred to as columns. The other two vertical members, AE and
CF, must resist not only axial compression from the vertical loads but also a signifi-
cant amount of bending. Such members are called beam-columns. In reality, all mem-
bers, even those classified as beams or columns, will be subjected to both bending and
axial load, but in many cases, the effects are minor and can be neglected.

In addition to the members described, this book covers the design of connections
and the following special members: composite beams, composite columns, and plate
girders.
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1.2 LOADS

The forces that act on a structure are called loads. They belong to one of two broad
categories: dead load and live load. Dead loads are those that are permanent, includ-
ing the weight of the structure itself, which is sometimes called the self-weight. In
addition to the weight of the structure, dead loads in a building include the weight of
nonstructural components such as floor coverings, partitions, and suspended ceilings
(with light fixtures, mechanical equipment, and plumbing). All of the loads men-
tioned thus far are forces resulting from gravity and are referred to as gravity loads.
Live loads, which can also be gravity loads, are those that are not as permanent as
dead loads. They may or may not be acting on the structure at any given time, and the
location may not be fixed. Examples of live loads include furniture, equipment, and
occupants of buildings. In general, the magnitude of a live load is not as well defined
as that of a dead load, and it usually must be estimated. In many cases, a structural
member must be investigated for various positions of a live load so that a potential
failure condition is not overlooked.

If a live load is applied slowly and is not removed and reapplied an excessive
number of times, the structure can be analyzed as if the load were static. If the load
is applied suddenly, as would be the case when the structure supports a moving crane,
the effects of impact must be accounted for. If the load is applied and removed many
times over the life of the structure, fatigue stress becomes a problem, and its effects
must be accounted for. Impact loading occurs in relatively few buildings, notably
industrial buildings, and fatigue loading is rare, with thousands of load cycles over
the life of the structure required before fatigue becomes a problem. For these reasons,
all loading conditions in this book will be treated as static, and fatigue will not be
considered.

Wind exerts a pressure or suction on the exterior surfaces of a building, and
because of its transient nature, it properly belongs in the category of live loads. Because
of the relative complexity of determining wind loads, however, wind is usually con-
sidered a separate category of loading. Because lateral loads are most detrimental to
tall structures, wind loads are usually not as important for low buildings, but uplift on
light roof systems can be critical. Although wind is present most of the time, wind
loads of the magnitude considered in design are infrequent and are not considered to
be fatigue loads.

Earthquake loads are another special category and need to be considered only in those
geographic locations where there is a reasonable probability of occurrence. A structural
analysis of the effects of an earthquake requires an analysis of the structure’s response to
the ground motion produced by the earthquake. Simpler methods are sometimes used in
which the effects of the earthquake are simulated by a system of horizontal loads, similar
to those resulting from wind pressure, acting at each floor level of the building.

Snow is another live load that is treated as a separate category. Adding to the
uncertainty of this load is the complication of drift, which can cause much of the load
to accumulate over a relatively small area.

Other types of live load are often treated as separate categories, such as hydrosta-
tic pressure and soil pressure, but the cases we have enumerated are the ones ordinarily
encountered in the design of structural steel building frames and their members.
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1.3 BUILDING CODES

Buildings must be designed and constructed according to the provisions of a building
code, which is a legal document containing requirements related to such things as struc-
tural safety, fire safety, plumbing, ventilation, and accessibility to the physically dis-
abled. A building code has the force of law and is administered by a governmental entity
such as a city, a county, or, for some large metropolitan areas, a consolidated government.
Building codes do not give design procedures, but they do specify the design require-
ments and constraints that must be satisfied. Of particular importance to the structural
engineer is the prescription of minimum live loads for buildings. Although the engineer
is encouraged to investigate the actual loading conditions and attempt to determine real-
istic values, the structure must be able to support these specified minimum loads.

Although some large cities have their own building codes, many municipalities
will modify a “model” building code to suit their particular needs and adopt it as mod-
ified. Model codes are written by various nonprofit organizations in a form that can
be easily adopted by a governmental unit. Three national code organizations have
developed model building codes: the Uniform Building Code (International Confer-
ence of Building Officials, 1999), the Standard Building Code (Southern Building
Code Congress International, 1999), and the BOCA National Building Code (BOCA,
1999) (BOCA is an acronym for Building Officials and Code Administrators.) These
codes have generally been used in different regions of the United States. The Uniform
Building Code has been essentially the only one used west of the Mississippi, the
Standard Building Code has been used in the southeastern states, and the BOCA
National Building Code has been used in the northeastern part of the country.

A unified building code, the International Building Code (International Code
Council, 2009), has been developed to eliminate some of the inconsistencies among
the three national building codes. This was a joint effort by the three code organiza-
tions (ICBO, BOCA, and SBCCI). These organizations have merged into the Inter-
national Code Council, and the new code has replaced the three regional codes.

Although it is not a building code, ASCE 7, Minimum Design Loads for Buildings
and Other Structures (American Society of Civil Engineers, 2010) is similar in form to
a building code. This standard provides load requirements in a format suitable for adop-
tion as part of a code. The International Building Code incorporates much of ASCE 7
in its load provisions.

1.4 DESIGN SPECIFICATIONS

In contrast to building codes, design specifications give more specific guidance for
the design of structural members and their connections. They present the guidelines
and criteria that enable a structural engineer to achieve the objectives mandated by a
building code. Design specifications represent what is considered to be good engi-
neering practice based on the latest research. They are periodically revised and
updated by the issuance of supplements or completely new editions. As with model
building codes, design specifications are written in a legal format by nonprofit
organizations. They have no legal standing on their own, but by presenting design
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criteria and limits in the form of legal mandates and prohibitions, they can easily be
adopted, by reference, as part of a building code.

The specifications of most interest to the structural steel designer are those pub-
lished by the following organizations.

1. American Institute of Steel Construction (AISC): This specification pro-
vides for the design of structural steel buildings and their connections. It is the
one of primary concern in this book, and we discuss it in detail (AISC, 2010a).

2. American Association of State Highway and Transportation Officials
(AASHTO): This specification covers the design of highway bridges and
related structures. It provides for all structural materials normally used in
bridges, including steel, reinforced concrete, and timber (AASHTO, 2010).

3. American Railway Engineering and Maintenance-of-Way Association
(AREMA): The AREMA Manual for Railway Engineering covers the design
of railway bridges and related structures (AREMA, 2010). This organization was
formerly known as the American Railway Engineering Association (AREA).

4. American Iron and Steel Institute (AISI): This specification deals
with cold-formed steel, which we discuss in Section 1.6 of this book
(AISI, 2007).

1.5 STRUCTURAL STEEL

The earliest use of iron, the chief component of steel, was for small tools, in
approximately 4000 B.C. (Murphy, 1957). This material was in the form of wrought
iron, produced by heating ore in a charcoal fire. In the latter part of the eighteenth cen-
tury and in the early nineteenth century, cast iron and wrought iron were used in vari-
ous types of bridges. Steel, an alloy of primarily iron and carbon, with fewer impurities
and less carbon than cast iron, was first used in heavy construction in the nineteenth cen-
tury. With the advent of the Bessemer converter in 1855, steel began to displace
wrought iron and cast iron in construction. In the United States, the first structural steel
railroad bridge was the Eads bridge, constructed in 1874 in St. Louis, Missouri (Tall,
1964). In 1884, the first building with a steel frame was completed in Chicago.

The characteristics of steel that are of the most interest to structural engineers can
be examined by plotting the results of a tensile test. If a test specimen is subjected 
to an axial load P, as shown in Figure 1.3a, the stress and strain can be computed as
follows:

where
f = axial tensile stress

A = cross-sectional area
e = axial strain
L = length of specimen

∆L = change in length

f
P

A

L

L
= =  and   ε ∆
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If the load is increased in increments from zero to the point of fracture, and stress
and strain are computed at each step, a stress–strain curve such as the one shown in
Figure 1.3b can be plotted. This curve is typical of a class of steel known as ductile,
or mild, steel. The relationship between stress and strain is linear up to the propor-
tional limit; the material is said to follow Hooke’s law. A peak value, the upper yield
point, is quickly reached after that, followed by a leveling off at the lower yield point.
The stress then remains constant, even though the strain continues to increase. At this
stage of loading, the test specimen continues to elongate as long as the load is not
removed, even though the load cannot be increased. This constant stress region is
called the yield plateau, or plastic range. At a strain of approximately 12 times the
strain at yield, strain hardening begins, and additional load (and stress) is required to
cause additional elongation (and strain). A maximum value of stress is reached, after
which the specimen begins to “neck down” as the stress decreases with increasing
strain, and fracture occurs. Although the cross section is reduced during loading (the
Poisson effect), the original cross-sectional area is used to compute all stresses. Stress
computed in this way is known as engineering stress. If the original length is used to
compute the strain, it is called engineering strain.

1.5 Structural Steel 9
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Steel exhibiting the behavior shown in Figure 1.3b is called ductile because of
its ability to undergo large deformations before fracturing. Ductility can be measured
by the elongation, defined as

(1.1)

where
e = elongation (expressed as a percent)

Lf = length of the specimen at fracture
L0 = original length

The elastic limit of the material is a stress that lies between the proportional limit
and the upper yield point. Up to this stress, the specimen can be unloaded without per-
manent deformation; the unloading will be along the linear portion of the diagram,
the same path followed during loading. This part of the stress–strain diagram is called
the elastic range. Beyond the elastic limit, unloading will be along a straight line par-
allel to the initial linear part of the loading path, and there will be a permanent strain.
For example, if the load is removed at point A in Figure 1.3b, the unloading will be
along line AB, resulting in the permanent strain OB.

Figure 1.4 shows an idealized version of this stress–strain curve. The proportional
limit, elastic limit, and the upper and lower yield points are all very close to one another
and are treated as a single point called the yield point, defined by the stress Fy. The other
point of interest to the structural engineer is the maximum value of stress that can be
attained, called the ultimate tensile strength, Fu. The shape of this curve is typical of
mild structural steels, which are different from one another primarily in the values of 
Fy and Fu. The ratio of stress to strain within the elastic range, denoted E and called
Young’s modulus, or modulus of elasticity, is the same for all structural steels and has
a value of 29,000,000 psi (pounds per square inch) or 29,000 ksi (kips per square inch).

Figure 1.5 shows a typical stress–strain curve for high-strength steels, which are less
ductile than the mild steels discussed thus far. Although there is a linear elastic portion
and a distinct tensile strength, there is no well-defined yield point or yield plateau.

e
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To use these higher-strength steels in a manner consistent with the use of ductile steels,
some value of stress must be chosen as a value for Fy so that the same procedures and
formulas can be used with all structural steels. Although there is no yield point, one needs
to be defined. As previously shown, when a steel is stressed beyond its elastic limit and
then unloaded, the path followed to zero stress will not be the original path from zero
stress; it will be along a line having the slope of the linear portion of the path followed
during loading—that is, a slope equal to E, the modulus of elasticity. Thus there will be
a residual strain, or permanent set, after unloading. The yield stress for steel with a
stress–strain curve of the type shown in Figure 1.5 is called the yield strength and is
defined as the stress at the point of unloading that corresponds to a permanent strain of
some arbitrarily defined amount. A strain of 0.002 is usually selected, and this method
of determining the yield strength is called the 0.2% offset method. As previously men-
tioned, the two properties usually needed in structural steel design are Fu and Fy,
regardless of the shape of the stress–strain curve and regardless of how Fy was obtained.
For this reason, the generic term yield stress is used, and it can mean either yield point
or yield strength.

The various properties of structural steel, including strength and ductility, are
determined by its chemical composition. Steel is an alloy, its principal component being
iron. Another component of all structural steels, although in much smaller amounts, is
carbon, which contributes to strength but reduces ductility. Other components of some
grades of steel include copper, manganese, nickel, chromium, molybdenum, and
silicon. Structural steels can be grouped according to their composition as follows.

1. Plain carbon steels: mostly iron and carbon, with less than 1% carbon.
2. Low-alloy steels: iron and carbon plus other components (usually less than

5%). The additional components are primarily for increasing strength, which
is accomplished at the expense of a reduction in ductility.

3. High-alloy or specialty steels: similar in composition to the low-alloy steels
but with a higher percentage of the components added to iron and carbon.
These steels are higher in strength than the plain carbon steels and also have
some special quality, such as resistance to corrosion.

Different grades of structural steel are identified by the designation assigned
them by the American Society for Testing and Materials (ASTM). This organization
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develops standards for defining materials in terms of their composition, properties,
and performance, and it prescribes specific tests for measuring these attributes
(ASTM, 2010a). One of the most commonly used structural steels is a mild steel des-
ignated as ASTM A36, or A36 for short. It has a stress–strain curve of the type shown
in Figures 1.3b and 1.4 and has the following tensile properties.

Yield stress: Fy = 36,000 psi (36 ksi)

Tensile strength: Fu = 58,000 psi to 80,000 psi (58 ksi to 80 ksi)

A36 steel is classified as a plain carbon steel, and it has the following components
(other than iron).

Carbon: 0.26% (maximum)

Phosphorous: 0.04% (maximum)

Sulfur: 0.05% (maximum)

These percentages are approximate, the exact values depending on the form of the fin-
ished steel product. A36 is a ductile steel, with an elongation as defined by Equation 1.1
of 20% based on an undeformed original length of 8 inches.

Steel producers who provide A36 steel must certify that it meets the ASTM stan-
dard. The values for yield stress and tensile strength shown are minimum require-
ments; they may be exceeded and usually are to a certain extent. The tensile strength
is given as a range of values because for A36 steel, this property cannot be achieved
to the same degree of precision as the yield stress.

Other commonly used structural steels are ASTM A572 Grade 50 and ASTM
A992. These two steels are very similar in both tensile properties and chemical com-
position, with a maximum carbon content of 0.23%. A comparison of the tensile prop-
erties of A36, A572 Grade 50, and A992 is given in Table 1.1.

1.6 STANDARD CROSS-SECTIONAL SHAPES

In the design process outlined earlier, one of the objectives—and the primary emphasis
of this book—is the selection of the appropriate cross sections for the individual
members of the structure being designed. Most often, this selection will entail
choosing a standard cross-sectional shape that is widely available rather than requir-
ing the fabrication of a shape with unique dimensions and properties. The selection
of an “off-the-shelf ” item will almost always be the most economical choice, even
if it means using slightly more material. The largest category of standard shapes
includes those produced by hot-rolling. In this manufacturing process, which
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Property A36 A572 Gr. 50 A992

Yield point, min. 36 ksi 50 ksi 50 ksi
Tensile strength, min. 58 to 80 ksi 65 ksi 65 ksi
Yield to tensile ratio, max. — — 0.85
Elongation in 8 in., min. 20% 18% 18%

TABLE 1.1
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takes place in a mill, molten steel is taken from an electric arc furnace and poured into
a continuous casting system where the steel solidifies but is never allowed to cool
completely. The hot steel passes through a series of rollers that squeeze the material
into the desired cross-sectional shape. Rolling the steel while it is still hot allows it
to be deformed with no resulting loss in ductility, as would be the case with cold-
working. During the rolling process, the member increases in length and is cut to stan-
dard lengths, usually a maximum of 65 to 75 feet, which are subsequently cut (in a
fabricating shop) to the lengths required for a particular structure.

Cross sections of some of the more commonly used hot-rolled shapes are shown in
Figure 1.6. The dimensions and designations of the standard available shapes are defined
in the ASTM standards (ASTM, 2010b). The W-shape, also called a wide-flange shape,
consists of two parallel flanges separated by a single web. The orientation of these ele-
ments is such that the cross section has two axes of symmetry. A typical designation
would be “W18 × 50,” where W indicates the type of shape, 18 is the nominal depth par-
allel to the web, and 50 is the weight in pounds per foot of length. The nominal depth is
the approximate depth expressed in whole inches. For some of the lighter shapes, it is
equal to the depth to the nearest inch, but this is not a general rule for the W-shapes. All
of the W-shapes of a given nominal size can be grouped into families that have the same
depth from inside-of-flange to inside-of-flange but with different flange thicknesses.

1.6 Standard Cross-Sectional Shapes 13
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The American Standard, or S-shape, is similar to the W-shape in having two par-
allel flanges, a single web, and two axes of symmetry. The difference is in the pro-
portions: The flanges of the W are wider in relation to the web than are the flanges of
the S. In addition, the outside and inside faces of the flanges of the W-shape are par-
allel, whereas the inside faces of the flanges of the S-shape slope with respect to the
outside faces. An example of the designation of an S-shape is “S18 × 70,” with the S
indicating the type of shape, and the two numbers giving the depth in inches and the
weight in pounds per foot. This shape was formerly called an I-beam.

The angle shapes are available in either equal-leg or unequal-leg versions. A typi-
cal designation would be “L6 × 6 × 3⁄4” or “L6 × 4 × 5⁄8.” The three numbers are the
lengths of each of the two legs as measured from the corner, or heel, to the toe at the
other end of the leg, and the thickness, which is the same for both legs. In the case of
the unequal-leg angle, the longer leg dimension is always given first. Although this
designation provides all of the dimensions, it does not provide the weight per foot.

The American Standard Channel, or C-shape, has two flanges and a web, with
only one axis of symmetry; it carries a designation such as “C9 × 20.” This notation is
similar to that for W- and S-shapes, with the first number giving the total depth in inches
parallel to the web and the second number the weight in pounds per linear foot. For the
channel, however, the depth is exact rather than nominal. The inside faces of the flanges
are sloping, just as with the American Standard shape. Miscellaneous Channels—for
example, the MC10 × 25—are similar to American Standard Channels.

The Structural Tee is produced by splitting an I-shaped member at middepth. This
shape is sometimes referred to as a split-tee. The prefix of the designation is either
WT, ST, or MT, depending on which shape is the “parent.” For example, a WT18 ×
105 has a nominal depth of 18 inches and a weight of 105 pounds per foot, and is cut
from a W36 × 210. Similarly, an ST10 × 33 is cut from an S20 × 66, and an MT5 × 4
is cut from an M10 × 8. The “M” is for “miscellaneous.” The M-shape has two par-
allel flanges and a web, but it does not fit exactly into either the W or S categories.
The HP shape, used for bearing piles, has parallel flange surfaces, approximately the
same width and depth, and equal flange and web thicknesses. HP-shapes are desig-
nated in the same manner as the W-shape; for example, HP14 × 117.

Other frequently used cross-sectional shapes are shown in Figure 1.7. Bars can
have circular, square, or rectangular cross sections. If the width of a rectangular shape
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is 8 inches or less, it is classified as a bar. If the width is more than 8 inches, the shape
is classified as a plate. The usual designation for both is the abbreviation PL (for plate,
even though it could actually be a bar) followed by the thickness in inches, the width
in inches, and the length in feet and inches; for example, PL 3⁄8 × 5 × 3′-21⁄2″. Although
plates and bars are available in increments of 1⁄16 inch, it is customary to specify
dimensions to the nearest 1⁄8 inch. Bars and plates are formed by hot-rolling. 

Also shown in Figure 1.7 are hollow shapes, which can be produced either
by bending plate material into the desired shape and welding the seam or by hot-
working to produce a seamless shape. The shapes are categorized as steel pipe, round
HSS, and square and rectangular HSS. The designation HSS is for “Hollow Struc-
tural Sections.”

Steel pipe is available as standard, extra-strong, or double-extra-strong, with
designations such as Pipe 5 Std., Pipe 5 x-strong, or Pipe 5 xx-strong, where 5 is the
nominal outer diameter in inches. The different strengths correspond to different wall
thicknesses for the same outer diameter. For pipes whose thicknesses do not match
those in the standard, extra-strong, or double-extra-strong categories, the designation
is the outer diameter and wall thickness in inches, expressed to three decimal places;
for example, Pipe 5.563 × 0.500. 

Round HSS are designated by outer diameter and wall thickness, expressed to
three decimal places; for example, HSS 8.625 × 0.250. Square and rectangular HSS
are designated by nominal outside dimensions and wall thickness, expressed in
rational numbers; for example, HSS 7 × 5 × 3⁄8. Most hollow structural sections
available in the United States today are produced by cold-forming and welding
(Sherman, 1997).

Other shapes are available, but those just described are the ones most frequently
used. In most cases, one of these standard shapes will satisfy design requirements. If
the requirements are especially severe, then a built-up section, such as one of those
shown in Figure 1.8, may be needed. Sometimes a standard shape is augmented by
additional cross-sectional elements, as when a cover plate is welded to one or both
flanges of a W-shape. Building up sections is an effective way of strengthening an
existing structure that is being rehabilitated or modified for some use other than the
one for which it was designed. Sometimes a built-up shape must be used because none
of the standard rolled shapes are large enough; that is, the cross section does not have
enough area or moment of inertia. In such cases, plate girders can be used. These can
be I-shaped sections, with two flanges and a web, or box sections, with two flanges
and two webs. The components can be welded together and can be designed to have
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exactly the properties needed. Built-up shapes can also be created by attaching two
or more standard rolled shapes to each other. A widely used combination is a pair of
angles placed back-to-back and connected at intervals along their length. This is
called a double-angle shape. Another combination is the double-channel shape (either
American Standard or Miscellaneous Channel). There are many other possibilities,
some of which we illustrate throughout this book.

The most commonly used steels for rolled shapes and plate material are ASTM
A36, A572, and A992. ASTM A36 is usually specified for angles, plates, S, M, and
channel shapes; A572 Grade 50 for HP shapes; and A992 for W shapes. (These three
steels were compared in Table 1.1 in Section 1.5.) Steel pipe is available in ASTM
A53 Grade B only. ASTM A500 is usually specified for hollow structural sections
(HSS). These recommendations are summarized in Table 1.2. Other steels can
be used for these shapes, but the ones listed in Table 1.2 are the most common
(Anderson and Carter, 2009).

Another category of steel products for structural applications is cold-formed
steel. Structural shapes of this type are created by bending thin material such as sheet
steel or plate into the desired shape without heating. Typical cross sections are shown
in Figure 1.9. Only relatively thin material can be used, and the resulting shapes are
suitable only for light applications. An advantage of this product is its versatility,
since almost any conceivable cross-sectional shape can easily be formed. In addition,
cold-working will increase the yield point of the steel, and under certain conditions it
may be accounted for in design (AISI, 2007). This increase comes at the expense of
a reduction in ductility, however. Because of the thinness of the cross-sectional ele-
ments, the problem of instability (discussed in Chapters 4 and 5) is a particularly
important factor in the design of cold-formed steel structures.

16 Chapter 1 Introduction

Shape Preferred Steel

Angles A36
Plates A36
S, M, C, MC A36 
HP A572 Grade 50
W A992
Pipe A53 Grade B (only choice)
HSS A500 Grade B (round) or

C (rectangular)

TABLE 1.2

FIGURE 1.9
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Problems

Note The following problems illustrate the concepts of stress and strain covered in Sec-
tion 1.5. The materials cited in these problems are not necessarily steel.

1.5-1 A 20-foot-long W8 × 67 is suspended from one end. If the modulus of elasticity is
29,000 ksi, determine the following.

a. What is the maximum tensile stress?

b. What is the maximum normal strain?

1.5-2 The strain in member AB was measured to be 8.9 × 10–4. If the member is an L3 ×
21⁄2 × 1⁄4 of A36 steel, determine the following.

a. What is the change in length in inches?

b. What is the force in the member?

FIGURE P1.5-2

1.5-3 During a tensile test of a specimen of unknown material, an increase in length of
6.792 × 10–3 inches within the gage length was recorded at a load of 5000 lb. The
specimen diameter was 0.5 inch and the gage length was 8 inches. (The gage length
is the distance between two marks placed along the length of the specimen.) 

a. Based on this one data point, what is the modulus of elasticity?

b. If the maximum load reached before fracture was 14,700 lb, what is the ultimate
tensile stress?

1.5-4 A tensile test was conducted on a specimen with a diameter of 0.5 inch. A strain gage
was bonded to the specimen so that the strain could be obtained directly. The fol-
lowing data were obtained:

Load (lb) Strain (micro in./in.)

2,000 47
2,500 220
3,000 500
3,500 950
4,000 1,111
4,500 1,200
5,000 1,702

9′

12 @ 9′ = 108′

A

B

Problems 17
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a. Create a table of stress and strain values.

b. Plot these data points, and draw a best-fit straight line through them.

c. What is the slope of this line? What does this value represent?

1.5-5 A tension test was conducted on a specimen with a circular cross section of diameter
0.5 inch and a gage length of 8 inches. (The gage length is the distance between two
marks on the specimen. The deformation is measured within this length.) The stress
and strain were computed from the test data and plotted. Two plots are shown here;
the first one shows the entire test range, and the second shows a portion near the pro-
portional limit.

a. Draw best-fit lines to obtain stress–strain curves.

b. Estimate the proportional limit.

c. Use the slope of the best-fit line to estimate the modulus of elasticity.

d. Estimate the 0.2% offset yield strength.

e. Estimate the ultimate stress.

f. If a load of 10 kips is applied and then removed, estimate the permanent defor-
mation in inches.

FIGURE P1.5-5
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1.5-6 The data shown in the table were obtained from a tensile test of a metal specimen with
a diameter of 0.500 inch and a gage length (the length over which the elongation is
measured) of 2.00 inches. The specimen was not loaded to failure.

a. Generate a table of stress and strain values.

b. Plot these values and draw a best-fit line to obtain a stress–strain curve.

c. Use the slope of the best-fit line to estimate the modulus of elasticity.

d. Estimate the value of the proportional limit.

e. Use the 0.2% offset method to determine the yield strength.

Load (kips) Elongation (in.)

0 0
1 0.0010
2 0.0014
2.5 0.0020
3.5 0.0024
5 0.0036
6 0.0044
7 0.0050
8 0.0060
9 0.0070

10 0.0080
11.5 0.0120
12 0.0180

1.5-7 The data shown in the table were obtained from a tensile test of a metal specimen with
a rectangular cross section of 0.2 in.2 in area and a gage length (the length over which
the elongation is measured) of 2.000 inches.

a. Generate a table of stress and strain values.

b. Plot these values and draw a best-fit line to obtain a stress–strain curve.

c. Determine the modulus of elasticity from the slope of the linear portion of the curve.

d. Estimate the value of the proportional limit.

e. Use the 0.2% offset method to determine the yield stress.

Load Elongation × 103 Load Elongation × 103

(kips) (in.) (kips) (in.)

0 0 7.0 4.386
0.5 0.160 7.5 4.640
1.0 0.352 8.0 4.988
1.5 0.706 8.5 5.432
2.0 1.012 9.0 5.862
2.5 1.434 9.5 6.362
3.0 1.712 10.0 7.304
3.5 1.986 10.5 8.072
4.0 2.286 11.0 9.044
4.5 2.612 11.5 11.310
5.0 2.938 12.0 14.120
5.5 3.274 12.5 20.044
6.0 3.632 13 29.106
6.5 3.976

Problems 19
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2.1 DESIGN PHILOSOPHIES

As discussed earlier, the design of a structural member entails the selection of a cross
section that will safely and economically resist the applied loads. Economy usually
means minimum weight—that is, the minimum amount of steel. This amount corre-
sponds to the cross section with the smallest weight per foot, which is the one with
the smallest cross-sectional area. Although other considerations, such as ease of con-
struction, may ultimately affect the choice of member size, the process begins with the
selection of the lightest cross-sectional shape that will do the job. Having established
this objective, the engineer must decide how to do it safely, which is where different
approaches to design come into play. The fundamental requirement of structural design
is that the required strength not exceed the available strength; that is,

Required strength ≤ available strength

In allowable strength design (ASD), a member is selected that has cross-sectional
properties such as area and moment of inertia that are large enough to prevent the max-
imum applied axial force, shear, or bending moment from exceeding an allowable, or
permissible, value. This allowable value is obtained by dividing the nominal, or theo-
retical, strength by a factor of safety. This can be expressed as

Required strength ≤ allowable strength (2.1)

where

Strength can be an axial force strength (as in tension or compression members), a
flexural strength (moment strength), or a shear strength.

If stresses are used instead of forces or moments, the relationship of Equation 2.1
becomes

Maximum applied stress ≤ allowable stress (2.2)

Allowable strength
nominal strength

safety facto
=

rr

C H A P T E R 2
Concepts in Structural 

Steel Design
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This approach is called allowable stress design. The allowable stress will be in the elas-
tic range of the material (see Figure 1.3). This approach to design is also called elastic
design or working stress design. Working stresses are those resulting from the working
loads, which are the applied loads. Working loads are also known as service loads.

Plastic design is based on a consideration of failure conditions rather than working
load conditions. A member is selected by using the criterion that the structure will fail
at a load substantially higher than the working load. Failure in this context means either
collapse or extremely large deformations. The term plastic is used because, at failure,
parts of the member will be subjected to very large strains—large enough to put the
member into the plastic range (see Figure 1.3b). When the entire cross section becomes
plastic at enough locations, “plastic hinges” will form at those locations, creating a col-
lapse mechanism. As the actual loads will be less than the failure loads by a factor of
safety known as the load factor, members designed this way are not unsafe, despite
being designed based on what happens at failure. This design procedure is roughly as
follows.

1. Multiply the working loads (service loads) by the load factor to obtain the fail-
ure loads.

2. Determine the cross-sectional properties needed to resist failure under these
loads. (A member with these properties is said to have sufficient strength and
would be at the verge of failure when subjected to the factored loads.)

3. Select the lightest cross-sectional shape that has these properties.

Members designed by plastic theory would reach the point of failure under the fac-
tored loads but are safe under actual working loads.

Load and resistance factor design (LRFD) is similar to plastic design in that
strength, or the failure condition, is considered. Load factors are applied to the service
loads, and a member is selected that will have enough strength to resist the factored loads.
In addition, the theoretical strength of the member is reduced by the application of a
resistance factor. The criterion that must be satisfied in the selection of a member is

Factored load ≤ factored strength (2.3)

In this expression, the factored load is actually the sum of all service loads to be
resisted by the member, each multiplied by its own load factor. For example, dead
loads will have load factors that are different from those for live loads. The factored
strength is the theoretical strength multiplied by a resistance factor. Equation 2.3 can
therefore be written as

(2.4)

The factored load is a failure load greater than the total actual service load, so the load
factors are usually greater than unity. However, the factored strength is a reduced,
usable strength, and the resistance factor is usually less than unity. The factored loads
are the loads that bring the structure or member to its limit. In terms of safety, this limit
state can be fracture, yielding, or buckling, and the factored resistance is the useful
strength of the member, reduced from the theoretical value by the resistance factor. The
limit state can also be one of serviceability, such as a maximum acceptable deflection.

(loads load factors) resistance resistance fact× ≤ × oor∑

22 Chapter 2 Concepts in Structural Steel Design
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2.2 American Institute of Steel Construction Specification 23

2.2 AMERICAN INSTITUTE OF STEEL
CONSTRUCTION SPECIFICATION

Because the emphasis of this book is on the design of structural steel building mem-
bers and their connections, the Specification of the American Institute of Steel Con-
struction is the design specification of most importance here. It is written and kept
current by an AISC committee comprising structural engineering practitioners, edu-
cators, steel producers, and fabricators. New editions are published periodically, and
supplements are issued when interim revisions are needed. Allowable stress design has
been the primary method used for structural steel buildings since the first AISC Spec-
ification was issued in 1923, although plastic design was made part of the Specifica-
tion in 1963. In 1986, AISC issued the first specification for load and resistance factor
design along with a companion Manual of Steel Construction. The purpose of these
two documents was to provide an alternative to allowable stress design, much as plas-
tic design is an alternative. The current specification (AISC, 2010a) incorporates both
LRFD and ASD.

The LRFD provisions are based on research reported in eight papers published in
1978 in the Structural Journal of the American Society of Civil Engineers (Ravindra
and Galambos; Yura, Galambos, and Ravindra; Bjorhovde, Galambos, and Ravindra;
Cooper, Galambos, and Ravindra; Hansell et al.; Fisher et al.; Ravindra, Cornell, and
Galambos; Galambos and Ravindra, 1978).

Although load and resistance factor design was not introduced into the AISC
Specification until 1986, it is not a recent concept; since 1974, it has been used in
Canada, where it is known as limit states design. It is also the basis of most European
building codes. In the United States, LRFD has been an accepted method of design for
reinforced concrete for years and is the primary method authorized in the American
Concrete Institute’s Building Code, where it is known as strength design (ACI, 2008).
Current highway bridge design standards also use load and resistance factor design
(AASHTO, 2010).

The AISC Specification is published as a stand-alone document, but it is also part
of the Steel Construction Manual, which we discuss in the next section. Except for
such specialized steel products as cold-formed steel, which is covered by a different
specification (AISI, 2007), the AISC Specification is the standard by which virtually
all structural steel buildings in this country are designed and constructed. Hence the
student of structural steel design must have ready access to his document. The details
of the Specification will be covered in the chapters that follow, but we discuss the over-
all organization here.

The Specification consists of three parts: the main body, the appendixes, and the
Commentary. The body is alphabetically organized into Chapters A through N. Within
each chapter, major headings are labeled with the chapter designation followed by a num-
ber. Furthermore, subdivisions are numerically labeled. For example, the types of struc-
tural steel authorized are listed in Chapter A, “General Provisions,” under Section A3,
“Material,” and, under it, Section 1, “Structural Steel Materials.” The main body of the
Specification is followed by appendixes 1–8. The Appendix section is followed by
the Commentary, which gives background and elaboration on many of the provisions of
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the Specification. Its organizational scheme is the same as that of the Specification, so
material applicable to a particular section can be easily located.

The Specification incorporates both U.S. customary and metric (SI) units. Where
possible, equations and expressions are expressed in non-dimensional form by leav-
ing quantities such as yield stress and modulus of elasticity in symbolic form, thereby
avoiding giving units. When this is not possible, U.S. customary units are given, fol-
lowed by SI units in parentheses. Although there is a strong move to metrication in the
steel industry, most structural design in the United States is still done in U.S. custom-
ary units, and this textbook uses only U.S. customary units.

2.3 LOAD FACTORS, RESISTANCE FACTORS, 
AND LOAD COMBINATIONS FOR LRFD

Equation 2.4 can be written more precisely as

ΣgiQi ≤ fRn (2.5)

where
Qi = a load effect (a force or a moment)

gi = a load factor
Rn = the nominal resistance, or strength, of the component under consideration

f  = resistance factor

The factored resistance fRn is called the design strength. The summation on the
left side of Equation 2.5 is over the total number of load effects (including, but not
limited to, dead load and live load), where each load effect can be associated with
a different load factor. Not only can each load effect have a different load factor
but also the value of the load factor for a particular load effect will depend on the
combination of loads under consideration. Equation 2.5 can also be written in the
form

Ru ≤ fRn (2.6)

where

Ru = required strength = sum of factored load effects (forces or moments)

Section B2 of the AISC Specification says to use the load factors and load com-
binations prescribed by the governing building code. If the building code does not
give them, then ASCE 7 (ASCE, 2010) should be used. The load factors and load
combinations in this standard are based on extensive statistical studies and are pre-
scribed by most building codes.

ASCE 7 presents the basic load combinations in the following form:

Combination 1: 1.4D
Combination 2: 1.2D + 1.6L + 0.5(Lr or S or R)
Combination 3: 1.2D + 1.6(Lr or S or R) + (L or 0.5W )
Combination 4: 1.2D + 1.0W + L + 0.5(Lr or S or R)

24 Chapter 2 Concepts in Structural Steel Design

76004_02_ch02_p020-039.qxd  9/5/11  11:44 AM  Page 24



2.3 Load Factors, Resistance Factors, and Load Combinations for LRFD 25

*This load does not include ponding, a phenomenon that we discuss in Chapter 5.

Combination 5: 1.2D + 1.0E + L + 0.2S
Combination 6: 0.9D + 1.0W
Combination 7: 0.9D + 1.0E

where

D = dead load
L = live load due to occupancy

Lr = roof live load
S = snow load
R = rain or ice load*

W = wind load
E = earthquake (seismic load)

In combinations 3, 4, and 5, the load factor on L can be reduced to 0.5 if L is no
greater than 100 pounds per square foot, except for garages or places of public
assembly. In combinations with wind or earthquake loads, you should use a direction
that produces the worst effects.

