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Outline

o Base ( radix )

o Conversion of any decimal number to the base R
o Conversion of any base R to the decimal number
o Conversion of Binary

o Mathematical operations

1- Base (Radix)

In the number system the base or radix tells the number of symbols used in the system.
In the earlier days, different civilizations were using different radixes. The Egyptian
used the radix 2, the Babylonians used the radix 60 and Mayans used 18 and 20.

The base of a number system is indicated by a subscript (decimal number) and this will
be followed by the value of the number. For example (952)10, (456)s, (314)1s.

Number System that are used by the computers-

e Decimal System

e Binary System

e Octal System

e Hexadecimal System

1.1. Decimal System

The decimal system is the system which we use in everyday counting. The number
system includes the ten digits from O through 9. These digits are recognized as the
symbols of the decimal system. Each digit in a base ten number represents units ten
times the units of the digit to its right.

For example

9542= 9000 + 500 + 40 +2= (9 x 10%) + (5 x 10%) + (4 x 10%) + (2x 10°)

1.2. Binary System

Computers do not use the decimal system for counting and arithmetic. Their CPU and
memory are made up of millions of tiny switches that can be either in ON and OFF
states. O represents OFF and 1 represents ON. In this way we use binary system.

A S il gl 1 ha s 3le Jead
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Binary system has two numbers 0 and 1. Binary system has base 2 therefore the weight
of n'" bit of the number from Right Hand Side is n™ bit x 2™,

1.3. Octal System

The octal system is commonly used with computers. The octal number system with its 8
digit 0,1,2,3,4,5,6, and 7 has base 8. The octal system uses a power of 8 to determine

the digit of a number’s position.

1.4. Hexadecimal System

Hexadecimal is another number system that works exactly like the decimal, binary and
octal number systems, except that the base is 16. Each hexadecimal represents a power
of 16. The system uses 0 to 9 numbers and A to F characters to represent 10 to 15

respectively.

Table 1 Special base

Decimal Binary Octal Hexadecimal
0 ] 0 0
1 0001 1 1
2 ooLo 2 2
3 0011 3 3
4 oLoo 4 4
l oLol 3 3
7] oLLO 7] 6
7 oLll 7 7
8 Logo 10 8
9 Loo1 11 9
10 L1OL0 12 A
11 lall 13 B
12 1100 14 C
13 1101 15 D
14 L1110 16 E
15 L1l 17 F
EPSES ‘5‘5-‘5‘ gl Haagile Jrad PP
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Table 2 Deferent base
2 3 4 5 8 o 11z 16
pool | ool | o1 | o1 ol ol | o1 | O 1
polo| 002 | o2 | 02 o2 o2 | o2 | o2 2
ooll| olo | o3 | 03 03 03 | 03 | 03 3
oloo| o1l | 10 | o4 04 o4 | 04 | 04 4
olol| o12 | 11 | 10 05 05 | 05 | 05 5
olloj o2o | 12 | 11 il o6 | 06 | 06 b
(N o11Lj o2l | 13 | 12 07 07 | 07 | 07 7
ool 022 | 20 | 13 10 08 | 08 | 08 8
ool | wo | 21 | 14 11 09| 09 | 09 9
oo 101 | 22 | 20 12 10 | 0A | 0A A
Wil 1wz | 23 | 21 13 11| 10| 0B B
1oo| 110 | 30 | 22 14 12| 11| 1o -
lor] 11| 31 | 23 15 13 12 11 D
o] 112 32 | 24 16 14| 13| 12 E
1] 120 | 33 | 30 17 15 14 ] 13 F

2-  Conversion of any decimal number to the base R

Any number in one number system can be converted into any other number system.
There are the various methods that are used in converting numbers from one base to

another.

2.1. Conversion of Decimal to Binary

2.1.1 Integers

The method of converting a decimal integer number to a binary integer number entails
repeatedly dividing the decimal number by 2, keeping track of the remainder at each

step. To convert the decimal number x to binary:

e Divide x by 2 to obtain a quotient and remainder. The remainder will be 0 or 1.

