Republic of Iraq

Ministry of Higher Education
and Scientific Research
Scientific supervision and
evaluation device

Academic program and course

2025

Introduction:

The educational program is a coordinated and organized package of courses that include procedures and experiences organized in the form of study vocabulary, the main purpose of which is to build and refine the skills of graduates, making them qualified to meet the requirements of the labor market. It is reviewed and evaluated annually through internal or external audit procedures and programs, such as the external examiner program

Academic Program Description: A brief summary of the main features of the program and its courses, indicating the skills that students are working to acquire based on the objectives of the academic program. The importance of this description is evident because it represents the cornerstone in obtaining program accreditation, and the teaching staff participates in writing it under the supervision of the scientific committees in the scientific departments.

This guide, in its second version, includes a description of the academic program after updating the vocabulary and paragraphs of the previous guide in light of the developments and changes in the educational system in Iraq, which included a description of the academic program in its traditional form (annual, semester) system, in addition to adopting the description of the academic program circulated pursuant to the letter of the Department of Studies TM3/2906 dated 5/3/2023 regarding programs that adopt the Bologna process as the basis for their work.

In this regard, we cannot but emphasize the importance of writing a description of academic programs and courses to ensure the smooth running of the educational process.

Concepts and terminology:

Academic Program Description: The academic program description provides a concise summary of its vision, mission and objectives, including an accurate description of the targeted learning outcomes according to specific learning strategies.

Course Description: Provides a concise summary of the most important characteristics of the course and the learning outcomes expected from the student, demonstrating whether he has made the most of the available learning opportunities. It is derived from the program description.

Program Vision: An ambitious picture of the future of the academic program to be an advanced, inspiring, motivating, realistic and applicable program.

Program Mission: It briefly explains the goals and activities required to achieve them, and it also identifies the paths and directions of the program's development.

Program Objectives: These are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable.

Curriculum Structure: All courses/subjects included in the academic program according to the approved learning system (semester, yearly, Bologna track) whether required (ministry, university, college and scientific department) with the number of credit hours. Learning Outcomes: A compatible set of knowledge, skills and values acquired by the student after successfully completing the academic program. The learning outcomes for

each course must be determined in a way that achieves the program objectives.

Teaching and Learning Strategies: The strategies used by the faculty member to develop the student's teaching and learning. They are plans that are followed to achieve the learning objectives. That is, they describe all classroom and extracurricular activities to achieve the learning outcomes of the program.

Academic Program Description Form

University Name: Northern Technical University College/Institute: Al- Hawija Technical Institute

Scientific Department: Electrical Technology Department

Academic or Professional Program Name: Technical Diploma in Electrical

Technology

Final Certificate Name: Technical Diploma in Electrical Technology

Study System: Courses

Description Preparation Date: 25 /6/2025

File Filling Date: 25 /6/2025

Signature:

Department Head:

Parween Raheem Kareem

25 /6/2025

Signature:

Scientific Assistant Dean

Dr. Mohammed Jiad Ligy

25 /6/2025

Check the file before

Quality Assurance and University Performance Division:

Hamza Omar siddeeq

Signature: Ahmed Abed Khalaf

Dean's approval

Professor: Omar Khalil Ahmed

1. Program Vision

To equip students with both theoretical and practical knowledge in the field of electrical technologies, meeting the demands of the job market and expanding the horizons of technical education by developing the curriculum

2. Program Mission

- -Prepare technical electrical personnel capable of managing the operation of electrical machinery, power generation methods, electrical networks, and transmission and distribution lines while being equipped with academic knowledge and practical skills.
- -Train students both theoretically and practically to meet job market requirements through a modern curriculum and advanced laboratory equipment.
- -Stay abreast of scientific advancements in global institutes and universities.
- -Adhere to the ethics of the profession, ensuring compliance with applicable standards and regulations.
- Strive for excellence in service delivery that meets quality standards.

3. Program objectives

- -Prepare intermediate-level personnel with advanced technical skills in the field by manufacturing and maintaining electrical equipment.
- -Train students in scientific research through graduation project studies.
- -Offer practical courses in the specialization for all segments of society.
- -Manufacture laboratory equipment and electrical devices that support the educational process.
- -Operate and maintain electrical units for power generation stations.

4. Program accreditation

Under study

5. 1. Other external influences

nothing

6. .Program structure for the first and second levels

Program	Number of	Study unit	Percentage	Notes *		
Structure	courses	Study unit	reicentage	Notes *		
University	11	22	26.8%	9 Basic, 2 Optional		
Requirements		22	20.070	9 Dasic, 2 Optional		
Institute	4	9	9.8%	2 Paris 1 Optional		
Requirements	4	9	9.070	3 Basic, 1 Optional		
Department	26	72	63.4%	88 Basic, 4 Optional		
Requirements	20	12	03.470	oo Dasic, 4 Optional		
Summer	Completed					
Training	Completed					
Other	nothing					

^{*}Notes may include whether the course is basic or optional.

7. Program	Description						
Veer/Level	Course	Cauras Nama	Credit Hours				
Year/Level	Code	Course Name	Theoretical	Practical			
	NTU100	Human Rights and Democracy	2	0			
	NTU101	English Language	2	0			
	NTU102	Computer principles1	1	2			
	NTU103	Computer principles2	1	2			
	NTU104	Arabic Language	2	0			
	NTU105	Sport	1	1			
	NTU106	Franch Language	2	0			
	TIHA100	Mathematic 1	2	0			
	TIHA101	Mathematic 2	2	0			
2224 2225	TIHA102	Mechanical Workshop	0	3			
2024-2025 First	TIHA103	Vocational Safety	2	0			
FIISt	ELTP100	Electrical Cicuit1	2	2			
	ELTP101	Electrical Cicuit2	2	2			
	ELTP102	Electronic 1	2	2			
	ELTP103	Electronic 2	2	2			
	ELTP104	Electrical Installation	2	2			
	ELTP105	Digital Electronic	2	2			
	ELTP106	Engineering Drawing	0	3			
	ELTP107	Electrical Workshop	0	3			
	ELTP108	Renewable Energy	2	0			
	ELTP109	Electric Circuits Simulation	1	2			
2024-2025	NTU200	English Language	2	0			