The ASCE 7 basic load combinations are also given in Part 2 of the AISC Steel
Construction Manual (AISC 2011a), which will be discussed in Section 2.6 of this
chapter. They are presented in a slightly different form as follows:

Combination 1: 1.4D
Combination 2: 1.2D + 1.6L + 0.5(Lr or S or R)
Combination 3: 1.2D + 1.6(Lr or S or R) + (0.5L or 0.5W)
Combination 4: 1.2D +1.0W + 0.5L + 0.5(Lr or S or R)
Combination 5: 1.2D ± 1.0E + 0.5L + 0.2S
Combinations 6 and 7: 0.9D ± (1.0W or 1.0E)

Here, the load factor on L in combinations 3, 4, and 5 is given as 0.5, which should
be increased to 1.0 if L is greater than 100 pounds per square foot or for garages or
places of public assembly. ASCE 7 combinations 6 and 7 arise from the expression
shown by considering combination 6 to use 1.0W and combination 7 to use 1.0E. In
other words,

Combination 6: 0.9D ± 1.0W
Combination 7: 0.9D ± 1.0E

Combinations 6 and 7 account for the possibility of dead load and wind or earthquake
load counteracting each other; for example, the net load effect could be the difference
between 0.9D and 1.0W or between 0.9D and 1.0E. (Wind or earthquake load may
tend to overturn a structure, but the dead load will have a stabilizing effect.)

As previously mentioned, the load factor for a particular load effect is not the
same in all load combinations. For example, in combination 2 the load factor for the
live load L is 1.6, whereas in combination 3, it is 0.5. The reason is that the live load
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is being taken as the dominant effect in combination 2, and one of the three effects,
Lr, S, or R, will be dominant in combination 3. In each combination, one of the effects
is considered to be at its “lifetime maximum” value and the others at their “arbitrary
point in time” values.

The resistance factor f for each type of resistance is given by AISC in the Spec-
ification chapter dealing with that resistance, but in most cases, one of two values will
be used: 0.90 for limit sates involving yielding or compression buckling and 0.75 for
limit states involving rupture (fracture).

2.4 SAFETY FACTORS AND LOAD 
COMBINATIONS FOR ASD

For allowable strength design, the relationship between loads and strength (Equation 2.1)
can be expressed as

(2.7)

where
Ra = required strength
Rn = nominal strength (same as for LRFD)
Ω = safety factor

Rn�Ω = allowable strength

The required strength Ra is the sum of the service loads or load effects. As with
LRFD, specific combinations of loads must be considered. Load combinations for
ASD are also given in ASCE 7. These combinations, as presented in the AISC Steel
Construction Manual (AISC 2011a), are

Combination 1: D
Combination 2: D + L
Combination 3: D + (Lr or S or R)
Combination 4: D + 0.75L + 0.75(Lr or S or R)
Combination 5: D ± (0.6W or 0.7E)
Combination 6a: D + 0.75L + 0.75(0.6W) + 0.75(Lr or S or R)
Combination 6b: D + 0.75L ± 0.75(0.7E) + 0.75S
Combinations 7 and 8: 0.6D ± (0.6W or 0.7E)

The factors shown in these combinations are not load factors. The 0.75 factor in
some of the combinations accounts for the unlikelihood that all loads in the com-
bination will be at their lifetime maximum values simultaneously. The 0.7 factor
applied to the seismic load effect E is used because ASCE 7 uses a strength
approach (i.e., LRFD) for computing seismic loads, and the factor is an attempt to
equalize the effect for ASD.

Corresponding to the two most common values of resistance factors in LRFD are
the following values of the safety factor Ω in ASD: For limit states involving yielding

R
R

a
n≤

Ω

26 Chapter 2 Concepts in Structural Steel Design
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2.4 Safety Factors and Load Combinations for ASD 27

*The value of Ω is actually 12⁄3 = 5�3 but has been rounded to 1.67 in the AISC specification.

or compression buckling, Ω = 1.67.* For limit states involving rupture, Ω = 2.00. The
relationship between resistance factors and safety factors is given by

(2.8)

For reasons that will be discussed later, this relationship will produce similar designs
for LRFD and ASD, under certain loading conditions.

If both sides of Equation 2.7 are divided by area (in the case of axial load) or sec-
tion modulus (in the case of bending moment), then the relationship becomes

f ≤ F

where
f = applied stress

F = allowable stress

This formulation is called allowable stress design.

Ω = 1 5.
φ

A column (compression member) in the upper story of a building is subject to the
following loads:

Dead load: 109 kips compression

Floor live load: 46 kips compression

Roof live load: 19 kips compression

Snow: 20 kips compression

a. Determine the controlling load combination for LRFD and the correspond-
ing factored load.

b. If the resistance factor f is 0.90, what is the required nominal strength?
c. Determine the controlling load combination for ASD and the corresponding

required service load strength.
d. If the safety factor Ω is 1.67, what is the required nominal strength based on

the required service load strength?

Even though a load may not be acting directly on a member, it can still cause a load
effect in the member. This is true of both snow and roof live load in this example.
Although this building is subjected to wind, the resulting forces on the structure are
resisted by members other than this particular column.

a. The controlling load combination is the one that produces the largest factored
load. We evaluate each expression that involves dead load, D; live load result-
ing from occupancy, L; roof live load, Lr; and snow, S.

E X A M P L E  2 . 1

S O L U T I O N
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Combination 1: 1.4D = 1.4(109) = 152.6 kips

Combination 2: 1.2D + 1.6L + 0.5(Lr or S or R). Because S is larger
than Lr and R = 0, we need to evaluate this combina-
tion only once, using S.

1.2D + 1.6L + 0.5S = 1.2(109) + 1.6(46) + 0.5(20) 
= 214.4 kips

Combination 3: 1.2D + 1.6(Lr or S or R) + (0.5L or 0.5W). In this combi-
nation, we use S instead of Lr, and both R and W are zero.

1.2D + 1.6S + 0.5L = 1.2(109) + 1.6(20) + 0.5(46) 
= 185.8 kips

Combination 4: 1.2D + 1.0W + 0.5L + 0.5(Lr or S or R). This expression
reduces to 1.2D + 0.5L + 0.5S, and by inspection, we can
see that it produces a smaller result than combination 3.

Combination 5: 1.2D ± 1.0E + 0.5L + 0.2S. As E = 0, this expression
reduces to 1.2D + 0.5L + 0.2S, which produces a
smaller result than combination 4.

Combinations 6 and 7: 0.9D ± (1.0W or 1.0E). These combinations do not
apply in this example, because there are no wind or
earthquake loads to counteract the dead load.

Combination 2 controls, and the factored load is 214.4 kips.

b. If the factored load obtained in part (a) is substituted into the fundamental LRFD
relationship, Equation 2.6, we obtain

Ru ≤ fRn

214.4 ≤ 0.90Rn

Rn ≥ 238 kips

The required nominal strength is 238 kips.

c. As with the combinations for LRFD, we will evaluate the expressions involving
D, L, Lr, and S for ASD.

Combination 1: D = 109 kips. (Obviously this case will never control
when live load is present.)

Combination 2: D + L = 109 + 46 = 155 kips

Combination 3: D + (Lr or S or R). Since S is larger than Lr, and R = 0,
this combination reduces to D + S = 109 + 20 = 129 kips

Combination 4: D + 0.75L + 0.75(Lr or S or R). This expression reduces
to D + 0.75L + 0.75S = 109 + 0.75(46) + 0.75(20) 

= 158.5 kips

Combination 5: D ± (0.6W or 0.7E). Because W and E are zero, this
expression reduces to combination 1.

28 Chapter 2 Concepts in Structural Steel Design
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2.4 Safety Factors and Load Combinations for ASD 29

Combination 6a: D + 0.75L + 0.75(0.6W) + 0.75(Lr or S or R). 
Because W and E are zero, this expression reduces 
to combination 4.

Combination 6b: D + 0.75L ± 0.75(0.7E) + 0.75S. This combination
also gives the same result as combination 4.

Combinations 7 and 8: 0.6D ± (0.6W or 0.7E). These combinations do not
apply in this example, because there are no wind or
earthquake loads to counteract the dead load.

Combination 4 controls, and the required service load strength is 158.5 kips.

d. From the ASD relationship, Equation 2.7,

The required nominal strength is 265 kips.

Example 2.1 illustrates that the controlling load combination for LRFD may not con-
trol for ASD.

When LRFD was introduced into the AISC Specification in 1986, the load fac-
tors were determined in such a way as to give the same results for LRFD and ASD
when the loads consisted of dead load and a live load equal to three times the dead
load. The resulting relationship between the resistance factor f and the safety factor Ω,
as expressed in Equation 2.8, can be derived as follows. Let Rn from Equations 2.6
and 2.7 be the same when L = 3D. That is,

or
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3.1 INTRODUCTION

Tension members are structural elements that are subjected to axial tensile forces. They
are used in various types of structures and include truss members, bracing for buildings
and bridges, cables in suspended roof systems, and cables in suspension and cable-stayed
bridges. Any cross-sectional configuration may be used, because for any given mater-
ial, the only determinant of the strength of a tension member is the cross-sectional area.
Circular rods and rolled angle shapes are frequently used. Built-up shapes, either from
plates, rolled shapes, or a combination of plates and rolled shapes, are sometimes used
when large loads must be resisted. The most common built-up configuration is proba-
bly the double-angle section, shown in Figure 3.1, along with other typical cross sec-
tions. Because the use of this section is so widespread, tables of properties of various
combinations of angles are included in the AISC Steel Construction Manual.

The stress in an axially loaded tension member is given by

where P is the magnitude of the load and A is the cross-sectional area (the area nor-
mal to the load). The stress as given by this equation is exact, provided that the cross
section under consideration is not adjacent to the point of application of the load,
where the distribution of stress is not uniform.

If the cross-sectional area of a tension member varies along its length, the stress
is a function of the particular section under consideration. The presence of holes in a
member will influence the stress at a cross section through the hole or holes. At these
locations, the cross-sectional area will be reduced by an amount equal to the area
removed by the holes. Tension members are frequently connected at their ends with
bolts, as illustrated in Figure 3.2. The tension member shown, a 1⁄2 × 8 plate, is con-
nected to a gusset plate, which is a connection element whose purpose is to transfer
the load from the member to a support or to another member. The area of the bar at
section a–a is (1⁄2)(8) = 4 in.2, but the area at section b–b is only 4 – (2)(1⁄2)(7⁄8) = 3.13 in.2

f
P

A
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FIGURE 3.1

Bar 8 × 1⁄2

b b

a a

1⁄2′′

8′′

7⁄8′′

7⁄8′′-diameter
holes Section a–a

Section b–b

FIGURE 3.2
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and will be more highly stressed. This reduced area is referred to as the net area, or
net section, and the unreduced area is the gross area.

The typical design problem is to select a member with sufficient cross-sectional
area to resist the loads. A closely related problem is that of analysis, or review, of a
given member, where in the strength is computed and compared with the load. In gen-
eral, analysis is a direct procedure, but design is an iterative process and may require
some trial and error.

Tension members are covered in Chapter D of the Specification. Requirements
that are common with other types of members are covered in Chapter B, “Design 
Requirements.”

3.2 TENSILE STRENGTH

A tension member can fail by reaching one of two limit states: excessive deforma-
tion or fracture. To prevent excessive deformation, initiated by yielding, the load
on the gross section must be small enough that the stress on the gross section is less
than the yield stress Fy. To prevent fracture, the stress on the net section must be
less than the tensile strength Fu. In each case, the stress P/A must be less than a lim-
iting stress F or

P

A
F<
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3.2 Tensile Strength 43

Thus, the load P must be less than FA, or

P < FA

The nominal strength in yielding is

Pn = FyAg

and the nominal strength in fracture is

Pn = Fu Ae

where Ae is the effective net area, which may be equal to either the net area or, in some
cases, a smaller area. We discuss effective net area in Section 3.3.

Although yielding will first occur on the net cross section, the deformation within
the length of the connection will generally be smaller than the deformation in the
remainder of the tension member. The reason is that the net section exists over a rela-
tively small length of the member, and the total elongation is a product of the length
and the strain (a function of the stress). Most of the member will have an unreduced
cross section, so attainment of the yield stress on the gross area will result in larger
total elongation. It is this larger deformation, not the first yield, that is the limit state.

LRFD: In load and resistance factor design, the factored tensile load is compared
to the design strength. The design strength is the resistance factor times the nominal
strength. Equation 2.6,

Ru = fRn

can be written for tension members as

Pu ≤ ftPn

where Pu is the governing combination of factored loads. The resistance factor ft is
smaller for fracture than for yielding, reflecting the more serious nature of fracture.

For yielding, ft = 0.90

For fracture, ft = 0.75

Because there are two limit states, both of the following conditions must be satisfied:

Pu ≤ 0.90FyAg

Pu ≤ 0.75Fu Ae

The smaller of these is the design strength of the member.
ASD: In allowable strength design, the total service load is compared to the 

allowable strength (allowable load):

where Pa is the required strength (applied load), and Pn�Ωt is the allowable strength.
The subscript “a” indicates that the required strength is for “allowable strength
design,” but you can think of it as standing for “applied” load.

For yielding of the gross section, the safety factor Ωt is 1.67, and the allowable
load is

P F A
F An

t

y g
y gΩ

= =
1 67
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44 Chapter 3 Tension Members

(The factor 0.6 appears to be a rounded value, but recall that 1.67 is a rounded value.
If Ωt = 5⁄3 is used, the allowable load is exactly 0.6 Fy Ag.)

For fracture of the net section, the safety factor is 2.00 and the allowable load is

Alternatively, the service load stress can be compared to the allowable stress. This can
be expressed as

ft ≤ Ft

where ft is the applied stress and Ft is the allowable stress. For yielding of the gross
section,

For fracture of the net section,

You can find values of Fy and Fu for various structural steels in Table 2-3 in the
Manual. All of the steels that are available for various hot-rolled shapes are indicated
by shaded areas. The black areas correspond to preferred materials, and the gray
areas represent other steels that are available. Under the W heading, we see that A992
is the preferred material for W shapes, but other materials are available, usually at a
higher cost. For some steels, there is more than one grade, with each grade having dif-
ferent values of Fy and Fu. In these cases, the grade must be specified along with the
ASTM designation—for example, A572 Grade 50. For A242 steel, Fy and Fu depend
on the thickness of the flange of the cross-sectional shape. This relationship is given
in footnotes in the table. For example, to determine the properties of a W33 × 221 of
ASTM A242 steel, first refer to the dimensions and properties table in Part 1 of the
Manual and determine that the flange thickness tf is equal to 1.28 inches. This matches
the thickness range indicated in footnote1; therefore, Fy = 50 ksi and Fu = 70 ksi. Values
of Fy and Fu for plates and bars are given in the Manual Table 2-4, and information
on structural fasteners, including bolts and rods, can be found in Table 2-5.

The exact amount of area to be deducted from the gross area to account for the
presence of bolt holes depends on the fabrication procedure. The usual practice is to
drill or punch standard holes (i.e., not oversized) with a diameter 1⁄16 inch larger than
the fastener diameter. To account for possible roughness around the edges of the hole,
Section B4.3 of the AISC Specification (in the remainder of this book, references to
the Specification will usually be in the form AISC B4.3) requires the addition of 
1⁄16 inch to the actual hole diameter. This amounts to using an effective hole diameter
1⁄8 inch larger than the fastener diameter. In the case of slotted holes, 1⁄16 inch should
be added to the actual width of the hole. You can find details related to standard, over-
sized, and slotted holes in AISC J3.2, “Size and Use of Holes” (in Chapter J, “Design
of Connections”).
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3.2 Tensile Strength 45

A1⁄2 × 5 plate of A36 steel is used as a tension member. It is connected to a gusset
plate with four 5⁄8-inch-diameter bolts as shown in Figure 3.3. Assume that the
effective net area Ae equals the actual net area An (we cover computation of effective
net area in Section 3.3).
a. What is the design strength for LRFD?

b. What is the allowable strength for ASD?

Gusset PL

Section

1⁄2 in.

5⁄8 in. + 1⁄8 in.

= 3⁄4 in. 

5⁄8-in.-diameter bolts

PL1⁄2 × 5

FIGURE 3.3

For yielding of the gross section,

Ag = 5(1�2) = 2.5 in.2

and the nominal strength is

Pn = FyAg = 36(2.5) = 90.0 kips

For fracture of the net section,

An = Ag − Aholes = 2.5 − (1⁄2)(3⁄4) × 2 holes

= 2.5 − 0.75 = 1.75 in.2

Ae = An = 1.75 in.2 (This is true for this example, but Ae does not always
equal An.) 

The nominal strength is

Pn = FuAe = 58(1.75) = 101.5 kips

a. The design strength based on yielding is

ftPn = 0.90(90) = 81.0 kips

The design strength based on fracture is

ftPn = 0.75(101.5) = 76.1 kips

S O L U T I O N
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46 Chapter 3 Tension Members

The design strength for LRFD is the smaller value: ftPn = 76.1 kips.

b. The allowable strength based on yielding is

The allowable strength based on fracture is

The allowable service load is the smaller value = 50.8 kips.

Alternative Solution Using Allowable Stress: For yielding,

Ft = 0.6Fy = 0.6(36) = 21.6 ksi

and the allowable load is

FtAg = 21.6(2.5) = 54.0 kips

(The slight difference between this value and the one based on allowable strength
is because the value of Ω in the allowable strength approach has been rounded from
5�3 to 1.67; the value based on the allowable stress is the more accurate one.)
For fracture,

Ft = 0.5Fu = 0.5(58) = 29.0 ksi

and the allowable load is

FtAe = 29.0(1.75) = 50.8 kips

The allowable service load is the smaller value = 50.8 kips.

Pn

tΩ
= =101 5

2 00
50 8

.
.

.  kips

Pn

tΩ
= =90

1 67
53 9

.
. kips

Because of the relationship given by Equation 2.8, the allowable strength will always
be equal to the design strength divided by 1.5. In this book, however, we will do the com-
plete computation of allowable strength even when the design strength is available.

The effects of stress concentrations at holes appear to have been overlooked. In
reality, stresses at holes can be as high as three times the average stress on the net sec-
tion, and at fillets of rolled shapes they can be more than twice the average (McGuire,
1968). Because of the ductile nature of structural steel, the usual design practice is to
neglect such localized overstress. After yielding begins at a point of stress concen-
tration, additional stress is transferred to adjacent areas of the cross section. This
stress redistribution is responsible for the “forgiving” nature of structural steel. Its
ductility permits the initially yielded zone to deform without fracture as the stress on
the remainder of the cross section continues to increase. Under certain conditions,
however, steel may lose its ductility and stress concentrations can precipitate brittle
fracture. These situations include fatigue loading and extremely low temperature.

A N S W E R

A N S W E R

A N S W E R

76004_03_ch03_p040-107.qxd  9/5/11  12:17 PM  Page 46



3.2 Tensile Strength 47

E X A M P L E  3 . 2

A single-angle tension member, an L31⁄2 × 31⁄2 × 3⁄8, is connected to a gusset plate with
7⁄8-inch-diameter bolts as shown in Figure 3.4. A36 steel is used. The service loads are
35 kips dead load and 15 kips live load. Investigate this member for compliance with
the AISC Specification. Assume that the effective net area is 85% of the computed net
area.
a. Use LRFD.

b. Use ASD.

Section
L31/2 × 31/2 × 3/8

FIGURE 3.4

First, compute the nominal strengths.
Gross section:

Ag = 2.50 in.2 (from Part 1 of the Manual)

Pn = FyAg = 36(2.50) = 90 kips

Net section:

a. The design strength based on yielding is

The design strength based on fracture is

The design strength is the smaller value: ftPn = 78.5 kips

Factored load:

When only dead load and live load are present, the only load combinations with a
chance of controlling are combinations 1 and 2.

ft nP = =0 75 104 7 78 5. ( . ) . kips

ft nP = =0 90 90 81. ( ) kips

A

A A

n

e n

= − ( ) +( ) =

= =

2 50
3

8

7

8

1

8
2 125

0 85 0 85 2

. .

. . ( .

in.2

1125 1 806

58 1 8

) .

( .

=

= =

in. (in example)2 this

P F An u e 006 104 7) .= kips
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3.4 STAGGERED FASTENERS

If a tension member connection is made with bolts, the net area will be maximized if
the fasteners are placed in a single line. Sometimes space limitations, such as a limit on
dimension a in Figure 3.14a, necessitate using more than one line. If so, the reduction
in cross-sectional area is minimized if the fasteners are arranged in a staggered pattern,
as shown. Sometimes staggered fasteners are required by the geometry of a connection,
such as the one shown in Figure 3.14b. In either case, any cross section passing through
holes will pass through fewer holes than if the fasteners are not staggered.

3.4 Staggered Fasteners 57

FIGURE 3.13

FIGURE 3.14
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If the amount of stagger is small enough, the influence of an offset hole may be
felt by a nearby cross section, and fracture along an inclined path such as abcd in
Figure 3.14c is possible. In such a case, the relationship f = P�A does not apply, and
stresses on the inclined portion b–c are a combination of tensile and shearing
stresses. Several approximate methods have been proposed to account for the effects
of staggered holes. Cochrane (1922) proposed that when deducting the area corre-
sponding to a staggered hole, use a reduced diameter, given by

(3.2)

where d is the hole diameter, s is the stagger, or pitch, of the bolts (spacing in the
direction of the load), and g is the gage (transverse spacing). This means that in a fail-
ure pattern consisting of both staggered and unstaggered holes, use d for holes at the
end of a transverse line between holes (s = 0) and use d′ for holes at the end of an
inclined line between holes.

The AISC Specification, in Section B4.3b, uses this approach, but in a modified
form. If the net area is treated as the product of a thickness times a net width, and the
diameter from Equation 3.2 is used for all holes (since d′ = d when the stagger s = 0),
the net width in a failure line consisting of both staggered and unstaggered holes is

where wn is the net width and wg is the gross width. The second term is the sum of all
hole diameters, and the third term is the sum of s2�4g for all inclined lines in the fail-
ure pattern.

When more than one failure pattern is conceivable, all possibilities should be
investigated, and the one corresponding to the smallest load capacity should be used.
Note that this method will not accommodate failure patterns with lines parallel to the
applied load.

w w d

w d
s

g

w d
s

g

n g

g
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= − ∑ −
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E X A M P L E  3 . 6

Compute the smallest net area for the plate shown in Figure 3.15. The holes are
for 1-inch-diameter bolts.

The effective hole diameter is 1 + 1⁄8 = 11⁄8 in. For line abde,

wn = 16 – 2(1.125) = 13.75 in.

S O L U T I O N
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For line abcde,

The second condition will give the smallest net area:

An = twn = 0.75(13.52) = 10.1 in.2

wn = − + =16 3 1 125
2 3

4 5
13 52

2

( . )
( )

( )
.  in.

3.4 Staggered Fasteners 59

FIGURE 3.15

Equation 3.2 can be used directly when staggered holes are present. In the com-
putation of the net area for line abcde in Example 3.6,

As each fastener resists an equal share of the load (an assumption used in the
design of simple connections; see Chapter 7), different potential failure lines may be
subjected to different loads. For example, line abcde in Figure 3.15 must resist the full
load, whereas ijfh will be subjected to 8⁄11 of the applied load. The reason is that 3⁄11 of
the load will have been transferred from the member before ijfh receives any load.

When lines of bolts are present in more than one element of the cross section of
a rolled shape, and the bolts in these lines are staggered with respect to one another,
the use of areas and Equation 3.2 is preferable to the net-width approach of the AISC
Specification. If the shape is an angle, it can be visualized as a plate formed by
“unfolding” the legs to more clearly identify the pitch and gage distances. AISC
B4.3b specifies that any gage line crossing the heel of the angle be reduced by an
amount that equals the angle thickness. Thus, the distance g in Figure 3.16, to be used
in the s2/4g term, would be 3 + 2 – 1⁄2 = 41⁄2 inches.

A A t d dn g= ∑ × ′

= −

– ( )

. ( ) – . ( . ) . .
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0 75 16 0 75 1 125 0 75 1 1225
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⎤
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× = in.2
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E X A M P L E  3 . 7

An angle with staggered fasteners in each leg is shown in Figure 3.17. A36 steel is
used, and holes are for 7⁄8-inch-diameter bolts.
a. Determine the design strength for LRFD.
b. Determine the allowable strength for ASD.

From the dimensions and properties tables, the gross area is Ag = 6.80 in.2. The
effective hole diameter is 7⁄8 + 1⁄8 = 1 in.

For line abdf, the net area is

For line abceg,

Because 1⁄10 of the load has been transferred from the member by the fastener
at d, this potential failure line must resist only 9⁄10 of the load. Therefore, the net area

An = ⎡
⎣⎢

⎤
⎦⎥

6 8 0 0 5 1 0 0 5 1 0
1 5

4 2 5
0 5

2

. – . ( . ) – . . –
( . )

( . )
– . (11 0 5 413. ) .= in.2

A A t d dn g w= ∑ × ′

= × =

– ( )

. – . ( . ) .

or

in.6 8 0 0 5 1 0 2 5 8 0 2
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FIGURE 3.17

FIGURE 3.16
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of 5.413 in.2 should be multiplied by 10⁄9 to obtain a net area that can be compared
with those lines that resist the full load. Use An = 5.413(10⁄ 9) = 6.014 in.2 For line
abcdeg,

The last case controls; use

An = 5.065 in.2

Both legs of the angle are connected, so

Ae = An = 5.065 in.2

The nominal strength based on fracture is

Pn = Fu Ae = 58(5.065) = 293.8 kips

The nominal strength based on yielding is

Pn = FyAg = 36(6.80) = 244.8 kips

a. The design strength based on fracture is

ftPn = 0.75(293.8) = 220 kips

The design strength based on yielding is

ftPn = 0.90(244.8) = 220 kips

Design strength = 220 kips.

b. For the limit state of fracture, the allowable stress is

Ft = 0.5Fu = 0.5(58) = 29.0 ksi

and the allowable strength is

FtAe = 29.0(5.065) = 147 kips

For yielding,

Ft = 0.6Fy = 0.6(36) = 21.6 ksi

FtAg = 21.6(6.80) = 147 kips

Allowable strength = 147 kips.
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E X A M P L E  3 . 8

Determine the smallest net area for the American Standard Channel shown in Fig-
ure 3.18. The holes are for 5⁄8-inch-diameter bolts.

Line abe:

Line abcd:

Smallest net area = 3.31 in.2

A A t d b t d cn g w w= − − ′

=

( ) ( )for hole at for hole at

33 82 0 437
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4
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11⁄2′′

11⁄2′′

C6 × 13

3′′

a

b

c

d e

4 @ 2 ′′FIGURE 3.18

S O L U T I O N

When staggered holes are present in shapes other than angles, and the holes are
in different elements of the cross section, the shape can still be visualized as a plate,
even if it is an I-shape. The AISC Specification furnishes no guidance for gage lines
crossing a “fold” when the different elements have different thicknesses. A method
for handling this case is illustrated in Figure 3.19. In Example 3.8, all of the holes are
in one element of the cross section, so this difficulty does not arise. Example 3.9
illustrates the case of staggered holes in different elements of an S-shape.

A N S W E R
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Find the available strength of the S-shape shown in Figure 3.20. The holes are for 
3⁄4-inch-diameter bolts. Use A36 steel.

Compute the net area:

For line ad,

For line abcd, the gage distance for use in the s2�4g term is

g
g

tw

2 2

3 5

2
2 75

0 550

2
4 2251+ − = + − =.

.
.

. in.
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⎝
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7

8
0 622 12 52 2. ( . ) .  in.
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FIGURE 3.20

FIGURE 3.19

E X A M P L E  3 . 9

S O L U T I O N
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Starting at a and treating the holes at b and d as the staggered holes gives

Line abcd controls. As all elements of the cross section are connected,

Ae = An = 11.73 in.2

For the net section, the nominal strength is

Pn = FuAe = 58(11.73) = 680.3 kips

For the gross section,

Pn = FyAg = 36(14.7) = 529.2 kips

The design strength based on fracture is

ftPn = 0.75(680.3) = 510 kips

The design strength based on yielding is

ftPn = 0.90(529.2) = 476 kips

Yielding of the gross section controls.

Design strength = 476 kips.

The allowable stress based on fracture is

Ft = 0.5Fu = 0.5(58) = 29.0 ksi

and the corresponding allowable strength is FtAe = 29.0(11.73) = 340 kips.

The allowable stress based on yielding is

Ft = 0.6Fy = 0.6(36) = 21.6 ksi

and the corresponding allowable strength is FtAg = 21.6(14.7) = 318 kips.

Yielding of the gross section controls.

Allowable strength = 318 kips.
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3.5 BLOCK SHEAR

For certain connection configurations, a segment or “block” of material at the end of
the member can tear out. For example, the connection of the single-angle tension
member shown in Figure 3.21 is susceptible to this phenomenon, called block shear.
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For the case illustrated, the shaded block would tend to fail by shear along the longi-
tudinal section ab and by tension on the transverse section bc.

For certain arrangements of bolts, block shear can also occur in gusset plates.
Figure 3.22 shows a plate tension member connected to a gusset plate. In this con-
nection, block shear could occur in both the gusset plate and the tension member. For
the gusset plate, tension failure would be along the transverse section df, and shear
failure would occur on two longitudinal surfaces, de and fg. Block shear failure in the
plate tension member would be tension on ik and shear on both hi and jk. This topic
is not covered explicitly in AISC Chapter D (“Design of Members for Tension”), but
the introductory user note directs you to Chapter J (“Design of Connections”), Sec-
tion J4.3, “Block Shear Strength.”

The model used in the AISC Specification assumes that failure occurs by rupture
(fracture) on the shear area and rupture on the tension area. Both surfaces contribute
to the total strength, and the resistance to block shear will be the sum of the strengths
of the two surfaces. The shear rupture stress is taken as 60% of the tensile ultimate
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66 Chapter 3 Tension Members

stress, so the nominal strength in shear is 0.6FuAnv and the nominal strength in ten-
sion is FuAnt,

where
Anv = net area along the shear surface or surfaces
Ant = net area along the tension surface

This gives a nominal strength of

Rn = 0.6FuAnv + FuAnt (3.3)

The AISC Specification uses Equation 3.3 for angles and gusset plates, but for cer-
tain types of coped beam connections (to be covered in Chapter 5), the second term
is reduced to account for nonuniform tensile stress. The tensile stress is nonuniform
when some rotation of the block is required for failure to occur. For these cases,

Rn = 0.6FuAnv + 0.5FuAnt (3.4)

The AISC Specification limits the 0.6FuAnv term to 0.6FyAgv, where

0.6Fy = shear yield stress

Agv = gross area along the shear surface or surfaces

and gives one equation to cover all cases as follows:

Rn = 0.6FuAnv + UbsFuAnt ≤ 0.6FyAgv + UbsFuAnt (AISC Equation J4-5)

where Ubs = 1.0 when the tension stress is uniform (angles, gusset plates, and most
coped beams) and Ubs = 0.5 when the tension stress is nonuniform. A nonuniform case
is illustrated in the Commentary to the Specification.

For LRFD, the resistance factor f is 0.75, and for ASD, the safety factor Ω is
2.00. Recall that these are the factors used for the fracture—or rupture—limit state,
and block shear is a rupture limit state.

Although AISC Equation J4-5 is expressed in terms of bolted connections, block
shear can also occur in welded connections, especially in gusset plates.

E X A M P L E  3 . 1 0

Compute the block shear strength of the tension member shown in Figure 3.23. The
holes are for 7⁄8-inch-diameter bolts, and A36 steel is used.

a. Use LRFD.

b. Use ASD.

FIGURE 3.23

76004_03_ch03_p040-107.qxd  9/5/11  12:18 PM  Page 66



The shear areas are

and, since there are 2.5 hole diameters,

The tension area is

(The factor of 0.5 is used because there is one-half of a hole diameter in the tension
section.)

Since the block shear will occur in an angle, Ubs = 1.0, and from AISC Equation J4-5,

Rn = 0.6FuAnv + UbsFuAnt

= 0.6(58)(1.875) + 1.0(58)(0.3750) = 87.00 kips

with an upper limit of

The nominal block shear strength is therefore 82.51 kips.

a. The design strength for LRFD is f Rn = 0.75(82.51) = 61.9 kips.

b. The allowable strength for ASD is
Rn

Ω
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3.6 DESIGN OF TENSION MEMBERS

The design of a tension member involves finding a member with adequate gross and
net areas. If the member has a bolted connection, the selection of a suitable cross sec-
tion requires an accounting for the area lost because of holes. For a member with a
rectangular cross section, the calculations are relatively straightforward. If a rolled
shape is to be used, however, the area to be deducted cannot be predicted in advance
because the member’s thickness at the location of the holes is not known.

A secondary consideration in the design of tension members is slenderness. If a
structural member has a small cross section in relation to its length, it is said to be slen-
der. A more precise measure is the slenderness ratio, L/r, where L is the member length
and r is the minimum radius of gyration of the cross-sectional area. The minimum radius
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The shear areas are

and, since there are 2.5 hole diameters,

The tension area is

(The factor of 0.5 is used because there is one-half of a hole diameter in the tension
section.)

Since the block shear will occur in an angle, Ubs = 1.0, and from AISC Equation J4-5,

Rn = 0.6FuAnv + UbsFuAnt

= 0.6(58)(1.875) + 1.0(58)(0.3750) = 87.00 kips

with an upper limit of

The nominal block shear strength is therefore 82.51 kips.

a. The design strength for LRFD is f Rn = 0.75(82.51) = 61.9 kips.

b. The allowable strength for ASD is
Rn
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3.6 DESIGN OF TENSION MEMBERS

The design of a tension member involves finding a member with adequate gross and
net areas. If the member has a bolted connection, the selection of a suitable cross sec-
tion requires an accounting for the area lost because of holes. For a member with a
rectangular cross section, the calculations are relatively straightforward. If a rolled
shape is to be used, however, the area to be deducted cannot be predicted in advance
because the member’s thickness at the location of the holes is not known.

A secondary consideration in the design of tension members is slenderness. If a
structural member has a small cross section in relation to its length, it is said to be slen-
der. A more precise measure is the slenderness ratio, L/r, where L is the member length
and r is the minimum radius of gyration of the cross-sectional area. The minimum radius
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of gyration is the one corresponding to the minor principal axis of the cross section. This
value is tabulated for all rolled shapes in the properties tables in Part 1 of the Manual.

Although slenderness is critical to the strength of a compression member, it is
inconsequential for a tension member. In many situations, however, it is good practice
to limit the slenderness of tension members. If the axial load in a slender tension mem-
ber is removed and small transverse loads are applied, undesirable vibrations or
deflections might occur. These conditions could occur, for example, in a slack bracing
rod subjected to wind loads. For this reason, the user note in AISC D1 suggests a max-
imum slenderness ratio of 300. It is only a recommended value because slenderness
has no structural significance for tension members, and the limit may be exceeded
when special circumstances warrant it. This limit does not apply to cables, and the user
note explicitly excludes rods.

The central problem of all member design, including tension member design, is to
find a cross section for which the required strength does not exceed the available strength.
For tension members designed by LRFD, the requirement is

Pu ≤ ftPn or ftPn ≥ Pu

where Pu is the sum of the factored loads. To prevent yielding,

To avoid fracture,

For allowable strength design, if we use the allowable stress form, the requirement
corresponding to yielding is

and the required gross area is

For the limit state of fracture, the required effective area is

The slenderness ratio limitation will be satisfied if

where r is the minimum radius of gyration of the cross section and L is the member
length.
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3.6 Design of Tension Members 69

E X A M P L E  3 . 1 1

A tension member with a length of 5 feet 9 inches must resist a service dead load
of 18 kips and a service live load of 52 kips. Select a member with a rectangular cross
section. Use A36 steel and assume a connection with one line of 7⁄8-inch-diameter bolts.

Try t = 1 in.

Try a 1 × 31⁄2 cross section.

Check the slenderness ratio:

From I = Ar2, we obtain

Use a PL 1 × 31⁄2.

Pa = D + L = 18 + 52 = 70.0 kips

For yielding, Ft = 0.6Fy = 0.6(36) = 21.6 ksi, and
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70 Chapter 3 Tension Members

For fracture, Ft = 0.5Fu = 0.5(58) = 29.0 ksi, and

(The rest of the design procedure is the same as for LRFD. The numerical results
may be different)

Try t = 1 in.

Try a 1 × 3 1⁄2 cross section.

Check the slenderness ratio:

From I = Ar 2, we obtain

Use a PL 1 × 31⁄2.
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Example 3.11 illustrates that once the required area has been determined, the pro-
cedure is the same for both LRFD and ASD. Note also that in this example, the
required areas are virtually the same for LRFD and ASD. This is because the ratio of
live load to dead load is approximately 3, and the two approaches will give the same
results for this ratio.

The member in Example 3.11 is less than 8 inches wide and thus is classified as
a bar rather than a plate. Bars should be specified to the nearest 1⁄4 inch in width and
to the nearest 1⁄8 inch in thickness (the precise classification system is given in Part 1
of the Manual under the heading “Plate Products”). It is common practice to use the
PL (Plate) designation for both bars and plates.