¢ If the quotient is zero, you are finished: Proceed to Step 3. Otherwise, go back to
Step 1, assigning x to be the value of the most recent quotient from Step 1.

e The sequence of remainders forms the binary representation of the number.

A8 S Sl 2gadll
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Example 1:
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(23)10 — > (10111);

23/2 =11

Remainder

11/2=5

1

5/2=2

212=1

1/2=0

e E=1=Y N=

LSB

MSB

(LSB) sy Least Significant Bit
(MSB) seedp Most Significant Bit

Example 2:

(53)10 — 5(110101)>

53/2 = 26

Remainder

26/2 =13

1

13/2=6

6/2=3

32=1

1/2=0

N =l =)

LSB

MSB

2.1.2 Fractions

Lead ) il gl

To convert a decimal fraction to its binary fraction, multiplication by 2 is carried out
repetitively and the integer part of the result is saved and placed after the decimal point .
The fractional part is taken and multiplied by 2. The process can be stopped any time

after the desired accuracy has been achieved.
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Example 3:
(0.375)10 —— (0.011):
0.375x2=0.75 Integer MSB
0.75x2=15 0
05x2=1 1 | SB
1
Example 4:
(0.6875)10 ——>(0.1011)>
0.6875 x 2 =1.375 Integer
0.375x2=0.75 1 MSB
0.75x2=15 0
05x2=1 1
LSB
1
Example 5:

(53.6875)10 ——>(110101.1011),

2.2 Conversion of Decimal to Octal

2.2.1 Integers

Lead ) il gl

We follow the same process of converting decimal to binary. Instead of dividing the
number by 2, we divide the number by 8.

Example 6:

(45)10 ———— (55)s

45//8 =5 Remainder L SB
S/8=0 > T MSB
5
& € S ) agadll 5
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Example 7:

(MJS\ Jlgall g Al ) cilaulad ) Jg¥) Juaidl)

(514)10 — > (1002)s

514/8 = 64 Remainder
64/8 = 8 2
8/8=1 0
1/8=0 0

1

LSB

MSB

2.2.2 Fractions

Lead ) il gl

We follow the same steps of conversions of decimal fractions to binary fractions. Here
we multiply the fraction by 8 instead of 2.

Example 8:

(0. 75)10 ———(0.6)s

0.75 x 8 =6.00 Integer MSB
6 l
LSB
Example 9:
(0.1875)10 — (0.14)s
0.1875x8=1.5 Integer MSB
0.5x8=40 1
4 LSB
Example 10:

(45.1875)10 ——>(55.14)s

A8 K ) agaall
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2.3 Conversion of Decimal to Hexadecimal

2.3.1 Integer

Lead ) il gl

We divide by 16 instead of 2 or 8. If the remainder is in between 10 to 16, then the
number is represented by A to F respectively.

Example 11:

(45)10 ——— (2D)1s

45/16 =2 Remainder | SB
2/16 = 13)=D
[16=0 (13) T MSB
2
Example 12:
(295)10 ———>(127)16
295/16 = 18 Integer MSB
18/16 =1 7 T
1/16 =0 i LSB

2.3.2 Fractions

Here we multiply the fraction by 16 instead of 2 or 8. If the non-zero integer is in
between 10 to 16, then the number is represented by A to F respectively.

Example 13:

(0. 75)10 —>(0.C)16

0.75x16 =6.00

Integer

(12)=C

MSB
LSB

A8 S Sl 2gadll
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Example 14:

(0.9875)10 —— (0.FCC)1s6

0.9875 x 16 =15.8 Integer MSB
0.8x16=12.8 (15 =F
0.8x16=12.8 (12)=C
LSB
(12)=C
Example 14:

(295.9875)10 —— (127.FCC)16

3- Conversion of any base R to the decimal number
3.1- Conversion of Binary to Decimal
3.1.1 Integer

Each position of binary digit can be replaced by an equivalent power of 2 as shown
below

2V 2" e e 22 22 28 20

Thus to convert any binary number replace each binary digit (bit) with its power and
add up.