Second	NTU201	Professional Ethics	2	0
	ELTP204	D.C Machines	2	3
	ELTP205	Electrical networks 1	2	2
	ELTP206	Power electronics 1	2	3
	ELTP207	Maintenance Workshop 1	0	3
	ELTP208	Industrial Installation1	2	2
	ELTP209	Electrical Drawing	0	3
	ELTP210	Project1	0	2
	ELTP211	A.C Machines	2	3
	ELTP212	Electrical networks 2	2	2
	ELTP213	Power electronics 2	2	3
	ELTP214	Maintenance Workshop 2	0	3
	ELTP215	Electrical Installation 2	2	2
	ELTP216	Programmable Logic Controller (PLC)	1	2
	ETP217	Project 2	0	2
	ETP218	Protection system	1	1
	ETP219	Microcontroller	1	2

8. Expected learning outcomes of the program

Knowledge(A)

- 1-Learn the principles and foundations of electrical circuits.
- **2–**Knowledge of the work of electrical installations of all kinds.
- **3–**Knowledge of winding of various electrical motors and machines.
- **4–**Knowledge of examining and measuring electrical systems.

Skills(B)

- 1 Teamwork skills.
- **2–**Computer and Internet skills.
- **3–**Communication skills such as English.
- **4–**Leadership skills and taking responsibility.

Values(C)

- **1–**The student acquires the concepts and basics of electrical circuits.
- **2–**Analyze the problems facing workers in it and how to develop the necessary solutions.
- **3–**Evaluate the proposed solutions and choose the best of them.
- 4- Integrity, loyalty and dedication to work.

9. Teaching and learning methods

Theoretical explanation of the subject, the use of a data viewer to illustrate the practical aspect, and playing the educational video for students, as well as the weekly reports assigned to the student for each experiment, along with scientific trips to electrical power stations and various state laboratories

10. Evaluation methods

Daily, semester and final tests, weekly reports

11. Faculty

Faculty members

Academic Rank	Specialization	n	Special requirements (if any)	ents/skill	Faculty preparation			
	Year	Special			permanent	lecturer		
Assistant Professor	Electrical Engineering	Electric Power			permanent			
Assistant Lecturer	Electrical Engineering	Power & Machinery			permanent			
Assistant Lecturer	Electrical Engineering	Power & Machinery			permanent			
Assistant Lecturer	Civil Engineering	Roads & Transport			permanent			

12. Acceptance Criteria

The student's acceptance criteria are determined according to the central acceptance within the ministry's plan, the student's branch in the preparatory school, his average

Evaluation methods

Daily, semester and final tests, weekly reports

and his desire, and this is after the student has been interviewed in a special interview at the institute.

Professional development

Orientation of new faculty members through seminars, symposia and conference attendance.

Professional development for faculty members

Through conferences, seminars, discussion groups and the attendance of faculty members at postgraduate discussions

13. The most important sources of information about the program

- 1 .Methodological books prescribed by the Northern Technical University.
- 2 .Resources available in the Technical Institute's library.
- 3. Resources available on the Internet

14. Program Development Plan

- 1- Adding information on all topics related to the principles and foundations of electricity.
- 2- Identifying modern scientific developments.
- 3- Participating in international and local conferences.
- 4- Participating in scientific workshops inside and outside Iraq.
- 5- Hosting scientific competencies in the field of specialization

		Pro	gram Skills Outline												
					R	equir	ed Le	arnir	ng Ou	itcom	es of	The F	rogra	am	
Year/Level	Course Code	Course Name	Mandatory or Elective		Know	/ledge	е		SI	kills			Va	lues	
				A1	A2	А3	A4	B1	B2	В3	B4	C1	C2	C3	C4
	NTU100	Human Rights and Democracy						✓			✓				✓
	NTU101	English Language								✓					
	NTU102	Computer principles1	University mandatory						✓						
	NTU103	Computer principles2							✓						
	NTU104	Arabic Language								✓					
	NTU105	Sport	University Elective							✓					
	NTU106	Language Franch	Offiversity Liective							✓					
	TIHA100	Mathematic 1				✓									
	TIHA101	Mathematic 2	Institute mandatory			✓									
2024-2025	TIHA102	Mechanical Workshop		✓	✓	✓	✓	✓				✓	✓	✓	
First	TIHA103	Safety Vocational	Institute Elective	✓	✓		✓	✓			\		✓	✓	
FIISC	ELTP100	Electrical Cicuit1		✓	✓	✓	✓	✓				✓	✓	✓	
	ELTP101	Electrical Cicuit2		✓	✓	✓	✓	✓				✓	✓	✓	
	ELTP102	Electronic 1		✓	✓	✓	✓	✓				✓	✓	✓	
	ELTP103	Electronic 2	Department	✓	✓	✓	✓	✓				✓	✓	✓	
	ELTP104	Electrical Installation	mandatory	✓	✓	✓	✓	✓				✓	✓	✓	
	ELTP105	Digital Electronic		✓	✓			✓	✓			✓	✓	✓	
	ELTP106	Engineering Drawing		✓		✓			✓			✓	✓	✓	
	ELTP107	Electrical Workshop		✓	✓	✓	✓	✓				✓	✓	✓	
	ELTP108	Renewable Energy	Department Elective	✓	✓		✓	✓				✓	✓	✓	
	ELTP109	Electric Circuits Simulation	Department Elective	✓	✓				✓			✓	✓	✓	
	NTU200	English Language	I lucio consiste e mano media tra media					✓		✓					ĺ
	NTU201	Professional Ethics	University mandatory								✓				✓
	ELTP204	D.C Machines						✓							✓
	ELTP205	Electrical networks 1						✓		✓					
2024-2025	ELTP206	Power electronics 1							✓						
Second	ELTP207	Maintenance Workshop 1	Department		✓	✓	✓	✓				✓	✓	✓	
	ELTP208	Industrial Installation1	mandatory	✓	✓	✓	✓	✓				✓	✓	✓	
	ELTP209	Electrical Drawing		✓	✓	√	✓	✓				✓	✓	✓	
	ELTP210	Project1		✓	✓	✓	✓	✓				✓	✓	✓	
	ELTP211	A.C Machines		✓	✓	✓	✓	✓				✓	✓	✓	