If an angle shape is used as a tension member and the connection is made by bolt-
ing, there must be enough room for the bolts. Space will be a problem only when there

A N S W E R

76004_03_ch03_p040-107.qxd  9/5/11  12:18 PM  Page 70



are two lines of bolts in a leg. The usual fabrication practice is to punch or drill holes in
standard locations in angle legs. These hole locations are given in Table 1-7A in Part 1
of the Manual. This table is located at the end of the dimensions and properties table
for angles. Figure 3.24 presents this same information. Gage distance g applies when
there is one line of bolts, and g1 and g2 apply when there are two lines. Figure 3.24
shows that an angle leg must be at least 5 inches long to accommodate two lines of bolts.

3.6 Design of Tension Members 71

g2 g1

g

FIGURE 3.24

Usual Gages for Angles (inches)

Leg 8 7 6 5 4 31⁄2 3 21⁄2 2 13⁄4 11⁄2 13⁄8 11⁄4 1

g 41⁄2 4 31⁄2 3 21⁄2 2 13⁄4 13⁄8 11⁄8 1 7⁄8 7⁄8 3⁄4 5⁄8

g1 3 21⁄2 21⁄4 2

g2 3 3 21⁄2 13⁄4

E X A M P L E  3 . 1 2

Select an unequal-leg angle tension member 15 feet long to resist a service dead
load of 35 kips and a service live load of 70 kips. Use A36 steel. The connection is
shown in Figure 3.25.

FIGURE 3.25

D = 35k

L = 70k
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72 Chapter 3 Tension Members

The factored load is

The radius of gyration should be at least

To find the lightest shape that satisfies these criteria, we search the dimensions and
properties table for the unequal-leg angle that has the smallest acceptable gross area and
then check the effective net area. The radius of gyration can be checked by inspection.
There are two lines of bolts, so the connected leg must be at least 5 inches long (see the
usual gages for angles in Figure 3.24). Starting at either end of the table, we find that
the shape with the smallest area that is at least equal to 4.75 in.2 is an L6 × 4 × 1⁄2 with
an area of 4.75 in.2 and a minimum radius of gyration of 0.864 in.

Try L6 × 4 × 1⁄2.

Because the length of the connection is not known, Equation 3.1 cannot be used to
compute the shear lag factor U. Since there are four bolts in the direction of the load,
we will use the alternative value of U = 0.80.

Ae = AnU = 3.875(0.80) = 3.10 in.2 < 3.54 in.2 (N.G.)∗

Try the next larger shape from the dimensions and properties tables.

Try L5 × 31⁄2 × 5⁄8 (Ag = 4.93 in.2 and rmin = 0.746 in.) 

(Note that this shape has slightly more gross area than that produced by the previous
trial shape, but because of the greater leg thickness, slightly more area is deducted for
the holes.) Passing over the next few heavier shapes,

Try L8 × 4 × 1⁄2 (Ag = 5.80 in.2 and rmin = 0.863 in.) 
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This shape satisfies all requirements, so use an L8 × 4 × 1⁄2.

The total service load is

Try L8 × 4 × 1⁄2 (Ag = 5.80 in.2 and rmin = 0.863 in.). For a shear lag factor U of 0.80,

This shape satisfies all requirements, so use an L8 × 4 × 1⁄2.
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The ASD solution in Example 3.12 is somewhat condensed, in that some of the dis-
cussion in the LRFD solution is not repeated and only the final trial is shown. All
essential computations are included, however.

Tables for the Design of Tension Members

Part 5 of the Manual contains tables to assist in the design of tension members of var-
ious cross-sectional shapes, including Table 5-2 for angles. The use of these tables
will be illustrated in the following example.

E X A M P L E  3 . 1 3

Design the tension member of Example 3.12 with the aid of the tables in Part 5 of
the Manual.

From Example 3.12,

P

r
u =

≥
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0 600

kips

in.min .
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The tables for design of tension members give values of Ag and Ae for various
shapes based on the assumption that Ae = 0.75Ag. In addition, the corresponding
available strengths based on yielding and rupture (fracture) are given. All values
available for angles are for A36 steel. Starting with the lighter shapes (the ones with
the smaller gross area), we find that an L6 × 4 × 1⁄2, with ftPn = 154 kips based on the
gross section and ftPn = 155 kips based on the net section, is a possibility. From the
dimensions and properties tables in Part 1 of the Manual, rmin = 0.864 in. To check
this selection, we must compute the actual net area. If we assume that U = 0.80,

This shape did not work because the ratio of actual effective net area Ae to gross area
Ag is not equal to 0.75. The ratio is closer to

This corresponds to a required ftPn (based on rupture) of

Try an L8 × 4 × 1⁄2, with ftPn = 188 kips (based on yielding) and ft Pn = 189 Kips
(based on rupture strength, with Ae = 0.75Ag = 4.31 in.2). From the dimensions
and properties tables in Part 1 of the Manual, rmin = 0.863 in. The actual effec-
tive net area and rupture strength are computed as follows:

Use an L8 × 4 × 1⁄2, connected through the 8-inch leg.

From Example 3.12,

From Manual Table 5-2, try an L5 × 31⁄2 × 5⁄8, with Pn�Ωt = 106 kips based on yield-
ing of the gross section and Pn�Ωt = 107 kips based on rupture of the net section.
From the dimensions and properties tables in Part 1 of the Manual, rmin = 0.746 in.
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Using a shear lag factor U of 0.80, the actual effective net area is computed as
follows:

and the allowable strength based on rupture of the net section is

This shape did not work because the ratio of actual effective net area Ae to gross area
Ag is not equal to 0.75. The ratio is closer to

This corresponds to a required Pn�Ωt (based on rupture), for purposes of using
Table 5-2, of 

Using this as a guide, try L6 × 4 × 5⁄8, with Pn�Ωt = 126 kips based on yielding of
the gross section and Pn�Ωt = 128 kips based on rupture of the net section. From the
dimensions and properties tables in Part 1 of the Manual, rmin = 0.859 in.

Use an L6 × 4 × 5⁄8, connected through the 6-inch leg.
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Note that if the effective net area must be computed, the tables do not save much
effort. In addition, you must still refer to the dimensions and properties tables to find
the radius of gyration. The tables for design do, however, provide all other informa-
tion in a compact form, and the search may go more quickely.

When structural shapes or plates are connected to form a built-up shape, they
must be connected not only at the ends of the member but also at intervals along its
length. A continuous connection is not required. This type of connection is called
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stitching, and the fasteners used are termed stitch bolts. The usual practice is to locate
the points of stitching so that L�r for any component part does not exceed L�r for the
built-up member. The user note in AISC D4 recommends that built-up shapes whose
component parts are separated by intermittent fillers be connected at intervals such
that the maximum L�r for any component does not exceed 300. Built-up shapes con-
sisting of plates or a combination of plates and shapes are addressed in AISC Sec-
tion J3.5 of Chapter J (“Design of Connections”). In general, the spacing of fasteners
or welds should not exceed 24 times the thickness of the thinner plate, or 12 inches.
If the member is of “weathering” steel subject to atmospheric corrosion, the maximum
spacing is 14 times the thickness of the thinner part, or 7 inches.

3.7 THREADED RODS AND CABLES

When slenderness is not a consideration, rods with circular cross sections and cables
are often used as tension members. The distinction between the two is that rods are
solid and cables are made from individual strands wound together in ropelike fash-
ion. Rods and cables are frequently used in suspended roof systems and as hangers
or suspension members in bridges. Rods are also used in bracing systems; in some
cases, they are pretensioned to prevent them from going slack when external loads are
removed. Figure 3.26 illustrates typical rod and cable connection methods.

When the end of a rod is to be threaded, an upset end is sometimes used. This
is an enlargement of the end in which the threads are to be cut. Threads reduce the
cross-sectional area, and upsetting the end produces a larger gross area to start with.
Standard upset ends with threads will actually have more net area in the threaded por-
tion than in the unthreaded part. Upset ends are relatively expensive, however, and in
most cases unnecessary.
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FIGURE 3.26

76004_03_ch03_p040-107.qxd  9/5/11  12:18 PM  Page 76



The effective cross-sectional area in the threaded portion of a rod is called the stress
area and is a function of the unthreaded diameter and the number of threads per inch.
The ratio of stress area to nominal area varies but has a lower bound of approximately
0.75. The nominal tensile strength of the threaded rod can therefore be written as

Pn = AsFu = 0.75AbFu (3.5)

where
As = stress area
Ab = nominal (unthreaded) area

The AISC Specification, in Chapter J, presents the nominal strength in a somewhat
different form:

Rn = Fn Ab (AISC Equation J3-1)

where Rn is the nominal strength and Fn is given in Table J3.2 as Fnt = 0.75Fu. This
associates the 0.75 factor with the ultimate tensile stress rather than the area, but the
result is the same as that given by Equation 3.5.

For LRFD, the resistance factor f is 0.75, so the strength relationship is

Pu ≤ ftPn or Pu ≤ 0.75(0.75AbFu)

and the required area is

(3.6)

For ASD, the safety factor Ω is 2.00, leading to the requirement

Using Pn from Equation 3.5, we get

Pa ≤ 0.5(0.75AbFu)

If we divide both sides by the area Ab, we obtain the allowable stress

Ft = 0.5(0.75Fu) = 0.375Fu (3.7)

P
P

P Pa
n

a n≤ ≤
2 00

0 5
.
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0 75 0 75. ( . )
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A threaded rod is to be used as a bracing member that must resist a service tensile
load of 2 kips dead load and 6 kips live load. What size rod is required if A36 steel
is used?

The factored load is

Pu = 1.2(2) + 1.6(6) = 12 kips

L R F D
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From Equation 3.6,

From

Use a 3⁄4-inch-diameter threaded rod (Ab = 0.442 in.2).

The required strength is

Pa = D + L = 2 + 6 = 8 kips

From Equation 3.7, the allowable tensile stress is

Ft = 0.375Fu = 0.375(58) = 21.75 ksi

and the required area is

Use a 3⁄4-inch-diameter threaded rod (Ab = 0.442 in.2).

A
P

Fb
a

t

= = =8

21 75
0 3678

.
. in.2
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π
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4
,
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P

F
b

u

u0 75 0 75

12

0 75 0 75 5. ( . ) . ( . )( 88
0 3678

)
.= in.2

To prevent damage during construction, rods should not be too slender. Although
there is no specification requirement, a common practice is to use a minimum diam-
eter of 5⁄8 inch.

Flexible cables, in the form of strands or wire rope, are used in applications
where high strength is required and rigidity is unimportant. In addition to their use in
bridges and cable roof systems, they are also used in hoists and derricks, as guy lines
for towers, and as longitudinal bracing in metal building systems. The difference
between strand and wire rope is illustrated in Figure 3.27. A strand consists of
individual wires wound helically around a central core, and a wire rope is made of
several strands laid helically around a core.

Selection of the correct cable for a given loading is usually based on both strength
and deformation considerations. In addition to ordinary elastic elongation, an initial
stretching is caused by seating or shifting of the individual wires, which results in a
permanent stretch. For this reason, cables are often prestretched. Wire rope and strand
are made from steels of much higher strength than structural steels and are not covered
by the AISC Specification. The breaking strengths of various cables, as well as details
of available fixtures for connections, can be obtained from manufacturers’ literature.
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3.8 TENSION MEMBERS IN ROOF TRUSSES

Many of the tension members that structural engineers design are components of
trusses. For this reason, some general discussion of roof trusses is in order. A more
comprehensive treatment of the subject is given by Lothars (1972).

When trusses are used in buildings, they usually function as the main supporting
elements of roof systems where long spans are required. They are used when the cost and
weight of a beam would be prohibitive. (A truss may be thought of as a deep beam with
much of the web removed.) Roof trusses are often used in industrial or mill buildings,
although construction of this type has largely given way to rigid frames. Typical roof
construction with trusses supported by load-bearing walls is illustrated in Figure 3.28. In
this type of construction, one end of the connection of the truss to the walls usually can
be considered as pinned and the other as roller-supported. Thus the truss can be analyzed
as an externally statically determinate structure. The supporting walls can be reinforced
concrete, concrete block, brick, or a combination of these materials.

Roof trusses normally are spaced uniformly along the length of the building and
are tied together by longitudinal beams called purlins and by x-bracing. The primary
function of the purlins is to transfer loads to the top chord of the truss, but they can
also act as part of the bracing system. Bracing is usually provided in the planes of both
the top and bottom chords, but it is not required in every bay because lateral forces
can be transferred from one braced bay to the other through the purlins.

Ideally, purlins are located at the truss joints so that the truss can be treated as a
pin-connected structure loaded only at the joints. Sometimes, however, the roof deck
cannot span the distance between joints, and intermediate purlins may be needed. In
such cases, top chord members will be subjected to significant bending as well as
axial compression and must be designed as beam–columns (Chapter 6).

Sag rods are tension members used to provide lateral support for the purlins. Most
of the loads applied to the purlins are vertical, so there will be a component parallel to a
sloping roof, which will cause the purlin to bend (sag) in that direction (Figure 3.29).

Sag rods can be located at the midpoint, the third points, or at more frequent
intervals along the purlins, depending on the amount of support needed. The interval
is a function of the truss spacing, the slope of the top chord, the resistance of the purlin
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to this type of bending (most shapes used for purlins are very weak in this respect),
and the amount of support furnished by the roofing. If a metal deck is used, it will usu-
ally be rigidly attached to the purlins, and sag rods may not be needed. Sometimes,
however, the weight of the purlin itself is enough to cause problems, and sag rods may
be needed to provide support during construction before the deck is in place.

If sag rods are used, they are designed to support the component of roof loads
parallel to the roof. Each segment between purlins is assumed to support everything
below it; thus the top rod is designed for the load on the roof area tributary to the rod,
from the heel of the truss to the peak, as shown in Figure 3.30. Although the force will
be different in each segment of rod, the usual practice is to use one size throughout.
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FIGURE 3.28

FIGURE 3.29
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The extra amount of material in question is insignificant, and the use of the same size
for each segment eliminates the possibility of a mix-up during construction.

A possible treatment at the peak or ridge is shown in Figure 3.31a. The tie rod
between ridge purlins must resist the load from all of the sag rods on either side. The
tensile force in this horizontal member has as one of its components the force in the
upper sag-rod segment. A free-body diagram of one ridge purlin illustrates this effect,
as shown in Figure 3.31b.

3.8 Tension Members in Roof Trusses 81

FIGURE 3.30

FIGURE 3.31
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Fink trusses spaced at 20 feet on centers support W6 × 12 purlins, as shown in
Figure 3.32a. The purlins are supported at their midpoints by sag rods. Use A36
steel and design the sag rods and the tie rod at the ridge for the following service
loads.

Metal deck: 2 psf

Built-up roof: 5 psf

Snow: 18 psf of horizontal projection of the roof surface

Purlin weight: 12 pounds per foot (lb�ft) of length

Calculate loads.

Tributary width for each sag rod = 20�2 = 10 ft

Tributary area for deck and built-up roof = 10(46.6) = 466 ft2

Dead load (deck and roof) = (2 + 5)(466) = 3262 lb

Total purlin weight = 12(10)(9) = 1080 lb

Total dead load = 3262 + 1080 = 4342 lb

Tributary area for snow load = 10(45) = 450 ft2

Total snow load = 18(450) = 8100 lb

S O L U T I O N
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Check load combinations.

Combination 2: 1.2D + 0.5S = 1.2(4342) + 0.5(8100) = 9260 lb

Combination 3: 1.2D + 1.6S = 1.2(4342) + 1.6(8100) = 18,170 lb

Combination 3 controls. (By inspection, the remaining combinations will not govern.)
For the component parallel to the roof (Figure 3.32b),

Use a 5⁄8-inch-diameter threaded rod (Ab = 0.3068 in.2).
Tie rod at the ridge (Figure 3.32c):
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Use a 5⁄8-inch-diameter threaded rod (Ab = 0.3068 in.2).

By inspection, load combination 3 will control.

D + S = 4342 + 8100 = 12,440 lb

The component parallel to the roof is

The allowable tensile stress is Ft = 0.375Fu = 0.375(58) = 21.75 ksi.

Use a 5⁄8-inch-diameter threaded rod (Ab = 0.3068 in.2) for the sag rods.
Tie rod at the ridge:

Use a 5⁄8-inch-diameter threaded rod (Ab = 0.3068 in.2) for the tie rod at the ridge.
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For the usual truss geometry and loading, the bottom chord will be in tension and
the top chord will be in compression. Some web members will be in tension and oth-
ers will be in compression. When wind effects are included and consideration is
given to different wind directions, the force in some web members may alternate
between tension and compression. In this case, the affected member must be designed
to function as both a tension member and a compression member.

In bolted trusses, double-angle sections are frequently used for both chord and
web members. This design facilitates the connection of members meeting at a joint
by permitting the use of a single gusset plate, as illustrated in Figure 3.33. When struc-
tural tee-shapes are used as chord members in welded trusses, the web angles can usu-
ally be welded to the stem of the tee. If the force in a web member is small, single
angles can be used, although doing so eliminates the plane of symmetry from the truss
and causes the web member to be eccentrically loaded. Chord members are usually
fabricated as continuous pieces and spliced if necessary.
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The fact that chord members are continuous and joints are bolted or welded
would seem to invalidate the usual assumption that the truss is pin-connected.
Joint rigidity does introduce some bending moment into the members, but it is
usually small and considered to be a secondary effect. The usual practice is to
ignore it. Bending caused by loads directly applied to members between the joints,
however, must be taken into account. We consider this condition in Chapter 6,
“Beam–Columns.”

The working lines of the members in a properly detailed truss intersect at the
working point at each joint. For a bolted truss, the bolt lines are the working lines, and
in welded trusses the centroidal axes of the welds are the working lines. For truss
analysis, member lengths are measured from working point to working point.
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FIGURE 3.33
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Select a structural tee for the bottom chord of the Warren roof truss shown in 
Figure 3.34. The trusses are welded and spaced at 20 feet. Assume that the bottom
chord connection is made with 9-inch-long longitudinal welds at the flange. Use
A992 steel and the following load data (wind is not considered in this example):

Purlins: M8 × 6.5

Snow: 20 psf of horizontal projection

Metal deck: 2 psf

Roofing: 4 psf

Insulation: 3 psf

FIGURE 3.34
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Calculate loads:

Snow = 20(40)(20) = 16,000 lb

Dead load (exclusive of purlins) = Deck 2 psf

Roof 4

Insulation 3____
Total 9 psf

Total dead load = 9(40)(20) = 7200 lb

Total purlin weight = 6.5(20)(9) = 1170 lb

Estimate the truss weight as 10% of the other loads:

0.10(16,000 + 7200 + 1170) = 2437 lb

Loads at an interior joint are

At an exterior joint, the tributary roof area is half of that at an interior joint. The cor-
responding loads are

Load combination 3 will control:

Pu = 1.2D + 1.6S

At an interior joint,

Pu = 1.2(1.335) + 1.6(2.0) = 4.802 kips

At an exterior joint,

Pu = 1.2(0.7323) + 1.6(1.0) = 2.479 kips

The loaded truss is shown in Figure 3.35a.
The bottom chord is designed by determining the force in each member of the

bottom chord and selecting a cross section to resist the largest force. In this exam-
ple, the force in member IJ will control. For the free body left of section a–a shown
in Figure 3.35b,

M FE IJ= − − + + − =∑ 19 29 20 2 479 20 4 802 15 10 5 4 0. ( ) . ( ) . ( )

kipsFIJ = 48 04.
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For the gross section,

For the net section,

Try an MT5 × 3.75:

Ag = 1.11 in.2 > 1.07 in.2 (OK)

Compute the shear lag factor U from Equation 3.1.

Try an MT6 × 5:
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If we assume that the bottom chord is braced at the panel points,

Use an MT6 × 5.

Load combination 3 will control. At an interior joint,

Pa = D + S = 1.335 + 2.0 = 3.335 kips

At an exterior joint,

Pa = 0.7323 + 1.0 = 1.732 kips

The loaded truss is shown in Figure 3.36a.
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FIGURE 3.36

Member IJ is the bottom chord member with the largest force. For the free body
shown in Figure 3.36b,

For the gross section, Ft = 0.6Fy = 0.6(36) = 21.6 ksi
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For the net section, Ft = 0.5Fu = 0.5(58) = 29.0 ksi

Try an MT6 × 5.4:

Assuming that the bottom chord is braced at the panel points, we get

Use an MT6 × 5.4.
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FIGURE 3.37

3.9 PIN-CONNECTED MEMBERS

When a member is to be pin-connected, a hole is made in both the member and the
parts to which it is connected and a pin is placed through the holes. This provides a
connection that is as moment-free as can be fabricated. Tension members connected
in this manner are subject to several types of failure, which are covered in AISC D5
and D6 and discussed in the following paragraphs.

The eyebar is a special type of pin-connected member in which the end contain-
ing the pin hole is enlarged, as shown in Figure 3.37. The design strength is based on
yielding of the gross section. Detailed rules for proportioning eyebars are given in
AISC D6 and are not repeated here. These requirements are based on experience and
test programs for forged eyebars, but they are conservative when applied to eyebars
thermally cut from plates (the present fabrication method). Eyebars were widely used
in the past as single tension members in bridge trusses or were linked in chainlike
fashion in suspension bridges. They are rarely used today.
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Pin-connected members should be designed for the following limit states (see
Figure 3.38).

1. Tension on the net effective area (Figure 3.38a):

ft = 0.75, Ωt = 2.00, Pn = Fu(2tbe) (AISC Equation D5-1)

2. Shear on the effective area (Figure 3.38b):

fsf = 0.75, Ωsf = 2.00, Pn = 0.6FuAsf (AISC Equation D5-2)

3. Bearing. This requirement is given in Chapter J (“Connections, Joints, and
Fasteners”), Section J7 (Figure 3.38c):

f = 0.75, Ω = 2.00, Pn = 1.8Fy Apb (AISC Equation J7-1)

4. Tension on the gross section:

ft = 0.90, Ωt = 1.67, Pn = FyAg (AISC Equation D2-1)

where
t = thickness of connected part
be = 2t + 0.63 ≤ b
b = distance from edge of pin hole to edge of member, perpendicular to

direction of force
Asf = 2t(a + d�2)
a = distance from edge of pin hole to edge of member, parallel to direction

of force
d = pin diameter
Apb = projected bearing area = dt

Additional requirements for the relative proportions of the pin and the member
are covered in AISC D5.2
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Problems
Tensile Strength

3.2-1 A PL 3⁄8 × 7 tension member is connected with three 1-inch-diameter bolts, as shown
in Figure P3.2-1. The steel is A36. Assume that Ae = An and compute the following.

a. The design strength for LRFD.

b. The allowable strength for ASD.

FIGURE P3.2-1

3.2-2 A PL 1⁄2 × 8 tension member is connected with six 1-inch-diameter bolts, as shown
in Figure P3.2-2. The steel is ASTM A242. Assume that Ae = An and compute the
following.

a. The design strength for LRFD.

b. The allowable strength for ASD.

FIGURE P3.2-2

3.2-3 A C12 × 30 is connected with 1-in. diameter bolts in each flange, as shown in Fig-
ure P3.2-3. If Fy = 50 ksi, Fu = 65 ksi, and Ae = 0.90An, compute the following.

a. The design strength for LRFD.

b. The allowable strength for ASD.

PL 1⁄2 × 8

PL 3⁄8 × 7

90 Chapter 3 Tension Members
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FIGURE P3.2-3

3.2-4 A PL 3⁄8 × 6 tension member is welded to a gusset plate as shown in Figure P3.2-4. The
steel is A36. Assume that Ae = Ag and compute the following.

a. The design strength for LRFD.

b. The allowable strength for ASD.

FIGURE P3.2-4

3.2-5 The tension member shown in Figure P3.2-5 is a PL 1⁄2 × 8 of A36 steel. The mem-
ber is connected to a gusset plate with-11⁄8 inch-diameter bolts. It is subjected to
the dead and live loads shown. Does this member have enough strength? Assume that
Ae = An.

a. Use LRFD.

b. Use ASD.

FIGURE P3.2-5

D = 95k

L = 9k

PL 1⁄2 × 8

PL 3⁄8 × 6

Section
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3.2-6 A double-angle tension member, 2L 3 × 2 × 1⁄4 LLBB, of A36 steel is subjected to a
dead load of 12 kips and a live load of 36 kips. It is connected to a gusset plate with
3⁄4-inch-diameter bolts through the long legs. Does this member have enough
strength? Assume that Ae = 0.85An.

a. Use LRFD.

b. Use ASD.

FIGURE P3.2-6

3.2-7 A C8 × 11.5 is connected to a gusset plate with 7⁄8-inch-diameter bolts as shown in
Figure P3.2-7. The steel is A572 Grade 50. If the member is subjected to dead load
and live load only, what is the total service load capacity if the live-to-dead load ratio
is 3? Assume that Ae = 0.85An.

a. Use LRFD.

b. Use ASD.

FIGURE P3.2-7

Effective area

3.3-1 Determine the effective area Ae for each case shown in Figure P3.3-1.

C8 × 11.5

Section
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FIGURE P3.3-1 

3.3-2 For the tension member shown, compute the following.

a. The tensile design strength.

b. The allowable tensile strength.

FIGURE P3.3-2

PL 1⁄2 × 8
A36 steel

12′′

Weld

(e)

 
PL5⁄8 × 6

7⁄8-in.-diam. bolts

2′′ 2′′ 2′′ 2′′

5′′

Weld

 
PL5⁄8 × 5

(c)

PL1⁄2 × 51⁄2

(d)

2′′ 2′′

3⁄4-in.-diam. bolts

5′′
 

L5 × 5 × 5⁄8

(a)

5′′
 

PL3⁄8 × 4

(b)

WeldWeld
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3.3-3 Determine the nominal tensile strength based on the effective net area.

FIGURE P3.3-3

3.3-4 For the tension member shown, compute the following.

a. The tensile design strength.

b. The allowable tensile strength.

FIGURE P3.3-4

3.3-5 A W16 × 45 of A992 steel is connected to a plate at each flange as shown in Fig-
ure P3.3-5. Determine the nominal strength based on the net section as follows:

a. Use Equation 3.1 for the shear lag factor, U.

b. Use the alternative value of U from AISC Table D3.1.

FIGURE P3.3-5

W16 × 457⁄8-in.-diameter bolts

21⁄4′′ 3′′ 3′′ 3′′ 21⁄4′′

6′′

Weld

PL 1⁄4 × 6
A36 steel

5′′

2 L5 × 3 × 1⁄4 LLBB
(two angles, long legs
back-to-back)
A242 steel

7⁄8-in.-diameter bolts3′′
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3.3-6 The tension member shown in Figure P3.3-6 is a C12 × 20.7 of A572 Grade 50 steel.
Will it safely support a service dead load of 60 kips and a service live load of
125 kips? Use Equation 3.1 for U.

a. Use LRFD.

b. Use ASD.

FIGURE P3.3-6

3.3-7 A double-angle tension member, 2L4 × 3 × 1⁄4 LLBB, is connected with welds as
shown in Figure P3.3-7. A36 steel is used.

a. Compute the available strength for LRFD.

b. Compute the available strength for ASD.

FIGURE P3.3-7

3.3-8 An L5 × 5 × 1⁄2 tension member of A242 steel is connected to a gusset plate with six
3⁄4-inch-diameter bolts as shown in Figure P3.3-8. If the member is subject to dead load
and live load only, what is the maximum total service load that can be applied if the ratio
of live load to dead load is 2.0? Use the alternative value of U from AISC Table D3.1.

a. Use LRFD.

b. Use ASD.

8′′

4′′

C12 × 20.77⁄8-in.-diameter bolts

2′′ 21⁄2′′ 21⁄2′′ 21⁄2′′
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FIGURE P3.3-8

Staggered Fasteners

3.4-1 A36 steel is used for the tension member shown in Figure P3.4-1.

a. Determine the nominal strength based on the gross area.

b. Determine the nominal strength based on the net area.

FIGURE P3.4-1

3.4-2 The tension member shown in Figure 3.4-2 is a PL 5⁄8 × 10, and the steel is A36. The
bolts are 7⁄8-inch in diameter.

a. Determine the design strength for LRFD.

b. Determine the allowable strength for ASD.

2′′

4′′

2′′

4′′

2′′ 3′′ 3′′ 3′′ 3′′ 3′′ 5′′

3⁄4-in.-diameter bolts

PL 5⁄8 ×12

 
L5 × 5 × 1⁄2

11⁄2′′ 5 spaces @ 3′′
= 15′′

11⁄2′′
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FIGURE P3.4-2

3.4-3 An MC 9 × 23.9 is connected with 3⁄4-inch-diameter bolts as shown in Figure P3.4-3.
A572 Grade 50 steel is used.

a. Determine the design strength.

b. Determine the allowable strength.

FIGURE P3.4-3

3.4-4 A992 steel is used for the tension member shown in Figure P3.4-4. The bolts are 
3⁄4 inch in diameter. The connection is to a 3⁄8-in.-thick gusset plate.

a. Determine the nominal strength based on the gross area.

b. Determine the nominal strength based on the effective net area.

MC 9 × 23.9

2′′

2′′

21⁄2′′

21⁄2′′

2′′ 3′′
21⁄2′′

2′′

3′′

2′′

2′′ 2′′
3′′3′′

3′′
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FIGURE P3.4-4

3.4-5 The tension member shown in Figure P3.4-5 is an L6 × 31⁄2 × 5⁄16. The bolts are 3⁄4 inch
in diameter. If A36 steel is used, is the member adequate for a service dead load of
31 kips and a service live load of 31 kips?

a. Use LRFD.

b. Use ASD.

FIGURE P3.4-5

3.4-6 A double-channel shape, 2C10 × 20, of A572 Grade 50 steel is used for a built-up ten-
sion member as shown in Figure P3.4-6. The holes are for 1⁄2-inch-diameter bolts.
Determine the total service load capacity if the live load is three times the dead load.

a. Use LRFD.

b. Use ASD.

2 1⁄4′′

2 1⁄2′′

1.5′′ 1.5′′ 1.5′′
2′′

31⁄2′′

3′′

3′′

3′′

31⁄2′′

2′′ 31⁄2′′ 3′′

W16 × 40
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FIGURE P3.4-6

Block Shear

3.5-1 The tension member is a PL3⁄8 × 51⁄2 of A242 steel. It is connected to a 3⁄8-in. thick
gusset plate, also of A242 steel, with 3⁄4-inch diameter bolts as shown in Figure P3.5-1.
Determine the nominal block shear strength of the tension member.

FIGURE P3.5-1

3.5-2 A square hollow structural section (HSS) is used as a tension member and is welded
to a gusset plate of A36 steel as shown in Figure P3.5-2. Compute the nominal block
shear strength of the gusset plate.

11⁄2′′

11⁄2′′

11⁄2′′ 11⁄2′′

21⁄2′′

3′′ 3′′

3⁄8′′

21⁄2′′

21⁄2′′

4′′ 4′′ 4′′ 4′′
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FIGURE P3.5-2

3.5-3 A WT8 × 13 of A992 steel is used as a tension member. The connection is with 7⁄8-in.
diameter bolts as shown in Figure P3.5-3. Compute the nominal block shear strength.

FIGURE P3.5-3

3.5-4 Compute the available block shear strength of the gusset plate.

a. Use LRFD.

b. Use ASD.

FIGURE P3.5-4

71⁄2′′

Weld

PL 1⁄2 × 6
A36 steel

t = 1⁄2′′

41⁄2′′

11⁄2′′ 3′′ 3′′ 3′′ 3′′

HSS 6 × 6 × 1⁄2

7′′

t = 5⁄8′′
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3.5-5 A C7 × 9.8 tension member is connected to a 3⁄8-in.-thick gusset plate as shown in Fig-
ure P3.5-5. Both the member and the gusset plate are A36 steel.

a. Compute the available block shear strength of the tension member for both LRFD
and ASD.

b. Compute the available block shear strength of the gusset plate for both LRFD and
ASD.

FIGURE P3.5-5

3.5-6 A double-channel shape, 2C8 × 18.75, is used as a tension member. The channels are
bolted to a 3⁄8-inch gusset plate with 7⁄8-inch diameter bolts. The tension member is
A572 Grade 50 steel and the gusset plate is A36. If LRFD is used, how much factored
tensile load can be applied? Consider all limit states.

FIGURE P3.5-6

2C8 × 18.75

2′′

2′′

2′′

3′′ 3′′ 3′′

t = 3⁄8′′

11⁄2′′3′′3′′11⁄2′′

t = 3⁄8′′
3⁄4′′-diameter bolts

C7 × 9.8

2′′

2′′
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Design of Tension Members

3.6-1 Select a single-angle tension member of A36 steel to resist the following service
loads: dead load = 50 kips, live load = 100 kips, and wind load = 45 kips. The mem-
ber will be connected through one leg with 1-inch diameter bolts in two lines. There
will be four bolts in each line. The member length is 20 feet.

a. Use LRFD.

b. Use ASD.

FIGURE P3.6-1

3.6-2 Use A36 steel and select a double-angle tension member to resist a service dead load
of 20 kips and a service live load of 60 kips. Assume that the member will be con-
nected to a 3⁄8-inch-thick gusset plate with a single line of five 7⁄8-inch diameter bolts.
The member is 15 feet long.

a. Use LRFD.

b. Use ASD.

FIGURE P3.6-2

3.6-3 Select an ST shape to be used as a 20-ft-long tension member to resist the following
service loads: dead load = 38 kips, live load = 115 kips, and snow load = 75 kips. The
connection is through the flange with three 3⁄4-inch diameter bolts in each line. Use
A572 Grade 50 steel.

a. Use LRFD.

b. Use ASD.

Bolt line

Bolt lines
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FIGURE P3.6-3

3.6-4 Select an S shape for the tension member shown in Figure P3.6-4. The member shown
will be connected between two plates with eight 7⁄8-in. diameter bolts. The service dead
load is 216 kips, the service live load is 25 kips, and the length is 22 ft. Use A36 steel.

a. Use LRFD.

b. Use ASD.

FIGURE P3.6-4

3.6-5 Choose a pipe to be used as a tension member to resist a service dead load of 10 kips
and a service live load of 25 kips. The ends will be connected by welding completely
around the circumference of the pipe. The length is 8 feet.

a. Use LRFD.

b. Use ASD.

3.6-6 Use LRFD and select an American Standard Channel shape for the following ten-
sile loads: dead load = 54 kips, live load = 80 kips, and wind load = 75 kips. The
connection will be with two 9-in.-long longitudinal welds. Use an estimated shear
lag factor of U = 0.85. Once the member has been selected, compute the value of
U with Equation 3.1 and revise the design if necessary. The length is 17.5 ft. Use 
Fy = 50 ksi and Fu = 65 ksi.

Threaded Rods and Cables

3.7-1 Select a threaded rod to resist a service dead load of 43 kips and a service live load
of 4 kips. Use A36 steel.

a. Use LRFD.

b. Use ASD.

3 bolts3 bolts
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3.7-2 A W16 × 36 is supported by two tension rods AB and CD, as shown in Figure P3.7-2.
The 30-kip load is a service live load. Use load and resistance factor design and select
threaded rods of A36 steel for the following load cases.

a. The 30-kip load cannot move from the location shown.

b. The 30-kip load can be located anywhere between the two rods.

FIGURE P3.7-2

3.7-3 Same as problem 3.7-2, but use allowable stress design.

3.7-4 As shown in Figure P3.7-4, members AC and BD are used to brace the pin-connected
structure against a horizontal wind load of 10 kips. Both of these members are assumed
to be tension members and not resist any compression. For the load direction shown,
member AC will resist the load in tension, and member BD will be unloaded. Select
threaded rods of A36 steel for these members. Use load and resistance factor design.

FIGURE P3.7-4

20′

35′

10k
B C

D
A

W16 × 36

10′ 10′ 5′5′

30k

D

C

A

B
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3.7-5 What size A36 threaded rod is required for member AB, as shown in Figure P3.7-5?
The load is a service live load. (Neglect the weight of member CB.)

a. Use LRFD.

b. Use ASD.

FIGURE P3.7-5

3.7-6 A pipe is supported at 12-foot intervals by a bent, threaded rod, as shown in Fig-
ure P3.7-6. If an 8-inch-diameter standard weight steel pipe full of water is used, what
size A36 steel rod is required?

a. Use LRFD.

b. Use ASD.

FIGURE P3.7-6

Tension Members in Roof Trusses

3.8-1 Use A992 steel and select a structural tee for the top chord of the welded roof truss
shown in Figure P3.8-1. All connections are made with longitudinal plus transverse
welds. Assume a connection length of 12 inches. The spacing of trusses in the roof
system is 15 feet. Design for the following loads.
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Snow: 20 psf of horizontal projection

Roofing: 12 psf

MC8 × 8.5 purlins

Truss weight: 1000 lb (estimated)

a. Use LRFD.

b. Use ASD.