Examplel5: convert (1011); to its decimal equivalent

2V 202 i e 22 22 28 20
1 0 1 1

(1011), = (1x1 + 1x2 + 0x4 + 1x8)10 = (1+2+0+8)10 = (11)10

3.1.2 Fraction
In a binary fraction, the position of each digit (bit) indicates its relative weight as was
the case with the integer part, except the weights to in the reverse direction. Thus after

the decimal point, the first digit (bit) has a weight of 1/2, the next one has a weight of
1/4, followed by 1/8 and so on.

A8 K ) agaall 8 e e Jead an
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2t 12223 2% 2T

Examplel6: convert (0.1011),to its decimal equivalent

2t 2z 231 2% ] 2T
1 0 1 1

(0.1011), = (1x1/2 + 0x1/4 + 1x1/8 + 1x1/16)10
= (0.5+0+0.125+0.0625)10 = (0.6875)10

3.2- Conversion of Octal to Decimal

3.2.1 Integer
Each position of octal digit can be replaced by an equivalent power of 8 as shown below

8" | 8™ | eees | e g>| 8 | 8 | 8&°

Thus to convert any octal number replace each octal digit (bit) with its power and add
up.

Examplel7: convert (743)s to its decimal equivalent

8" 8" . ...c.|een.| 8] 82| 8| 8°

(743)g= (3x1 + 4x8 + 7x64)19 = (3+32+448)10 = (483)10

3.2.2 Fraction

In a Octal fraction, the position of each digit (bit) indicates its relative weight as was
the case with the integer part, except the weights to in the reverse direction. Thus after
the decimal point, the first digit (bit) has a weight of 1/8, the next one has a weight of
1/64, followed by 1/512 and so on.

gt | 82|8%|8%|....[...[|8™

A S il gl 9 e e Jead an
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Examplel8: convert (0.413)gto its decimal equivalent

8-1

8-2

8-3

8-4

4

1

3

(0.413)s = (4/8 + 1/64 + 3/512)10
= (0.5+0.015625+0.005859375)10 = (0.5221)10

3.3- Conversion of Hexadecimal to Decimal

3.3.1 Integer

Each position of Hexadecimal digit can be replaced by an equivalent power of 16 as

shown below

16n-1

16n-2

16°

162 | 16* | 16°

Thus to convert any hexadecimal number replace each hexadecimal digit (bit) with its

power and add up.

Examplel9: convert (F4C)i6 to its decimal equivalent

16n-1 16n-2

16°

162

16| 16°

F=(15)| 4 |C=(12)

(FAC)16 = (12x1 + 4x16 + 15%x256)10 = (12 + 64 + 3840)10 = (3916)10

3.3.2 Fraction

In a Hexadecimal fraction, the position of each digit (bit) indicates its relative weight
as was the case with the integer part, except the weights to in the reverse direction.
Thus after the decimal point, the first digit (bit) has a weight of 1/16, the next one has a
weight of 1/256, followed by 1/4096 and so on.

16

1672

167

16™

veee | eeee |16

A8 S Sl 2gadll
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Example20: convert (0. BLEB)6 to its decimal equivalent

161 |162| 163 | 16 |..|..|16™
B=(11) | 1 |E=(13)|B=(11)

(0. BLEB)1s = (11/16 + 1/256 + 13/4096 + 11/65536)1
= (0.6875 + 0.0039 + 0.0031 + 0.0001)10 = (0.6946)1

4-  Conversion of Binary

4.1 Conversions of Binary to Octal

4.1.1 Integer

We use the following steps in converting binary to octal

o Break the number into 3-bit sections starting from LSB to MSB . If we do not
have sufficient bits in grouping of 3-bits, we add zeros to the

o Left of MSB so that all the groups have proper 3-bit number .

o Write the 3-bit binary number to its octal equivalent.

Example21: Convert (1101101); into octal.

Binary Number 001 101 101
Octal Number 1 5 5

Thus (1101101), = (155)s.
4.1.2 Fraction
We use the following steps in converting binary fractions to octal fractions

o Break the fraction into 3-bit sections starting from MSB to LSB .
o In order to get a complete grouping of 3 bits, we add trailing zeros in LSB .
o Write the 3-bit binary number to its octal equivalent.