E	ELTP212	Electrical networks 2		✓	✓				✓		✓	✓	✓	
E	ELTP213	Power electronics 2		√	✓	✓	✓	✓		✓	✓	✓	✓	
E	ELTP214	Maintenance Workshop 2		✓	✓	✓	✓	✓			✓	✓	✓	
E	ELTP215	Electrical Installation 2		✓	✓	✓	✓	✓			✓	✓	✓	
	ELTP216	Programmable Logic		✓	✓	✓	✓	✓			✓	✓	✓	
	ELIPZIO	Controller (PLC)												
	ETP217	Project 2		✓	✓	✓	✓	✓			✓	✓	✓	
	ETP218	Protection system	Department Elective	1	1	✓	✓	✓			✓	1	✓	
	ETP219	Microcontroller	5 units	1	1				1		✓	1	✓	

Course description form

1- Educational institution

Ministry of Higher Education and Scientific Research / Northern Technical University

2- Scientific Department

Department of Electrical Technologies

3- Course name/code

Electrical Circuits 1 / ELTP100

4- Available forms of attendance

- Weekly lesson schedule (theoretical + practical).
- Scientific discussions, seminars and other extracurricular activities

5- Semester/year

The first / first

6- Number of study hours (total)

60

7- Date this description was prepared

2025/6/10

8- Course objectives (general objectives of the course)

- Introduce students to DC circuits and their components.
- Understand the various calculations in DC circuits and familiarize themselves with various theories.
- Learn about various measuring devices.
- Solve basic technical problems in electrical circuits.
- Improve personal productivity.

Outcomes	Teaching and learning methods	Evaluation methods
----------	-------------------------------	--------------------

A- Knowledge A1- The ability to design circuits and analyze data. A2 - The ability to identify, formulate, and solve problems. A3 - Proficiency in the necessary mathematical and engineering sciences. A4 - The ability to use the technologies required in the work.	(Theoretical lectures / discussion groups / debates between students)	(Traditional tests, assignments, formative assessment)
B – Skills B1 - Learn to work collaboratively with colleagues to complete group projects. B2 - Be able to respond to technical challenges with initiative and independence. B3 - Be able to use all types of measuring devices. B4 - Have the ability to simplify complex electrical circuits.	(Presentation, explanation, questions and answers, discussion)	(Oral exams / Written exams / Weekly reports / Daily attendance / Participation and interaction in lectures / Midterm and final exams)
C- Values C1- Identify all types of electrical components and the properties of each component in an electrical circuit. C2- Understand how to select the appropriate components for an electrical circuit and how to calculate these components both practically and theoretically.	(Reports on scientific developments in the field of specialization, asking analytical and deductive questions)	(Self-assessment and peer assessment, participation and contribution)

C3- Understand how to	
perform calculations for	
electrical circuits using	
multiple methods and	
choose the easiest	
calculation method.	
C4- Handle electrical	
devices and circuits safely	
and correctly.	

10- Course structure

(Theoretical Vocabulary)

Week	Hours	Required learning outcomes	Unit name/subject	Teaching method	Evaluation method
First	2	Understands the units used and how to convert between them.	The system of units used in electricity and units of measurement for each substance (its parts and multiples). Mathematical applications for converting values using units.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Second	2	Identify the factors affecting resistance value.	Factors affecting resistance value 1-Specific resistance 2-Temperature coefficient	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Third	2	Learn to connect	DC circuits include:	Theoretical lectures,	Daily written tests, daily

		resistors in series in DC circuits.	Connecting resistors in series with examples	educational videos and discussions.	posts, midterm and final exams, homework.
Fourth	2	Learn how to connect resistors in parallel in DC circuits.	Connecting resistors in parallel with examples	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Fifth	2	Learn to connect the resistors in DC circuits.	Mixed connection of resistors with examples	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Sixth	2	Performs the required calculations when linking the stellar and triangular	Applications on series, parallel, mixed, star and triangular circuits	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Seventh	2	Analysis of electrical circuits according to Kirchhoff's theory of current and voltage in DC circuits.	Kirchhoff's Laws - Kirchhoff's Laws Definition of Current and Voltage with solved examples	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Eighth	2	Analysis of electrical circuits according to Maxwell's theory in DC circuits.	Maxwell's theory with solved examples	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Ninth	2	Analysis of electrical	Thevenin's Theorem -	Theoretical lectures,	Daily written tests, daily

		circuits according to Thevenin's theorem in DC circuits.	Definition of the Theorem - How to Apply It in DC Circuits	educational videos and discussions.	posts, midterm and final exams, homework.
tenth	2	Analysis of electrical circuits according to Norton's theory in DC circuits.	Norton's Theorem - Definition of the Theorem - How to Apply It in DC Circuits	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
eleventh	2	Optimal solution based on Thevenin and Norton theorem.	Applications of Thevenin and Norton's Theorem	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
twelfth	2	Define the theory and derive its relationships.	Maximum power transfer theory.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
thirteenth	2	Analysis of electrical circuits with two or more sources according to the superposition theory.	Superposition Theorem - Definition of the Theorem - How to Apply It in DC Circuits.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
fourteenth	2	Optimal solution based on superposition theory.	Applications of Superposition Theory with Solutions and Examples	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.