FIGURE P3.8-1

3.8-2 Use ASD and select single-angle shapes for the web tension members of the truss loaded
as shown in Figure P3.8-2. The loads are service loads. All connections are with longi-
tudinal welds. Use A36 steel and an estimated shear lag factor, U, of 0.85.

FIGURE P3.8-2

3.8-3 Compute the factored joint loads for the truss of Problem 3.8-2 for the following
conditions.

Trusses spaced at 18 feet

Weight of roofing = 8 psf

Snow load = 20 psf of horizontal projection

W10 × 33 purlins located only at the joints

Total estimated truss weight = 5000 lb

3.8-4 Use LRFD and design the tension members of the roof truss shown in Figure P3.8-4.
Use double-angle shapes throughout and assume 3⁄8-inch-thick gusset plates and
welded connections. Assume a shear lag factor of U = 0.80. The trusses are spaced at
30 feet. Use A36 steel and design for the following loads.
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Metal deck: 4 psf of roof surface

Built-up roof: 12 psf of roof surface

Purlins: 3 psf of roof surface (estimated) 

Snow: 20 psf of horizontal projection

Truss weight: 5 psf of horizontal projection (estimated)

FIGURE P3.8-4

3.8-5 Use A36 steel and design sag rods for the truss of Problem 3.8-4. Assume that, once
attached, the metal deck will provide lateral support for the purlins; therefore, the sag
rods need to be designed for the purlin weight only.

a. Use LRFD.

b. Use ASD.
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C H A P T E R 4
Compression Members

109

4.1 INTRODUCTION

Compression members are structural elements that are subjected only to axial com-
pressive forces; that is, the loads are applied along a longitudinal axis through the cen-
troid of the member cross section, and the stress can be taken as f = P/A, where f is
considered to be uniform over the entire cross section. This ideal state is never
achieved in reality, however, because some eccentricity of the load is inevitable.
Bending will result, but it usually can be regarded as secondary. As we shall see, the
AISC Specification equations for compression member strength account for this
accidental eccentricity.

The most common type of compression member occurring in buildings and
bridges is the column, a vertical member whose primary function is to support verti-
cal loads. In many instances, these members are also subjected to bending, and in
these cases, the member is a beam–column. We cover this topic in Chapter 6. Com-
pression members are also used in trusses and as components of bracing systems.
Smaller compression members not classified as columns are sometimes referred to as
struts.

In many small structures, column axial forces can be easily computed from the
reactions of the beams that they support or computed directly from floor or roof
loads. This is possible if the member connections do not transfer moment; in other
words, if the column is not part of a rigid frame. For columns in rigid frames, there
are calculable bending moments as well as axial forces, and a frame analysis is nec-
essary. The AISC Specification provides for three methods of analysis to obtain the
axial forces and bending moments in members of a rigid frame:

1. Direct analysis method
2. Effective length method
3. First-order analysis method

Except in very simple cases, computer software is used for the analysis. While the
details of these three methods are beyond the scope of the present chapter, more will
be said about them in Chapter 6 “Beam–Columns”. It is important to recognize,
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however, that these three methods are used to determine the required strengths of the
members (axial loads and bending moments). The available strengths are computed
by the methods of this chapter “Compression Members”, Chapter 5 “Beams”, and
Chapter 6 “Beam–Columns”.

4.2 COLUMN THEORY

Consider the long, slender compression member shown in Figure 4.1a. If the axial load
P is slowly applied, it will ultimately become large enough to cause the member to
become unstable and assume the shape indicated by the dashed line. The member is
said to have buckled, and the corresponding load is called the critical buckling load.
If the member is stockier, as shown in Figure 4.1b, a larger load will be required to
bring the member to the point of instability. For extremely stocky members, failure may
occur by compressive yielding rather than buckling. Prior to failure, the compressive
stress P�A will be uniform over the cross section at any point along the length, whether
the failure is by yielding or by buckling. The load at which buckling occurs is a func-
tion of slenderness, and for very slender members this load could be quite small.

If the member is so slender (we give a precise definition of slenderness shortly)
that the stress just before buckling is below the proportional limit—that is, the mem-
ber is still elastic—the critical buckling load is given by

(4.1)

where E is the modulus of elasticity of the material, I is the moment of inertia of the
cross-sectional area with respect to the minor principal axis, and L is the length of
the member between points of support. For Equation 4.1 to be valid, the member must
be elastic, and its ends must be free to rotate but not translate laterally. This end
condition is satisfied by hinges or pins, as shown in Figure 4.2. This remarkable

P
EI

L
cr = π 2

2
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4.2 Column Theory 111

FIGURE 4.3

relationship was first formulated by Swiss mathematician Leonhard Euler and published
in 1759. The critical load is sometimes referred to as the Euler load or the Euler buck-
ling load. The validity of Equation 4.1 has been demonstrated convincingly by
numerous tests. Its derivation is given here to illustrate the importance of the end
conditions.

For convenience, in the following derivation, the member will be oriented with
its longitudinal axis along the x-axis of the coordinate system given in Figure 4.3. The
roller support is to be interpreted as restraining the member from translating either up
or down. An axial compressive load is applied and gradually increased. If a tempo-
rary transverse load is applied so as to deflect the member into the shape indicated by
the dashed line, the member will return to its original position when this temporary
load is removed if the axial load is less than the critical buckling load. The critical
buckling load, Pcr, is defined as the load that is just large enough to maintain the
deflected shape when the temporary transverse load is removed.

The differential equation giving the deflected shape of an elastic member subjected
to bending is

(4.2)

where x locates a point along the longitudinal axis of the member, y is the deflection
of the axis at that point, and M is the bending moment at the point. E and I were pre-
viously defined, and here the moment of inertia I is with respect to the axis of bend-
ing (buckling). This equation was derived by Jacob Bernoulli and independently by
Euler, who specialized it for the column buckling problem (Timoshenko, 1953). If we
begin at the point of buckling, then from Figure 4.3 the bending moment is Pcry. 
Equation 4.2 can then be written as

where the prime denotes differentiation with respect to x. This is a second-order, lin-
ear, ordinary differential equation with constant coefficients and has the solution

y = A cos(cx) + B sin(cx)

′′ + =y
P

EI
ycr 0

d y

dx

M

EI

2

2 = −
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where

and A and B are constants. These constants are evaluated by applying the following
boundary conditions:

At x = 0, y = 0: 0 = A cos(0) + B sin(0) A = 0

At x = L, y = 0: 0 = B sin(cL)

This last condition requires that sin(cL) be zero if B is not to be zero (the trivial
solution, corresponding to P = 0). For sin(cL) = 0,

cL = 0, p, 2p, 3p, . . . = np, n = 0, 1, 2, 3, . . .

From

we obtain

The various values of n correspond to different buckling modes; n = 1 represents the
first mode, n = 2 the second, and so on. A value of zero gives the trivial case of no
load. These buckling modes are illustrated in Figure 4.4. Values of n larger than 1 are
not possible unless the compression member is physically restrained from deflecting
at the points where the reversal of curvature would occur.

cL
P
EI

L n ,
P
EI

L n P n Ecr cr
cr=

⎛

⎝
⎜

⎞

⎠
⎟ = = =π π π2 2 2

2 2

and II
L2

c
P

EI
cr=

c
P

EI
cr=
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The solution to the differential equation is therefore

and the coefficient B is indeterminate. This result is a consequence of approximations
made in formulating the differential equation; a linear representation of a nonlinear
phenomenon was used.

For the usual case of a compression member with no supports between its ends, 
n = 1 and the Euler equation is written as

(4.3)

It is convenient to rewrite Equation 4.3 as

where A is the cross-sectional area and r is the radius of gyration with respect to the
axis of buckling. The ratio L�r is the slenderness ratio and is the measure of a mem-
ber’s slenderness, with large values corresponding to slender members.

If the critical load is divided by the cross-sectional area, the critical buckling
stress is obtained:

(4.4)

At this compressive stress, buckling will occur about the axis corresponding to r.
Buckling will take place as soon as the load reaches the value given by Equation 4.3,
and the column will become unstable about the principal axis corresponding to the
largest slenderness ratio. This axis usually is the axis with the smaller moment of
inertia (we examine exceptions to this condition later). Thus the minimum moment
of inertia and radius of gyration of the cross section should ordinarily be used in
Equations 4.3 and 4.4.

F
P
A

E
L rcr

cr= = π 2

2( )�

P EI
L

EAr
L

EA
L rcr = = =π π π2

2

2 2

2

2

2( )�

P
EI

L
cr = π 2

2

y B
n x

L
= ⎛

⎝
⎞
⎠ sin

π
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E X A M P L E  4 . 1

A W12 × 50 is used as a column to support an axial compressive load of 145 kips.
The length is 20 feet, and the ends are pinned. Without regard to load or resistance
factors, investigate this member for stability. (The grade of steel need not be known:
The critical buckling load is a function of the modulus of elasticity, not the yield
stress or ultimate tensile strength.)

76004_04_ch04_p108-187.qxd  9/5/11  1:01 PM  Page 113



For a W12 × 50,

Because the applied load of 145 kips is less than Pcr, the column remains stable and
has an overall factor of safety against buckling of 278.9�145 = 1.92.

Minimum in.

Maximum

r r

L

r

y= =

= =

1 96

20 12

1 96
1

.

( )

.
222 4

29 000 14 6

122 4

2

2

2

.

( )

( , )( . )

( . )
P

EA

L r
cr = =p p

� 22
278 9= . kips
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FIGURE 4.5

S O L U T I O N

A N S W E R

Early researchers soon found that Euler’s equation did not give reliable results for
stocky, or less slender, compression members. The reason is that the small slenderness
ratio for members of this type causes a large buckling stress (from Equation 4.4). If
the stress at which buckling occurs is greater than the proportional limit of the mate-
rial, the relation between stress and strain is not linear, and the modulus of elasticity
E can no longer be used. (In Example 4.1, the stress at buckling is Pcr�A = 278.9�14.6 =
19.10 ksi, which is well below the proportional limit for any grade of structural steel.)
This difficulty was initially resolved by Friedrich Engesser, who proposed in 1889 the
use of a variable tangent modulus, Et, in Equation 4.3. For a material with a
stress–strain curve like the one shown in Figure 4.5, E is not a constant for stresses
greater than the proportional limit Fpl. The tangent modulus Et is defined as the slope
of the tangent to the stress–strain curve for values of f between Fpl and Fy. If the com-
pressive stress at buckling, Pcr �A, is in this region, it can be shown that

(4.5)

Equation 4.5 is identical to the Euler equation, except that Et is substituted for E.

P
E I

L
cr

t= π 2

2
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The stress–strain curve shown in Figure 4.5 is different from those shown earlier
for ductile steel (in Figures 1.3 and 1.4) because it has a pronounced region of nonlin-
earity. This curve is typical of a compression test of a short length of W-shape called
a stub column, rather than the result of a tensile test. The nonlinearity is primarily because
of the presence of residual stresses in the W-shape. When a hot-rolled shape cools after
rolling, all elements of the cross section do not cool at the same rate. The tips of the
flanges, for example, cool faster than the junction of the flange and the web. This un-
even cooling induces stresses that remain permanently. Other factors, such as welding
and cold-bending to create curvature in a beam, can contribute to the residual stress,
but the cooling process is its chief source.

Note that Et is smaller than E and for the same L�r corresponds to a smaller critical
load, Pcr. Because of the variability of Et, computation of Pcr in the inelastic range by the
use of Equation 4.5 is difficult. In general, a trial-and-error approach must be used, and
a compressive stress–strain curve such as the one shown in Figure 4.5 must be used to
determine Et for trial values of Pcr. For this reason, most design specifications, including
the AISC Specification, contain empirical formulas for inelastic columns.

Engesser’s tangent modulus theory had its detractors, who pointed out several
inconsistencies. Engesser was convinced by their arguments, and in 1895 he refined
his theory to incorporate a reduced modulus, which has a value between E and Et.
Test results, however, always agreed more closely with the tangent modulus theory.
Shanley (1947) resolved the apparent inconsistencies in the original theory, and
today the tangent modulus formula, Equation 4.5, is accepted as the correct one for
inelastic buckling. Although the load predicted by this equation is actually a lower
bound on the true value of the critical load, the difference is slight (Bleich, 1952).

For any material, the critical buckling stress can be plotted as a function of slen-
derness, as shown in Figure 4.6. The tangent modulus curve is tangent to the Euler curve
at the point corresponding to the proportional limit of the material. The composite
curve, called a column strength curve, completely describes the strength of any column
of a given material. Other than Fy, E, and Et, which are properties of the material, the
strength is a function only of the slenderness ratio.

4.2 Column Theory 115

FIGURE 4.6
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Effective Length

Both the Euler and tangent modulus equations are based on the following assumptions:

1. The column is perfectly straight, with no initial crookedness.

2. The load is axial, with no eccentricity.

3. The column is pinned at both ends.

The first two conditions mean that there is no bending moment in the member before
buckling. As mentioned previously, some accidental moment will be present, but in
most cases it can be ignored. The requirement for pinned ends, however, is a serious
limitation, and provisions must be made for other support conditions. The pinned-end
condition requires that the member be restrained from lateral translation, but not
rotation, at the ends. Constructing a frictionless pin connection is virtually impossi-
ble, so even this support condition can only be closely approximated at best. Obvi-
ously, all columns must be free to deform axially.

Other end conditions can be accounted for in the derivation of Equation 4.3. In gen-
eral, the bending moment will be a function of x, resulting in a nonhomogeneous dif-
ferential equation. The boundary conditions will be different from those in the original
derivation, but the overall procedure will be the same. The form of the resulting equa-
tion for Pcr will also be the same. For example, consider a compression member pinned
at one end and fixed against rotation and translation at the other, as shown in Figure 4.7.
The Euler equation for this case, derived in the same manner as Equation 4.3, is

or

P EA
L r
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Thus this compression member has the same load capacity as a column that is pinned
at both ends and is only 70% as long as the given column. Similar expressions can be
found for columns with other end conditions.

The column buckling problem can also be formulated in terms of a fourth-order
differential equation instead of Equation 4.2. This proves to be convenient when
dealing with boundary conditions other than pinned ends.

For convenience, the equations for critical buckling load will be written as

(4.6a/4.6b)

where KL is the effective length, and K is the effective length factor. The effective
length factor for the fixed-pinned compression member is 0.70. For the most favor-
able condition of both ends fixed against rotation and translation, K = 0.5. Values of
K for these and other cases can be determined with the aid of Table C-A-7.1 in the
Commentary to AISC Specification Appendix 7. The three conditions mentioned
thus far are included, as well as some for which end translation is possible. Two val-
ues of K are given: a theoretical value and a recommended design value to be used
when the ideal end condition is approximated. Hence, unless a “fixed” end is perfectly
fixed, the more conservative design values are to be used. Only under the most
extraordinary circumstances would the use of the theoretical values be justified. Note,
however, that the theoretical and recommended design values are the same for
conditions (d) and (f) in Commentary Table C-A-7.1. The reason is that any devia-
tion from a perfectly frictionless hinge or pin introduces rotational restraint and
tends to reduce K. Therefore, use of the theoretical values in these two cases is
conservative.

The use of the effective length KL in place of the actual length L in no way alters
any of the relationships discussed so far. The column strength curve shown in Figure 4.6
is unchanged except for renaming the abscissa KL�r. The critical buckling stress
corresponding to a given length, actual or effective, remains the same.

4.3 AISC REQUIREMENTS

The basic requirements for compression members are covered in Chapter E of the
AISC Specification. The nominal compressive strength is

Pn = FcrAg (AISC Equation E3-1)

For LRFD,

Pu ≤ fcPn

where
Pu = sum of the factored loads
fc = resistance factor for compression = 0.90

fcPn = design compressive strength

P
EA

KL r
P

E A

KL rcr cr
t= =π π2

2

2

2( ) ( )� �
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For ASD,

where
Pa = sum of the service loads
Ωc = safety factor for compression = 1.67

Pn�Ωc = allowable compressive strength

If an allowable stress formulation is used,

fa ≤ Fa

where
fa = computed axial compressive stress = Pa�Ag

Fa = allowable axial compressive stress

(4.7)

In order to present the AISC expressions for the critical stress Fcr, we first define the
Euler load as

This is the critical buckling load according to the Euler equation. The Euler stress is

(AISC Equation E3-4)

With a slight modification, this expression will be used for the critical stress in the elas-
tic range. To obtain the critical stress for elastic columns, the Euler stress is reduced
as follows to account for the effects of initial crookedness:

Fcr = 0.877Fe (4.8)

For inelastic columns, the tangent modulus equation, Equation 4.6b, is replaced by the
exponential equation

(4.9)

With Equation 4.9, a direct solution for inelastic columns can be obtained, avoiding
the trial-and-error approach inherent in the use of the tangent modulus equation. At the
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boundary between inelastic and elastic columns, Equations 4.8 and 4.9 give the same
value of Fcr. This occurs when KL�r is approximately

To summarize,

(4.10)

(4.11)

The AISC Specification provides for separating inelastic and elastic behavior based on
either the value of KL�r (as in equations 4.10 and 4.11) or the value of the ratio Fy�Fe.
The limiting value of Fy�Fe can be derived as follows. From AISC Equation E3-4,

For 

The complete AISC Specification for compressive strength is as follows:

(AISC Equation E3-2)

(AISC Equation E3-3)

In this book, we will usually use the limit on KL�r, as expressed in Equations 4.10
and 4.11. These requirements are represented graphically in Figure 4.8.
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AISC Equations E3-2 and E3-3 are a condensed version of five equations that
cover five ranges of KL�r (Galambos, 1988). These equations are based on experi-
mental and theoretical studies that account for the effects of residual stresses and an
initial out-of-straightness of L�1500, where L is the member length. A complete
derivation of these equations is given by Tide (2001).

Although AISC does not require an upper limit on the slenderness ratio KL�r, an
upper limit of 200 is recommended (see user note in AISC E2). This is a practical
upper limit, because compression members that are any more slender will have little
strength and will not be economical.

120 Chapter 4 Compression Members

FIGURE 4.8

E X A M P L E  4 . 2

A W14 × 74 of A992 steel has a length of 20 feet and pinned ends. Compute the
design compressive strength for LRFD and the allowable compressive strength for
ASD.

Slenderness ratio:

Since 96.77 < 113, use AISC Equation E3-2.
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The nominal strength is

Pn = FcrAg = 25.21(21.8) = 549.6 kips

The design strength is

fcPn = 0.90(549.6) = 495 kips

From Equation 4.7, the allowable stress is

Fa = 0.6Fcr = 0.6(25.21) = 15.13 ksi

The allowable strength is

FaAg = 15.13(21.8) = 330 kips

Design compressive strength = 495 kips. Allowable compressive 
strength = 330 kips.

4.4 Local Stability 121

In Example 4.2, ry < rx, and there is excess strength in the x-direction. Square
structural tubes (HSS) are efficient shapes for compression members because ry = rx
and the strength is the same for both axes. Hollow circular shapes are sometimes used
as compression members for the same reason.

The mode of failure considered so far is referred to as flexural buckling, as the
member is subjected to flexure, or bending, when it becomes unstable. For some
cross-sectional configurations, the member will fail by twisting (torsional buckling)
or by a combination of twisting and bending (flexural-torsional buckling). We consider
these infrequent cases in Section 4.8.

4.4 LOCAL STABILITY

The strength corresponding to any overall buckling mode, however, such as flexural
buckling, cannot be developed if the elements of the cross section are so thin that local
buckling occurs. This type of instability is a localized buckling or wrinkling at an iso-
lated location. If it occurs, the cross section is no longer fully effective, and the mem-
ber has failed. I-shaped cross sections with thin flanges or webs are susceptible to this
phenomenon, and their use should be avoided whenever possible. Otherwise, the
compressive strength given by AISC Equations E3-2 and E3-3 must be reduced. The
measure of this susceptibility is the width-to-thickness ratio of each cross-sectional
element. Two types of elements must be considered: unstiffened elements, which are

L R F D
S O L U T I O N

A S D
S O L U T I O N
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unsupported along one edge parallel to the direction of load, and stiffened elements,
which are supported along both edges.

Limiting values of width-to-thickness ratios are given in AISC B4.1, “Classi-
fication of Sections for Local Buckling.” For compression members, shapes are
classified as slender or nonslender. If a shape is slender, its strength limit state is
local buckling, and the corresponding reduced strength must be computed. The
width-to-thickness ratio is given the generic symbol l. Depending on the particu-
lar cross-sectional element, l for I shapes is either the ratio b/t or h/tw, both of which
are defined presently. If l is greater than the specified limit (denoted lr), the shape
is slender.

AISC Table B4.1a shows the upper limit, lr, for nonslender members of var-
ious cross-sectional shapes. If l ≤ lr, the shape is nonslender. Otherwise, the
shape is slender. The table is divided into two parts: unstiffened elements and stiff-
ened elements. (For beams, a shape can be compact, noncompact, or slender, and
the limiting values of l are given in AISC Table B4.1b. We cover beams in Chap-
ter 5.) For I shapes, the projecting flange is considered to be an unstiffened
element, and its width can be taken as half of the full nominal width. Using AISC
notation gives

where bf and tf are the width and thickness of the flange. The upper limit is

The webs of I shapes are stiffened elements, and the stiffened width is the distance
between the roots of the flanges. The width-to-thickness parameter is

where h is the distance between the roots of the flanges, and tw is the web thickness.
The upper limit is

Stiffened and unstiffened elements of various cross-sectional shapes are illustrated
in Figure 4.9. The appropriate compression member limit, lr, from AISC B4.1 is given
for each case.
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4.4 Local Stability 123
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E X A M P L E  4 . 3

Investigate the column of Example 4.2 for local stability.

For a W14 × 74, bf = 10.1 in., tf = 0.785 in., and

h

t

d k

tw

des

w

=
−

= − =
2 14 2 2 1 38

0 450
25 4

. ( . )
.

.

0 56 0 56
29 000

50
13 5 6 43. .

,
. .

E

Fy

= = > (OK)

b

t
f

f2

10 1

2 0 785
6 43= =.

( . )
.

S O L U T I O N

76004_04_ch04_p108-187.qxd  9/5/11  1:01 PM  Page 123



where kdes is the design value of k. (Different manufacturers will produce this shape
with different values of k. The design value is the smallest of these values. The
detailing value is the largest.)

Local instability is not a problem.
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In Example 4.3, the width-to-thickness ratios bf �2tf and h�tw were computed.
This is not necessary, however, because these ratios are tabulated in the dimensions
and properties table. In addition, shapes that are slender for compression are indicated
with a footnote (footnote c).

It is permissible to use a cross-sectional shape that does not satisfy the width-to-
thickness ratio requirements, but such a member may not be permitted to carry as
large a load as one that does satisfy the requirements. In other words, the strength
could be reduced because of local buckling. The overall procedure for making this
investigation is as follows.

• If the width-to-thickness ratio l is greater than lr, use the provisions of
AISC E7 and compute a reduction factor Q.

• Compute KL�r and Fe as usual.

•

(AISC Equation E7-2)

•

Fcr = 0.877Fe (AISC Equation E7-3)

• The nominal strength is Pn = FcrAg (AISC Equation E7-1)

The reduction factor Q is the product of two factors—Qs for unstiffened elements and
Qa for stiffened elements. If the shape has no slender unstiffened elements, Qs = 1.0.
If the shape has no slender stiffened elements, Qa = 1.0.

Many of the shapes commonly used as columns are not slender, and the reduction
will not be needed. This includes most (but not all) W-shapes. However, a large num-
ber of hollow structural shapes (HSS), double angles, and tees have slender elements.
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AISC Specification Section E7.1 gives the procedure for calculating Qs for slender
unstiffened elements. The procedure is straightforward, and involves comparing the
width-to-thickness ratio with a limiting value and then computing Qs from an expres-
sion that is a function of the width-to-thickness ratio, Fy, and E.

The computation of Qa for slender stiffened elements is given in AISC E7.2 and
is slightly more complicated than the procedure for unstiffened elements. The general
procedure is as follows.

• Compute an effective area of the cross section. This requires a knowledge of
the stress in the effective area, so iteration is required. The Specification allows
a simplifying assumption, however, so iteration can be avoided.

• Compute Qa = Ae�Ag, where Ae is the effective area, and Ag is the gross or
unreduced area.

The details of the computation of Qs and Qa will not be given here but will be shown
in the following example, which illustrates the procedure for an HSS.

4.4 Local Stability 125

E X A M P L E  4 . 4

Determine the axial compressive strength of an HSS 8 × 4 × 1⁄8 with an effective
length of 15 feet with respect to each principal axis. Use Fy = 46 ksi.

S O L U T I O N Compute the overall, or flexural, buckling strength.

Since 105.3 < 118, use AISC Equation E3-2.

The nominal strength is

Pn = FcrAg = 21.82(2.70) = 58.91 kips

Check width-to-thickness ratios:
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From the dimensions and properties table in the Manual, the width-to-thickness
ratio for the larger overall dimension is

The ratio for the smaller dimension is

From AISC Table B4.1a, Case 6 (and Figure 4.9 in this book), the upper limit for
nonslender elements is

Since the larger dimension element is slender and the local 

buckling strength must be computed. (Although the limiting width-to-thickness ratio
is labeled b/t in the table, that is a generic notation, and it applies to h�t as well.)

Because this cross-sectional element is a stiffened element, Qs = 1.0, and Qa

must be computed from AISC Section E7.2. The shape is a rectangular section of
uniform thickness, with 

So AISC E7.2 (b) applies, where

and Ae is the reduced effective area. The Specification user note for square and rec-
tangular sections permits a value of f = Fy to be used in lieu of determining f by
iteration. From AISC Equation E7-18, the effective width of the slender element is

(AISC Equation E7-18)

For the 8-inch side, using f = Fy and the design thickness* from the dimensions and
properties table,
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*The design thickness of an HSS is 0.93 times the nominal thickness (AISC B4.2). Using the design thickness in strength
computations is a conservative way to account for tolerances in the manufacturing process.
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From AISC B4.1(b) and the discussion in Part 1 of the Manual, the unreduced
length of the 8-inch side between the corner radii can be taken as

b = 8 − 3t = 8 − 3(0.116) = 7.652 in.

where the corner radius is taken as 1.5 times the design thickness.

The total loss in area is therefore

2(b − be)t = 2(7.652 − 4.784)(0.116) = 0.6654 in.2

and the reduced area is

Ae = 2.70 − 0.6654 = 2.035 in.2

The reduction factor is

Compute the local buckling strength:

∴ Use AISC Equation E7-2

Pn = FcrAg = 19.76(2.70) = 53.35 kips

Since this is less than the flexural buckling strength of 58.91 kips, local buckling
controls.

Design strength = fcPn = 0.90(53.35) = 48.0 kips

(Allowable stress = 0.6Fcr = 0.6(19.76) = 11.9 ksi)
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As an initial trial value, use

f = Fcr = 19.76 ksi (the value obtained above after using an initial value of 
f = Fy)

The total loss in area is

2(b − be)t = 2(7.652 − 6.65)(0.116) = 0.2325 in.2

and the reduced area is

Ae = 2.70 − 0.2325 = 2.468 in.2

The reduction factor is

Compute the local buckling strength.

∴ Use AISC Equation E7-2

Try f = 21.26 ksi:

The total loss in area is

2(b − be)t = 2(7.652 − 6.477)(0.116) = 0.2726 in.2

and the reduced area is

Ae = 2.70 − 0.2726 = 2.427 in.2
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The reduction factor is

Compute the local buckling strength.

∴ Use AISC Equation E7-2

Try f = 21.15 ksi:

The total loss in area is

2(b − be)t = 2(7.652 − 6.489)(0.116) = 0.2698 in.2

and the reduced area is

Ae = 2.70 − 0.2698 = 2.430 in.2

The reduction factor is

Compute the local buckling strength.

∴ Use AISC Equation E7-2
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Recall that AISC Equation E7-18 for be applies when In the present
case,

Since 66 > 51.8, AISC Equation E7-18 does apply.

Pn = FcrAg = 21.16(2.70) = 57.13 kips ∴ Local buckling controls

Design strength = fcPn = 0.90(57.13) = 51.4 kips

(Allowable stress = 0.6Fcr = 0.6(21.16) = 12.7 ksi)

Allowable strength kips
Pn

Ω
= =57 13

1 67
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130 Chapter 4 Compression Members

4.5 TABLES FOR COMPRESSION MEMBERS

The Manual contains many useful tables for analysis and design. For compression
members whose strength is governed by flexural buckling (that is, not local buck-
ing), Table 4-22 in Part 4 of the Manual, “Design of Compression Members,” can
be used. This table gives values of fcFcr (for LRFD) and Fcr�Ωc (for ASD) as a func-
tion of KL�r for various values of Fy. This table stops at the recommended upper
limit of KL�r = 200. The available strength tables, however, are the most useful.
These tables, which we will refer to as the “column load tables,” give the available
strengths of selected shapes, both fcPn for LRFD and Pn�Ωc for ASD, as a function of
the effective length KL. These tables include values of KL up to those corresponding
to KL�r = 200.

The use of the tables is illustrated in the following example.

L R F D
S O L U T I O N

A S D
S O L U T I O N
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4.5 Tables for Compression Members 131

E X A M P L E  4 . 5

Compute the available strength of the compression member of Example 4.2 with the
aid of (a) Table 4-22 from Part 4 of the Manual and (b) the column load tables.

a. From Example 4.2, KL�r = 96.77 and Fy = 50 ksi. Values of fcFcr in 
Table 4-22 are given only for integer values of KL�r; for decimal values,
KL�r may be rounded up or linear interpolation may be used. For unifor-
mity, we use interpolation in this book for all tables unless otherwise
indicated. For KL�r = 96.77 and Fy = 50 ksi,

fcFcr = 22.67 ksi

fcPn = fcFcrAg = 22.67(21.8) = 494 kips

b. The column load tables in Part 4 of the Manual give the available strength
for selected W-, HP-, single-angle, WT-, HSS, pipe, double-angle, and com-
posite shapes. (We cover composite construction in Chapter 9.) The tabular
values for the symmetrical shapes (W, HP, HSS and pipe) were calculated by
using the minimum radius of gyration for each shape. From Example 4.2, 
K = 1.0, so

KL = 1.0(20) = 20 ft

For a W14 × 74, Fy = 50 ksi and KL = 20 ft,

fcPn = 495 kips

a. From Example 4.2, KL�r = 96.77 and Fy = 50 ksi. By interpolation, for KL�r =
96.77 and Fy = 50 ksi,

Fcr�Ωc = 15.07 ksi

Note that this is the allowable stress, Fa = 0.6Fcr. Therefore, the allowable
strength is

b. From Example 4.2, K = 1.0, so

KL = 1.0(20) = 20 ft

From the column load tables, for a W14 × 74 with Fy = 50 ksi and KL = 20 ft,

Pn

cΩ
= 329 kips

P
F An

c
a gΩ

= = =15 07 21 8 329. ( . ) kips

L R F D
S O L U T I O N
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S O L U T I O N
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The values from Table 4-22 (Manual) are based on flexural buckling and AISC
Equations E3-2 and E3-3. Thus, local stability is assumed, and width-thickness ratio
limits must not be exceeded. Although some shapes in the column load tables exceed
those limits (and they are identified with a “c” footnote), the tabulated strength has
been computed according to the requirements of AISC Section E7, “Members with
Slender Elements,” and no further reduction is needed.

From a practical standpoint, if a compression member to be analyzed can be found
in the column load tables, then these tables should be used. Otherwise, Table 4-22 can
be used for the flexural buckling strength. If the member has slender elements, the local
buckling strength must be computed using the provisions of AISC E7.

4.6 DESIGN

The selection of an economical rolled shape to resist a given compressive load is
simple with the aid of the column load tables. Enter the table with the effective length
and move horizontally until you find the desired available strength (or something
slightly larger). In some cases, you must continue the search to be certain that you
have found the lightest shape. Usually the category of shape (W, WT, etc.) will have
been decided upon in advance. Often the overall nominal dimensions will also be
known because of architectural or other requirements. As pointed out earlier, all tab-
ulated values correspond to a slenderness ratio of 200 or less. The tabulated unsym-
metrical shapes—the structural tees and the single and double angles—require special
consideration and are covered in Section 4.8.

132 Chapter 4 Compression Members

E X A M P L E  4 . 6

A compression member is subjected to service loads of 165 kips dead load and
535 kips live load. The member is 26 feet long and pinned at each end. Use
A992 steel and select a W14 shape.

Calculate the factored load:

Pu = 1.2D + 1.6L = 1.2(165) + 1.6(535) = 1054 kips

∴ Required design strength fcPn = 1054 kips.

From the column load tables for KL = 1.0(26) = 26 ft, a W14 × 145 has a design
strength of 1230 kips.

Use a W14 × 145.

Calculate the total applied load:

Pa = D + L = 165 + 535 = 700 kips

∴ Required allowable strength 
Pn

cΩ
= 700 kips

L R F D
S O L U T I O N

A S D
S O L U T I O N

A N S W E R
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From the column load tables for KL = 1.0(26) = 26 ft, a W14 × 132 has an allow-
able strength of 702 kips.

Use a W14 × 132.

4.6 Design 133

E X A M P L E  4 . 7

Select the lightest W-shape that can resist a service dead load of 62.5 kips and
a service live load of 125 kips. The effective length is 24 feet. Use ASTM
A992 steel.

The appropriate strategy here is to find the lightest shape for each nominal depth in
the column load tables and then choose the lightest overall.

The factored load is

Pu = 1.2D + 1.6L = 1.2(62.5) + 1.6(125) = 275 kips

From the column load tables, the choices are as follows:

W8: There are no W8s with fcPn ≥ 275 kips.

W10: W10 × 54, fcPn = 282 kips

W12: W12 × 58, fcPn = 292 kips

W14: W14 × 61, fcPn = 293 kips

Note that the strength is not proportional to the weight (which is a function of the
cross-sectional area).

Use a W10 × 54.

The total applied load is

Pa = D + L = 62.5 + 125 = 188 kips

From the column load tables, the choices are as follows:

W8: There are no W8s with Pn�Ωc ≥ 188 kips.

W10: W10 × 54, Pn

cΩ
= 188 kips

A N S W E R

L R F D
S O L U T I O N

S O L U T I O N
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W12: W12 × 58,

W14: W14 × 61,

Note that the strength is not proportional to the weight (which is a function of the
cross-sectional area).

Use a W10 × 54.

Pn

cΩ
= 195 kips

Pn

cΩ
= 194 kips

134 Chapter 4 Compression Members

For shapes not in the column load tables, a trial-and-error approach must be used. The
general procedure is to assume a shape and then compute its strength. If the strength
is too small (unsafe) or too large (uneconomical), another trial must be made. A sys-
tematic approach to making the trial selection is as follows:

1. Assume a value for the critical buckling stress Fcr. Examination of AISC
Equations E3-2 and E3-3 shows that the theoretically maximum value of Fcr
is the yield stress Fy.

2. Determine the required area. For LRFD,

For ASD,

3. Select a shape that satisfies the area requirement.
4. Compute Fcr and the strength for the trial shape.
5. Revise if necessary. If the available strength is very close to the required value,

the next tabulated size can be tried. Otherwise, repeat the entire procedure,
using the value of Fcr found for the current trial shape as a value for Step 1.

6. Check local stability (check the width-to-thickness ratios). Revise if
necessary.

0 6

0 6

.

.

F
P

A

A
P

F

cr
a

g

g
a

cr

≥

≥

f

f

c cr g u
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F

≥

≥
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4.6 Design 135

E X A M P L E  4 . 8

Select a W18 shape of A992 steel that can resist a service dead load of 100 kips
and a service live load of 300 kips. The effective length KL is 26 feet.

Pu = 1.2D + 1.6L = 1.2(100) + 1.6(300) = 600 kips
Try Fcr = 33 ksi (an arbitrary choice of two-thirds Fy):

Try a W18 × 71:

Because the initial estimate of Fcr was so far off, assume a value about halfway
between 33 and 7.455 ksi. Try Fcr = 20 ksi.

Try a W18 × 119:

Ag = 35.1 in.2 > 33.3 in.2 (OK)
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This is very close, so try the next larger size.

Try a W18 × 130:

This shape is not slender (there is no footnote in the dimensions and properties table
to indicate that it is), so local buckling does not have to be investigated.

Use a W18 × 130.

The ASD solution procedure is essentially the same as for LRFD, and the same trial
values of Fcr will be used here.