Example22: Convert (101101.11); into octal.
Binary Number 001 101. | 110

Octal Number 5 5. 6

Thus (101101.11); = (55.6)s.

A S il gl 11 e e Jead an
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4.2 Conversions of Binary to Hexadecimal

4.2.1 Integer

Lead ) il gl

We convert binary to hexadecimal in the similar manner as we have converted binary
to octal. The only difference is that here, we form the group of 4 —bits.

Example23: Convert (101101), into hexadecimal.

Binary Number

0010

1101

Hexadecimal Number

2

Thus (101101), = (2D)ss.

4.2.2 Fraction

We convert binary fractions to hexadecimal fractions in the similar manner as we have
converted binary fractions to octal fractions. The only difference is that here we form

the group of 4 bits.

Example24: Convert (101101.11),into hexadecimal.

Binary Number

0010

1011.

1100

Hexadecimal Number

2

Thus (101101.11); = (2D.C)s.

A8 S Sl 2gadll
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5. Logic Gates

A logic gate is an elementary building block of a digital circuit. Most logic gates have
two inputs and one output. At any given moment, every terminal is in one of the two
binary conditions low (0) or high (1), represented by different voltage levels. The logic
state of a terminal can, and generally does, change often, as the circuit processes data.
In most logic gates, the low state is approximately zero volts (0 V), while the high state
Is approximately five volts positive (+5 V).

There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

5.1 AND Gate

The AND gate is so named because, if 0 is called "false” and 1 is called "true," the gate
acts in the same way as the logical "and" operator. The following illustration and table
show the circuit symbol and logic combinations for an AND gate. (In the symbol, the
input terminals are at left and the output terminal is at right.) The output is "true" when
both inputs are "true." Otherwise, the output is "false."”

Input 1 Input 2 Output

- -

0 1 0
1 0 0
1 1 1

AND gate

5.2 OR Gate

The OR gate gets its name from the fact that it behaves after the fashion of the logical
inclusive "or." The output is "true" if either or both of the inputs are "true." If both
inputs are "false," then the output is "false."

Input 1 Input 2 Output

o 1 | 1
1 | 0 | 1
1 1 | 1

OR gate

A S il gl 13 ha s 3le Jead
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5.3 NOT Gate

A logical inverter, sometimes called a NOT gate to differentiate it from other types of
electronic inverter devices, has only one input. It reverses the logic state.

Input | Output ;
110 NOT gate Inverter or

0 1

5.4 NAND Gate

The NAND gate operates as an AND gate followed by a NOT gate. It acts in the
manner of the logical operation "and" followed by negation. The output is "false" if
both inputs are "true." Otherwise, the output is "true."

Input 1 |Input 2 Output

=EDe

0 1 1
1 0 1
1 1 0

NAND gate

5.5 NOR Gate

The NOR gate is a combination OR gate followed by an inverter. Its output is "true" if
both inputs are "false." Otherwise, the output is "false".

Input 1 Input 2 Output

0 1 0
. 0 0 NOR gate
1 1 0

A S il gl 14 ha s 3le Jead
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5.6 XOR Gate

The XOR ( exclusive-OR ) gate acts in the same way as the logical "either/or." The
output is "true" if either, but not both, of the inputs are "true." The output is "false" if
both inputs are "false” or if both inputs are "true.” Another way of looking at this circuit
Is to observe that the output is 1 if the inputs are different, but O if the inputs are the

Same.

Input 1 [Input 2 Output ]D—

0 0 0
0 ! ! XOR gate
1 0 1
1 1 0
5.7 XNOR Gate

The XNOR (exclusive-NOR) gate is a combination XOR gate followed by an inverter.
Its output is "true™ if the inputs are the same, and "false™ if the inputs are different.