fifteenth	2	Definition of current source and voltage source (DC power supply) and how to convert from one to the other.	Congruence Theorem - Definition of the Theorem - Steps for applying it to solve DC circuits that contain more than one source - Solving examples	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
-----------	---	---	--	---	--

(Practical Vocabulary)

Week	Hours	Required learning outcomes	Unit name/subject	Teaching method	Evaluation method
First	2	Learn about laboratory equipment and how to write reports.	Training on laboratory work methods, reporting methods, and equipment use.	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Second	2	Calculates resistor values by colors and how to use an ohmmeter.	Calculating resistances by color - the resistance measuring device (ohmmeter) in measuring resistances by color - and calculating the error percentage.	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Third	2	Use of laboratory voltage	Use of DC voltage	Practical lectures, educational	Daily practical tests, daily posts, midterm

		measuring devices	measuring devices.	videos and discussions.	and final exams, weekly reports
Fourth	2	Use of laboratory voltage and power meter	Use of DC measuring devices (such as ohmmeters) – Use of DC power supplies.	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Fifth	2	Measure the electromotive force and internal resistance of the battery.	Measurement of electromotive force and internal resistance of a battery - Study of the thermal coefficient of resistance.	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Sixth	2	Learn to check the resistance of conductors available in the laboratory.	Determine the specific resistance of some conductors.	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Seventh	2	Understanding Ohm's Law in the Lab	Check Ohm's law in practice.	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Eighth	2	Learn how to connect resistors in series, parallel and compound in a practical way.	Connecting resistors in series - parallel - mixed (multiple exercises).	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports

Ninth	2	Converting star to triangular and vice versa in DC circuits.	Equation of star and triangular DC circuits (multiple exercises).	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
tenth	2	Connecting electrical circuits and verifying Kirchhoff's first and second theories in the laboratory.	- Practical verification of Kirchhoff's first law - Practical verification of Kirchhoff's second law	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
eleventh	2	Connect electrical circuits and verify Thevenin's theorem in the laboratory.	Verification of Thevenin's theorem	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
twelfth	2	Connect electrical circuits and verify Norton's theory in the laboratory.	Verification of Norton's theorem	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
thirteenth	2	Definition of current source and voltage source (DC power supply) and how to convert from one to the other in the laboratory.	Verification of the correspondence theory	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports

fourteenth	2	To practically implement the theory of exchange between different sources.	Verification of exchange theory	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
fifteenth	2	Verifying the theory with its three possibilities	Power distributor - the theory of maximum possible power transfer in direct current	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports

11- Curriculum development plan

Include a lecture titled "Solar Energy and Smart Batteries," which will include the following topics:

1- Introduction to Solar Energy

- Definition of solar energy as a renewable resource.
- Comparison between solar energy and conventional energy sources.
- Types of solar cells: monocrystalline, polycrystalline, thin-film

2- Solar Cell Operating Principle

- Photoelectric Effect
- Connection in Electrical Circuits Using Solar Panels
- Voltage and Current Curve (IV Curve)

3- Smart Batteries

- Definition and Function
- Types (Lithium-ion, Lead-acid, etc(.
- The Relationship Between Smart Batteries and Solar System Efficiency

4- Integrating systems into practical applications

- Assembling a miniature solar power circuit using a small solar panel and battery
- Measuring voltage and current differences as lighting changes
- Practical experiment calculating the power output of a solar panel

12- Infrastructure

Classrooms, laboratories and	Available
workshops	
1- Required textbooks	Available
2- Main references (sources)	Electrical Technology (Theraja A.K. Theraja).
a) Recommended books and references (scientific journals, reports, etc.)	1- Electrical Technology (Edward Hughes). 2- Basic Circuits (A-M-F Brooks) pregame press 3- Introduction to Electric circuits (M Romanize) John Willy.
b) Electronic references, websites, etc.	https://www.youtube.com/@user-ld6bv4po3e

1- Educational institut

Ministry of Higher Education and Scientific Research / Northern Technical University

2- Scientific Department

Department of Electrical Technologies

3- Course name/code

Electrical Circuits 2 / ELTP101

4- Available forms of attendance

- Weekly lesson schedule (theoretical + practical).
- Scientific discussions, seminars and other extracurricular activities

5- Semester/year

The Second / first

6- Number of study hours (total)

60

7- Date this description was prepared

2025/6/10

8- Course objectives (general objectives of the course)

- Introduce students to AC circuits and their components.
- Understand the various calculations in AC circuits and familiarize themselves with various theories.
- Learn about various measuring devices.
- Solve basic technical problems in electrical circuits.
- Improve personal productivity.

9- Course outcomes, teaching, learning and assessment methods						
Outcomes	Teaching and learning methods	Evaluation methods				
A- Knowledge A1- The ability to design circuits and analyze data. A2 - The ability to identify, formulate, and solve problems. A3 - Proficiency in the necessary mathematical and engineering sciences. A4 - The ability to use the technologies required in the work.	(Theoretical lectures / discussion groups / debates between students)	(Traditional tests, assignments, formative assessment)				
B – Skills B1 - Learn to work collaboratively with colleagues to complete group projects. B2 - Be able to respond to technical challenges with initiative and independence. B3 - Be able to use all types of measuring devices. B4 - Have the ability to simplify complex electrical circuits.	(Presentation, explanation, questions and answers, discussion)	(Oral exams / Written exams / Weekly reports / Daily attendance / Participation and interaction in lectures / Midterm and final exams)				
C- Values C1- Identify all types of electrical components and the properties of each component in an electrical circuit. C2- Understand how to select the appropriate components for an electrical circuit and how to calculate	(Reports on scientific developments in the field of specialization, asking analytical and	(Self-assessment and peer assessment, participation and contribution)				

these components both practically and	deductive	
theoretically.	questions)	
C3- Understand how to perform		
calculations for electrical circuits		
using multiple methods and choose		
the easiest calculation method.		
C4- Handle electrical devices and		
circuits safely and correctly.		