Pa = D + L = 100 + 300 = 400 kips

Try Fcr = 33 ksi (an arbitrary choice of two-thirds Fy):

Try a W18 × 71:

A
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Because the initial estimate of Fcr was so far off, assume a value about halfway between
33 and 7.455 ksi. Try Fcr = 20 ksi.

Try a W18 × 119:

This is very close, so try the next larger size.
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Try a W18 × 130:

This shape is not slender (there is no footnote in the dimensions and properties table
to indicate that it is), so local buckling does not have to be investigated.

Use a W18 × 130.
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4.7 MORE ON EFFECTIVE LENGTH

We introduced the concept of effective length in Section 4.2, “Column Theory.” All
compression members are treated as pin-ended regardless of the actual end conditions
but with an effective length KL that may differ from the actual length. With this mod-
ification, the load capacity of compression members is a function of only the slen-
derness ratio and modulus of elasticity. For a given material, the load capacity is a
function of the slenderness ratio only.

If a compression member is supported differently with respect to each of its
principal axes, the effective length will be different for the two directions. In
Figure 4.10, a W-shape is used as a column and is braced by horizontal members in
two perpendicular directions at the top. These members prevent translation of the col-
umn in all directions, but the connections, the details of which are not shown, permit
small rotations to take place. Under these conditions, the member can be treated as

A N S W E R
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pin-connected at the top. For the same reasons, the connection to the support at the
bottom may also be treated as a pin connection. Generally speaking, a rigid, or fixed,
condition is very difficult to achieve, and unless some special provisions are made,
ordinary connections will usually closely approximate a hinge or pin connection.
At midheight, the column is braced, but only in one direction.

Again, the connection prevents translation, but no restraint against rotation is
furnished. This brace prevents translation perpendicular to the weak axis of the cross
section but provides no restraint perpendicular to the strong axis. As shown schemat-
ically in Figure 4.10, if the member were to buckle about the major axis, the effec-
tive length would be 26 feet, whereas buckling about the minor axis would have to be
in the second buckling mode, corresponding to an effective length of 13 feet.
Because its strength decreases with increasing KL�r, a column will buckle in the
direction corresponding to the largest slenderness ratio, so KxL�rx must be compared
with KyL�ry. In Figure 4.10, the ratio 26(12)�rx must be compared with 13(12)�ry
(where rx and ry are in inches), and the larger ratio would be used for the determi-
nation of the axial compressive strength.

4.7 More on Effective Length 139

FIGURE 4.10
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140 Chapter 4 Compression Members

E X A M P L E  4 . 9

A W12 × 58, 24 feet long, is pinned at both ends and braced in the weak direc-
tion at the third points, as shown in Figure 4.11. A992 steel is used. Determine
the available compressive strength.

KxL�rx, the larger value, controls.

From Table 4-22 from Part 4 of the Manual and with KL�r = 54.55,

fcFcr = 36.24 ksi

fcPn = fcFcrAg = 36.24(17.0) = 616 kips

Design strength = 616 kips.

From Table 4-22 with KL�r = 54.55,

Allowable strength = 410 kips.
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The available strengths given in the column load tables are based on the effec-
tive length with respect to the y-axis. A procedure for using the tables with Kx L,
however, can be developed by examining how the tabular values were obtained.
Starting with a value of KL, the strength was obtained by a procedure similar to the
following:

• KL was divided by ry to obtain KL�ry.
• Fcr was computed.
• The available strengths, fcPn for LRFD and Pn�Ωc for ASD, were computed.

Thus the tabulated strengths are based on the values of KL being equal to KyL. If the
capacity with respect to x-axis buckling is desired, the table can be entered with

and the tabulated load will be based on

The ratio rx�ry is given in the column load tables for each shape listed.

KL

r

K L r r

r

K L

ry

x x y

y

x

x

= =
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KL
K L

r r
x

x y

=
�
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E X A M P L E  4 . 1 0

The compression member shown in Figure 4.12 is pinned at both ends and sup-
ported in the weak direction at midheight. A service load of 400 kips, with equal
parts of dead and live load, must be supported. Use Fy = 50 ksi and select the light-
est W-shape.

FIGURE 4.12
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Factored load = Pu = 1.2(200) + 1.6(200) = 560 kips

Assume that the weak direction controls and enter the column load tables with 
KL = 9 feet. Beginning with the smallest shapes, the first one found that will work is
a W8 × 58 with a design strength of 634 kips.

Check the strong axis:

Enter the tables with KL = 10.34 feet. A W8 × 58 has an interpolated strength of

fcPn = 596 kips > 560 kips (OK)

Next, investigate the W10 shapes. Try a W10 × 49 with a design strength of 568 kips.

Check the strong axis:

Enter the tables with KL = 10.53 feet. A W10 × 54 is the lightest W10, with an inter-
polated design strength of 594 kips.

Continue the search and investigate a W12 × 53 (fc Pn = 611 kips for KL = 9 ft):

Determine the lightest W14. The lightest one with a possibility of working is a
W14 × 61. It is heavier than the lightest one found so far, so it will not be considered.

Use a W12 × 53.

The required load capacity is P = 400 kips. Assume that the weak direction controls
and enter the column load tables with KL = 9 feet. Beginning with the smallest shapes,
the first one found that will work is a W8 × 58 with an allowable strength of 422 kips.

Check the strong axis:
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Enter the tables with KL = 10.34 feet. A W8 × 58 has an interpolated strength of

The next lightest W8 that will work is a W8 × 67.

The interpolated allowable strength is

Next, investigate the W10 shapes. Try a W10 × 60.

The interpolated strength is

Check the W12 shapes. Try a W12 × 53 (Pn�Ωc = 407 kips for KL = 9 ft):

Find the lightest W14. The lightest one with a possibility of working is a W14 × 61.
Since it is heavier than the lightest one found so far, it will not be considered.

Use a W12 × 53.
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Whenever possible, the designer should provide extra support for the weak direc-
tion of a column. Otherwise, the member is inefficient: It has an excess of strength in
one direction. When KxL and KyL are different, KyL will control unless rx�ry is smaller
than KxL�KyL. When the two ratios are equal, the column has equal strength in both
directions. For most of the W-shapes in the column load tables, rx�ry ranges between
1.6 and 1.8, but it is as high as 3.1 for some shapes.
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E X A M P L E  4 . 1 1

The column shown in Figure 4.13 is subjected to a service dead load of 140 kips
and a service live load of 420 kips. Use A992 steel and select a W-shape.

KxL = 20 ft and maximum KyL = 8 ft. The effective length KxL will control whenever

or 

In this example,

so KxL will control if rx�ry < 2.5. Since this is true for almost every shape in the col-
umn load tables, KxL probably controls in this example.

Assume rx�ry = 1.7:

K L
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FIGURE 4.13
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Pu = 1.2D + 1.6L = 1.2(140) + 1.6(420) = 840 kips

Enter the column load tables with KL = 12 feet. There are no W8 shapes with
enough load capacity.

Try a W10 × 88 (fcPn = 940 kips):

(By interpolation, fc Pn = 955 kips.)

Check a W12 × 79:

Investigate W14 shapes. For rx�ry = 2.44 (the approximate ratio for all likely
possibilities),

For KL = 9 ft, a W14 × 74, with a capacity of 854 kips, is the lightest W14-shape.
Since 9 feet is a conservative approximation of the actual effective length, this
shape is satisfactory.

Use a W14 × 74 (lightest of the three possibilities).

Pa = D + L = 140 + 420 = 560 kips

Enter the column load tables with KL = 12 feet. There are no W8 shapes with
enough load capacity. Investigate a W10 × 88 (for KL = 12 ft, Pn�Ωc = 625 kips):
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(By interpolation, Pn�Ωc = 635 kips.)

Check a W12 × 79:

Investigate W14 shapes. Try a W14 × 74:

For KL = 8.20 ft,

Use a W14 × 74 (lightest of the three possibilities).
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= >582 kips 560 kips OK( )
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For isolated columns that are not part of a continuous frame, Table C-A-7.1 in
the Commentary to Specification Appendix 7 will usually suffice. Consider, however,
the rigid frame in Figure 4.14. The columns in this frame are not independent mem-
bers but part of a continuous structure. Except for those in the lower story, the columns
are restrained at both ends by their connection to beams and other columns. This frame
is also unbraced, meaning that horizontal displacements of the frame are possible and
all columns are subject to sidesway. If Table C-A-7.1 is used for this frame, the lower-
story columns are best approximated by condition (f), and a value of K = 2 might be
used. For a column such as AB, a value of K = 1.2, corresponding to condition (c),
could be selected. A more rational procedure, however, will account for the degree
of restraint provided by connecting members.

The rotational restraint provided by the beams, or girders, at the end of a col-
umn is a function of the rotational stiffnesses of the members intersecting at the
joint. The rotational stiffness of a member is proportional to EI�L, where I is the
moment of inertia of the cross section with respect to the axis of bending. Gaylord,
Gaylord, and Stallmeyer (1992) show that the effective length factor K depends on
the ratio of column stiffness to girder stiffness at each end of the member, which
can be expressed as

(4.12)G
E I L

E I L

I L

I L
c c c

g g g

c c

g g

= ∑
∑

= ∑
∑

�
�

�
�
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where

ΣEcIc�Lc = sum of the stiffnesses of all columns at the end of the column
under consideration.

ΣEgIg�Lg = sum of the stiffnesses of all girders at the end of the column under
consideration.

Ec = Eg = E, the modulus of elasticity of structural steel.

If a very slender column is connected to girders having large cross sections, the
girders will effectively prevent rotation of the column. The ends of the column are
approximately fixed, and K is relatively small. This condition corresponds to small
values of G given by Equation 4.12. However, the ends of stiff columns connected
to flexible beams can more freely rotate and approach the pinned condition, giving
relatively large values of G and K.

The relationship between G and K has been quantified in the Jackson–Mooreland
Alignment Charts (Johnston, 1976), which are reproduced in Figures C-A-7.1 and
C-A-7.2 in the Commentary. To obtain a value of K from one of these nomograms,
first calculate the value of G at each end of the column, letting one value be GA and

4.7 More on Effective Length 147

FIGURE 4.14
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the other be GB. Connect GA and GB with a straight line, and read the value of K on
the middle scale. The effective length factor obtained in this manner is with respect
to the axis of bending, which is the axis perpendicular to the plane of the frame. A
separate analysis must be made for buckling about the other axis. Normally the beam-
to-column connections in this direction will not transmit moment; sidesway is pre-
vented by bracing; and K can be taken as 1.0.

148 Chapter 4 Compression Members

FIGURE 4.15

E X A M P L E  4 . 1 2

The rigid frame shown in Figure 4.15 is unbraced. Each member is oriented so that
its web is in the plane of the frame. Determine the effective length factor Kx for
columns AB and BC.

Column AB:

For joint A,

For joint B,

From the alignment chart for sidesway uninhibited (AISC Figure C-A-7.2), with 
GA = 0.94 and GB = 0.95, Kx = 1.3 for column AB.

Column BC:

For joint B, as before,

G = 0.95

G
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For joint C, a pin connection, the situation is analogous to that of a very stiff
column attached to infinitely flexible girders—that is, girders of zero stiffness.
The ratio of column stiffness to girder stiffness would therefore be infinite for
a perfectly frictionless hinge. This end condition can only be approximated in
practice, so the discussion accompanying the alignment chart recommends
that G be taken as 10.0.

From the alignment chart with GA = 0.95 and GB = 10.0, Kx = 1.85 for column BC.

4.7 More on Effective Length 149

FIGURE 4.16

As pointed out in Example 4.12, for a pinned support, G should be taken as 10.0;
for a fixed support, G should be taken as 1.0. The latter support condition corresponds
to an infinitely stiff girder and a flexible column, corresponding to a theoretical value
of G = 0. The discussion accompanying the alignment chart in the Commentary rec-
ommends a value of G = 1.0 because true fixity will rarely be achieved.

Unbraced frames are able to support lateral loads because of their moment-
resisting joints. Often the frame is augmented by a bracing system of some sort;
such frames are called braced frames. The additional resistance to lateral loads can
take the form of diagonal bracing or rigid shear walls, as illustrated in Figure 4.16.
In either case, the tendency for columns to sway is blocked within a given panel,

A N S W E R
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or bay, for the full height of the frame. This support system forms a cantilever struc-
ture that is resistant to horizontal displacements and also provides horizontal sup-
port for the other bays. Depending on the size of the structure, more than one bay
may require bracing.

A frame must resist not only the tendency to sway under the action of lateral
loads but also the tendency to buckle, or become unstable, under the action of ver-
tical loads. Bracing to stabilize a structure against vertical loading is called sta-
bility bracing. Appendix 6 of the AISC Specification, “Stability Bracing for
Columns and Beams,” covers this type of bracing. Two categories are covered: rel-
ative and nodal. With relative bracing, a brace point is restrained relative to adjacent
brace points. A relative brace is connected not only to the member to be braced but
also to other members, as with diagonal bracing. With relative bracing, both the
brace and other members contribute to stabilizing the member to be braced. Nodal
bracing provides isolated support at specific locations on the member and is not
relative to other brace points or other members. The provisions of AISC Appendix 6
give equations for the required strength and stiffness (resistance to deformation)
of stability bracing. The provisions for columns are from the Guide to Stability
Design Criteria (Galambos, 1998). The required strength and stiffness for
stability can be added directly to the requirements for bracing to resist lateral load-
ing. Stability bracing is discussed further in Chapter 5, “Beams,” and Chapter 6,
“Beam–Columns.”

Columns that are members of braced rigid frames are prevented from sidesway
and have some degree of rotational restraint at their ends. Thus they are in a category
that lies somewhere between cases (a) and (d) in Table C-A-7.1 of the Commentary,
and K is between 0.5 and 1.0. A value of 1.0 is therefore always conservative for mem-
bers of braced frames and is the value prescribed by AISC Appendix 7.2.3(a) unless
an analysis is made. Such an analysis can be made with the alignment chart for braced
frames. Use of this nomogram would result in an effective length factor somewhat less
than 1.0, and some savings could be realized.*

As with any design aid, the alignment charts should be used only under the condi-
tions for which they were derived. These conditions are discussed in Section 7.2 of the
Commentary to the Specification and are not enumerated here. Most of the conditions
will usually be approximately satisfied; if they are not, the deviation will be on the con-
servative side. One condition that usually is not satisfied is the requirement that all be-

havior be elastic. If the slenderness ratio KL�r is less than the column will

buckle inelastically, and the effective length factor obtained from the alignment
chart will be overly conservative. A large number of columns are in this category.
A convenient procedure for determining K for inelastic columns allows the align-
ment charts to be used (Yura, 1971; Disque, 1973; Geschwindner, 2010). To demon-
strate the procedure, we begin with the critical buckling load for an inelastic

4 71. ,E Fy�
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*If a frame is braced against sidesway, the beam-to-column connections need not be moment-resisting, and
the bracing system could be designed to resist all sidesway tendency. If the connections are not moment-
resisting, however, there will be no continuity between columns and girders, and the alignment chart can-
not be used. For this type of braced frame, Kx should be taken as 1.0.
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column given by Equation 4.6b. Dividing it by the cross-sectional area gives the
buckling stress:

The rotational stiffness of a column in this state would be proportional to EtIc�Lc, and
the appropriate value of G for use in the alignment chart is

Because Et is less than E, Ginelastic is less than Gelastic, and the effective length factor K
will be reduced, resulting in a more economical design. To evaluate Et�E, called the
stiffness reduction factor (denoted by tb), consider the following relationship.

From Galambos (1998), Fcr (inelastic) and Fcr (elastic) can be expressed as

where
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Using the notation Fcr = Fcr (inelastic) and solving for tb, we obtain

This can be written in terms of forces as 

where

Pn = nominal compressive strength = Fcr Ag

Py = compressive yield strength = Fy Ag

Substituting the required strength, a Pr , for the available strength, Pn, we have

(AISC Equation C2-2b)

where a = 1.0 for LRFD and 1.6 for ASD. The required strength is computed at the
factored load level, and the 1.6 factor is used to adjust the ASD service load level to
a factored load level. The stiffness reduction factor, tb, is also used to adjust member
stiffnesses for frame analysis. This is discussed in Chapter 6, “Beam–Columns.”
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E X A M P L E  4 . 1 3

A W10 × 54 of A992 steel is used as a column. It is subjected to a service dead load
of 100 kips and a service live load of 200 kips. If the slenderness ratio makes this
member an inelastic column, what is the stiffness reduction factor, tb?

From AISC Equation C2-2b,

tb = 0.987.
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From AISC Equation C2-2b,

tb = 0.954.
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FIGURE 4.17

If the end of a column is fixed (G = 1.0) or pinned (G = 10.0), the value of G at that
end should not be multiplied by the stiffness reduction factor. Values of the stiffness
reduction factor tb as a function of Pu�Ag and Pa�Ag are given in Table 4-21 in Part 4
of the Manual.

E X A M P L E  4 . 1 4

A rigid unbraced frame is shown in Figure 4.17. All members are oriented so that
bending is about the strong axis. Lateral support is provided at each joint by simply
connected bracing in the direction perpendicular to the frame. Determine the effec-
tive length factors with respect to each axis for member AB. The service dead load
is 35.5 kips, and the service live load is 142 kips. A992 steel is used.

A N S W E R
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Compute elastic G factors:

For joint A,

For joint B,

From the alignment chart for unbraced frames, Kx = 1.45, based on elastic behavior.
Determine whether the column behavior is elastic or inelastic.

Since

behavior is inelastic, and the inelastic K factor can be used.

The factored load is

Pu = 1.2D + 1.6L = 1.2(35.5) + 1.6(142) = 269.8 kips

Enter Table 4-21 in Part 4 of the Manual with

and obtain the stiffness reduction factor tb = 0.9877 by interpolation.
For joint A,

Ginelastic = tb × Gelastic = 0.9877(1.52) = 1.50

For joint B,

Ginelastic = 0.9877(1.36) = 1.34

From the alignment chart, Kx = 1.43. Because of the support conditions normal to the
frame, Ky can be taken as 1.0.

The applied load is

Pa = D + L = 35.5 + 142 = 177.5 kips
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Enter Table 4-21 in Part 4 of the Manual with

and obtain the stiffness reduction factor tb = 0.9703 by interpolation.
For joint A,

Ginelastic = ta × Gelastic = 0.9703(1.52) = 1.47

For joint B,

Ginelastic = 0.9703(1.36) = 1.32

From the alignment chart, Kx = 1.43. Because of the support conditions normal to the
frame, Ky can be taken as 1.0.
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According to the AISC Specification, the effective length factor, K, should be
determined by a “sidesway buckling analysis” (Chapters E, C, and Appendix 7).
However, the use the alignment charts is acceptable (Nair, 2005).

4.8 TORSIONAL AND FLEXURAL-TORSIONAL
BUCKLING

When an axially loaded compression member becomes unstable overall (that is, not
locally unstable), it can buckle in one of three ways, as shown in Figure 4.18).

1. Flexural buckling. We have considered this type of buckling up to now. It is a
deflection caused by bending, or flexure, about the axis corresponding to the
largest slenderness ratio (Figure 4.18a). This is usually the minor principal axis—
the one with the smallest radius of gyration. Compression members with any
type of cross-sectional configuration can fail in this way.

2. Torsional buckling. This type of failure is caused by twisting about the lon-
gitudinal axis of the member. It can occur only with doubly symmetrical cross
sections with very slender cross-sectional elements (Figure 4.18b). Standard
hot-rolled shapes are not susceptible to torsional buckling, but members built
up from thin plate elements may be and should be investigated. The cruciform
shape shown is particularly vulnerable to this type of buckling. This shape can
be fabricated from plates as shown in the figure, or built up from four angles
placed back to back.

3. Flexural-torsional buckling. This type of failure is caused by a combination
of flexural buckling and torsional buckling. The member bends and twists
simultaneously (Figure 4.18c). This type of failure can occur only with
unsymmetrical cross sections, both those with one axis of symmetry—such as
channels, structural tees, double-angle shapes, and equal-leg single angles—
and those with no axis of symmetry, such as unequal-leg single angles.
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The AISC Specification requires an analysis of torsional or flexural-torsional
buckling when appropriate. Section E4(a) of the Specification covers double-angle
and tee-shaped members, and Section E4(b) provides a more general approach that
can be used for other shapes. We discuss the general approach first. It is based on first
determining a value of Fe, which then can be used with the flexural buckling equa-
tions, AISC Equations E3-2 and E3-3. The stress Fe can be defined as the elastic buck-
ling stress corresponding to the controlling mode of failure, whether flexural,
torsional, or flexural-torsional.

The equations for Fe given in AISC E4(b) are based on well-established theory
given in Theory of Elastic Stability (Timoshenko and Gere, 1961). Except for some
changes in notation, they are the same equations as those given in that work, with no
simplifications. For doubly symmetrical shapes (torsional buckling),

(AISC Equation E4-4)

For singly symmetrical shapes (flexural-torsional buckling),

(AISC Equation E4-5)

where y is the axis of symmetry.
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(a)
Flexural
Buckling

(b)
Torsional

Buckling (cruciform
shape shown)

(c)
Flexural-torsional

Buckling

FIGURE 4.18
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For shapes with no axis of symmetry (flexural-torsional buckling),

This last equation is a cubic; Fe is the smallest root.
In the above equations, the z-axis is the longitudinal axis. The previously unde-

fined terms in these three equations are defined as

Cw = warping constant (in.6)
Kz = effective length factor for torsional buckling, which is based on the

amount of end restraint against twisting about the longitudinal axis
G = shear modulus (ksi) = 11,200 ksi for structural steel
J = torsional constant (equal to the polar moment of inertia only for

circular cross sections) (in.4)

(AISC Equation E4-7)

(AISC Equation E4-8)

where y is the axis of symmetry for singly symmetrical shapes.

(AISC Equation E4-9)

(AISC Equation E4-10)

where z is the longitudinal axis and x0, y0 are the coordinates of the shear center
of the cross section with respect to the centroid (in inches). The shear center is
the point on the cross section through which a transverse load on a beam must
pass if the member is to bend without twisting.

(AISC Equation E4-11)

Values of the constants used in the equations for Fe can be found in the dimensions
and properties tables in Part 1 of the Manual. Table 4.1 shows which constants are given
for various types of shapes. Table 4.1 shows that the Manual does not give the constants

and H for tees, although they are given on the Companion CD. They are easily
computed, however, if x0 and y0 are known. Since x0 and y0 are the coordinates of the
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shear center with respect to the centroid of the cross section, the location of the shear
center must be known. For a tee shape, it is located at the intersection of the centerlines
of the flange and the stem. Example 4.15 illustrates the computation of and H.

The need for a torsional buckling analysis of a doubly symmetrical shape will be
rare. Similarly, shapes with no axis of symmetry are rarely used for compression
members, and flexural-torsional buckling analysis of these types of members will
seldom, if ever, need to be done. For these reasons, we limit further consideration to
flexural-torsional buckling of shapes with one axis of symmetry. Furthermore, the
most commonly used of these shapes, the double angle, is a built-up shape, and we
postpone consideration of it until Section 4.9.

For singly symmetrical shapes, the flexural-torsional buckling stress Fe is found
from AISC Equation E4-5. In this equation, y is defined as the axis of symmetry
(regardless of the orientation of the member), and flexural-torsional buckling will
take place only about this axis (flexural buckling about this axis will not occur). The
x-axis (the axis of no symmetry) is subject only to flexural buckling. Therefore, for
singly symmetrical shapes, there are two possibilities for the strength: either flexural-
torsional buckling about the y-axis (the axis of symmetry) or flexural buckling about
the x-axis (Timoshenko and Gere, 1961 and Zahn and Iwankiw, 1989). To determine
which one controls, compute the strength corresponding to each axis and use the
smaller value.

The procedure for flexural-torsional buckling analysis of double angles and
tees given in AISC Section E4(a) is a modification of the procedure given in 
AISC E4(b). There is also some notational change: Fe becomes Fcr, Fey becomes
Fcry, and Fez becomes Fcrz.

To obtain Fcrz, we can drop the first term of AISC Equation E4-11 to get

(AISC Equation E4-3) 

This approximation is acceptable because for double angles and tees, the first term is
negligible compared to the second term.

The nominal strength can then be computed as

Pn = FcrAg (AISC Equation E4-1) 

F
GJ

A r
crz

g

=
0
2

r0

158 Chapter 4 Compression Members

Shape Constants

W, M, S, HP, WT, MT, ST J, Cw (In addition, the Manual Companion CD gives
values of , and H for WT, MT, and ST shapes)

C J, Cw, , H

MC, Angles J, Cw, , (In addition, the Manual Companion CD
gives values of H for MC and angle shapes.)

Double Angles , H (J and Cw are double the values given for
single angles.)
r0

r0

r0

r0

TABLE 4.1
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where

(AISC Equation E4-2)

All other terms from Section E4(b) remain unchanged. This procedure, to be used
with double angles and tees only, is more accurate than the procedure given in E4(b).
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E X A M P L E  4 . 1 5

Compute the compressive strength of a WT12 × 81 of A992 steel. The effective length
with respect to the x-axis is 25 feet 6 inches, the effective length with respect to the 
y-axis is 20 feet, and the effective length with respect to the z-axis is 20 feet.

Because this shape is a nonslender WT, we use the approach of AISC E4(a). First,
compute the flexural buckling strength for the x-axis (the axis of no symmetry):

Since AISC Equation E3-2 applies:

Fcr = 0.658(Fy�Fe) Fy = 0.658(50/37.44) (50) = 28.59 ksi

The nominal strength is

Pn = Fcr Ag = 28.59(23.9) = 683.3 kips

Compute the flexural-torsional buckling strength about the y-axis (the axis of
symmetry):

Compute Fcry using AISC E3:

From AISC Equation E3-4,
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Since 

Fcry = 0.658(Fy�Fe) Fy = 0.658(50/46.22)(50) = 31.79 ksi

Because the shear center of a tee is located at the intersection of the centerlines of
the flange and the stem,

Pn = Fcr Ag = 30.63(23.9) = 732.1 kips

The flexural buckling strength controls, and the nominal strength is 683.3 kips.

For LRFD, the design strength is fcPn = 0.90(683.3) = 615 kips.

For ASD, the allowable stress is Fa = 0.6Fcr = 0.6(28.59) = 17. 15 ksi, and the allowable
strength is Fa Ag = 17.15(23.9) = 410 kips.
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A N S W E R

E X A M P L E  4 . 1 6

Compute the compressive strength of a C15 × 50 of A36 steel. The effective lengths
with respect to the x, y, and z axes are each 13 feet.

AISC E4(b) must be used, because this shape is nonslender and is neither a double-
angle shape nor a tee shape. Check the flexural buckling strength about the y-axis (this
is the axis of no symmetry for a channel):

S O L U T I O N
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Since AISC Equation E3-2 applies:

Fcr = 0.877Fe = 0.877(8.805) = 7.722 ksi

The nominal strength is

Pn = Fcr Ag = 7.722(14.7) = 113.5 kips

Compute the flexural-torsional buckling strength about the x-axis (this is the axis of
symmetry for a channel):

Since

use AISC Equation E3-2:

Fcr = 0.658(Fy�Fe)Fy = 0.658(36�78.46)(36) = 29.71 ksi

The nominal strength is

Pn = Fcr Ag = 29.71(14.7) = 436.7 kips

The flexural buckling strength controls, and the nominal strength is 113.5 kips.
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For LRFD, the design strength is fcPn = 0.90(113.5) = 102 kips.

For ASD, the allowable stress is Fa = 0.6Fcr = 0.6(7.722) = 4. 633 ksi, and the allowable
strength is FaAg = 4.633(14.7) = 68.1 kips.

162 Chapter 4 Compression Members

The procedure used in Example 4.15, which is based on AISC Specification
E4(a), should always be used for double angles and tees. In practice, however, the
strength of most double angles and tees can be found in the column load tables. These
tables give two sets of values of the available strength, one based on flexural buck-
ling about the x-axis and one based on flexural-torsional buckling about the y axis.
The flexural-torsional buckling strengths are based on the procedure of AISC E4(a).

Available compressive strength tables are also provided for single-angle members.
The values of strength in these tables are not based on flexural-torsional buckling
theory, but on the provisions of AISC E5.

When using the column load tables for unsymmetrical shapes, there is no need to
account for slender compression elements, because that has already been done. If an
analysis is being done for a member not in the column load tables, then any element
slenderness must be accounted for.

4.9 BUILT-UP MEMBERS

If the cross-sectional properties of a built-up compression member are known, its
analysis is the same as for any other compression member, provided the component
parts of the cross section are properly connected. AISC E6 contains many details re-
lated to this connection, with separate requirements for members composed of two or
more rolled shapes and for members composed of plates or a combination of plates
and shapes. Before considering the connection problem, we will review the compu-
tation of cross-sectional properties of built-up shapes.

The design strength of a built-up compression member is a function of the slen-
derness ratio KL�r. Hence the principal axes and the corresponding radii of gyration
about these axes must be determined. For homogeneous cross sections, the principal
axes coincide with the centroidal axes. The procedure is illustrated in Example 4.17.
The components of the cross section are assumed to be properly connected.

A N S W E R

E X A M P L E  4 . 1 7

The column shown in Figure 4.19 is fabricated by welding a 3⁄8-inch by 4-inch cover
plate to the flange of a W18 × 65. Steel with Fy = 50 ksi is used for both components.
The effective length is 15 feet with respect to both axes. Assume that the components
are connected in such a way that the member is fully effective and compute the
strength based on flexural buckling.
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With the addition of the cover plate, the shape is slightly unsymmetrical, but the
flexural-torsional effects will be negligible.

The vertical axis of symmetry is one of the principal axes, and its location
need not be computed. The horizontal principal axis will be found by application
of the principle of moments: The sum of moments of component areas about any
axis (in this example, a horizontal axis along the top of the plate will be used)
must equal the moment of the total area. We use Table 4.2 to keep track of the
computations.

With the location of the horizontal centroidal axis known, the moment of inertia
with respect to this axis can be found by using the parallel-axis theorem:

I = Ī + Ad 2

where
Ī = moment of inertia about the centroidal axis of a component area

A = area of the component
I = moment of inertia about an axis parallel to the centroidal axis of the

component area
d = perpendicular distance between the two axes

The contributions from each component area are computed and summed to
obtain the moment of inertia of the composite area. These computations are shown in
Table 4.3, which is an expanded version of Table 4.2. The moment of inertia about
the x-axis is

Ix = 1193 in.4

y
Ay

A
= ∑

∑
= =183 2

20 60
8 893

.
.

.  in.

Component A y Ay

Plate 1.500 0.1875 0.2813
W 19.10 9.575 182.9

Σ 20.60 183.2

TABLE 4.2

65

y

x

FIGURE 4.19
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The nominal strength is

Pn = FcrAg = 21.18(20.60) = 436.3 kips

The design strength is

fcPn = 0.90(436.3) = 393 kips

From Equation 4.7, the allowable stress is

Fa = 0.6Fcr = 0.6(21.18) = 12.71 ksi

The allowable strength is

FaAg = 12.71(20.60) = 262 kips

Design compressive strength = 393 kips. Allowable compressive 
strength = 262 kips.
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Component A y Ay Ī d Ī + Ad2

Plate 1.500 0.1875 0.2813 0.01758 8.706 113.7
W 19.10 9.575 182.9 1070 0.6820 1079

Σ 20.60 183.2 1193

TABLE 4.3

L R F D
S O L U T I O N

A S D
S O L U T I O N

A N S W E R
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Connection Requirements for Built-Up Members
Composed of Rolled Shapes

The most common built-up shape is one that is composed of rolled shapes, namely,
the double-angle shape. This type of member will be used to illustrate the require-
ments for this category of built-up members. Figure 4.20 shows a truss compression
member connected to gusset plates at each end. To maintain the back-to-back sepa-
ration of the angles along the length, fillers (spacers) of the same thickness as the gus-
set plate are placed between the angles at equal intervals. The intervals must be small
enough that the member functions as a unit. If the member buckles about the x-axis
(flexural buckling), the connectors are not subjected to any calculated load, and the
connection problem is simply one of maintaining the relative positions of the two
components. To ensure that the built-up member acts as a unit, AISC E6.2 requires
that the slenderness of an individual component be no greater than three-fourths of
the slenderness of the built-up member; that is,

(4.14)

where
a = spacing of the connectors
ri = smallest radius of gyration of the component

Ka�ri = effective slenderness ratio of the component
KL�r = maximum slenderness ratio of the built-up member

If the member buckles about the axis of symmetry—that is, if it is subjected to
flexural-torsional buckling about the y-axis—the connectors are subjected to shearing
forces. This condition can be visualized by considering two planks used as a beam, as
shown in Figure 4.21. If the planks are unconnected, they will slip along the surface
of contact when loaded and will function as two separate beams. When connected by
bolts (or any other fasteners, such as nails), the two planks will behave as a unit, and
the resistance to slip will be provided by shear in the bolts. This behavior takes place

Ka

r

KL

ri
≤ 3

4

FIGURE 4.20
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in the double-angle shape when bending about its y-axis. If the plank beam is oriented
so that bending takes place about its other axis (the b-axis), then both planks bend in
exactly the same manner, and there is no slippage and hence no shear. This behavior
is analogous to bending about the x-axis of the double-angle shape. When the fasten-
ers are subjected to shear, a modified slenderness ratio larger than the actual value may
be required.

AISC E6 considers two categories of intermediate connectors: (1) snug-tight bolts
and (2) welds or fully-tensioned bolts. We cover these connection methods in detail in
Chapter 7, “Simple Connections.” 

When the connectors are snug-tight bolts, the modified slenderness ratio is

(AISC Equation E6-1)

where

When the connectors are fully-tensioned bolts or welds, the modified slenderness
ratio depends on the value of a�ri:

When a�ri ≤ 40, the slenderness ratio is not modified; that is,

(AISC Equation E6-2a)

When a�ri > 40, 

(AISC Equation E6-2b)

where

Ki = 0.5 for angles back-to-back

= 0.75 for channnels back-to-back

= 0.86 for all other cases
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FIGURE 4.21
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The column load tables for double angles are based on the use of welds or fully tight-
ened bolts. These tables show the number of intermediate connectors required for the
given y-axis flexural-torsional buckling strength. The number of connectors needed for
the x-axis flexural buckling strength must be determined from the requirement of Equa-
tion 4.14 that the slenderness of one angle between connectors must not exceed three-
fourths of the overall slenderness of the double-angle shape.

E X A M P L E  4 . 1 8

Compute the available strength of the compression member shown in Figure 4.22.
Two angles, 5 × 3 × 1⁄2, are oriented with the long legs back-to-back (2L5 × 3 ×
1⁄2 LLBB) and separated by 3⁄8 inch. The effective length KL is 16 feet, and there are
three fully tightened intermediate connectors. A36 steel is used.

FIGURE 4.22

Compute the flexural buckling strength for the x-axis:

Since 

The nominal strength is

Pn = FcrAg = 16.55(7.50) = 124.1 kips

F Fcr
F F

y
y e= = =0 658 0 658 36 16 536 19 39. . ( ) .( ) ( . )� � 55 ksi

KL

r

E

Fy

< 4 71. , use AISC Equation E3-2.

F
E

KL r
e = = =p p2

2

2

2

29 000

121 5
19 39

4

( )

( , )

( . )
.

�
ksi

.. .
,

71 4 71
29 000

36
134

E

Fy

= =

K L

r
x

x

= 16 12
1 58

121 5
( )
.

.=

S O L U T I O N

76004_04_ch04_p108-187.qxd  9/5/11  1:02 PM  Page 167



To determine the flexural-torsional buckling strength for the y-axis, use the modi-
fied slenderness ratio, which is based on the spacing of the connectors. The
unmodified slenderness ratio is

The spacing of the connectors is

Then, from Equation 4.14,

Compute the modified slenderness ratio, (KL�r)m:

This value should be used in place of KL�ry for the computation of Fcry:

From AISC Equation E4-3,
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The nominal strength is

Pn = FcrAg = 9.599(7.50) = 71.99 kips

Therefore the flexural-torsional buckling strength controls.

The design strength is

fcPn = 0.90(71.99) = 64.8 kips

From Equation 4.7, the allowable stress is

Fa = 0.6Fcr = 0.6(9.599) = 5.759 ksi

The allowable strength is

FaAg = 5.759(7.50) = 43.2 kips

Design compressive strength = 64.8 kips. Allowable compressive 
strength = 43.2 kips.
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F F
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F F H
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Design a 14-foot-long compression member to resist a service dead load of 12 kips
and a service live load of 23 kips. Use a double-angle shape with the short legs back-
to-back, separated by 3⁄8-inch. The member will be braced at midlength against buck-
ling about the x-axis (the axis parallel to the long legs). Specify the number of
intermediate connectors needed (the midlength brace will provide one such connec-
tor). Use A36 steel.