Input 1 Input 2 Output

0
0
1
1

e —)

1 0 XNOR gate
0 0
1 1

Using combinations of logic gates, complex operations can be performed. In theory,
there is no limit to the number of gates that can be arrayed together in a single device.
But in practice, there is a limit to the number of gates that can be packed into a given
physical space. Arrays of logic gates are found in digital integrated circuits (ICs). As IC
technology advances, the required physical volume for each individual logic gate
decreases and digital devices of the same or smaller size become capable of performing
ever-more-complicated operations at ever-increasing speeds.

A S il gl 15 ha s 3le Jead
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A A

AND OR
A A .
I D

NAND NOR

A
A ; A EOR
NOT A
B AGB

ENOR
INPLTS OUTPUTS
A, = AMD | MAND | OR | NOR | EXOR |[EXNOR
I I I 1 I 1 I 1
I | O 1 I | O
1 I I 1 1 I 1 I
1 1 1 I 1 I 0 1

6- Boolean Algebra

Like all algebras, there are rules to manipulate Boolean expressions. The simplest are
the rules that concern the unary operator NOT

(A)=A
A-A=0
A+A=1

General rules like the distributive(s=..5), commutative(12W), and associative(s 5)
rules hold for the AND and OR binary operators as follows.
Associative (A-B)-C=A-(B-C)

(A+B)+C = A+(B+C)

Commutative A-B=B-A
A+B = B+A

Distributive A-(B+C)=A-B+A-C
A+(B-C) = (A+B)-(A+C)

A S il gl 16 e e Jead an
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In addition, there are simplification rules for Boolean equations. There are three
important groups of simplification rules. The first one uses just one variable:

A-A=A
A+A=A
The second group uses Boolean constants 0 and 1:

A-0=0

A-1=A

A+0=A

A+l=1

The third group involves two or more variables and contains a large number of possible
simplification rules (or theorems) such as:

A+A-B=A

proof A+A-B=A-(1+B)+A-1=A

There are two important rules which constitute de Morgan’s theorem:

(A+B)=A-B

(AB)=A+B de Morgan’s theorem
. — +

SUMMARY
1- A-B=B-A
A+B =B +A

2 - A-(B-C)=(A-B)-C
A+(B+C)=(A+B)+C

3— A-B+C)=(A-B)+(A-C)
A+(B-C) =(A+B)-(A+C)

4- A-A=A
A+A=A

5- A-(A+B)=A
A+(A-B)=A

A S il gl 17 ha s 3le Jead
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6— A-A=0
A+A=1

7- A=A

8— (A-B)=A+B
(A+B)=A-B

7. Karnaugh Map

The Karnaugh Map also called as K Map is a graphical representation that provides a
systematic method for simplifying the boolean expressions For a boolean expression
consisting of n-variables, number of cells required in K Map = 2" cells.

7.1. Two Variable K Map

1. Two variable K Map is drawn for a boolean expression consisting of two

variables.
2. The number of cells present in two variable K Map =22 = 4 cells.
3. So, for a boolean function consisting of two variables, we draw a 2 x 2 K Map.

Two variable K Map may be represented as

B = B
A B B A 0 1
A 0
0 1 OR 0 1
A 1
2 3 2 3

Two variable K Map

Here, A and B are the two variables of the given boolean function.

A S il gl 18 e e Jead an
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7.2. Three Variable K Map

1. Three variable K Map is drawn for a boolean expression consisting of three variables.
2. The number of cells present in three variable K Map = 23 = 8 cells.
3. So, for a boolean function consisting of three variables, we draw a 2 x 4 K Map.

Three variable K Map may be represented as

BC
A B<C BC BC BC
A 0 1 3 2
A
4 5 7 53
OR
BC
A 00 01 11 10
0 0 1 3 2
1
a4 5 7 (5

Three variable K Map

Here, A, B and C are the three variables of the given boolean function.

7.3. Four Variable K Map

1. Four variable K Map is drawn for a boolean expression consisting of four variables.
2. The number of cells present in four variable K Map = 24 = 16 cells.
3. So, for a boolean function consisting of four variables, we draw a 4 x 4 K Map.