10- Course structure

(Theoretical Vocabulary)

Week	Hours	Required learning outcomes	Unit name/subject	Teaching method	Evaluation method
First	2	Learn about alternating current, its properties and waveform.	Alternating quantities, including their definition, characteristics of alternating current, how alternating current is generated, its waveform, and its special relationships.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Second	2	Identify the direction of alternating current and its phase angle.	Alternating vector quantities - definition - phase and direction representation - phase angle and how to find it.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.

Third	2	Learn how to find the phase angle between voltage and current for each circuit with examples.	Study the effect of alternating current on a circuit containing only resistance, a circuit containing only pure inductance, and a circuit containing only pure capacitance.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Fourth	2	Finding the relationship between current and voltage in the three cases - phase angle - total impedance of the circuit with applied examples.	Effect of alternating current on a circuit containing a resistance and an inductance in series - A circuit containing a resistance and a capacitor in series.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Fifth	2	Analysis of circuits containing resistance, inductance, and capacitance in parallel	Effect of alternating current on a circuit containing a resistance and an inductance in parallel - A circuit containing a resistance and	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.

			a capacitor in parallel.		
Sixth	2	Find the total impedance, total permittivity, current, voltage and phase angle for series and parallel impedance circuits with examples.	Use description 1- 7 (J-Operator) or compound operator	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Seventh	2	Find the bandwidth, find the quality factor, and draw the relationship between inductive and capacitive reactance with frequency.	Resonant circuits, including: series resonant circuit, definition of resonance and how to reach it, calculation of current, voltage, impedance and frequency angle at resonance.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
Eighth	2	Find bandwidth - plot graphs with frequency - find quality factor and solve examples.	Parallel resonant circuit - definition - calculation of current, voltage, impedance, impedance angle, phase angle and resonant frequency.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.

Ninth	2	Analysis of electrical circuits according to Norton and Thevenin's theorems in AC circuits.	Applying theories such as Norton's theorem, Thevenin's theorem, and matching to AC circuits with solving examples.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
tenth	2	Definition of active power and how to calculate it - Reactive power and how to calculate it. Theoretically.	Power in AC circuits, including power calculations in: circuits containing only resistance, circuits containing only inductance, and circuits containing only capacitors.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
eleventh	2	Definition and effect on AC circuits - How to improve power factor - with practical examples.	Total apparent power (definition) - How to draw the power triangle - Power factor.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
twelfth	2	Derivation of its relations - with practical examples.	Maximum power transfer theory in current circuits.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.

thirteenth	2	Using the ohmmeter in series and parallel - the ammeter and voltmeter method - the compensation method - using the Wheatstone bridge.	Practical methods for measuring high, medium and small value resistors.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
fourteenth	2	Calculating line and phase current and voltage, total power, line power - phase power - advantages of each connection when used in balanced and unbalanced loads.	Three-phase AC circuits - single phase - two phases - three phases.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
fifteenth	2	How to find the total power in this way and in the case of star and triangular connections - using two watt meters - using three watt meters.	Methods for measuring power for three-phase loads - Wattmeter and how to connect it to the circuit to measure active power.	Theoretical lectures, educational videos and discussions.	Daily written tests, daily posts, midterm and final exams, homework.
		(Practic	cal Vocabulary)		
Week	Hours	Required learning outcomes	Unit name/subject	Teaching method	Evaluation method

First	2	How to connect inductive and capacitive resistance in an electrical circuit.	(RL) series, (RC) series, (RL) parallel, (RC) parallel.	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Second	2	Practical application of measuring the phase angle of a series circuit and extracting the results in the laboratory.	Phase Angle Measurement – (RLC) Series (Multiple Exercises).	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Third	2	Practical application of measuring the phase angle of a parallel circuit.	Phase Angle Measurement – (RLC) Parallelism (Multiple Exercises).	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Fourth	2	Apply the resonant circuit in series and parallel and extract the results in the laboratory	- Series resonance - Parallel resonance	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Fifth	2	Connecting an electrical circuit, analyzing it, and extracting results according to Thevenin and Norton's theories of	-Verification of Thevenin's theorem for alternating current - Verification of Norton's theorem for	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports

		alternating	alternating		
Sixth	2	current. Measurement with different types of regular and electronic voltmeters and comparison between them according to the extracted results.	Comparison between conventional and electronic voltmeters in measuring DC and AC voltages.	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Seventh	2	Be able to measure power using multiple voltmeters and multimeters.	Measuring power using three voltmeters and three ammeters (multiple exercises).	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Eighth	2	Using a wattmeter to measure power and a power laboratory practically	Measuring power and power factor using a wattmeter (multiple exercises).	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
Ninth	2	Professionalism in power factor improvement processes and measuring them with high accuracy in the laboratory.	Power Factor Improvement (Multiple Exercises).	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
tenth	2	Performing calculations and extracting practical results for three-phase current circuits	Voltage and current in three-phase current circuits, star	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams,

		connected in star and triangular configurations	and triangle connections.		weekly reports
eleventh	2	Learn about the Wheatstone bridge, how it works, and how the bridge is balanced.	Resistance using a Wheatstone bridge (multiple exercises).	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
twelfth	2	Use the voltage divider method in the load and no-load states.	Loaded voltage divider – Unloaded voltage divider.	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
thirteenth	2	Professionalism in measuring different types of voltages and different values using a voltmeter.	Measuring resistance using an ammeter and voltmeter (multiple exercises).	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
fourteenth	2	Methods of using operational amplifiers when connecting them to an electrical circuit.	Using a magnifier to measure high value resistors (insulators) (multiple exercises).	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams, weekly reports
fifteenth	2	Absolute control of the ammeter, increasing its effectiveness and calibrating it to adjust the	-Increase the measuring range of the ammeter - Calibrate the ammeter using	Practical lectures, educational videos and discussions.	Daily practical tests, daily posts, midterm and final exams,

reading of	another	weekly
laboratory	device.	reports
results.		