The factored load is

Pu = 1.2D + 1.6L = 1.2(12) + 1.6(23) = 51.2 kips

From the column load tables, select 2L 31⁄2 × 3 × 1⁄4 SLBB, weighing 10.8 lb�ft. The
capacity of this shape is 53.2 kips, based on buckling about the y-axis with an
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effective length of 14 feet. (The strength corresponding to flexural buckling
about the x-axis is 63.1 kips, based on an effective length of 14⁄2 = 7 feet.) Note that
this shape is a slender-element cross section, but this is taken into account in the tab-
ular values.

Bending about the y-axis subjects the fasteners to shear, so a sufficient num-
ber of fasteners must be provided to account for this action. The table reveals that
three intermediate connectors are required. (This number also satisfies Equa-
tion 4.14.)

Use 2L 31⁄2 × 3 × 1⁄4 SLBB with three intermediate connectors within the 14-foot
length.

The total load is

Pa = D + L = 12 + 23 = 35 kips

From the column load tables, select 2L 31⁄4 × 3 × 1⁄4 SLBB, weighing 10.8 lb�ft.
The capacity is 35.4 kips, based on buckling about the y axis, with an effective
length of 14 feet. (The strength corresponding to flexural buckling about the
x axis is 42.0 kips, based on an effective length of 14⁄2 = 7 feet.) Note that this
shape is a slender-element section, but this is taken into account in the tabular
values.

Bending about the y axis subjects the fasteners to shear, so a sufficient num-
ber of fasteners must be provided to account for this action. The table reveals
that three intermediate connectors are required. (This number also satisfies Equa-
tion 4.14.)

Use 2L 31⁄2 × 3 × 1⁄4 SLBB with three intermediate connectors within the 14-foot
length.
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Connection Requirements for Built-Up Members
Composed of Plates or Both Plates and Shapes

When a built-up member consists of two or more rolled shapes separated by a
substantial distance, plates must be used to connect the shapes. AISC E6 contains
many details regarding the connection requirements and the proportioning of the
plates. Additional connection requirements are given for other built-up compression
members composed of plates or plates and shapes.
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Problems
AISC Requirements

4.3-1 Use AISC Equation E3-2 or E3-3 and determine the nominal axial compressive
strength for the following cases:

a. L = 15 ft

b. L = 20 ft

FIGURE P4.3-1

4.3-2 Compute the nominal axial compressive strength of the member shown in Figure P4.3-2.
Use AISC Equation E3-2 or E3-3.

FIGURE P4.3-2

4.3-3 Compute the nominal compressive strength of the member shown in Figure P4.3-3.
Use AISC Equation E3-2 or E3-3.

Pipe 6 ×-strong15�

W10 × 33
A992 steel

L
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FIGURE P4.3-3

4.3-4 Determine the available strength of the compression member shown in Figure P4.3-4,
in each of the following ways:

a. Use AISC Equation E3-2 or E3-3. Compute both the design strength for LRFD and
the allowable strength for ASD.

b. Use Table 4-22 from Part 4 of the Manual. Compute both the design strength for
LRFD and the allowable strength for ASD.

FIGURE P4.3-4

4.3-5 A W18 × 119 is used as a compression member with one end fixed and the other
end fixed against rotation but free to translate. The length is 12 feet. If A992 steel
is used, what is the available compressive strength?

a. Use AISC Equation E3-2 or E3-3. Compute both the design strength for LRFD and
the allowable strength for ASD.

b. Use Table 4-22 from Part 4 of the Manual. Compute both the design strength for
LRFD and the allowable strength for ASD.

4.3-6 Does the column shown in Figure P4.3-6 have enough available strength to support
the given service loads?

a. Use LRFD.

b. Use ASD.

HSS 8 × 8 × 1/4

ASTM A500, Grade B steel
(Fy = 46 ksi)

15�

HP 12 × 53
A572 Grade 50

16�
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FIGURE P4.3-6

4.3-7 Determine whether the compression member shown in Figure P4.3-7 is adequate to
support the given service loads.

a. Use LRFD.

b. Use ASD.

FIGURE P4.3-7

4.3-8 Determine the maximum axial compressive service load that can be supported if the
live load is twice as large as the dead load. Use AISC Equation E3-2 or E3-3.

a. Use LRFD.

b. Use ASD.

W12 × 79
A992 steel

D = 560 kips
L = 68 kips

20�

W14 × 90
A992 steel

13�

D = 180k

L = 540k
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FIGURE P4.3-8

Local Stability

4.4-1 An HSS10 × 8 × 3⁄16 is used as a compression member with one end pinned and the
other end fixed against rotation but free to translate. The length is 12 feet. Compute
the nominal compressive strength for A500 Grade B steel (Fy = 46 ksi). Note that this
is a slender-element compression member, and the equations of AISC Section E7 must
be used.

4.4-2 A W21 × 101 is used as a compression member with one end fixed and the other end
free. The length is 10 feet. What is the nominal compressive strength if Fy = 50 ksi?
Note that this is a slender-element compression member, and the equations of AISC
Section E7 must be used.

Design

4.6-1 a. Select a W12 of A992 steel. Use the column load tables.

1. Use LRFD.

2. Use ASD.

b. Select a W18 of A992 steel. Use the trial-and-error approach covered in Section 4.6.

1. Use LRFD.

2. Use ASD.

HSS 6.625 × 0.250
ASTM A500 Grade B (Fy = 42 ksi)

10�
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FIGURE P4.6-1

4.6-2 A 15-foot long column is pinned at the bottom and fixed against rotation but free to
translate at the top. It must support a service dead load of 100 kips and a service live
load of 100 kips.

a. Select a W12 of A992 steel. Use the column load tables.

1. Use LRFD.

2. Use ASD.

b. Select a W16 of A992 steel. Use the trial-and-error approach covered in Section 4.6.

1. Use LRFD.

2. Use ASD.

4.6-3 Select a square HSS (Fy = 46 ksi).

a. Use LRFD.

b. Use ASD.

FIGURE P4.6-3

4.6-4 Select a steel pipe. Specify whether your selection is Standard, Extra-Strong, or
Double-Extra Strong.

a. Use LRFD.

b. Use ASD.

D = 100k

L = 300k

12′

D = 265k

L = 130k

18′
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FIGURE P4.6-4

4.6-5 Select an HP-shape for the conditions of Problem 4.6-4. Use Fy = 50 ksi.

a. Use LRFD.

b. Use ASD.

4.6-6 Select a rectangular (not square) HSS for the conditions of Problem 4.6-3.

a. Use LRFD.

b. Use ASD.

4.6-7 For the conditions shown in Figure P4.6-7, use LRFD and do the following.

a. Select a W10 of A992 steel.

b. Select a square HSS.

c. Select a rectangular HSS.

d. Select a round HSS.

FIGURE P4.6-7

D = 100k

L = 250k

16�

D = 122k

L = 242k

15�
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4.6-8 Same as Problem 4.6-7, but use ASD.

4.6-9 For the conditions shown in Figure P4.6-7, use LRFD and select the lightest W21
shape of A992 steel. Do not exclude slender shapes from consideration.

Effective Length

4.7-1 A W18 × 97 with Fy = 60 ksi is used as a compression member. The length is 13 feet.
Compute the nominal strength for Kx = 2.2 and Ky = 1.0.

4.7-2 An HSS 10 × 6 × 5⁄16 with Fy = 46 ksi is used as a column. The length is 16 feet. Both
ends are pinned, and there is support against weak axis buckling at a point 6 feet from
the top. Determine

a. the design strength for LRFD.

b. the allowable stress for ASD.

FIGURE P4.7-2

4.7-3 A W12 × 65 of A572 Grade 60 steel is used as a compression member. It is 26 feet
long, pinned at each end, and has additional support in the weak direction at a point
12 feet from the top. Can this member resist a service dead load of 180 kips and a
service live load of 320 kips?

a. Use LRFD.

b. Use ASD.

4.7-4 Use A992 steel and select a W12 shape for an axially loaded column to meet the fol-
lowing specifications: The length is 24 feet, both ends are pinned, and there is brac-
ing in the weak direction at a point 10 feet from the top. The service dead load is
142 kips, and the service live load is 356 kips.

a. Use LRFD.

b. Use ASD.

6�

10�

16�

y-axis x-axis
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4.7-5 Use A992 steel and select a W shape.

a. Use LRFD.

b. Use ASD.

FIGURE P4.7-5

4.7-6 Select a square HSS for use as a 15-foot-long compression member that must resist
a service dead load of 35 kips and a service live load of 80 kips. The member will be
pinned at each end, with additional support in the weak direction at midheight. Use
A500 Grade B steel (Fy = 46 ksi).

a. Use LRFD.

b. Use ASD.

4.7-7 Select the best rectangular (not square) HSS for a column to support a service dead
load of 30 kips and a service live load of 90 kips. The member is 22 feet long and is
pinned at the ends. It is supported in the weak direction at a point 12 feet from the
top. Use Fy = 46 ksi.

a. Use LRFD.

b. Use ASD.

35�

10�

15�

10�

Strong axis Weak axis

D = 340 kips
L = 670 kips
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4.7-8 The frame shown in Figure P4.7-8 is unbraced, and bending is about the x-axis of the
members. All beams are W16 × 40, and all columns are W12 × 58.

a. Determine the effective length factor Kx for column AB. Do not consider the stiff-
ness reduction factor.

b. Determine the effective length factor Kx for column BC. Do not consider the stiff-
ness reduction factor.

c. If Fy = 50 ksi, is the stiffness reduction factor applicable to these columns?

FIGURE P4.7-8

4.7-9 The given frame is unbraced, and bending is about the x axis of each member.
The axial dead load supported by column AB is 155 kips, and the axial live load is
460 kips. Fy = 50 ksi. Determine Kx for member AB. Use the stiffness reduction factor
if applicable.

a. Use LRFD.

b. Use ASD.

FIGURE P4.7-9

25�

13�

13�

B

A

W18 × 50

W18 × 50

W
14

 ×
 9

9
W

14
 ×

 9
0

W
14

 ×
 9

9
W

14
 ×

 9
0

20�

13�

13�

20�

13�

A

B

C
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4.7-10 The rigid frame shown in Figure P4.7-10 is unbraced. The members are oriented so
that bending is about the strong axis. Support conditions in the direction perpendicu-
lar to the plane of the frame are such that Ky = 1.0. The beams are W16 × 57, and
the columns are W10 × 100. A992 steel is used. The axial compressive dead load is
90 kips, and the axial compressive live load is 110 kips.

a. Determine the axial compressive design strength of column AB. Use the stiffness
reduction factor if applicable.

b. Determine the allowable axial compressive strength of column AB. Use the stiff-
ness reduction factor if applicable.

FIGURE P4.7-10

4.7-11 The frame shown in Figure P4.7-11 is unbraced against sidesway. Relative moments
of inertia of the members have been assumed for preliminary design purposes. Use
the alignment chart and determine Kx for members AB, BC, DE, and EF.

FIGURE P4.7-11

I I I I

I I I I

2I 2I 2I

3I 3I 3I

A

B

C

F

E

D

30� 30� 30�

13�

13�

15′

20′18′

B

A
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4.7-12 An unbraced frame is shown in Figure P4.7-12. Use LRFD and the alignment chart
to check the adequacy of the following columns for Fy = 50 ksi. Use the stiffness
reduction factor if applicable. Use Ky = 1.0.

a. Column AB, Pu = 750 kips.

b. Column MN, Pu = 1000 kips.

c. Column BC, Pu = 600 kips.

d. Column LM, Pu = 1200 kips.

e. Column FG, Pu = 240 kips.

f. Column HI, Pu = 480 kips.

FIGURE P4.7-12

4.7-13 The rigid frame shown in Figure P4.7-13 is unbraced in the plane of the frame. In the
direction perpendicular to the frame, the frame is braced at the joints. The connections
at these points of bracing are simple (moment-free) connections. Roof girders are
W14 × 26, and floor girders are W16 × 40. Member BC is a W12 × 50. Use A992 steel
and select a W-shape for AB. Assume that the controlling load combination causes
no moment in AB. The service dead load is 48 kips and the service live load is 72 kips.
Use LRFD.

W16 × 26 W16 × 26 W16 × 26

W18 × 40 W18 × 40 W18 × 40
W10 × 49 columns

W18 × 40 W18 × 40 W18 × 40

W18 × 40 W18 × 40 W18 × 40

W18 × 46 W18 × 46 W18 × 46

W18 × 46 W18 × 46 W18 × 46

3 @ 30′-0′′ = 90′-0′′

6 
@

 1
3′

-0
′′

A

B

C

N

M

L

D K

E J

F I

G H

W12 × 79 columns

W12 × 96 columns
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FIGURE P4.7-13

Torsional and Flexural-Torsional Buckling

4.8-1 Use A992 steel and compute the nominal compressive strength of a WT10.5 × 66 with
an effective length of 16 feet with respect to each axis. Use the AISC Specification
equations. Do not use the column load tables.

4.8-2 Use A36 steel and compute the nominal strength of the column shown in Figure P4.8-2.
The member ends are fixed in all directions (x, y, and z).

FIGURE P4.8-2

C12 × 20.710�

B

A

C

14′

14′

18′

18′

18′

4 @ 20′
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4.8-3 Select a WT section for the compression member shown in Figure P4.8-3. The load
is the total service load, with a live-to-dead load ratio of 2:1. Use Fy = 50 ksi.

a. Use LRFD.

b. Use ASD.

FIGURE P4.8-3

4.8-4 Select an American Standard Channel for the compression member shown in 
Figure P4.8-4. Use A572 Grade 50 steel. The member ends are fixed in all directions
(x, y, and z).

a. Use LRFD.

b. Use ASD.

FIGURE P4.8-4

Built-Up Members

4.9-1  Verify the value of ry given in Part 1 of the Manual for the double-angle shape 2L4
× 31⁄2 × 1⁄4 SLBB. The angles will be connected to a 3⁄8 -inch-thick gusset plate.

4.9-2  Verify the values of y2, rx , and ry given in Part 1 of the Manual for the combination
shape consisting of an S12 × 31.8 with a C8 × 11.5 cap channel. 

D = 30k

L = 70k

10�

20�

180k
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4.9-3  A column is built up from four 5 × 5 × 3⁄4 angle shapes as shown in Figure P4.9-3.
The plates are not continuous but are spaced at intervals along the column length and
function to maintain the separation of the angles. They do not contribute to the cross-
sectional properties. Compute rx and ry.

FIGURE P4.9-3

4.9-4  An unsymmetrical compression member consists of a 1⁄2 × 12 top flange, a 1⁄2 × 6 bot-
tom flange, and a 5⁄16 × 16 web (the shape is symmetrical about an axis parallel to the
web depth). Compute the radius of gyration about each of the principal axes.

4.9-5 Compute the nominal axial compressive strength based on flexural buckling (no
torsional or flexural-torsional buckling). Assume that the cross-sectional elements
are connected such that the built-up shape is fully effective. ASTM A242 steel is
used.

FIGURE P4.9-5

40�
40��

36��

All plates 4�� thick

5��

5��1�-3��

Section
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4.9-6  Compute the axial compressive design strength based on flexural buckling (no tor-
sional or flexural-torsional buckling). Assume that the cross-sectional elements are
connected such that the built-up shape is fully effective.

FIGURE P4.9-6

4.9-7  A compression member is made up of two channels, 2C5 × 9, placed back-to-back
and separated by 3⁄8 inch (for connection to a 3⁄8-inch-thick gusset plate). The two
components are connected along their length in such a way as to maintain the 3⁄8-inch
separation. The effective length with respect to each axis is 14 feet, and A242 Grade
50 steel is used. 

a. Verify the value of ry given in the properties table in the Manual.

b. Neglect flexural-torsional buckling and compute the allowable axial compressive
strength.

4.9-8  In order to reinforce a column in an existing structure, two channels are welded to the
column as shown in Figure P4.9-8. Fy = 50 ksi for both the column and the channels.
The effective length with respect to each axis is 16 feet. What is the available axial
compressive strength? What is the percent increase in strength?

a. Use LRFD.

b. Use ASD.

FIGURE P4.9-8

W12 × 50

C6 × 13

A36

Section

15′
2′′

2′′ 2′′

1′′

1′′
5′′
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4.9-9  A compression member is built up from a W14 × 90 and a W10 × 49, both of A992 steel.

a. Compute rx and ry for the built-up shape.

b. Neglect flexural-torsional buckling and compute the available strength for 
KxL = KyL = 30 feet.

i. Use LRFD.
ii. Use ASD.

FIGURE P4.9-9

4.9-10 Compute the design strength for LRFD and the allowable strength for ASD for the fol-
lowing double-angle shape: 2L8 × 4 × 3⁄4, long legs 3⁄8-in. back-to-back, Fy = 36 ksi;
KL is 20 feet for all axes, and there are two intermediate connectors. Use the proce-
dure of AISC Section E4(a). Do not use the column load tables. Compare the flexural
and the flexural-torsional buckling strengths.

4.9-11 For the conditions shown in Figure P4.9-11, select a double-angle section (3⁄8-in. gus-
set plate connection). Use A36 steel. Specify the number of intermediate connectors.

a. Use LRFD.

b. Use ASD.

FIGURE P4.9-11

D = 90k

L = 260k

15′-4′′

7′′

W14 × 90

W10 × 49
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4.9-12 Use ASD and select a WT section for the compression member shown in Figure P4.9-12.
The load shown is the total service load, consisting of dead and live loads. Use
A992 steel.

FIGURE P4.9-12

4.9-13 Use ASD and select a double-angle shape for the top chord of the truss of Prob-
lem 3.8-2. Use Kx = Ky = 1.0. Assume 3⁄8-inch gusset plates, and use A36 steel.

21′

280k
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189

5.1 INTRODUCTION

Beams are structural members that support transverse loads and are therefore subjected
primarily to flexure, or bending. If a substantial amount of axial load is also present, the
member is referred to as a beam–column (beam–columns are considered in Chapter 6).
Although some degree of axial load will be present in any structural member, in many
practical situations this effect is negligible and the member can be treated as a beam.
Beams are usually thought of as being oriented horizontally and subjected to vertical
loads, but that is not necessarily the case. A structural member is considered to be a
beam if it is loaded so as to cause bending.

Commonly used cross-sectional shapes include the W, S, and M shapes. Channel
shapes are sometimes used, as are beams built up from plates, in the form of I or box
shapes. For reasons to be discussed later, doubly symmetric shapes such as the stan-
dard rolled W, M, and S shapes are the most efficient.

Coverage of beams in the AISC Specification is spread over two chapters:
Chapter F, “Design of Members for Flexure,” and Chapter G, “Design of Members for
Shear.” Several categories of beams are covered in the Specification; in this book, we
cover the most common cases in the present chapter, and we cover a special case, plate
girders, in Chapter 10.

Figure 5.1 shows two types of beam cross sections; a hot-rolled doubly-symmetric
I shape and a welded doubly-symmetric built-up I shape. The hot-rolled I shape is the
one most commonly used for beams. Welded shapes usually fall into the category
classified as plate girders.

For flexure (shear will be covered later), the required and available strengths are
moments. For load and resistance factor design (LRFD), Equation 2.6 can be written as

Mu ≤ fbMn (5.1)

where
Mu = required moment strength = maximum moment caused by the controlling

load combination from ASCE 7
fb = resistance factor for bending (flexure) = 0.90

C H A P T E R 5
Beams
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FIGURE 5.1

Mn = nominal moment strength

The right-hand side of Equation 5.1 is the design strength, sometimes called the design
moment.

For allowable strength design (ASD), Equation 2.7 can be written as

(5.2)

where
Ma = required moment strength = maximum moment corresponding to the

controlling load combination from ASCE 7
Ωb = safety factor for bending = 1.67

Equation 5.2 can also be written as

Dividing both sides by the elastic section modulus S (which will be reviewed in the
next section), we get an equation for allowable stress design:

or 

fb ≤ Fb

where
fb = maximum computed bending stress
Fb = allowable bending stress

5.2 BENDING STRESS AND THE PLASTIC MOMENT

To be able to determine the nominal moment strength Mn, we must first examine the
behavior of beams throughout the full range of loading, from very small loads to the
point of collapse. Consider the beam shown in Figure 5.2a, which is oriented so that
bending is about the major principal axis (for an I shape, it will be the x–x axis). For
a linear elastic material and small deformations, the distribution of bending stress will
be as shown in Figure 5.2b, with the stress assumed to be uniform across the width

M
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of the beam. (Shear is considered separately in Section 5.8.) From elementary me-
chanics of materials, the stress at any point can be found from the flexure formula:

(5.3)

where M is the bending moment at the cross section under consideration, y is the per-
pendicular distance from the neutral plane to the point of interest, and Ix is the mo-
ment of inertia of the area of the cross section with respect to the neutral axis. For a
homogeneous material, the neutral axis coincides with the centroidal axis. Equation 5.3
is based on the assumption of a linear distribution of strains from top to bottom, which
in turn is based on the assumption that cross sections that are plane before bending
remain plane after bending. In addition, the beam cross section must have a vertical axis
of symmetry, and the loads must be in the longitudinal plane containing this axis.
Beams that do not satisfy these criteria are considered in Section 5.15. The maximum
stress will occur at the extreme fiber, where y is maximum. Thus there are two max-
ima: maximum compressive stress in the top fiber and maximum tensile stress in the
bottom fiber. If the neutral axis is an axis of symmetry, these two stresses will be
equal in magnitude. For maximum stress, Equation 5.3 takes the form:

(5.4)f
Mc

I

M

I c

M

Sx x x
max = = =

�

f
My

I
b

x
=
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where c is the perpendicular distance from the neutral axis to the extreme fiber, and Sx
is the elastic section modulus of the cross section. For any cross-sectional shape, the
section modulus will be a constant. For an unsymmetrical cross section, Sx will have
two values: one for the top extreme fiber and one for the bottom. Values of Sx for stan-
dard rolled shapes are tabulated in the dimensions and properties tables in the Manual.

Equations 5.3 and 5.4 are valid as long as the loads are small enough that the ma-
terial remains within its linear elastic range. For structural steel, this means that the
stress fmax must not exceed Fy and that the bending moment must not exceed

My = FySx

where My is the bending moment that brings the beam to the point of yielding.
In Figure 5.3, a simply supported beam with a concentrated load at midspan is

shown at successive stages of loading. Once yielding begins, the distribution of stress

192 Chapter 5 Beams
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on the cross section will no longer be linear, and yielding will progress from the ex-
treme fiber toward the neutral axis. At the same time, the yielded region will extend
longitudinally from the center of the beam as the bending moment reaches My at more
locations. These yielded regions are indicated by the dark areas in Figure 5.3c and d.
In Figure 5.3b, yielding has just begun. In Figure 5.3c, the yielding has progressed
into the web, and in Figure 5.3d the entire cross section has yielded. The additional
moment required to bring the beam from stage b to stage d is 10 to 20% of the yield
moment, My, for W shapes. When stage d has been reached, any further increase in
the load will cause collapse, since all elements of the cross section have reached the
yield plateau of the stress–strain curve and unrestricted plastic flow will occur. A
plastic hinge is said to have formed at the center of the beam, and this hinge along
with the actual hinges at the ends of the beam constitute an unstable mechanism. Dur-
ing plastic collapse, the mechanism motion will be as shown in Figure 5.4. Structural
analysis based on a consideration of collapse mechanisms is called plastic analysis. An
introduction to plastic analysis and design is presented in the Appendix of this book.

The plastic moment capacity, which is the moment required to form the plastic
hinge, can easily be computed from a consideration of the corresponding stress dis-
tribution. In Figure 5.5, the compressive and tensile stress resultants are shown, where
Ac is the cross-sectional area subjected to compression, and At is the area in tension.
These are the areas above and below the plastic neutral axis, which is not necessarily
the same as the elastic neutral axis. From equilibrium of forces,

C = T

AcFy = AtFy

Ac = At

Thus the plastic neutral axis divides the cross section into two equal areas. For shapes
that are symmetrical about the axis of bending, the elastic and plastic neutral axes are
the same. The plastic moment, Mp, is the resisting couple formed by the two equal and
opposite forces, or

M F A a F A a F
A

a F Zp y c y t y y= = = ⎛
⎝

⎞
⎠ =( ) ( )

2
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where
A
a

=
=

total cross-sectional area
distance between tthe centroids of the two half-areas

Z
A

a= ⎛
⎝⎜

⎞
⎠⎟2

== plastic section modulus
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E X A M P L E  5 . 1

For the built-up shape shown in Figure 5.6, determine (a) the elastic section modu-
lus S and the yield moment My and (b) the plastic section modulus Z and the plastic
moment Mp. Bending is about the x-axis, and the steel is A572 Grade 50.

Component Ī A d Ī + Ad2

Flange 0.6667 8 6.5 338.7
Flange 0.6667 8 6.5 338.7
Web 72 — — 72.0
Sum 749.4

TABLE 5.1

1′-0′′

8′′

1′′

1⁄2′′

x

1′′

FIGURE 5.6

a. Because of symmetry, the elastic neutral axis (the x-axis) is located at mid-
depth of the cross section (the location of the centroid). The moment of in-
ertia of the cross section can be found by using the parallel axis theorem, and
the results of the calculations are summarized in Table 5.1.

The elastic section modulus is

and the yield moment is

My = FyS = 50(107) = 5350 in.-kips = 446 ft-kips

S
I

c
= =

+
= =749 4

1 12 2

749 4

7
107

.

( / )

.
 in.3
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S = 107 in.3 and My = 446 ft-kips.

b. Because this shape is symmetrical about the x-axis, this axis divides the cross
section into equal areas and is therefore the plastic neutral axis. The centroid
of the top half-area can be found by the principle of moments. Taking mo-
ments about the x-axis (the neutral axis of the entire cross section) and tabu-
lating the computations in Table 5.2, we get

y
Ay

A
= ∑

∑
= =61

11
5 545.  in.
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TABLE 5.2 Component A y Ay

Flange 8 6.5 52

Web 3 3.0 9

Sum 11 61

–y

x

Centroid of
half-area –y

–y

Fy

Fy

FIGURE 5.7

Figure 5.7 shows that the moment arm of the internal resisting couple is

a = 2ȳ = 2(5.545) = 11.09 in.

and that the plastic section modulus is

The plastic moment is

Mp = FyZ = 50(122) = 6100 in.-kips = 508 ft-kips

Z = 122 in.3 and Mp = 508 ft-kips.

A
a

2
11 11 09 122⎛

⎝
⎞
⎠ = =( . )  in.3

A N S W E R
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FIGURE 5.8

5.3 STABILITY

If a beam can be counted on to remain stable up to the fully plastic condition, the nom-
inal moment strength can be taken as the plastic moment capacity; that is,

Mn = Mp

Otherwise, Mn will be less than Mp.
As with a compression member, instability can be in an overall sense or it can be

local. Overall buckling is illustrated in Figure 5.9a. When a beam bends, the com-
pression region (above the neutral axis) is analogous to a column, and in a manner
similar to a column, it will buckle if the member is slender enough. Unlike a column,

196 Chapter 5 Beams

E X A M P L E  5 . 2

Compute the plastic moment, Mp, for a W10 × 60 of A992 steel.

From the dimensions and properties tables in Part 1 of the Manual,

The centroid of the half-area can be found in the tables for WT shapes, which are
cut from W shapes. The relevant shape here is the WT5 × 30, and the distance from
the outside face of the flange to the centroid is 0.884 inch, as shown in Figure 5.8.

A

A

=

= =

17 7

2

17 7

2
8 85

.

.
.

in.

in.

2

2

This result, when rounded to three significant figures, is the same as the value given
in the dimensions and properties tables.

Mp = FyZ = 50(74.62) = 3731 in.-kips = 311 ft-kips.

a d

a

= − = − =

( ) =

2 0 884 10 2 2 0 884 8 432

8

( . ) . ( . ) .

.

in.

Z =
A
2

885 8 432 74 62( . ) .= in.3
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however, the compression portion of the cross section is restrained by the tension portion,
and the outward deflection (flexural buckling) is accompanied by twisting (torsion).
This form of instability is called lateral-torsional buckling (LTB). Lateral-torsional
buckling can be prevented by bracing the beam against twisting at sufficiently close
intervals. This can be accomplished with either of two types of stability bracing: lat-
eral bracing, illustrated schematically in Figure 5.9b, and torsional bracing, repre-
sented in Figure 5.9c. Lateral bracing, which prevents lateral translation, should be
applied as close to the compression flange as possible. Torsional bracing prevents
twist directly; it can be either nodal or continuous, and it can take the form of ei-
ther cross frames or diaphragms. The nodal and relative categories were defined in
Chapter 4, “Compression Members.” Appendix 6 of the AISC Specification gives the
strength and stiffness requirements for beam bracing. These provisions are based on
the work of Yura (2001). As we shall see, the moment strength depends in part on the
unbraced length, which is the distance between points of bracing.

Whether the beam can sustain a moment large enough to bring it to the fully plas-
tic condition also depends on whether the cross-sectional integrity is maintained.
This integrity will be lost if one of the compression elements of the cross section buck-
les. This type of buckling can be either compression flange buckling, called flange
local buckling (FLB), or buckling of the compression part of the web, called web
local buckling (WLB). As discussed in Chapter 4, “Compression Members,” whether
either type of local buckling occurs will depend on the width-to-thickness ratios
of the compression elements of the cross section.

Figure 5.10 further illustrates the effects of local and lateral-torsional buckling.
Five separate beams are represented on this graph of load versus central deflection.

5.3 Stability 197

Cross frame Diaphragm

(c)

FIGURE 5.9
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Curve 1 is the load-deflection curve of a beam that becomes unstable (in any way)
and loses its load-carrying capacity before first yield (see Figure 5.3b) is attained.
Curves 2 and 3 correspond to beams that can be loaded past first yield but not far
enough for the formation of a plastic hinge and the resulting plastic collapse. If plas-
tic collapse can be reached, the load-deflection curve will have the appearance of
either curve 4 or curve 5. Curve 4 is for the case of uniform moment over the full
length of the beam, and curve 5 is for a beam with a variable bending moment
(moment gradient). Safe designs can be achieved with beams corresponding to any
of these curves, but curves 1 and 2 represent inefficient use of material.

5.4 CLASSIFICATION OF SHAPES

AISC classifies cross-sectional shapes as compact, noncompact, or slender, depend-
ing on the values of the width-to-thickness ratios. For I shapes, the ratio for the pro-
jecting flange (an unstiffened element) is bf�2tf, and the ratio for the web (a stiffened
element) is h�tw. The classification of shapes is found in Section B4 of the Specifica-
tion, “Member Properties,” in Table B4.1b (Table B4.1a is for compression mem-
bers). It can be summarized as follows. Let

l = width-to-thickness ratio

lp = upper limit for compact category

lr = upper limit for noncompact category

Then

if l ≤ lp and the flange is continuously connected to the web, the shape is compact;

if lp < l ≤ lr, the shape is noncompact; and

if l > lr, the shape is slender.

The category is based on the worst width-to-thickness ratio of the cross section. For
example, if the web is compact and the flange is noncompact, the shape is classified
as noncompact. Table 5.3 has been extracted from AISC Table B4.1b and is special-
ized for hot-rolled I-shaped cross sections.

Table 5.3 also applies to channels, except that l for the flange is bf�tf.

198 Chapter 5 Beams
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5.5 BENDING STRENGTH OF COMPACT SHAPES

A beam can fail by reaching Mp and becoming fully plastic, or it can fail by

1. lateral-torsional buckling (LTB), either elastically or inelastically;
2. flange local buckling (FLB), elastically or inelastically; or
3. web local buckling (WLB), elastically or inelastically.

If the maximum bending stress is less than the proportional limit when buckling oc-
curs, the failure is said to be elastic. Otherwise, it is inelastic. (See the related dis-
cussion in Section 4.2, “Column Theory.”)

For convenience, we first categorize beams as compact, noncompact, or slender,
and then determine the moment resistance based on the degree of lateral support. The
discussion in this section applies to two types of beams: (1) hot-rolled I shapes bent
about the strong axis and loaded in the plane of the weak axis, and (2) channels bent
about the strong axis and either loaded through the shear center or restrained against
twisting. (The shear center is the point on the cross section through which a transverse
load must pass if the beam is to bend without twisting.) Emphasis will be on I shapes.
C-shapes are different only in that the width-to-thickness ratio of the flange is bf�tf
rather than bf�2tf. 

We begin with compact shapes, defined as those whose webs are continuously
connected to the flanges and that satisfy the following width-to-thickness ratio re-
quirements for the flange and the web:

The web criterion is met by all standard I and C shapes listed in the Manual for
Fy ≤ 65 ksi; therefore, in most cases only the flange ratio needs to be checked (note
that built-up welded I shapes can have noncompact or slender webs). Most shapes will
also satisfy the flange requirement and will therefore be classified as compact. The
noncompact shapes are identified in the dimensions and properties table with a foot-
note (footnote f). Note that compression members have different criteria than flexural
members, so a shape could be compact for flexure but slender for compression. As
discussed in Chapter 4, shapes with slender compression elements are identified with
a footnote (footnote c). If the beam is compact and has continuous lateral support, or

b
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h
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E

F
f

f y w y2
0 38 3 76≤ ≤. .and

TABLE 5.3

Width-to-
Thickness

Parameters*

Element l lp lr
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*For hot-rolled I shapes in flexure.
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30′

wD = 450 lb/ft
wL = 550 lb/ft

FIGURE 5.11

if the unbraced length is very short, the nominal moment strength, Mn, is the full plas-
tic moment capacity of the shape, Mp. For members with inadequate lateral support,
the moment resistance is limited by the lateral-torsional buckling strength, either
inelastic or elastic.

The first category, laterally supported compact beams, is quite common and is
the simplest case. For a doubly-symmetric, compact I- or C-shaped section bent about
its major axis, AISC F2.1 gives the nominal strength as

Mn = Mp (AISC Equation F2-1)

where

Mp = FyZ x

200 Chapter 5 Beams

E X A M P L E  5 . 3

The beam shown in Figure 5.11 is a W16 × 31 of A992 steel. It supports a reinforced
concrete floor slab that provides continuous lateral support of the compression
flange. The service dead load is 450 lb�ft. This load is superimposed on the beam;
it does not include the weight of the beam itself. The service live load is 550 lb�ft.
Does this beam have adequate moment strength?

First, determine the nominal flexural strength. Check for compactness.

(The web is compact for all shapes in the Manual for Fy ≤ 65 ksi.)

This shape can also be identified as compact because there is no footnote in the
dimensions and properties tables to indicate otherwise. Because the beam is com-
pact and laterally supported, the nominal flexural strength is

Mn = Mp = FyZx = 50(54.0) = 2700 in.-kips = 225.0 ft kips.

h

t

E

Fw y
< ∴3 76. The web is compact.
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6 28

0 38 0
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. .

(from Part 1 of the )Manual
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29 000

50
9 15 6 28

,
. .= > ∴ The flange is compact.
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Compute the maximum bending moment. The total service dead load, including the
weight of the beam, is

wD = 450 + 31 = 481 lb�ft

For a simply supported, uniformly loaded beam, the maximum bending moment oc-
curs at midspan and is equal to

where w is the load in units of force per unit length, and L is the span length. Then

The dead load is less than 8 times the live load, so load combination 2 controls:

Mu = 1.2MD + 1.6ML = 1.2(54.11) + 1.6(61.88) = 164 ft-kips.

Alternatively, the loads can be factored at the outset:

The design strength is

fbMn = 0.90(225.0) = 203 ft-kips > 164 ft-kips (OK)

The design moment is greater than the factored-load moment, so the W16 × 31 is 
satisfactory.

ASD load combination 2 controls.

Ma = MD + ML = 54.11 + 61.88 = 116.0 ft-kips 

Alternatively, the loads can be added before the moment is computed:

The allowable moment is

M M
Mn

b

n
nΩ

= =
1 67

0 6
.

. = 0.6(225.0) = 135 ft-kips >116 ft-kips (OK)

w w w

M w L
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a a

= + = + =
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Allowable stress solution: 

The applied stress is

The allowable stress is

Since fb < Fb, the beam has enough strength.

The W16 × 31 is satisfactory.

F
M

Sb
n

x

= = =0 6 0 6 225 0 12

47 2
34 3

. . ( . )( )

.
. ksi

f
M

Sb
a

x
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.
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A N S W E R

The allowable stress solution can be simplified if a slight approximation is made.
The allowable stress can be written as

If an average value of Zx�Sx = 1.1 is used (this is conservative), 

Fb = 0.6Fy(1.1) = 0.66Fy

If this value is used in Example 5.3,

Fb = 0.66(50) = 33.0 ksi

which is conservative by about 4%. Thus, for compact, laterally-supported beams, the
allowable stress can be conservatively taken as 0.66Fy. (This value of allowable stress
has been used in AISC allowable stress design specifications since 1963.)