Four variable K Map may be represented as

A8 K ) agaall 19 e e Jead an
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CcD

cD
AB
00 o L 10 AB CD ©¢CbD cD ch
00 0 1 3 2 AB
0 1 3 2
01 i
4 5 7 6 AB
4 5 7 6
1
12 13 15 14 AB
12 13 15 14
10
8 9 11 10 AB
8 9 11 10

Four variable K Map

Here, A, B, C and D are the four variables of the given boolean function.

7.4. Karnaugh Map Simplification Rules
To minimize the given boolean function,

1. We draw a K Map according to the number of variables it contains.
2. We fill the K Map with 0’s and 1°s according to its function.
3. Then, we minimize the function in accordance with the following rules.

Rule-01:

1. We can either group 0’s with 0’s or 1’s with 1’s but we cannot group 0’s and 1’s
together.
2. X representing don’t care can be grouped with 0’s as well as 1°s.

NOTE There is no need of separately grouping X’s i.e. they can be ignored if all
0’s and 1’s are already grouped.

Rule-02:
Groups may overlap each other.

Rule-03:

1. We can only create a group whose number of cells can be represented in the power of
2.

2. In other words, a group can only contain 2n i.e. 1, 2, 4, 8, 16 and so on number of
cells.
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Example 25

Incorrect Correct

X v

Rule-04:
1. Groups can be only either horizontal or vertical.
2. We cannot create groups of diagonal or any other shape.

£~ D
S ©

Incorrect Correct
) _ 4 v 4
Example 26
- 1 4
1
Incorrect Correct
Rule-05:

Each group should be as large as possible.

Rule-06:

1. Opposite grouping and corner grouping are allowed.

2. The example of opposite grouping is shown illustrated in Rule-05.
3. The example of corner grouping is shown below.
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Example 27

Incorrect Correct

X V4

Rule-07:
There should be as few groups as possible

Example 28
Minimize the following boolean function
F(A,B,C,D)=Xm(0, 1,2,5,7,8,9, 10, 13, 15)

Solution-

1. Since the given boolean expression has 4 variables, so we draw a 4 x 4 K Map.
2. We fill the cells of K Map in accordance with the given boolean function.

3. Then, we form the groups in accordance with the above rules.

Then, we have

cD
AB TD, ©CTD D ch
AB 1 1 1
0 1 3 —
AB 1 1
4 5 7 6
AB ‘ 1
12 3 156 14
AB | 1 1 1
8 9 1 10

Now, F(A, B, C, D) =(A’B+ AB)(C’'D+CD)+ (A’B’+ A’B + AB + AB’)C’D +
(A’B’+ AB’)(C’'D’ +CD’)=BD + C’D + B’D’

Thus, minimized boolean expression is

F(A,B,C,D)=BD +C’D + B’D’
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Example 29
Minimize the following boolean function
F(A,B,C,D)=Xm(0, 1,3,5,7,8,9, 11, 13, 15)

Solution-

1. Since the given boolean expression has 4 variables, so we draw a 4 x 4 K Map.
2. We fill the cells of K Map in accordance with the given boolean function.

3. Then, we form the groups in accordance with the above rules.

Then, we have

cD
AB TD ©TbD cD )
AB || 1 1 .
- 1 3 2
AB 1 4
4 5 7 6
AB 1 1
12 13 5 14
AB 1 1 1
8 — 1 10

Now,

F(A,B,C,D)=(A’B’+ A’B+ AB + AB’)(C’'D + CD) + (A’B’ + AB’)(C’D’ + C’D) =
D+BC

Thus, minimized boolean expression is

F(A,B,C,D)=B’C’+D

Example 30

Minimize the following boolean function

F(A, B, C)=XZm(0, 1, 6, 7) + £d(3, 4, 5)

Solution-

1. Since the given boolean expression has 3 variables, so we draw a 2 x 4 K Map.
2. We fill the cells of K Map in accordance with the given boolean function.