11- Curriculum development plan

Include a lecture entitled "Inverter" that includes the following topics:

- 1- Introduction to Inverters:
 - Definition of inverters.
 - Simplified inverter circuit diagram.
 - Types of inverters.

2- Inverter Operating Principle

- DC input from a battery or solar panels
- Switching stage to convert current into MOSFETs
- Filtering stage
- Output

3- Basic Inverter Components

- Battery: The DC power source
- Electronic switches for switching current, such as MOSFET or IGBT
- Protection circuit: To protect against overload or overheating

4- Integrating systems into practical applications

- Solar energy systems
- Powering home appliances from batteries
- Practical experiment in calculating the energy output of a solar panel

12- Infrastructure

Classrooms, laboratories and	Available
workshops	
1- Required textbooks	Available
2- Main references (sources)	Electrical Technology (Theraja A.K. Theraja).
a) Recommended books and references (scientific journals, reports, etc.)	1- Electrical Technology (Edward Hughes). 2- Basic Circuits (A-M-F Brooks) pregame press

	3- Introduction to Electric circuits (M Romanize) John Willy.
b) Electronic references, websites, etc.	https://www.youtube.com/@user-ld6bv4po3e

1. Educational institution

Ministry of Higher Education and Scientific Research / Northern Technical University / Al-Hawija Technical Institute

2. Section scientific

Department of Electrical Technology

3. Course Name/Code

Electrical installations ELTP104

4. Available attendance forms

in presence

5. semester/year

Decisions

6. Number of study hours(kidney)

4*15=60

7. Date this description was prepared

19-6-2025

- 8. Course objectives (general objectives of the course)
 - 1- Training the student on electrical installation methods and comparing different types installation
 - 2 Understand the main concepts and know the rules and laws used in calculating electric loads and cable si

The capacity of the circuit breaker to be connect

- 3- Introducing the student to the types of cables and the load capacity of each cable. To the maximum A current that can pass through
- 4 -Preparing the student to study the various calculations required in electrical installation and to become familiar with the various theories for studying those calculation
- 9. Outputs The decision Teaching, learning and assessment methods

Course outcomes

- 1. Understanding the basics of electricity(voltage, current, resistance).
- 2. Installation of foundations(Lighting, control circuits, motors).
- 3. Use of protective devices (breakers, fuses, grounding).
- 4. Reading electrical diagrams And implement it practically.
- 5. Implementing safety procedures And risk prevention.
- 6. Breakdown maintenance(Detect and repair common faults).

identification It is a theoretical-practical course that aims to teach students the basics of designing, installing, and maintaining electrical systems in facilities (such as homes, laboratories, and workshops), which the course seeks to achieve for students.

Its importance:

- 1- Providing safe electricity For homes and factories.
- 2- Prevent fires and electric shocks.
- 3- Operate machinery and equipment efficiently.
- 4- Meet the requirements of regulations and standard specifications.
- 5- Facilitate maintenance and reduce breakdowns

How is it determined?:

- 1. Study of labor market needs
- 2. Review of professional standards
- 3. Evaluate students' capabilities and the workshop
- 4. Formulate clear and measurable goals
- 5. Linking with other courses
- 6. Periodic update according to developments

Outputs A-knowledge	Teaching and learning methods	Evaluation methods
A1-During the academic year, the student learns the basics of electrical installations. A2-The student learns about electrical installations, how to read them, and the factors affecting them. A3-The student learns the types of connections used in home installations A4-knowledgeSafety standards and the risk of electric shock	 Theoretical lectures using presentations. Real-life case studies of foundation failures. Short research on modern distribution systems 	1- Written tests (essay and objective questions). 2- Analytical reports on protection systems. 1-Theoretical tests 2- Practical tests 3- Reports
B - Skills B1-Ability to design and conduct experiments, analyze and interpret data.	1- Practical experiments (workshops on electrical installations).	1- Practical performance tests (such as installing a lighting circuit).

2- Project evaluation (design an implementation of a control circuit	2- Simulation using programs such as: AutoCAD Electrical. 3- Field visits to electrical construction sites	B2-Ability to identify, formulate and solve problems. B3 -Mastery of the necessary mathematical, basic and engineering sciences. B4-Ability to use the techniques and skills required in the work.
1- Peer evaluation For team performance 2- Observing behavior during practical training (commitment to safety) 3- Self-reports on practical experience	1- Group discussions on professional ethics. 2- Role playing For situations that require ethical decisions. 3- Observe and imitate models of distinguished professionals.	C- Values A1-Commitmentwith safety standards at work A2-to bear Professional responsibility In implementing the foundations A3-the job With a team To implement electrical projects A4-respectStandards and regulations(such as delivery terms)

Course structure A- (Theoretical vocabulary) 10. Required learning **Teaching** Unit **Evaluation** watches week method name/topic method outcomes test Overview of the An introductory lecture **Short** 1-Explaining the curriculum curriculum about the method + (theoretical) on vocabulary to the student classification of vocabulary for the material 2- Learn about the classification subject and materials (conductor, classification of materials classification of the semiconductor, (conductive, semiconductor, 2 the first subjects into: insulator) and insulator) and the electrical properties of each type. conductors • semiconductors • Insulators 1-The student's **Basics of Electrical** Theoretical explanation Electrical understanding of the basics of of the principles of **Principles** circuit electricity, including potential Factors affecting the electricity (potential components difference, current, difference, current intensity, identification intensity of electric resistance, and the current, resistance. resistance) + test. the second influencing factors. **Factors affecting** presentation of the 2-Identify the components of resistance. components of an electrical circuits Components of an electrical circuit 3-Knowing electrical switches electrical circuit and lamps, their types and electrical conductors Practical 1-Introducing the student to Study of the properties Their advantages and of copper and **Evaluation** electrical conductive uses in the field of aluminum (electrical, (Comparison materials mechanical) + their between electricity 2-Understanding the 2 the third applications Copper and characteristics and uses of Aluminum) materials in the electrical field