We can formulate an allowable stress approach that requires no approximation
if we use the plastic section modulus instead of the elastic section modulus. From

and

The required plastic section modulus is

Z
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Thus, if the bending stress is based on the plastic section modulus Zx,

This approach is useful when designing compact, laterally-supported beams.
The moment strength of compact shapes is a function of the unbraced length, Lb,

defined as the distance between points of lateral support, or bracing. In this book, we
indicate points of lateral support with an “×,” as shown in Figure 5.12. The relationship
between the nominal strength, Mn, and the unbraced length is shown in Figure 5.13. If
the unbraced length is no greater than Lp, to be defined presently, the beam is con-
sidered to have full lateral support, and Mn = Mp. If Lb is greater than Lp but less than
or equal to the parameter Lr, the strength is based on inelastic LTB. If Lb is greater
than Lr, the strength is based on elastic LTB.

The equation for the theoretical elastic lateral-torsional buckling strength can be
found in Theory of Elastic Stability (Timoshenko and Gere, 1961). With some nota-
tional changes, the nominal moment strength is

Mn = FcrSx

f
M

Z
F Fb

a

x
b y= =and 0 6.

FIGURE 5.12
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where Fcr is the elastic buckling stress and is given by

(5.5)

where
Lb = unbraced length (in.)
Iy = moment of inertia about the weak axis of the cross section (in.4)
G = shear modulus of structural steel = 11,200 ksi
J = torsional constant (in.4)
Cw = warping constant (in.6)

(The constants G, J, and Cw were defined in Chapter 4 in the discussion of torsional
and lateral-torsional buckling of columns.)

Equation 5.5 is valid as long as the bending moment within the unbraced length
is uniform (nonuniform moment is accounted for with a factor Cb, which is explained
later). The AISC Specification gives a different, but equivalent, form for the elastic
buckling stress Fcr. AISC gives the nominal moment strength as 

Mn = FcrSx ≤ Mp (AISC Equation F2-3)

where

(AISC Equation F2-4)

and
Cb = factor to account for nonuniform bending within the unbraced length Lb.

This factor will be covered following Example 5.4.

(AISC Equation F2-7)

c = 1.0 for doubly-symmetric I shapes (AISC Equation F2-8a)

(AISC Equation F2-8b)

h0 = distance between flange centroids = d − tf

If the moment when lateral-torsional buckling occurs is greater than the moment
corresponding to first yield, the strength is based on inelastic behavior. The moment
corresponding to first yield is

Mr = 0.7FySx

where the yield stress has been reduced by 30% to account for the effect of residual
stress. As shown in Figure 5.13, the boundary between elastic and inelastic behavior
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will be for an unbraced length of Lr, which is the value of Lb obtained from AISC Equa-
tion F2-4 when Fcr is set equal to 0.7Fy with Cb = 1.0. The following equation results:

(AISC Equation F2-6)

As with columns, inelastic buckling of beams is more complicated than elastic buck-
ling, and empirical formulas are often used. The following equation is used by AISC:

(AISC Equation F2-2)

where the 0.7FySx term is the yield moment adjusted for residual stress, and

(AISC Equation F2-5)

Summary of Nominal Flexural Strength

The nominal bending strength for compact I and C-shaped sections can be summa-
rized as follows:

For Lb ≤ Lp,

Mn = Mp (AISC Equation F2-1)

For Lp < Lb ≤ Lr,

(AISC Equation F2-2)

For Lb > Lr,

Mn = FcrSx ≤ Mp (AISC Equation F2-3)

where

(AISC Equation F2-4)
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E X A M P L E  5 . 4

Determine the flexural strength of a W14 × 68 of A242 steel subject to

a. Continuous lateral support.
b. An unbraced length of 20 ft with Cb = 1.0.
c. An unbraced length of 30 ft with Cb = 1.0.

To determine the yield stress of a W14 × 68 of A242 steel, we refer to Table 2-3 in
Part 2 of the Manual. The yield stress is a function of the flange thickness, which
for this shape is 0.720 in. This corresponds to footnote 1, so a W14 × 68 is avail-
able in A242 steel with a yield stress Fy of 50 ksi. Next, determine whether this
shape is compact, noncompact, or slender:

The web is compact for all shapes in the Manual for Fy ≤ 65 ksi; therefore, a W14 ×
68 is compact for Fy = 50 ksi. (This determination could also be made by observ-
ing that there is no footnote in the dimensions and properties tables to indicate that
the shape is not compact.)

a. Because the beam is compact and laterally supported, the nominal flexural
strength is

Mn = Mp = FyZx = 50(115) = 5750 in.-kips = 479.2 ft-kips

The design strength is

fbMn = 0.90(479.2) = 431 ft-kips

The allowable moment strength is

b. Lb = 20 ft and Cb = 1.0. First, determine Lp and Lr:

L r
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The following terms will be needed in the computation of Lr:

(rts can also be found in the dimensions and properties tables. For a W14 × 68,
it is given as 2.80 in.)

ho = d − tf = 14.0 − 0.720 = 13.28 in.

(ho can also be found in the dimensions and properties tables. For a W14 × 68,
it is given as 13.3 in.)
For a doubly-symmetric I shape, c = 1.0. From AISC Equation F2-6,

Since Lp < Lb < Lr,

The design strength is

fbMn = 0.90(381.0) = 343 ft-kips

The allowable moment strength is

M
Mn

b
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c. Lb = 30 ft and Cb = 1.0

From AISC Equation F2-3,

Mn = FcrSx = 33.90(103) = 3492 in.-kips = 291.0 ft-kips < Mp = 479.2 ft-kips

fbMn = 0.90(291.0) = 262 ft-kips

Mn�Ωb = 0.6Mn = 0.6(291.0) = 175 ft-kips

F
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From AISC Equation F2-4,

L Lb r> = 29.28 ft, so elastic lateral-torsional bucckling controls.
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If the moment within the unbraced length Lb is uniform (constant), there is no moment
gradient and Cb = 1.0. If there is a moment gradient, the value of Cb is given by 

(AISC Equation F1-1)

where
Mmax = absolute value of the maximum moment within the unbraced length

(including the end points of the unbraced length)
MA = absolute value of the moment at the quarter point of the unbraced length
MB = absolute value of the moment at the midpoint of the unbraced length
MC = absolute value of the moment at the three-quarter point of the unbraced

length

AISC Equation F1-1 is valid for doubly-symmetric members and for singly-symmetric
members in single curvature.

When the bending moment is uniform, the value of Cb is

C
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=12 5
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FIGURE 5.14

5.5 Bending Strength of Compact Shapes 209

E X A M P L E  5 . 5

Determine Cb for a uniformly loaded, simply supported W shape with lateral sup-
port at its ends only.

Because of symmetry, the maximum moment is at midspan, so

Also because of symmetry, the moment at the quarter point equals the moment at
the three-quarter point. From Figure 5.14,
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Since this is a W shape (doubly symmetric), AISC Equation (F1-1) is applicable.

Cb = 1.14.

C
M

M M M Mb
A B C

=
+ + +

=
( )

12 5

2 5 3 4 3

12 5

2 5

1
8

1

.

.

.

.

max

max

88
3

32
1
8

3
32

3 4 3
1 14( ) + ( ) + ( ) + ( ) = .

76004_05_ch05_p188-297.qxd  9/6/11  3:49 PM  Page 209



Figure 5.15 shows the value of Cb for several common cases of loading and lateral
support. Values of Cb for other cases can be found in Part 3 of the Manual, “Design of
Flexural Members.”

For unbraced cantilever beams, AISC specifies a value of Cb of 1.0. A value of
1.0 is always conservative, regardless of beam configuration or loading, but in some
cases it may be excessively conservative. 

The effect of Cb on the nominal strength is illustrated in Figure 5.16. Although
the strength is directly proportional to Cb, this graph clearly shows the importance
of observing the upper limit of Mp, regardless of which equation is used for Mn.

Part 3 of the Steel Construction Manual, “Design of Flexural Members,”
contains several useful tables and charts for the analysis and design of beams. For
example, Table 3-2, “W Shapes, Selection by Zx,” (hereafter referred to as the
“Zx table”), lists shapes commonly used as beams, arranged in order of available
flexural strength—both fbMpx and Mpx�Ωb. Other useful constants that are tabulated
include Lp and Lr (which is particularly tedious to compute). These two constants can

210 Chapter 5 Beams
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also be found in several other tables in Part 3 of the Manual. We cover additional
design aids in other sections of this chapter.

5.6 BENDING STRENGTH OF NONCOMPACT SHAPES

As previously noted, most standard W, M, S, and C shapes are compact. A few are
noncompact because of the flange width-to-thickness ratio, but none are slender.

In general, a noncompact beam may fail by lateral-torsional buckling, flange
local buckling, or web local buckling. Any of these types of failure can be in either
the elastic range or the inelastic range. The strength corresponding to each of these
three limit states must be computed, and the smallest value will control. 

From AISC F3, for flange local buckling, if lp < l ≤ lr, the flange is noncompact,
buckling will be inelastic, and

(AISC Equation F3-1)

where

The webs of all hot-rolled shapes in the Manual are compact, so the noncompact
shapes are subject only to the limit states of lateral-torsional buckling and flange local
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buckling. Built-up welded shapes, however, can have noncompact or slender webs as
well as noncompact or slender flanges. These cases are covered in AISC Sections F4
and F5. Built-up shapes, including plate girders, are covered in Chapter 10 of this
textbook.

212 Chapter 5 Beams

E X A M P L E  5 . 6

A simply supported beam with a span length of 45 feet is laterally supported at its
ends and is subjected to the following service loads:

Dead load = 400 lb�ft (including the weight of the beam)

Live load = 1000 lb�ft

If Fy = 50 ksi, is a W14 × 90 adequate?

Determine whether the shape is compact, noncompact, or slender:

Since lp < l < lr, this shape is noncompact. Check the capacity based on the limit
state of flange local buckling:

Check the capacity based on the limit state of lateral-torsional buckling. From the 
Zx table,

Lp = 15.1 ft and Lr = 42.5 ft

Lb = 45 ft > Lr ∴ Failure is by elastic LTB.
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From Part 1 of the Manual,

Iy = 362 in.4

rts = 4.11 in.

ho = 13.3 in.

J = 4.06 in.4

Cw = 16,000 in.6

For a uniformly loaded, simply supported beam with lateral support at the ends,

Cb = 1.14 (Fig. 5.15a)

For a doubly-symmetric I shape, c = 1.0. AISC Equation F2-4 gives

From AISC Equation F2-3,

Mn = FcrSx = 37.20(143) = 5320 in.-kips < Mp = 7850 in.-kips

This is smaller than the nominal strength based on flange local buckling, so lateral-
torsional buckling controls.

The design strength is

fbMn = 0.90(5320) = 4788 in.-kips = 399 ft-kips

The factored load and moment are

Since Mu > fbMn, the beam does not have adequate moment strength.

The allowable stress is

Fb = 0.6Fcr = 0.6(37.20) = 22.3 ksi

The applied bending moment is
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and the applied stress is

Since fb > Fb, the beam does not have adequate moment strength.

f
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a

x

= = = >354 4 12
143

29 7
. ( )

. ksi 22.3 ksi ((N.G.)

214 Chapter 5 Beams

Noncompact shapes are identified in the Zx table by an “f” footnote (this same
identification is used in the dimensions and properties tables). Noncompact shapes are
also treated differently in the Zx table in the following way. The tabulated value of Lp
is the value of unbraced length at which the nominal strength based on inelastic
lateral-torsional buckling equals the nominal strength based on flange local buckling,
that is, the maximum unbraced length for which the nominal strength can be taken as
the strength based on flange local buckling. (Recall that Lp for compact shapes is the
maximum unbraced length for which the nominal strength can be taken as the plas-
tic moment.) For the shape in Example 5.6, equate the nominal strength based on FLB
to the strength based on inelastic LTB (AISC Equation F2-2), with Cb = 1.0:

(5.6)

The value of Lr was given in Example 5.6 and is unchanged. The value of Lp, how-
ever, must be computed from AISC Equation F2-5:

Returning to Equation 5.6, we obtain

This is the value tabulated as Lp for a W14 × 90 with Fy = 50 ksi. Note that

could still be used for noncompact shapes. If doing so resulted in the equation for
inelastic LTB being used when Lb was not really large enough, the strength based on
FLB would control anyway.
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In addition to the different meaning of Lp for noncompact shapes in the Zx table,
the available strength values, fbMpx and Mp�Ωb, are based on flange local buckling
rather than the plastic moment.

5.7 SUMMARY OF MOMENT STRENGTH

The procedure for computation of nominal moment strength for I and C-shaped sections
bent about the x axis will now be summarized. All terms in the following equations have
been previously defined, and AISC equation numbers will not be shown. This summary
is for compact and noncompact shapes (noncompact flanges) only (no slender shapes).

1. Determine whether the shape is compact.
2. If the shape is compact, check for lateral-torsional buckling as follows.

If Lb ≤ Lp, there is no LTB, and Mn = Mp

If Lp < Lb ≤ Lr, there is inelastic LTB, and 

If Lb > Lr, there is elastic LTB, and 

Mn = FcrSx ≤ Mp

where

3. If the shape is noncompact because of the flange, the nominal strength will be
the smaller of the strengths corresponding to flange local buckling and lateral-
torsional buckling.

a. Flange local buckling:
If l ≤ lp, there is no FLB
If lp < l ≤ lr, the flange is noncompact, and

b. Lateral-torsional buckling:
If Lb ≤ Lp, there is no LTB
If Lp < Lb ≤ Lr, there is inelastic LTB, and 
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FIGURE 5.17

If Lb > Lr, there is elastic LTB, and 

Mn = FcrSx ≤ Mp

where

5.8 SHEAR STRENGTH

Beam shear strength is covered in Chapter G of the AISC Specification, “Design of
Members for Shear.” Both hot-rolled shapes and welded built-up shapes are covered.
We discuss hot-rolled shapes in the present chapter of this book and built-up shapes
in Chapter 10, “Plate Girders.” The AISC provisions for hot-rolled shapes are cov-
ered in Section G2.1.

Before covering the AISC provisions for shear strength, we will first review some
basic concepts from mechanics of materials. Consider the simple beam of Figure 5.17.
At a distance x from the left end and at the neutral axis of the cross section, the state
of stress is as shown in Figure 5.17d. Because this element is located at the neutral
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axis, it is not subjected to flexural stress. From elementary mechanics of materials,
the shearing stress is

(5.7)

where
fv = vertical and horizontal shearing stress at the point of interest
V = vertical shear force at the section under consideration
Q = first moment, about the neutral axis, of the area of the cross section

between the point of interest and the top or bottom of the cross section
I = moment of inertia about the neutral axis
b = width of the cross section at the point of interest

Equation 5.7 is based on the assumption that the stress is constant across the width
b, and it is therefore accurate only for small values of b. For a rectangular cross section
of depth d and width b, the error for d�b = 2 is approximately 3%. For d�b = 1, the error
is 12% and for d�b = 1⁄4, it is 100% (Higdon, Ohlsen, and Stiles, 1960). For this rea-
son, Equation 5.7 cannot be applied to the flange of a W-shape in the same manner
as for the web.

Figure 5.18 shows the shearing stress distribution for a W shape. Superimposed
on the actual distribution is the average stress in the web, V�Aw, which does not dif-
fer much from the maximum web stress. Clearly, the web will completely yield long
before the flanges begin to yield. Because of this, yielding of the web represents one
of the shear limit states. Taking the shear yield stress as 60% of the tensile yield stress,
we can write the equation for the stress in the web at failure as

where Aw = area of the web. The nominal strength corresponding to this limit state is
therefore

Vn = 0.6FyAw (5.8)

and will be the nominal strength in shear provided that there is no shear buckling of
the web. Whether that occurs will depend on h�tw, the width-to-thickness ratio of the
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FIGURE 5.18
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web. If this ratio is too large—that is, if the web is too slender—the web can buckle in
shear, either inelastically or elastically.

AISC Specification Requirements for Shear

For LRFD, the relationship between required and available strength is

Vu ≤ fvVn

where
Vu = maximum shear based on the controlling combination of factored loads
fv = resistance factor for shear

For ASD, the relationship is

where
Va = maximum shear based on the controlling combination of service loads
Ωv = safety factor for shear

As we will see, the values of the resistance factor and safety factor will depend on the
web width-to-thickness ratio.

Section G2.1 of the AISC Specification covers both beams with stiffened webs and
beams with unstiffened webs. In most cases, hot-rolled beams will not have stiffeners, and
we will defer treatment of stiffened webs until Chapter 10. The basic strength equation is

Vn = 0.6FyAwCv (AISC Equation G2-1)

where
Aw = area of the web ≈ dtw

d = overall depth of the beam
Cv = ratio of critical web stress to shear yield stress

The value of Cv depends on whether the limit state is web yielding, web inelastic
buckling, or web elastic buckling.

Case 1: For hot-rolled I shapes with

The limit state is shear yielding, and

Cv = 1.0 (AISC Equation G2-2)
fv = 1.00
Ωv = 1.50

Most W shapes with Fy ≤ 50 ksi fall into this category (see User Note in AISC G2.1[a]).
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Case 2: For all other doubly and singly symmetric shapes,

fv = 0.90

Ωv = 1.67

and Cv is determined as follows:

For there is no web instability, and

Cv = 1.0 (AISC Equation G2-3)

(This corresponds to Equation 5.8 for shear yielding.)

For the limit state is elastic web buckling, and

(AISC Equation G2-5)

where
kv = 5

This value of kv is for unstiffened webs with h�tw < 260. Although section G2.1 of the
Specification does not give h�tw = 260 as an upper limit, no value of kv is given when
h�tw ≥ 260. In addition, AISC F13.2, “Proportioning Limits for I-Shaped Members,”
states that h�tw in unstiffened girders shall not exceed 260.

AISC Equation G2-5 is based on elastic stability theory, and AISC Equation G2-4
is an empirical equation for the inelastic region, providing a transition between the limit
states of web yielding and elastic web buckling.

The relationship between shear strength and the web width-to-thickness ratio is
analogous to that between flexural strength and the width-to-thickness ratio (for FLB)
and between flexural strength and the unbraced length (for LTB). This relationship is
illustrated in Figure 5.19.
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can also be written in terms of stress as

fv ≤ Fv

where

For the most common case of hot-rolled I shapes with 

Shear is rarely a problem in rolled steel beams; the usual practice is to design a
beam for flexure and then to check it for shear.
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Check the beam in Example 5.6 for shear.

From the dimensions and properties tables in Part 1 of the Manual, the web width-to-
thickness ratio of a W14 × 90 is

h

tw

= 25 9.
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and the web area is Aw = dtw = 14.0(0.440) = 6.160 in.2

Since

the strength is governed by shear yielding of the web and Cv = 1.0. (As pointed out in
the Specification User Note, this will be the case for most W shapes with Fy ≤ 50 ksi.)
The nominal shear strength is

Vn = 0.6FyAwCv = 0.6(50)(6.160)(1.0) = 184.8 kips

Determine the resistance factor fv.

Since 

fv = 1.00

and the design shear strength is

fvVn = 1.00(184.8) = 185 kips

From Example 5.6, wu = 2.080 kips�ft and L = 45 ft. For a simply supported, uni-
formly loaded beam, the maximum shear occurs at the support and is equal to the
reaction.

Determine the safety factor Ωv.

Since 

Ωv = 1.50

and the allowable shear strength is

Vn

vΩ
= =184 8

1 50
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From Example 5.6, the total service load is

wa = wD + wL = 0.400 + 1.000 = 1.4 kips�ft

The maximum shear is

Alternately, a solution in terms of stress can be done. Since shear yielding controls
(Cv = 1.0) and Ωv = 1.50, the allowable shear stress is

Fv = 0.4Fy = 0.4(50) = 20 ksi

The required shear strength (stress) is

The required shear strength is less than the available shear strength, so the beam is
satisfactory.

f
V

Aa
a

w

= = = <31 5

6 160
5 11

.

.
. ksi 20 ksi (OK)

V
w L

a
a= = = <
2

1 4 45

2
31 5

. ( )
. kips 123 kips (OK)
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FIGURE 5.20

Values of fvVn and Vn�Ωv are given in several tables in Part 3 of the Manual, in-
cluding the Zx table, so computation of shear strength is unnecessary for hot-rolled
shapes.

Block Shear

Block shear, which was considered earlier in conjunction with tension member con-
nections, can occur in certain types of beam connections. To facilitate the connection
of beams to other beams so that the top flanges are at the same elevation, a short
length of the top flange of one of the beams may be cut away, or coped. If a coped
beam is connected with bolts as in Figure 5.20, segment ABC will tend to tear out.
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E X A M P L E  5 . 8

Determine the maximum reaction, based on block shear, that can be resisted by the
beam shown in Figure 5.21.

The applied load in this case will be the vertical beam reaction, so shear will occur
along line AB and there will be tension along BC. Thus the block shear strength will
be a limiting value of the reaction.

We covered the computation of block shear strength in Chapter 3, but we will re-
view it here. Failure is assumed to occur by rupture (fracture) on the shear area (sub-
ject to an upper limit) and rupture on the tension area. AISC J4.3, “Block Shear
Strength,” gives the following equation for block shear strength:

Rn = 0.6FuAnv + UbsFuAnt ≤ 0.6FyAgv + UbsFuAnt (AISC Equation J4-5)

where
Agv = gross area in shear (in Figure 5.20, length AB times the web thickness)
Anv = net area along the shear surface or surfaces
Ant = net area along the tension surface (in Figure 5.20, along BC)
Ubs = 1.0 when the tensile stress is uniform (for most coped beams)

= 0.5 when the tension stress is not uniform (coped beams with two lines
of bolts or with nonstandard distance from bolts to end of beam) (Ricles
and Yura, 1983)

For LRFD, f = 0.75. For ASD, Ω = 2.00.

5.8 Shear Strength 223

FIGURE 5.21
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The net tension area is

Since the block shear will occur in a coped beam with a single line of bolts, Ubs =
1.0. From AISC Equation J4-5,

Rn = 0.6FuAnv + UbsFuAnt = 0.6(65)(2.381) + 1.0(65)(0.2438) = 108.7 kips

with an upper limit of

0.6FyAgv + UbsFuAnt = 0.6(65)(3.300) + 1.0(65)(0.2438) = 144.5 kips

The nominal block shear strength is therefore 108.7 kips.

The maximum factored load reaction is the design strength: fRn = 0.75(108.7) =
81.5 kips

The maximum service load reaction is the allowable strength:
Rn

Ω
= =108 7

2 00
54 4

.

.
. kips

Ant = − ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

=0 300 1 25
1

2

7

8
0 2438. . . in.2
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5.9 DEFLECTION

In addition to being safe, a structure must be serviceable. A serviceable structure is
one that performs satisfactorily, not causing any discomfort or perceptions of unsafety
for the occupants or users of the structure. For a beam, being serviceable usually
means that the deformations, primarily the vertical sag, or deflection, must be limited.
Excessive deflection is usually an indication of a very flexible beam, which can lead
to problems with vibrations. The deflection itself can cause problems if elements
attached to the beam can be damaged by small distortions. In addition, users of the
structure may view large deflections negatively and wrongly assume that the struc-
ture is unsafe.

For the common case of a simply supported, uniformly loaded beam such as that
in Figure 5.22, the maximum vertical deflection is

Deflection formulas for a variety of beams and loading conditions can be found in
Part 3, “Design of Flexural Members,” of the Manual. For more unusual situations,

∆ = 5

384

4wL

EI
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standard analytical methods such as the method of virtual work may be used.
Deflection is a serviceability limit state, not one of strength, so deflections should
always be computed with service loads.

The appropriate limit for the maximum deflection depends on the function
of the beam and the likelihood of damage resulting from the deflection. The
AISC Specification furnishes little guidance other than a statement in Chapter L,
“Design for Serviceability,” that deflections should not be excessive. There is,
however, a more detailed discussion in the Commentary to Chapter L. Appropri-
ate limits for deflection can usually be found from the governing building code,
expressed as a fraction of the span length L, such as L�360. Sometimes a numer-
ical limit, such as 1 inch, is appropriate. The limits given in the International
Building Code (ICC, 2009) are typical. Table 5.4 shows some of the deflection
limits given by that code.

The limits shown in Table 5.4 for deflection due to dead load plus live load do
not apply to steel beams, because the dead load deflection is usually compensated for
by some means, such as cambering. Camber is a curvature in the opposite direction
of the dead load deflection curve and can be accomplished by bending the beam, with
or without heat. When the dead load is applied to the cambered beam, the curvature
is removed, and the beam becomes level. Therefore, only the live load deflection is
of concern in the completed structure. Dead load deflection can also be accounted for
by pouring a variable depth slab with a level top surface, the variable depth being a
consequence of the deflection of the beam (this is referred to as ponding of the
concrete). Detailed coverage of control of dead load deflection is given in an AISC
seminar series (AISC, 1997a) and several papers (Ruddy, 1986; Ricker, 1989; and
Larson and Huzzard, 1990).

5.9 Deflection 225

FIGURE 5.22

TABLE 5.4

Deflection Limits

Max. live Max. dead + Max. snow or 
Type of member load defl. live load defl. wind load defl.

Roof beam:
Supporting plaster ceiling L �360 L �240 L �360
Supporting nonplaster ceiling L �240 L �180 L �240
Not supporting a ceiling L �180 L �120 L �180

Floor beam L �360 L �240 —
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FIGURE 5.23

E X A M P L E  5 . 9

Compute the dead load and live load deflections for the beam shown in Figure 5.23.
If the maximum permissible live load deflection is L�360, is the beam satisfactory?

It is more convenient to express the deflection in inches than in feet, so units of
inches are used in the deflection formula. The dead load deflection is

The live load deflection is

The maximum permissible live load deflection is

The beam satisfies the deflection criterion.

L

360

30 12

360
= = >( )

1.0 in. 0.678 in.     (OK)

∆L
Lw L

EI
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Dw L

EI
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5

384

0 500 12 30 12

29 000

4 4( . )( )

, (

�
5510

0 616
)

.= in.

Ponding is one deflection problem that does affect the safety of a structure. It is
a potential hazard for flat roof systems that can trap rainwater. If drains become
clogged during a storm, the weight of the water will cause the roof to deflect, thus pro-
viding a reservoir for still more water. If this process proceeds unabated, collapse can
occur. The AISC specification requires that the roof system have sufficient stiffness
to prevent ponding, and it prescribes limits on stiffness parameters in Appendix 2,
“Design for Ponding.”

5.10 DESIGN

Beam design entails the selection of a cross-sectional shape that will have enough
strength and that will meet serviceability requirements. As far as strength is concerned,
flexure is almost always more critical than shear, so the usual practice is to design for
flexure and then check shear. The design process can be outlined as follows.
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1. Compute the required moment strength (i.e., the factored load moment Mu for
LRFD or the unfactored moment Ma for ASD). The weight of the beam is part
of the dead load but is unknown at this point. A value may be assumed and ver-
ified after a shape is selected, or the weight may be ignored initially and checked
after a shape has been selected. Because the beam weight is usually a small part
of the total load, if it is ignored at the beginning of a design problem, the selected
shape will usually be satisfactory when the moment is recomputed.

2. Select a shape that satisfies this strength requirement. This can be done in one
of two ways.
a. Assume a shape, compute the available strength, and compare it with the

required strength. Revise if necessary. The trial shape can be easily selected
in only a limited number of situations (as in Example 5.10).

b. Use the beam design charts in Part 3 of the Manual. This method is pre-
ferred, and we explain it following Example 5.10.

3. Check the shear strength.
4. Check the deflection.

5.10 Design 227

FIGURE 5.24

E X A M P L E  5 . 1 0

Select a standard hot-rolled shape of A992 steel for the beam shown in Figure 5.24.
The beam has continuous lateral support and must support a uniform service live
load of 4.5 kips�ft. The maximum permissible live load deflection is L�240.

Ignore the beam weight initially then check for its effect after a selection is made.

wu = 1.2wD + 1.6wL = 1.2(0) + 1.6(4.5) = 7.2 kips�ft

Required moment strength 

= required fbMn

Assume that the shape will be compact. For a compact shape with full lateral
support,

M M F Zn p y x= =

M w Lu u= = =1

8

1

8
7 2 30 810 02 2( . )( ) . ft-kips
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From 

The Zx table lists hot-rolled shapes normally used as beams in order of decreasing
plastic section modulus. Furthermore, they are grouped so that the shape at the top
of each group (in bold type) is the lightest one that has enough section modulus to
satisfy a required section modulus that falls within the group. In this example, the
shape that comes closest to meeting the section modulus requirement is a W21 × 93,
with Zx = 221 in.3, but the lightest one is a W24 × 84, with Zx = 224 in.3. Because
section modulus is not directly proportional to area, it is possible to have more sec-
tion modulus with less area, and hence less weight.

Try a W24 × 84. This shape is compact, as assumed (noncompact shapes are
marked as such in the table); therefore Mn = Mp, as assumed.

Account for the beam weight.

wu = 1.2wD + 1.6wL = 1.2(0.084) + 1.6(4.5) = 7.301 kips�ft

The required section modulus is 

In lieu of basing the search on the required section modulus, the design strength
fbMp could be used, because it is directly proportional to Zx and is also tabulated.
Next, check the shear:

From the Zx table,

fvVn = 340 kips > 110 kips (OK)

Finally, check the deflection. The maximum permissible live load deflection is 
L�240 = (30 × 12)�240 = 1.5 inch.
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Use a W24 × 84.

Ignore the beam weight initially, then check for its effect after a selection is made.

wa = wD + wL = 0 + 4.5 = 4.5 kips�ft

Assume that the shape will be compact. For a compact shape with full lateral
support,

Mn = Mp = FyZx

From 

The Zx table lists hot-rolled shapes normally used as beams in order of decreasing
plastic section modulus. They are arranged in groups, with the lightest shape in each
group at the top of that group. For the current case, the shape with a section modu-
lus closest to 203 in.3 is a W18 × 97, but the lightest shape with sufficient section
modulus is a W24 × 84, with Zx = 224 in.3

Try a W24 × 84. This shape is compact, as assumed (if it were noncompact,
there would be a footnote in the Zx table). Therefore, Mn = Mp as assumed. Account
for the beam weight:

The required plastic section modulus is

Instead of searching for the required section modulus, the search could be based on
the required value of Mp�Ωb, which is also tabulated. Because Mp�Ωb is propor-
tional to Zx, the results will be the same.
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Another approach is to use the allowable stress for compact laterally sup-
ported shapes. From Section 5.5 of this book, with the flexural stress based on the
plastic section modulus,

Fb = 0.6Fy = 0.6(50) = 30.0 ksi

and the required section modulus (before the beam weight is included) is

Next, check the shear. The required shear strength is

From the Zx table, the available shear strength is

Check deflection. The maximum permissible live load deflection is

Use a W24 × 84.
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In Example 5.10, it was first assumed that a compact shape would be used, and
then the assumption was verified. However, if the search is made based on available
strength (fbMp or Mp�Ωb) rather than section modulus, it is irrelevant whether the shape
is compact or noncompact. This is because for noncompact shapes, the tablulated
values of fbMp and Mp�Ωb are based on flange local buckling and not the plastic
moment (see Section 5.6). This means that for laterally supported beams, the Zx table
can be used for design without regard to whether the shape is compact or noncompact.

Beam Design Charts

Many graphs, charts, and tables are available for the practicing engineer, and these
aids can greatly simplify the design process. For the sake of efficiency, they are
widely used in design offices, but you should approach their use with caution and not
allow basic principles to become obscured. It is not our purpose to describe in this
book all available design aids in detail, but some are worthy of note, particularly the
curves of moment strength versus unbraced length given in Part 3 of the Manual.
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These curves will be described with reference to Figure 5.25, which shows a
graph of nominal moment strength as a function of unbraced length Lb for a particu-
lar compact shape. Such a graph can be constructed for any cross-sectional shape and
specific values of Fy and Cb by using the appropriate equations for moment strength.

The design charts in the Manual comprise a family of graphs similar to the one
shown in Figure 5.25. Two sets of curves are available, one for W shapes with Fy =
50 ksi and one for C and MC shapes with Fy = 36 ksi. Each graph gives the flexural
strength of a standard hot-rolled shape. Instead of giving the nominal strength Mn,
however, both the allowable moment strength Mn�Ωb and the design moment strength
fbMn are given. Two scales are shown on the vertical axis—one for Mn�Ωb and one
for fbMn. All curves were generated with Cb = 1.0. For other values of Cb, simply mul-
tiply the moment from the chart by Cb. However, the strength can never exceed the
value represented by the horizontal line at the left side of the graph. For a compact
shape, this represents the strength corresponding to yielding (reaching the plastic
moment Mp). If the curve is for a noncompact shape, the horizontal line represents the
flange local buckling strength.

Use of the charts is illustrated in Figure 5.26, where two such curves are shown.
Any point on this graph, such as the intersection of the two dashed lines, represents

5.10 Design 231

FIGURE 5.25

FIGURE 5.26
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an available moment strength and an unbraced length. If the moment is a required mo-
ment capacity, then any curve above the point corresponds to a beam with a larger
moment capacity. Any curve to the right is for a beam with exactly the required mo-
ment capacity, although for a larger unbraced length. In a design problem, therefore,
if the charts are entered with a given unbraced length and a required strength, curves
above and to the right of the point correspond to acceptable beams. If a dashed por-
tion of a curve is encountered, then a curve for a lighter shape lies above or to the right
of the dashed curve. Points on the curves corresponding to Lp are indicated by a solid
circle; Lr is represented by an open circle.

In the LRFD solution of Example 5.10, the required design strength was
810.0 ft-kips, and there was continuous lateral support. For continuous lateral support,
Lb can be taken as zero. From the charts, the first solid curve above the 810.0 ft-kip
mark is for a W24 × 84, the same as selected in Example 5.10. Although Lb = 0 is not
on this particular chart, the smallest value of Lb shown is less than Lp for all shapes
on that page.

The beam curve shown in Figure 5.25 is for a compact shape, so the value of Mn
for sufficiently small values of Lb is Mp. As discussed in Section 5.6, if the shape is
noncompact, the maximum value of Mn will be based on flange local buckling. The
maximum unbraced length for which this condition is true will be different from the
value of Lp obtained with AISC Equation F2-5. The moment strength of noncompact
shapes is illustrated graphically in Figure 5.27, where the maximum nominal strength
is denoted M ′p, and the maximum unbraced length for which this strength is valid is
denoted L′p.

Although the charts for compact and noncompact shapes are similar in appear-
ance, Mp and Lp are used for compact shapes, whereas M ′p and L′p are used for non-
compact shapes. (This notation is not used in the charts or in any of the other design
aids in the Manual.) Whether a shape is compact or noncompact is irrelevant to the
use of the charts.

232 Chapter 5 Beams

M'p = nominal strength based on FLB

Mn

Mp

M'p

Lp L'p Lr

Lb

FIGURE 5.27
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φb Mn or Mn/Ωb

φb M'p
or

M'p/Ωb

L'p Lr

Lb

Form of the strength curve in the charts

FIGURE 5.27

(continued)

FIGURE 5.28

If the weight of the beam is neglected, the central half of the beam is subjected to a
uniform moment, and

MA = MB = MC = Mmax, ∴ Cb = 1.0

Even if the weight is included, it will be negligible compared to the concentrated
loads, and Cb can still be taken as 1.0, permitting the charts to be used without
modification. 

Temporarily ignoring the beam weight, the factored-load moment is

Mu = 6(1.6 × 20) = 192 ft-kips

E X A M P L E  5 . 1 1

The beam shown in Figure 5.28 must support two concentrated live loads of
20 kips each at the quarter points. The maximum live load deflection must not
exceed L�240. Lateral support is provided at the ends of the beam. Use A992 steel
and select a W shape.

S O L U T I O N

L R F D
S O L U T I O N

76004_05_ch05_p188-297.qxd  9/6/11  3:49 PM  Page 233



From the charts, with Lb = 24 ft, try W12 × 53:

fbMn = 209 ft-kips > 192 ft-kips (OK)

Now, we account for the beam weight:

The shear is

From the Zx table (or the uniform load table),

fvVn = 125 kips > 32.8 kips (OK)

The maximum permissible live load deflection is

From Table 3-23, “Shears, Moments, and Deflections,” in Part 3 of the Manual, the
maximum deflection (at midspan) for two equal and symmetrically placed loads is

where
P = magnitude of concentrated load
a = distance from support to load
L = span length

Use a W12 × 53.