3. Then, we form the groups in accordance with the above rules.

Then, we have

BC

A BT BC BC BC
= | | 4 1 X
A 0 1 3 2
A X X Togl Ml

A8 K ) agaall 23 e e Jead an
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Now, F(A,B,C)=(A+A’)(B’C’+B’C)+AB’'C’+B’C+BC+BC)=B’+ A
Thus, minimized boolean expression is
F(A,B,C)=A+B’

""Don't Care' Conditions

Sometimes a situation arises in which some input variable combinations are not
allowed. For example, recall that in the BCD code there are six invalid combinations:
1010, 1011, 1100, 1101, 1110, and 1111. Since these unallowed states will never occur
in an application involving the BCD code, they can be treated as "don't care™ terms with
respect to their effect on the output. That is, for these "don't care" terms eitheralora0
may be assigned to the output: it really does not matter since they will never occur. The
"don't care” terms can be used to advantage on the Karnaugh map. Fig. shows that for
each "don't care" term, an X is placed in the cell. When grouping the 1 s, the Xs can be
treated as 1s to make a larger grouping or as Os if they cannot be used to advantage. The
larger a group, the simpler the resulting term will be.

[3)
000 1 (3)
0010 0
001 1 (4]
0100 (4] -
0101 (4]
00 o1 n 10

0110 (4] AL
o111 1 00
1 000 1
1001 1 o1 @ — 1 Asco
1 O1 0 xX ] e BCD
1 011 x :

11 xX X X x
: :g(l) § Don't carces ( W
1110 X 10 L('v D | x "J
1 111 X ' =N

ABC A

(a) Truth wble (b} Without “don’t cares™ ¥ = ABC + ABCD
With “"don“tcares™ ¥ = A + BCD
The truth table in above: (a) describes a logic function that has a 1 output only when the
BCD code for 7,8, or 9 is present on the inputs. If the "don't cares" are used as 1s, the
resulting expression for the function is A + BCD, as indicated in part (b). If the "don't
cares" are not used as 1s, the resulting expression is ABC + ABCD: so you can see the
advantage of using "don't care" terms to get the simplest expression.

A8 K ) agaall 24 e e Jead an
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1-  Arithmetic Operations

1.1  Additional Operations

1.1.1 Addition of Binary Numbers

Addition of binary numbers is basically the same as addition of decimal numbers. Each
system has a sum, and carries.

Since only two symbols, 0 and 1, are used with the binary system, only four
combinations of addition are possible.

Sum Carry
0+0=0 0
0+1=1 0
1+0=1 0
1+1=0 |

Example 1: Add (1), + (111),

1 1] 1
111 1 1}1 11111
+ + +
1 1 1
Z 0 1 01010
Z K o

Example 2: Add (1001.011), + (1101.101),

Carries: 10011 11
1001.011 = (9.375)
1101.101  =(13.625)9
10111.000 = (23);5 = Sum

1.1.2 Addition of Octal Numbers

The addition of octal numbers is not difficult provided you remember that anytime the
sum of two digits exceeds 7, a carry is produced. Compare the two examples shown
below:

dg dg
+2E +dE
64 10

A S S ) agaall 1 e gle dad o
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The octal addition table in table 3 will be of benefit to you until you are accustomed to

adding octal numbers.

Table 3 Octal Addition Table

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 10
2 2 3 4 5 6 7 10 11
3 3 4 5 6 7 10 11 12
4 4 5 6 7 10 11 12 13
5 5 ] 7 10 11 12 13 14
6 ] 7 10 11 12 13 14 15
7 7 10 11 12 13 14 15 16

Example 3: For the octal system, (1)s+ (777)s= (1000)s

1 1)1

777 77|7 717|7
+ +

1 1 1

8 0 1 0lo0l0

B [ ot

Example 4: Add 6gand 5g
63

+ 9
13g

1.1.3 Addition of Hexadecimal Numbers

The addition of Hexadecimal numbers may seem intimidating at first glance, but it is no
different than addition in any other number system. The same rules apply. Certain
combinations of symbols produce a carry while others do not. Some numerals combine
to produce a sum represented by a letter. After a little practice you will be as confident

adding hexadecimal numbers as you are adding decimal numbers.

Study the hexadecimal addition table in table 4. Using the table, add 7 and 7. In this
case 7 + 7= E. As long as the sum of two numbers is 15i00r less, only one symbol is
used for the sum. A carry will be produced when the sum of two numbers is 1619 Or

greater.

