# **Geographic Information System GIS**

الحقيبة التعليمية

المادة

نظم المعلومات الجغرافية/ المستوى الثاني مدرس مساعد فرمان غالب سعيد

عدد الساعات النظري 2 عدد الساعات العملي 3

### Geographic Information Systems



## Geographic Information Systems

**\***What is Geographic Information System (GIS) ?

" a system of hardware, software, data, and organizational structure for collecting, storing, manipulating, and spatially analyzing "geo-referenced" data, and displaying information resulting from those processes".

# Geographic Information Systems

Geographic information is made up two important elements:

- **1.** Location (geometric component) describes where an object resides on the earth and includes x,y coordinates, addresses, and points of interest.
- 2. Attributes (Thematic component) describe non-location information, such as ID numbers, names, and values.



# Geographic Information

#### \* Attribute and location



# Geographic Information Systems Components

#### The Five primary components of the GIS is:

- 1. Hardware
- 2. Software ArcGIS Desktop or ArcGIS Pro
- 3. Data
- 4. People
- 5. Workflows

Each component contributes to the overall system, enabling the user to make smarter decisions



# Hardware Requirements

| No | Items                     | Requirements                                                                      |
|----|---------------------------|-----------------------------------------------------------------------------------|
| 1  | CPU                       | Recommended : 4 cores,<br>Optimal : 10 cores                                      |
| 2  | Storage                   | Recommended: 32 GB of free space<br>Optimal: More than 32 GB free of space on SSD |
| 3  | Memory/ RAM               | recommended: 32 GB<br>Optimal: 64 GB or more                                      |
| 4  | Dedicated Graphics memory | Recommended: 16 GB or more                                                        |
| 5  | Visualization Cache       | up to 32 GB of space                                                              |
| 6  | Screen resolution         | Minimum: 1024x768<br>Recommended: 1080p or higher                                 |
| 7  | GPU                       | NVIDIA GPU with CUDA compute capability 5.0 minimum; 6.1 or later recommended.    |
| 8  | Software                  | Microsoft .NET Desktop Runtime 8.0.1                                              |

### GIS Software

#### There are as many as GIS tools and software license



### GIS Data

There are two types of data that are common within GIS



### GIS - Job Titles

There are several GIS Job Titles in the market:



## **GIS Workflows**

#### Every single GIS job has workflows; here is one best workflows model to follow

- 1. *Requirements:* What is the problem you are trying to solve
- 2. *Data Collection:* Find the data needed to complete your project
- 3. *Examination:* How the data is organized, accurate, and data sources
- 4. Analyzing : Geographic analysis
- 5. *Decision : Making decision* on what you get

## GIS main parts





#### **GIS** system has four main integrated parts in one package

- 1. Arc Map for analyzing and layout the results
- 2. Arc catalog spatial data management and creation of GIS database
- 3. Arc Scene for 3D spatial data and visualization
- 4. Arc Globe for visualizing the data in the globe view



- 1. List the best GIS workflows model for a project
- 2. Geographic Information Systems GIS is made up two important elements, list and explain
- 3. GIS system has four main integrated parts in one package, list and explain
- 4. Define GIS and state the five primary components of GIS

### GIS Geodatabase



## Geodatabase

A Geodatabase is an organized collection of related data that's designed for efficient storage and retrieval. In this

system, data is stored in a series of relations called tables.

\*Various types of geographic datasets can be collected within a geodatabase, including feature classes, attribute

tables, raster datasets, network datasets, topologies

https://support.esri.com/en-us/gis-dictionary/geodatabase

## Geodatabase

For example, a city might have its wastewater division, land records, transportation, and fire departments connected and using different geodatabases.

There are two types of single-user geodatabases:

- A. Personal Geodatabase: It is for single users working with small to moderate GIS datasets.
- B. File Geodatabase: It has no practical size capacity limits.



## Geodatabase

#### Some facts about File geodatabases have many benefits including:

- 1. Flexible storage and open access.
- 2. Better performance capabilities than Personal Geodatabase
- 3. The geodatabase can be compressed which helps reduce the geodatabases' size on the disk
- 4. Simplicity and efficiency.
- 5. Effective display and analysis of geographic data.

## Geodatabase Design

#### Geodatabase Design Steps :

- 1. Identify the information products that will be created and managed.
- 2. Define the tabular database structure.
- 3. Define the spatial behavior, spatial relationships and descriptive attributes.
- 4. Propose a geodatabase design.
- 5. Document the geodatabase design.