The required flexural strength (not including the beam weight) is

Ma = 6(20) = 120 ft-kips

From the charts, with Lb = 24 ft, try W12 × 53.
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Account for the beam weight:

The required shear strength is

From the Zx table (or the uniform load table),

Since deflections are computed with service loads, the deflection check is the same
for both LRFD and ASD. From the LRFD solution,

∆ = 1.11 in. < 1.20 in. (OK)

Use a W12 × 53.

Vn

vΩ
= >83 2. kips 20.6 kips (OK)

Va = + =20
0 053 24

2
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. ( )
. kips

Ma = + = <6 20
1
8

0 053 24 1242( ) ( . )( ) ft-kips 139 ft--kips (OK)
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FIGURE 5.29

Although the charts are based on Cb = 1.0, they can easily be used for design
when Cb is not 1.0; simply divide the required strength by Cb before entering the
charts. We illustrate this technique in Example 5.12.

E X A M P L E  5 . 1 2

Use A992 steel and select a rolled shape for the beam in Figure 5.29. The concen-
trated load is a service live load, and the uniform load is 30% dead load and 70%
live load. Lateral bracing is provided at the ends and at midspan. There is no
restriction on deflection.

A N S W E R
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Neglect the beam weight and check it later.

wD = 0.30(3) = 0.9 kips�ft
wL = 0.70(3) = 2.1 kips�ft

wu = 1.2(0.9) + 1.6(2.1) = 4.44 kips�ft
Pu = 1.6(9) = 14.4 kips

The factored loads and reactions are shown in Figure 5.30. Next, determine the
moments required for the computation of Cb. The bending moment at a distance x
from the left end is

For x = 3 ft, MA = 60.48(3) – 2.22(3)2 = 161.5 ft-kips

For x = 6 ft, MB = 60.48(6) – 2.22(6)2 = 283.0 ft-kips

For x = 9 ft, MC = 60.48(9) – 2.22(9)2 = 364.5 ft-kips

For x = 12 ft, Mmax = Mu = 60.48(12) – 2.22(12)2 = 406.1 ft-kips

Enter the charts with an unbraced length Lb = 12 ft and a bending moment of

Try W21 × 48:

fbMn = 311 ft-kips (for Cb = 1)

Since Cb = 1.36, the actual design strength is 1.36(311) = 423 ft-kips. But the design
strength cannot exceed fbMp, which is only 398 ft-kips (obtained from the chart),

M

C
u

b

= =406 1

1 36
299

.

.
ft-kips

C
M

M M M Mb
A B C

=
+ + +

=

12 5

2 5 3 4 3

12 5 406 1

2

.

.

. ( . )

max
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.. ( . ) ( . ) ( . ) ( . )
.

5 406 1 3 161 5 4 283 0 3 364 5
1 36

+ + +
=

M x x
x

x x x= −
⎛
⎝⎜

⎞
⎠⎟

= − ≤60 48 4 44
2

60 48 2 22 2. . . . (for 112 ft)
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FIGURE 5.30
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so the actual design strength must be taken as

fbMn = fbMp = 398 ft-kips < Mu = 406.1 ft-kips (N.G.)

For the next trial shape, move up in the charts to the next solid curve and try 
W18 × 55. For Lb = 12 ft, the design strength from the chart is 335 ft-kips for 
Cb = 1. The strength for Cb = 1.36 is

fbMn = 1.36(335) = 456 ft-kips > fbMp = 420 ft-kips

∴ fbMn = fbMp = 420 ft-kips > Mu = 406.1 ft-kips (OK)

Check the beam weight.

The maximum shear is

From the Zx tables,

fvVn = 212 kips > 61.3 kips (OK)

Use a W18 × 55.

The applied loads are

wa = 3 kips�ft and Pa = 9 kips

The left-end reaction is

and the bending moment at a distance x from the left end is

Compute the moments required for the computation of Cb:

For x = 3 ft, MA = 40.5(3) − 1.5(3)2 = 108.0 ft-kips

For x = 6 ft, MB = 40.5(6) − 1.5(6)2 = 189.0 ft-kips

For x = 9 ft, MC = 40.5(9) − 1.5(9)2 = 243.0 ft-kips

For x = 12 ft, Mmax = 40.5(12) − 1.5(12)2 = 270.0 ft-kip

C
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Enter the charts with an unbraced length Lb = 12 ft and a bending moment of

Try W21 × 48. For Cb = 1,

Mn�Ωb = 207 ft-kips

For Cb = 1.36, the actual allowable strength is 1.36(207) = 282 ft-kips, but the
strength cannot exceed Mp�Ωn, which is only 265 ft-kips (this can be obtained from
the chart), so the actual allowable strength must be taken as

Move up in the charts to the next solid curve and try W18 × 55. For Lb = 12 ft, the
allowable strength for Cb = 1 is 223 ft-kips. The strength for Cb = 1.36 is

Account for the beam weight.

The maximum shear is

From the Zx table (or the uniform load table)

Use a W18 × 55.

Vn

vΩ
= >141 kips 41.2 kips (OK)

Va = + =9 3 055 24

2
41 2

. ( )
. kips

Ma = + = <270
1

8
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In Example 5.12, the value of Cb is the same (to three significant figures) for both the
factored and the unfactored moments. The two computed values will always be nearly
the same, and for this reason, it makes no practical difference which moments are used.

If deflection requirements control the design of a beam, a minimum required
moment of inertia is computed, and the lightest shape having this value is sought. This
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task is greatly simplified by the moment of inertia selection tables in Part 3 of the
Manual. We illustrate the use of these tables in Example 5.13, following a discussion
of the design procedure for a beam in a typical floor or roof system.

5.11 FLOOR AND ROOF FRAMING SYSTEMS

When a distributed load acts on an area such as a floor in a building, certain portions
of that load are supported by various components of the floor system. The actual dis-
tribution is difficult to determine, but it can be approximated quite easily. The basic
idea is that of tributary areas. In the same way that tributaries flow into a river and
contribute to the volume of water in it, the loads on certain areas of a structural sur-
face “flow” into a structural component. The concept of tributary areas was first
discussed in Section 3.8 in the coverage of tension members in roof trusses.

Figure 5.31 shows a typical floor framing plan for a multistory building. Part (a)
of the figure shows one of the rigid frames comprising the building. Part (b) shows
what would be seen if a horizontal section were cut through the building above one of
the floors and the lower portion viewed from above. The gridwork thus exposed con-
sists of the column cross sections (in this case, wide-flange structural steel shapes),
girders connecting the columns in the east-west direction, and intermediate floor
beams such as EF spanning between the girders. Girders are defined as beams that sup-
port other beams, although sometimes the term is applied to large beams in general.
The floor beams, which fill in the panels defined by the columns, are sometimes called
filler beams. The columns and girders along any of the east-west lines make up an
individual frame. The frames are connected by the beams in the north-south direction,
completing the framework for the building. There may also be secondary components,
such as bracing for stability, that are not shown in Figure 5.31.

Figure 5.31(c) shows a typical bay of the floor framing system. When columns are
placed in a rectangular grid, the region between four columns is called a bay. The bay
size, such as 30 ft × 40 ft, is a measure of the geometry of a building. Figure 5.31(d)
is a cross section of this bay, showing the floor beams as wide-flange steel shapes sup-
porting a reinforced concrete floor slab. 

The overall objective of a structure is to transmit loads to the foundation. As far
as floor loads are concerned, this transmission of loads is accomplished as follows:

1. Floor loads, both live and dead, are supported by the floor slab.
2. The weight of the slab, along with the loads it supports, is supported by the

floor beams.
3. The floor beams transmit their loads, including their own weight, to the girders.
4. The girders and their loads are supported by the columns.
5. The column loads are supported by the columns of the story below. The col-

umn loads accumulate from the top story to the foundation.

(The route taken by the loads from one part of the structure to another is sometimes
called the load path.) This is a fairly accurate representation of what happens, but it
is not exact. For example, part of the slab and its load will be supported directly by
the girders, but most of it will be carried by the floor beams.

5.11 Floor and Roof Framing Systems 239
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Figure 5.31(c) shows a shaded area around floor beam EF. This is the tributary area
for this member, and it consists of half the floor between beam EF and the adjacent beam
on each side. Thus, the total width of floor being supported is equal to the beam spacing
s if the spacing is uniform. If the load on the floor is uniformly distributed, we can express
the uniform load on beam EF as a force per unit length (for example, pounds per linear
foot [plf]) by multiplying the floor load in force per unit area (for example, pounds per
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square foot [psf]) by the tributary width s. Figure 5.31(e) shows the final beam model
(for the usual floor framing connections, the beams can be treated as simply supported).

For convenience, the weight of a reinforced concrete floor slab is usually
expressed in pounds per square foot of floor surface. This way, the slab weight can
be combined with other loads similarly expressed. If the floor consists of a metal deck
and concrete fill, the combined weight can usually be obtained from the deck manu-
facturer’s literature. If the floor is a slab of uniform thickness, the weight can be cal-
culated as follows. Normal-weight concrete weighs approximately 145 pounds per
cubic foot. If 5 pcf is added to account for the reinforcing steel, the total weight is
150 pcf. The volume of slab contained in one square foot of floor is 1 ft2 × the slab
thickness t. For a thickness expressed in inches, the slab weight is therefore
(t�12)(150) psf. For lightweight concrete, a unit weight of 115 pounds per cubic foot
can be used in lieu of more specific data.

5.11 Floor and Roof Framing Systems 241

FIGURE 5.32

E X A M P L E  5 . 1 3

Part of a floor framing system is shown in Figure 5.32. A 4-inch-thick reinforced
concrete floor slab of normal-weight concrete is supported by floor beams spaced
at 7 feet. The floor beams are supported by girders, which in turn are supported
by the columns. In addition to the weight of the structure, loads consist of a uni-
form live load of 80 psf and moveable partitions, to be accounted for by using a
uniformly distributed load of 20 pounds per square foot of floor surface. The max-
imum live load deflection must not exceed 1�360 of the span length. Use A992 steel
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and design the floor beams. Assume that the slab provides continuous lateral
support of the floor beams.

The slab weight is

Assume that each beam supports a 7-ft width (tributary width) of floor.

Slab: 50(7) = 350 lb�ft

Partitions: 20(7) = 140 lb�ft

Live load: 80(7) = 560 lb�ft

The beam weight will be accounted for once a trial selection has been made.
Since the partitions are moveable, they will be treated as live load. This is con-

sistent with the provisions of the International Building Code (ICC, 2009). The dead
and live loads are, therefore,

wD = 0.350 lb�ft (excluding the beam weight)
wL = 0.560 + 0.140 = 0.700 lb�ft

The total factored load is

wu = 1.2wD + 1.6wL = 1.2(0.350) + 1.6(0.700) = 1.540 kips�ft

The typical floor-beam connection will provide virtually no moment restraint, and
the beams can be treated as simply supported. Hence,

Since the beams have continuous lateral support, the Zx table can be used.

Try a W14 × 30:

fbMn = 177 ft-kips > 173 ft-kips (OK)

Check the beam weight.

The maximum shear is

From the Zx table,

fvVn = 112 kips > 23.1 kips (OK)

Vu ≈ =1 540 30
2

23 1
. ( )

. kips

Mu = + × =173 1
8 1 2 0 030 30 1772( . . )( ) ft-kips ((OK)

M w Lu u= = =1

8

1

8
1 540 30 1732 2( . )( ) ft-kips

w
t

slab = = =
12

150
4

12
150 50( ) ( )  psf
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The maximum permissible deflection is

Solving the deflection equation for the required moment of inertia yields

Part 3 of the Manual contains selection tables for both Ix and Iy. These tables are
organized in the same way as the Zx table, so selection of the lightest shape with suf-
ficient moment of inertia is simple. From the Ix table, try a W18 × 35:

Ix = 510 in.4 > 440 in.4 (OK)

fbMn = 249 ft-kips > 177 ft-kips (OK)

fvVn = 159 kips > 23.1 kips (OK)

Use a W18 × 35.

Account for the beam weight after a selection has been made.

wa = wD + wL = 0.350 + 0.700 = 1.05 kips�ft

If we treat the beam connection as a simple support, the required moment strength
is

For a beam with full lateral support, the Zx table can be used.

Try a W16 × 31:

(A W14 × 30 has an allowable moment strength of exactly 118 ft-kips, but the beam
weight has not yet been accounted for.)

Account for the beam weight:

Ma = + = <118
1

8
0 031 30 1222( . )( ) ft-kips 135 ft-kips (OK)

Mn

bΩ
= >135 ft-kips 118 ft-kips (OK)

M w La a= = =1

8

1

8
1 05 30 1182 2( . )( ) ft-kips = required

MMn

bΩ

I
w L

E
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The required shear strength is

From the Zx table, the available shear strength is

Check deflection. The maximum permissible live load deflection is

Solve the deflection equation for the required moment of inertia:

Part 3 of the Manual contains selection tables for both Ix and Iy. From the Ix table,
try a W18 × 35:

Use a W18 × 35.

I

M

x

n

b

= >

= >

510 440

166

4 2in. in. OK

ft-kips 122 f

( )

Ω
tt-kips (OK)

kips 16.2 kips (
Vn

vΩ
= >106 OOK)

I
w L

E
L

required
required

=
∆

= ×5

384

5 0 700 12 30 124 ( . )( )� 44

384 29 000 1 0
440

( , )( . )
= in.4

L

w L

EI
L

L

x

360

30 12

360
1 0

5

384

5

384

0 7004

= × =

∆ = =

.

( .

in.

�112 30 12

29 000 375
1 17

4)( )

, ( )
.

× = in. >1.0 in. (N..G.)

Vn

vΩ
= >87 5. kips 16.2 kips (OK)

V
w L

a
a= = + =
2

1 05 0 031 30

2
16 2

( . . )( )
. kips

244 Chapter 5 Beams

Note that in Example 5.13, the design was controlled by serviceability rather than
strength. This is not unusual, but the recommended sequence in beam design is still
to select a shape for moment and then check shear and deflection. Although there is
no limit on the dead load deflection in this example, this deflection may be needed if
the beam is to be cambered.

∆D
w L

EI
= = ++5
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29 000 510
0 474

4)
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5.12 HOLES IN BEAMS

If beam connections are made with bolts, holes will be punched or drilled in the beam
web or flanges. In addition, relatively large holes are sometimes cut in beam webs to
provide space for utilities such as electrical conduits and ventilation ducts. Ideally,
holes should be placed in the web only at sections of low shear, and holes should be
made in the flanges at points of low bending moment. That will not always be possi-
ble, so the effect of the holes must be accounted for.

For relatively small holes such as those for bolts, the effect will be small, partic-
ularly for flexure, for two reasons. First, the reduction in the cross section is usually
small. Second, adjacent cross sections are not reduced, and the change in cross sec-
tion is actually more of a minor discontinuity than a “weak link.”

Holes in a beam flange are of concern for the tension flange only, since bolts in
the compression flange will transmit the load through the bolts. This is the same
rationale that is used for compression members, where the net area is not considered.
The AISC Specification requires that bolt holes in beam flanges be accounted for
when the nominal tensile rupture strength (fracture strength) of the flange is less than
the nominal tensile yield strength—that is, when

FuAfn < FyAfg (5.9)

where
Afn = net tension flange area
Afg = gross tension flange area

If Fy�Fu > 0.8, the Specification requires that the right hand side of Equation 5.9 be
increased by 10%. Equation 5.9 can be written more generally as follows:

FuAfn < YtFyAfg (5.10)

where
Yt = 1.0 for Fy�Fu ≤ 0.8

= 1.1 for Fy�Fu > 0.8

Note that, for A992 steel, the preferred steel for W shapes, the maximum value of
Fy�Fu is 0.85. This means that unless more information is available, use Yt = 1.1.
If the condition of Equation 5.10 exists—that is, if

FuAfn < YtFyAfg

then AISC F13.1 requires that the nominal flexural strength be limited by the condi-
tion of flexural rupture. This limit state corresponds to a flexural stress of

(5.11)

where Sx(Afn�Afg) can be considered to be a “net” elastic section modulus. The rela-
tionship of Equation 5.11 corresponds to a nominal flexural strength of

M
F A

A
Sn

u fn

fg
x=

f
M

S A A
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n

x fn fg
u= =
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The AISC requirement for holes in beam flanges can be summarized as follows:
If

FuAfn < YtFyAfg

The nominal flexural strength cannot exceed

(AISC Equation F13-1)

where
Yt = 1.0 for Fy�Fu ≤ 0.8

= 1.1 for Fy�Fu > 0.8

The constant Yt should be taken as 1.1 for A992 steel or if the maximum value of Fy�Fu

is not known.

M
F A

A
Sn

u fn

fg
x=

246 Chapter 5 Beams

E X A M P L E  5 . 1 4

The shape shown in Figure 5.33 is a W18 × 71 with holes in each flange for 
1-inch-diameter bolts. The steel is A992. Compute the nominal flexural strength for
an unbraced length of 10 feet. Use Cb = 1.0.

W18 × 71

bf = 7.64′′

tf = 0.810′′

FIGURE 5.33

To determine the nominal flexural strength Mn, all applicable limit states must be
checked. From the Zx table, a W18 × 71 is seen to be a compact shape (no footnote
to indicate otherwise). Also from the Zx table, Lp = 6.00 ft and Lr = 19.6 ft. There-
fore, for an unbraced length Lb = 10 ft,

Lp < Lb < Lr

S O L U T I O N
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and the beam is subject to inelastic lateral-torsional buckling. The nominal strength
for this limit state is given by

(AISC Equation F2-2)

where

Check to see if the flange holes need to be accounted for. The gross area of one
flange is

Afg = tfbf = 0.810(7.64) = 6.188 in.2

The effective hole diameter is

and the net flange area is

Determine Yt. For A992 steel, the maximum Fy�Fu ratio is 0.85. Since this is greater
than 0.8, use Yt = 1.1.

YtFyAfg = 1.1(50)(6.188) = 340.3 kips

Since FuAfn < YtFyAfg, the holes must be accounted for. From AISC Equation F13-1,

This value is less than the LTB value of 6460 in.-kips, so it controls.

Mn = 5825 in.-kips = 485 ft-kips.
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FIGURE 5.34

Beams with large holes in their webs will require special treatment and are beyond
the scope of this book. Design of Steel and Composite Beams with Web Openings is
a useful guide to this topic (Darwin, 1990).

5.13 OPEN-WEB STEEL JOISTS

Open-web steel joists are prefabricated trusses of the type shown in Figure 5.34. Many
of the smaller ones use a continuous circular bar to form the web members and are com-
monly called bar joists. They are used in floor and roof systems in a wide variety of struc-
tures. For a given span, an open-web joist will be lighter in weight than a rolled shape,
and the absence of a solid web allows for the easy passage of duct work and electrical
conduits. Depending on the span length, open-web joists may be more economical than
rolled shapes, although there are no general guidelines for making this determination.

Open-web joists are available in standard depths and load capacities from vari-
ous manufacturers. Some open-web joists are designed to function as floor or roof
joists, and others are designed to function as girders, supporting the concentrated re-
actions from joists. The AISC Specification does not cover open-web steel joists; a
separate organization, the Steel Joist Institute (SJI), exists for this purpose. All aspects
of steel joist usage, including their design and manufacture, are addressed in the pub-
lication Standard Specifications, Load Tables, and Weight Tables for Steel Joists and
Joist Girders (SJI, 2005).

An open-web steel joist can be selected with the aid of the standard load tables (SJI,
2005). These tables give load capacities in pounds per foot of length for various standard
joists. Tables are available for both LRFD and ASD, in either U.S. Customary units or
metric units. One of the LRFD tables is reproduced in Figure 5.35. For each combina-
tion of span and joist, a pair of load values is given. The top number is the total load ca-
pacity in pounds per foot. The bottom number is the live load per foot that will produce
a deflection of 1�360 of the span length. For span lengths in the shaded areas, special
bridging (interconnection of joists) is required. The ASD tables use the same format, but
the loads are unfactored. The first number in the designation is the nominal depth in
inches. The table also gives the approximate weight in pounds per foot of length. Steel
fabricators who furnish open-web steel joists must certify that a particular joist of a given
designation, such as a 10K1 of span length 20 feet, will have a safe load capacity of
at least the value given in the table. Different manufacturers’10K1 joists may have
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different member cross sections, but they all must have a nominal depth of 10 inches and,
for a span length of 20 feet, a factored load capacity of at least 361 pounds per foot.

The open-web steel joists that are designed to function as floor or roof joists (in con-
trast to girders) are available as open-web steel joists (K-series, both standard and KCS),
longspan steel joists (LH-series), and deep longspan steel joists (DLH-series). Standard
load tables are given for each of these categories. The higher you move up the series, the
greater the available span lengths and load-carrying capacities become. At the lower

5.13 Open-Web Steel Joists 249

FIGURE 5.35

Source: Standard Specifications, Load Tables, and Weight Tables for Steel Joists and Joist Girders. Myrtle
Beach, S.C.: Steel Joist Institute, 2005. Reprinted with permission.
*8K1 is no longer made as of 2010.

STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS, K-SERIES
Based on a 50 ksi Maximum Yield Strength - Loads Shown in Pounds per Linear Foot (plf)

LRFD

Joist
Designation 8K1* 10K1 12K1 12K3 12K5 14K1 14K3 14K4 14K6 16K2 16K3 16K4 16K5 16K6 16K7 16K9

8

5.1

8

5.0

8

5.0

8

5.7

8

7.1

14

5.2

14

6.0

14

6.7

14

7.7

16

5.5

16

6.3

16

7.0

16

7.5

16

8.1

16

8.6

16

10.0Approx. Wt
(lbs./ft.)

Span (ft.)

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

825
550

825
550
825
480
798
377
666
288
565
225
486
179
421
145
369
119

825
550
825
542
825
455
718
363
618
289
537
234
469
192
415
159
369
134
331
113
298
97

825
550
825
510
750
425
651
344
570
282
504
234
448
197
402
167
361
142
327
123
298
106
271
93

249
81

825
550
825
510
825
463
814
428
714
351
630
291
561
245
502
207
453
177
409
153
373
132
340
116
312
101

825
550
825
510
825
463
825
434
825
396
825
366
760
317
681
269
613
230
555
198
505
172
462
150
423
132

825
550
766
475
672
390
592
324
528
272
472
230
426
197
385
170
351
147
321
128
294
113
270
100
249
88

231
79

214
70

825
550
825
507
825
467
742
404
661
339
592
287
534
246
483
212
439
184
402
160
367
141
339
124
313
110
289
98

270
88

825
550
825
507
825
467
825
443
795
397
712
336
642
287
582
248
529
215
483
188
442
165
408
145
376
129
349
115
324
103

825
550
825
507
825
467
825
443
825
408
825
383
787
347
712
299
648
259
592
226
543
199
501
175
462
156
427
139
397
124

825
550
768
488
684
409
612
347
552
297
499
255
454
222
415
194
381
170
351
150
324
133
300
119
279
106
259
95

241
86

226
78

213
71

289
106
270
96

252
87

237
79

348
124
324
112
304
101
285
92

391
139
366
126
342
114
321
103

427
151
399
137
373
124
349
112

475
167
444
151
415
137
388
124

570
198
532
178
498
161
466
147

825
550
825
526
762
456
682
386
615
330
556
285
505
247
462
216
424
189
390
167
360
148
334
132
310
118

825
550
825
526
825
490
820
452
739
386
670
333
609
289
556
252
510
221
469
195
433
173
402
155
373
138

825
550
825
526
825
490
825
455
825
426
754
373
687
323
627
282
576
248
529
219
489
194
453
173
421
155

825
550
825
526
825
490
825
455
825
426
822
405
747
351
682
307
627
269
576
238
532
211
493
188
459
168

825
550
825
526
825
490
825
455
825
426
822
406
825
385
760
339
697
298
642
263
592
233
549
208
510
186

825
550
825
526
825
490
825
455
825
426
822
406
825
385
825
363
825
346
771
311
711
276
658
246
612
220

Depth (in.)

*

76004_05_ch05_p188-297.qxd  9/6/11  3:49 PM  Page 249



end, an 8K1 is available with a span length of 8 feet and a factored load capacity of
825 pounds per foot, whereas a 72DLH19 can support a load of 745 pounds per foot on
a span of 144 feet.

With the exception of the KCS joists, all open-web steel joists are designed as sim-
ply supported trusses with uniformly distributed loads on the top chord. This loading sub-
jects the top chord to bending as well as axial compression, so the top chord is designed
as a beam–column (see Chapter 6). To ensure stability of the top chord, the floor or roof
deck must be attached in such a way that continuous lateral support is provided.

KCS joists are designed to support both concentrated loads and distributed
loads (including nonuniform distributions). To select a KCS joist, the engineer
must compute a maximum moment and shear in the joist and enter the KCS tables
with these values. (The KCS joists are designed to resist a uniform moment and a
constant shear.) If concentrated loads must be supported by an LH or a DLH joist,
a special analysis should be requested from the manufacturer.

Both top and bottom chord members of K-series joists must be made of steel with
a yield stress of 50 ksi, and the web members may have a yield stress of either 36 ksi
or 50 ksi. All members of LH- and DLH-series joists can be made with steel of any
yield stress between 36 ksi and 50 ksi inclusive. The load capacity of K-series joists
must be verified by the manufacturer by testing. No testing program is required for
LH- or DLH-series joists.

Joist girders are designed to support open-web steel joists. For a given span, the
engineer determines the number of joist spaces, then from the joist girder weight
tables selects a depth of girder. The joist girder is designated by specifying its depth,
the number of joist spaces, the load at each loaded top-chord panel point of the joist
girder, and a letter to indicate whether the load is factored (“F”) or unfactored (“K”).
For example, using LRFD and U.S. Customary units, a 52G9N10.5F is 52 inches
deep, provides for 9 equal joist spaces on the top chord, and will support 10.5 kips of
factored load at each joist location. The joist girder weight tables give the weight in
pounds per linear foot for the specified joist girder for a specific span length.

250 Chapter 5 Beams

E X A M P L E  5 . 1 5

Use the load table given in Figure 5.35 to select an open-web steel joist for the
following floor system and loads:

Joist spacing = 3 ft 0 in.

Span length = 20 ft 0 in.

The loads are

3-in. floor slab

Other dead load: 20 psf

Live load: 50 psf

The live load deflection must not exceed L�360.
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For the dead loads of

Slab:

Other dead load: = 20 psf

Joist weight: = 3 psf (est.)
—––

Total: = 60.5 psf

wD = 60.5(3) = 181.5 lb�ft

For the live load of 50 psf,

wL = 50(3) = 150 lb�ft

The factored load is

wu = 1.2wD + 1.6wL = 1.2 (181.5) + 1.6(150) = 458 lb�ft

Figure 5.35 indicates that the following joists satisfy the load requirement: a 12K5,
weighing approximately 7.1 lb�ft; a 14K3, weighing approximately 6.0 lb�ft; and a
16K2, weighing approximately 5.5 lb�ft. No restriction was placed on the depth, so
we choose the lightest joist, a 16K2.

To limit the live load deflection to L�360, the live load must not exceed

297 lb�ft > 150 lb�ft (OK)

Use a 16K2.

150
3

12
37 5

⎛
⎝⎜

⎞
⎠⎟

= . psf
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The standard load tables also include a K-series economy table, which facilitates
the selection of the lightest joist for a given load.

5.14 BEAM BEARING PLATES AND COLUMN 
BASE PLATES

The design procedure for column base plates is similar to that for beam bearing
plates, and for that reason we consider them together. In addition, the determination
of the thickness of a column base plate requires consideration of flexure, so it logi-
cally belongs in this chapter rather than in Chapter 4. In both cases, the function of
the plate is to distribute a concentrated load to the supporting material.

Two types of beam bearing plates are considered: one that transmits the beam reac-
tion to a support such as a concrete wall and one that transmits a load to the top flange of
a beam. Consider first the beam support shown in Figure 5.36. Although many beams are
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connected to columns or other beams, the type of support shown here is occasionally used,
particularly at bridge abutments. The design of the bearing plate consists of three steps.

1. Determine dimension b so that web yielding and web crippling are prevented.
2. Determine dimension B so that the area B × b is sufficient to prevent the sup-

porting material (usually concrete) from being crushed in bearing.
3. Determine the thickness t so that the plate has sufficient bending strength.

Web yielding, web crippling, and concrete bearing strength are addressed by
AISC in Chapter J, “Design of Connections.”

Web Yielding

Web yielding is the compressive crushing of a beam web caused by the application of
a compressive force to the flange directly above or below the web. This force could
be an end reaction from a support of the type shown in Figure 5.36, or it could be a
load delivered to the top flange by a column or another beam. Yielding occurs when
the compressive stress on a horizontal section through the web reaches the yield
point. When the load is transmitted through a plate, web yielding is assumed to take
place on the nearest section of width tw. In a rolled shape, this section will be at the
toe of the fillet, a distance k from the outside face of the flange (this dimension is tab-
ulated in the dimensions and properties tables in the Manual). If the load is assumed
to distribute itself at a slope of 1 : 2.5, as shown in Figure 5.37, the area at the support

252 Chapter 5 Beams

b

b

FIGURE 5.37

b

FIGURE 5.36
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subject to yielding is tw(2.5k + b). Multiplying this area by the yield stress gives the
nominal strength for web yielding at the support:

Rn = Fytw(2.5k + b) (AISC Equation J10-3)

The bearing length b at the support should not be less than k.
At the interior load, the length of the section subject to yielding is 

2(2.5k) + b = 5k + b

and the nominal strength is

Rn = Fytw(5k + b) (AISC Equation J10-2)

For LRFD, the design strength is fRn, where f = 1.0.
For ASD, the allowable strength is Rn�Ω, where Ω = 1.50.

Web Crippling

Web crippling is buckling of the web caused by the compressive force delivered
through the flange. For an interior load, the nominal strength for web crippling is

(AISC Equation J10-4)

For a load at or near the support (no greater than half the beam depth from the end),
the nominal strength is

(AISC Equation J10-5a)

or

(AISC Equation J10-5b)

The resistance factor for this limit state is f = 0.75. The safety factor is Ω = 2.00.

Concrete Bearing Strength

The material used for a beam support can be concrete, brick, or some other material,
but it usually will be concrete. This material must resist the bearing load applied by
the steel plate. The nominal bearing strength specified in AISC J8 is the same as that
given in the American Concrete Institute’s Building Code (ACI, 2008) and may be
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used if no other building code requirements are in effect. If the plate covers the full
area of the support, the nominal strength is

(AISC Equation J8-1)

If the plate does not cover the full area of the support,

(AISC Equation J8-2)

where
fc′ = 28-day compressive strength of the concrete
A1 = bearing area
A2 = full area of the support

If area A2 is not concentric with A1, then A2 should be taken as the largest concentric
area that is geometrically similar to A1, as illustrated in Figure 5.38.

For LRFD, the design bearing strength is fcPp, where fc = 0.65. For ASD, the
allowable bearing strength is Pp�Ωc, where Ωc = 2.31.

Plate Thickness

Once the length and width of the plate have been determined, the average bearing
pressure is treated as a uniform load on the bottom of the plate, which is assumed to
be supported at the top over a central width of 2k and length b, as shown in Fig-
ure 5.39. The plate is then considered to bend about an axis parallel to the beam span.
Thus the plate is treated as a cantilever of span length n = (B – 2k)�2 and a width of b.

P f A
A

A
f Ap c c= ′ ≤ ′0 85 1 71

2

1
1. .

P f Ap c= ′0 85 1.
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FIGURE 5.38
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For convenience, a 1-inch width is considered, with a uniform load in pounds per lin-
ear inch numerically equal to the bearing pressure in pounds per square inch.

From Figure 5.39, the maximum bending moment in the plate is

where R is the beam reaction and R�Bb is the average bearing pressure between the
plate and the concrete. For a rectangular cross section bent about the minor axis, the
nominal moment strength Mn is equal to the plastic moment capacity Mp. As illustrated
in Figure 5.40, for a rectangular cross section of unit width and depth t, the plastic mo-
ment is

For LRFD, Since the design strength must at least equal the factored-load moment,

fbMp ≥ Mu

M F
t t

F
t

p y y= ×⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ =1

2 2 4

2

M
R

B
n

n Rn

Bb b
= × × =

 2 2

2
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(5.12)

or

(5.13)

where Ru is the factored-load beam reaction.

For ASD, the allowable flexural strength must at least equal the applied moment:

(5.14)

where Ra is the service-load beam reaction.
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Design a bearing plate to distribute the reaction of a W21 × 68 with a span length
of 15 feet 10 inches center-to-center of supports. The total service load, including
the beam weight, is 9 kips�ft, with equal parts dead and live load. The beam is to be
supported on reinforced concrete walls with f ′c = 3500 psi. For the beam, Fy = 50 ksi,
and Fy = 36 ksi for the plate.

The factored load is

wu = 1.2wD + 1.6wL = 1.2(4.5) + 1.6(4.5) = 12.60 kips�ft

and the reaction is

Determine the length of bearing b required to prevent web yielding. From AISC
Equation J10-3, the nominal strength for this limit state is

Rn = Fytw(2.5k + b)

R
w L

u
u= = =
2

12 60 15 83

2
99 73

. ( . )
. kips

L R F D
S O L U T I O N
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For fRn ≥ Ru, 

1.0(50)(0.430)[2.5(1.19) + b] ≥ 99.73

resulting in the requirement

b ≥ 1.66 in.

(Note that two values of k are given in the dimensions and properties tables: a
decimal value, called the design dimension, and a fractional value, called the detailing
dimension. We always use the design dimension in calculations.)

Use AISC Equation J10-5 to determine the value of b required to prevent web
crippling. Assume b�d > 0.2 and try the second form of the equation, J10-5(b). For
fRn ≥ Ru, 

This results in the requirement

b ≥ 3.00 in.

Check the assumption:

For b�d ≤ 0.2,

resulting in the requirement

b ≥ 2.59 in.

and
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Try b = 6 in. Determine dimension B from a consideration of bearing strength. If
we conservatively assume that the full area of the support is used, the required plate
area A1 can be found as follows:

fcPp ≥ Ru

From AISC Equation J8-1, Pp = 0.85fc′A1. Then

fc(0.85fc′A1) ≥ Ru

0.65(0.85)(3.5)A1 ≥ 99.73

A1 ≥ 51.57 in.2

The minimum value of dimension B is

The flange width of a W21 × 68 is 8.27 inches, making the plate slightly wider than
the flange, which is desirable. Rounding up, try B = 10 in.
Compute the required plate thickness:

From Equation 5.13,

Use a PL 11⁄4 × 6 × 10.

Determine the length of bearing b required to prevent web yielding. From AISC
Equation J10-3, the nominal strength is

Rn = Fytw(2.5k + b)

For 

b ≥ 2.00 in.
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Determine the value of b required to prevent web crippling. Assume b�d ≤ 0.2 and
use AISC Equation J10-5a:

Try b = 6 in. Conservatively assume that the full area of the support is used and deter-
mine B from a consideration of bearing strength. Using AISC Equation J8-1, we obtain

The minimum value of dimension B is

Try B = 10 in.:

From Equation 5.14,

Use a PL 11⁄2 × 6 × 10.

t
R n

B F
a

b y
≥ = =3 34 3 34 71 24 3 810

10 6 36
1

2 2. . ( . )( . )

( )( )
.


227 in.

n
B k= − = − =2

2
10 2 1 19

2
3 810

( . )
. in.

B
A

b

= = =1 55 32
6

9 22


.
. in.

P f A
R

A

A

p

c

c

c
aΩ Ω

= ′ ≥

≥

≥

0 85

0 85 3 5

2 31
71 24

55 3

1

1

1

.

. ( . )

.
.

. 22 in.2

R
t

d

t

t

EFn
w

b w

f

y

Ω Ω
= + ( )⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
0 40 1 32

1 5

( . )
.

 tt

t
Rf

w
a

b

≥

+ ( )1

2 00
0 40 0 430 1 3

21 1

0 430

0 68
2

.
( . )( . )

.

.

.



55

29 000 50 0 685

0 430
71 24

3 7

1 5( )⎡
⎣⎢

⎤
⎦⎥

≥

≥

. , ( )( . )

.
.

.b 88

3 78

21 1
0 179 0 2

in.

(OK)
b

d
= = <.

.
. .

5.14 Beam Bearing Plates and Column Base Plates 259

If the beam is not laterally braced at the load point (in such a way as to prevent
relative lateral displacement between the loaded compression flange and the tension
flange), the Specification requires that web sidesway buckling be investigated (AISC
J10.4). When loads are applied to both flanges, web compression buckling must be
checked (AISC J10.5).

A N S W E R
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