Table 4 Hexadecimal Addition Table

la Lﬁ)\-"; BN £

&S S L) agadll
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+ 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 9 2 3 4 5 6 7 8 2 A B C D E F
1 1 2 3 4 5 6 7 B 9 A B cC D E F 10
2 2 3 4 5 6 7 8 9 A B C D E F 10 11
3 3 4 5 6 7 8§ g A B cC D E F 10 11 12
4 4 5 6 7 8 9 A B C D E F 10 11 12 13
5 3 6 7 B 9 A B cC D E F 10 11 12 13 14
6 6 7 8 9 A B C D E F 10 11 12 13 14 15
7 7 8 9 A B C D E F 10 11 12 13 14 15 15
] 8 g A B C D E F 10 11 12 13 14 15 16 17
g 9 A B cC D E F 10 11 12 13 14 15 6 17 18
A A B C D E F 10 11 12 13 14 15 16 17 18 19
B B C D E F 10 11 12 13 14 15 16 17 15 19 1A
C C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B
D D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E E F 10 11 12 13 14 15 16 17 18 19 1A 1B IC 1D
F F 10 11 12 13 14 15 16 17 18 19 1A 1B I1C 1D 1E

Example 5: For the hex system, (1)16+ (FFF)16= (1000)16

1 111

FFF F FIF FIF|F
+ + +
1 1 1
10 \Jo 10 Lo \Jo
Example 6: Add 45616 and 78416
456
+ 784
BD A

1.2 Subtraction Operations
1.2.1 Subtraction of Binary Numbers

Now that you are familiar with the addition of binary numbers, subtraction will be easy.
The following are the four rules that you must observe when subtracting:

Difference Borrow
0-0=0 0
0-1=1 1
1-0=1 0
1-1=0 0
&S T gl 3
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Example 7: Subtract (10001), from (11000);
1

011

11060 24
—10001 - 17

00111 7

1.2.2 Subtraction of Octal Numbers

The subtraction of octal numbers follows the same rules as the subtraction of numbers
in any other number system. The only variation is in the quantity of the borrow. In the
decimal system, you had to borrow a group of 104. In the binary system, you borrowed
a group of 210. In the octal system you will borrow a group of 8.

Consider the subtraction of 1 from 10 in decimal, binary, and octal number systems:
DECIMAL  BINARY  OCTAL

104 10, 104
—_1u = la - 1g
D1 1 7y

Example 8: Subtract (7)s from (46)s
10

2.2.3 Subtraction of Hexadecimal Numbers
The subtraction of Hexadecimal numbers looks more difficult than it really is. In the
preceding sections you learned all the rules for subtraction. Now you need only to apply
those rules to a new number system. The symbols may be different and the amount of
the borrow is different, but the rules remain the same.

Example 9: Subtract (642)16 from (ABC)16

ABC g
- 642y

A7

&S T gl 4 e gle dad o
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1.3 Multiplication Operation (Binary Multiplication)
The binary multiplication table is as follows:

0x0=0
0x1=0
1 x0=0
1 x1=1

The process of binary multiplication is illustrated by the following example:

110.10
10.1

11010
00000

11010
10000.010

For every digit of the multiplier which is equal to 1, a partial product is formed
consisting of the multiplicand shifted so that its least significant digit is aligned with the
1of the multiplier. An all-zero partial product is formed for each 0 multiplier digit. Of
course, the all-zero partial products can be omitted. The final product is formed by
summing all the partial products. The binary point is placed in the product by using the
same rule as for decimal multiplication: the number of digits to the right of the binary
point of the product is equal to the sum of the numbers of digits to the right of the
binary points of the multiplier and the multiplicand.

Example 10: find (53)10 x (7)10
110101
000111
110101
1101010
11010100
101110011 (371)10

1.4 Division Operation (Binary Division)
Division is the most complex of the four basic arithmetic operations.

Example 11: find (72)10 % (6)10
1100
110 1001000
_110
0110
_ 110
000
(1100)2= (12)10
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