# Shapefile

Shapefile: A vector data storage format for storing the location, shape, and attributes of geographic features. A

shapefile is stored in a set of related files and contains one feature class.



# Shapefile

#### **Shapefiles have many limitations (disadvantages) such as:**

- 1. Takes up more storage space on your computer than a geodatabase
- 2. Do not support names in fields longer than 10 characters
- 3. Cannot store date and time in the same field
- 4. Do not support raster files
- 5. Do not store NULL values in a field; when a value is NULL, a shapefile will use 0 instead







| rivercatchment |     |         |               |        |           |      |            |           |              |              |  |  |
|----------------|-----|---------|---------------|--------|-----------|------|------------|-----------|--------------|--------------|--|--|
|                | FID | Shape   | AREA          | STATUS | SOURCETHM | ID_N | CATCHMENT_ | AREA_KMSQ | X_COORD      | Y_COORD      |  |  |
| •              | 0   | Polygon | 16616198.783  | 1      | endau     | 18   | K18        | 16.62     | 595490.44355 | 221338.98895 |  |  |
|                | 1   | Polygon | 247720983     | 1      | endau     | 20   | K20        | 247.72    | 602808.65921 | 222035.69416 |  |  |
|                | 2   | Polygon | 118818165.269 | 1      | endau     | 5    | K5         | 118.82    | 592769.01866 | 274445.8913  |  |  |
|                | 3   | Polygon | 324721072.841 | 1      | endau     | 6    | K6         | 324.72    | 586873.65107 | 263050.64591 |  |  |
|                | 4   | Polygon | 8008372.047   | 1      | endau     | 19   | K19        | 8.01      | 593926.77156 | 224898.39423 |  |  |
|                | 5   | Polygon | 90451524.713  | 1      | endau     | 16   | K16        | 90.45     | 586977.63167 | 223796.56562 |  |  |

farmanghaleb@ntu.edu.iq

- The mandatory file extensions needed for a shapefile are .shp, .shx and .dbf. But the optional files are .prj, .xml, .sbn and .sbx.
- ✤ What is the function of each of these ArcGIS file types?
- .*shp* − *this file stores the geometry of the feature*
- .*shx* − *this file stores the index of the geometry*
- .*dbf*−*is a standard database file used to store attribute data and object IDs.*



- 1. Define the following: Geodatabase, shapefile
- 2. State the benefits of File GIS geodatabase
- 3. Define Geodatabase and then list the Types of Geodatabase
- 4. How to design a powerful GIS geodatabase in steps
- 5. List the limitation or disadvantage of shapefile
- 6. List the two types of single-user geodatabases

# Spatial Data Model

## Spatial Data Model

There are two main spatial data model used in GIS to represent geographic features:

- 1. Vector data Model
- 2. Raster Data model



#### Vector data model

A coordinate-based data model that represents geographic features as points, lines, and polygons.

- Each point feature is represented as a single coordinate pair, while line and polygon features are represented as ordered lists of vertices.
- Attributes



There are three ways to represent the vector data model:

Point, Line and polygon

#### 1. Point:

#### Zero Dimension

■zero area

single (x,y) coordinate pair

**E***x*: tree, oil well, label location

#### 2- *Line*:

- Line (arc): 1 Dimension
- two (or more) connected x,y coordinates

• *Ex:* road, stream

3- Polygon:

2 Dimension

- four or more ordered and connected x,y coordinates
- first and last x,y pairs are the same
- encloses an areas
- •*Ex:* census tracts, county, lake

## The Resource of Vector data

There are a few resources of having vector data format:

- 1- Ground surveying including: GPS, Total station, and laser scanner
- 2- Raster base map

### References

https://support.esri.com/en-us/gis-dictionary/vector

https://support.esri.com/en-us/gis-dictionary/search?q=shapefile

### **Raster Data Model**

#### 2- Raster Data Model



## Raster

*Raster:* A fundamental data structure consisting of a matrix of equally sized cells, or pixels, arranged in

rows and columns, and composed of multiple bands.

**Ex:** digital aerial photographs and imagery from satellites



#### Raster

Each location is represented as a cell. The matrix of cells, organized into rows and columns, is called a **grid**.

**\****Point* is represented as a single pixel.

Lines and Areas are represented as a series of connected cells



Points

Lines

Areas

### Raster

Each cell represents a location on the earth's surface and contains a numeric value that represents a particular phenomenon, such as temperature, elevation and rainfall. Groups of cells that share the same coordinate value represent the same geographic feature.