		277 1 11 11	1		
		3-Knowing the properties			
		that make materials good			
		conductors of electricity			
		1-Introducing students to	Insulating materials	Explanation of	
		insulating materials	Examples of	insulating materials	
		2-Understanding and	insulating materials Properties of	(air, oil, solids) + permittivity laws	
		studying the properties of	insulating materials	perimetry laws	Short test on the
Fourth	2	insulating materials and their	in relation to their		properties of
		temperature tolerance	temperature		insulators
		3-Introducing students to	tolerance		
		solid insulating materials	solid insulating		
			materials		
		1-Study of the properties of	Magnetic properties	Lecture on Magnetism	Students are
		magnetic materials	of materials	(Force, Magnetic	assessed
		2-Knowing the types of	Solved examples	Materials, Laws)	individually by
Fifth	2	magnetic materials and their			giving them the
FIIIII	2	associated terms			opportunity to participate in
		3-Study of the laws related to			the class by
		magnetism			answering
					questions.
		1-Understanding Magnetic	magnetic circuits	Application of Kirchhoff's laws to	Short tests
		Circuits	Apply Kirchhoff's laws to it.	magnetic circuits	andEvaluate participation in
Sixth	2	2-Study and application of	Solved examples on	magnetic circuits	discussions
		laws and solved examples of	magnetism		uiscussions.
		magnetism		G(1 C 1 . 1	(F) 4° 14 4
		1-Introducing the student to the mechanical properties of	Mechanical properties of	Study of mechanical properties (tensile,	Theoretical test on mechanical
		electrical materials	electrical materials	stress, elasticity)	properties
Seventh	2	2-Study and apply laws and	- Tension, stress,	, ,	
		solve examples on the topic	elongation, elasticity,		
			other		
		1-Study the stages of	- Solved exam The stages of	Explanation of the	Power
		electrical energy	electrical energy	stages of energy	transmission
TI. a		2-Knowing how electrical	Generation,	transmission	diagram +
The eighth	2	energy is generated,	transmission and	(generation,	distribution
ugnui		transmitted and distributed	distribution	transmission,	panels
				distribution) +	explanation
		1-Knowing how to supply the	Basic principles	distribution panels Theoretical explanation	Short test on
		consumer with electricity	on how to	of generation,	types of
		from a secondary station	prepare a	transmission and	stations and
		2-Introducing students to	consumer from a	distribution systems.	transformer
		home and industrial	secondary	+Visual presentation of	capacities
Ninth	2	distribution panels	station, the	building power supply	
14111111		3-Teaching a student how to	materials required for this,	diagrams + practical	
		supply electricity to a	and the type of	examples. +Workshop on	
		building In addition To know	consumer	installing distribution	
		the capacity of the electrical		panels	
		transformers used		•	
		cransiormers used			

tenth	2	1-Knowing and studying electrical switches and their types 2-Teaching students to draw electrical circuits and diagrams	Types of switches used in electrical installations and their importance	Explanation of electrical switch types + drawing of application circuits	Circle drawing test using keys.
eleventh	2	1-Introducing the student to the protection devices used inFoundationselectrical 2-Learn about fuses, their types, advantages and disadvantages 3-Teaching the student how to select a fuse and coordinate the fuses in the same electrical circuit.	Protection devices used in installations Electrical (Fuses)	Study of fuses (types, specifications, how to choose them)	Evaluating the selection of suitable fuses for different circuits
twelfth	2	1-Study of circuit breakers, their types, composition and working principle 2-Knowing how to distribute loads inside the building and calculating the circuit breaker capacity	Circuit Breakers	Electrical breakers explained(MCCB, MCB, ELCB) + Installation	Short tests andEvaluate participation in discussions
thirteenth	2	1-Study of electrical wiring systems 2-Knowing how to number wires and cables at work and taking into account the colors of the wires when installing them	Electrical wiring systems Electrical Wiring Systems	View wiring systems(BB, TRS, PVC) + Wire numbering	Wiring systems knowledge assessment.
fourteenth	2	1-Teaching students about the types of home electrical installations 2-Knowing the advantages and disadvantages of each type, safety requirements, the general form of the foundation, and the tools used in it.	Home electrical installations	Home Foundation Study (Safety Requirements, Tools, Cost)	Evaluate participation in discussions
fifteenth	2	1-Study grounding and know its components and connection and connection equipment 2-Know the different methods of reducing grounding resistance and the	Grounding	Lecture on grounding (components, measurement methods, importance)	Short tests andEvaluate participation in discussions

devices and equipment that		
must be grounded.		
3-Teaching the student the		
importance of good		
grounding, the difference		
between grounded and		
ungrounded systems, and		
measurement methods.		

10- Course structure B-(Practical vocabulary)

week	watches	Required learning	Unit	Teaching	Evaluation
WCCK	wateries	outcomes	name/topic	method	method
the first	2	1-Implementing safety procedures in workshops and factories. 2-First aid for electric shock. 3-Take fire prevention measures.	Warnings and precautions to be taken while working in workshops and factories, as well as training on how to provide first aid for electric shock and how to warn of fires.	Lecture and practical application of safety and first aid	Short theoretical test + practical application for first aid and safety
the second	2	Recognizing symbols for electrical tools and components.	Knowing the symbols for devices, tools, and all necessary pendants used in electrical installations	Display electrical symbols and classify tools	Symbol and Tool Classification Test
the third	2	to implement Twist and T- connector for VIR wire	Make a connection of type (Twist) and also a link of type (T Wire of type (VIR)	Practical training on Wasalti work Twist and T	Practical evaluation Implementation of Twist and T joints
Fourth	2	Implement a link Married Joint and T- joint with welding.	Marriage bond Married Joint) Type connector (T) Then do the welding for it.	Practical application of my connection Married Joint and T with Weld	Evaluation of the quality of joints and welding(Married Joint and T)
Fifth	2	to implement connection Straight And a link T For wire CTS With welding.	Make a straight connection (Straight) and also a link of type (T) Wire type (CTS) Then weld the joint.	Practical application of to implement connection Straight and T for CTS wires with solder	Check straight connections and T with welding
Sixth	2	Connecting German conductors and paper- insulated cables with soldering	Connecting aluminum conductors and paper insulated	Practical training for Connecting and welding aluminum and paper cables	Aluminum joint and welding evaluation