#### **Rasters**

#### How the Raster data is used in real life ?

- 1- Raster as Basemap
- 2- Raster as surface maps
- 3- Raster as thematic maps
- 4- Raster as attributes of a feature







# Raster

#### Why most data is stored as a Raster format

- 1. A simple data structure
- 2. A powerful format for advanced spatial and statistical analysis
- 3. The ability to represent continuous surfaces and perform surface analysis
- 4. The ability to perform fast overlays with complex datasets

# The resources of Raster data

*Raster data can be obtained using some geospatial techniques for capturing including:* 

- 1. Remote Sensing (Ex : Satellite Imagery )
- 2. Aerial Photography (Ex: Unmanned aerial vehicles (UAVs))
- 3. Scanning (Ex: Hardcopy of maps)



- 1. Define the following: Geodatabase, shapefile
- 2. Define Vector data model, Raster data model
- 3. Explain all vector data models types
- 4. List raster data model resources
- 5. *List vector data model resources*
- 6. Why most data is stored as a Raster format

#### Map Scale



#### >>> Map scale

It refers to the relationship between distance on a map and the corresponding distance on the ground

>>>> For example, on a 1:1000,000 scale map,

1 cm on the map equals to 1 km on the ground

### Scale classification

| Classification | Range               | Examples                  |
|----------------|---------------------|---------------------------|
| Large Scale    | 1:100- 1:100000     | Cadastral, Civil Projects |
| Medium Scale   | 1:100000- 1:1000000 | Country, City map         |
| Small Scale    | More than 1:1000000 | World map- Atlas map      |

### Types of scales

- 1. Large scales: show small portions of the Earth's surface and therefore more detailed information can be shown.
- 2. Small scales: show larger portions of the Earth's surface and display less detail



Farman Saed

## Comparison

| Small Scale                                                                                     | Large Scale                                                                             |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| The geographic extent shown on a small-scale map is big.                                        | The geographic extent shown on a large scale map is small.                              |
| Are used to show the extent of an entire country, region, or continent                          | Are typically used to show neighborhoods, a localize area, small towns                  |
| The scale would have a much larger number to the right of the ratio. For Example, 1 : 1,000,000 | The scale would have a smaller number to the right of the ratio. For example, 1 : 1,000 |
| Less details 📄 less accurate                                                                    | More details   more accurate                                                            |

#### **Applications of GIS**

Geographic Information Systems (GIS) have a wide range of applications in various industries and sectors. Here are

some real-life examples of GIS applications:

(1) Land-use planning;

- (2) Natural resource mapping and management;
- (3) Environmental impact assessment;
- (4) Census, population distribution, and related demographic analyses;

(5) Route selection for highways, rapid-transit systems, pipelines

(6) Displaying geographic distributions of events such as automobile accidents, fires and crimes

(7) Network analysis for vehicles

(8) Mapping for surveying and engineering purposes;

(9) infrastructure and utility mapping and management;

(10) Urban and regional planning;

(11) Hydrology and water harvesting;

(12) Change detection;

(13) Geospatial Analysis;

(14) Archaeology;

(15) Marketing

### Hydrology

- Digital Elevation Model
- Contour lines
- Slopes
- Stream orders
- Water harvesting



#### Land Use Planning – Image classifications

#### **Given Strike Classification**

Has approximately 150,000 inhabitants,

#### **Classifications**

- Urban Area
- Water bodies
- Vegetations
- Bare lands
- Rock



### References

- 1. Barry. M. and F. Bruyas. 2009. "Formulation of Land Administration Strategy in Post-
- 2. Conflict Somaliland." Surveying and Land Information Science 69 (No. 1): 39.
- 3. Binge, M. L. 2007. "Developing a New GIS." Point of Beginning 32 (No. 11): 42.
- 4. Cosworth, C. 2006. "Creating a New GIS Solution." Point of Beginning 31 (No. 11): 16.
- 5. Davis, T. G. and R. Turner. 2009. "USGS Quadrangles in Google Earth." The American
- 6. Surveyor 6 (No. 9): 28.
- 7. DeBarry, P. 2004. Watersheds: Processes, Assessment, and Management, 4th Ed. New
- 8. York: Wiley.

### References

- 1. Define map scale, small scale, large scale
- 2. Make a comparison between large scale and small scale maps in a table
- 3. List ten applications of GIS