			cables and then how		
			to do their welding	5 1	
		1- Installation of a lighting	Making a circuit	Practical	Circuit installation test
		circuit with a switch and one	containing a switch	application of	(switch + lamp)
		lamp (Cleat).	and one lamp with	Installing a simple	
		2- Installing a	a wiring system of	lighting circuit	
Seventh	2	circuit of two	type (Cleat) Making	(switch + lamp)	
		lamps in series	a circuit containing two lamps in series	with a system Cleat	
		with a switch.	with a switch with a	Cleat	
		(Cleat)	with a switch with a wiring system of		
			type (Cleat)		
		Installing a circuit of two	Make a simple	Implementation	Parallel Circuit
		lamps in parallel with a	circuit on two	and practical	Installation Evaluation
The	2	switch(Cleat)	lamps in parallel	application of	
eighth	-		with a switch	Installing two	
			(Cleat)	lamps in parallel	
				in a system Cleat	
		Installing a light point, fan,	Wiring a	Practical training	Evaluation of lighting, fan
		and socket with separate	lighting point, a	for Installation of	and socket circuit
		control(Cleat)	ceiling fan	lighting circuit, fan	installation
			point, and a	and socket with	
			socket, with	separate control	
Ninth	2		separate		
			control for each		
			point, using a		
			wiring system		
			of the type		
			(Cleat)	70 · · · 70	T 11
		Two-way lamp control	Wiring to control	Training on Two-	Ladder circuit installation
tenth	2	circuit installation (ladder	one lamp from two	way lamp control	test
		system).	places (wiring used in ladder)	circuit installation	
		Installing a 3-way lamp	Make a circuit to	(ladder system) Practical	3-Place Control Circuit
		control circuit using Two	control a lamp from	application of	Installation Evaluation
		Pole Relay or Intermediate	three places using a	Installing a 3-way	Instanation Evaluation
		Switch.	two-pole relay (Two	control circuit	
eleventh	2	Switch.	Pole Relay) and also	using Two Pole	
			by using the middle	Relay	
			key (Intermediate	Kelay	
			Switch)		
		Installing a control circuit for	Establish a circuit	Practical training	Multi-lamp circuit
		multiple lamps using Two-	to control multiple	for Installing a	installation evaluation
		way switch.	lamps using a two-	control circuit for	
twelfth	2		way switch (Two-	multiple lamps	
			way switch)	using Two-way	
			, , ,	switch.	
		Installation and operation of	Testing and setting	Practical	Test and Fluorescent
		a fluorescent lamp with	up an AC	application of	lamp operation check
		Thermal Relay	fluorescent lamp	Installation and	r transition officer
thirteenth	2		using a thermal	operation of a	
	_		starter (Thermal	fluorescent lamp	
			Relay) with his	with Thermal	
	1		examination	Relay	

		Installing two fluorescent	Set up two 20W	Implementation	Evaluation of installing
		lamps in series with Chook	fluorescent lamps in	and practical	two fluorescent lamps in
		40W and check it.	series with (Chook)	application of	series
fourteenth	,		Its capacity is 40	Installing two	
lourteenth	2		watts, then check it.	fluorescent lamps	
				in series with	
				Chook.	
		Installation of a high-	Establishment of	Practical training	Mercury and sodium
		pressure mercury lamp and a	the mercury lamp	for Installation of	lamp installation test
		sodium lamp	(High pressure	a mercury lamp	
fifteenth	2		mercury vapor	and a sodium lamp	
Inteentii			lamp) And also a		
			lamp of the type		
			(Sodiuin vapor		
			lamp)		

Continuously developing educational content to keep pace with modern requirements, such as:

- 1-IncludeQualitative specializations in line with digital transformation
 - 3- Follow-upGlobal technical developments in the electrical field
 - 4- ResidenceApplied exhibitions to showcase modern innovations
 - 5-DevelopmentField training programs in leading companies

2-OrganizationDiscussion sessions with industry leaders

12. infrastructure				
Classrooms, laboratories a workshops	Well-equipped and equipped halls and laboratories are available to provide a suitable environment for teaching and learning.			
1- Required textbooks	Home and industrial electrical installations •Basics of Electricity and Electrical Circuits •International Electrical Code (IEC) - Latest Editi			
2- Main References (Sources)	"Electrical Engineering: Principles and Applications" "Electrical Engineering: An Introduction" "Fundamentals of Electrical Engineering" "Electricity and Electronics for HVAC"			
A)Recommended books and references (scientific journals, reports, etc.)	Electrical Systems Design Electric Power Systems: A Conceptual Introduction "Electrical Engineering: Know It All"			

Educational institution

Ministry of Higher Education and Scientific Research / Northern Technical University / Al-Hawija Technical Institute

Sectionscientific

Department of Electrical Technology

15. Course Name/Code

Occupational safetyTIHA103

Available attendance forms

in presence

17. semester/year

Decisions

Number of study hours (kidney) 18.

2*15= 30

19. Date this description was prepared

19-6-2025

20. Course objectives (general objectives of the course)

1. Educating the student about the dangers of electric current: Understand ingReasons Which leads to Injuries Electrical and types Injuries

Different, which enhances their ability to prevent and deal with them properly.

2. Teaching proceduresFirst aid PrimaryAcquiring skillsnecessaryTo presentReliefImmediate assistance to those injured by electric current,

Including breathing appartificial And treat burns effectively.

3. Understanding systemsWarningFrom Fire: Learn How Systems WorkWarningVarious fire extinguishers, including detectors

Fire, smoke and heat detectors, learn how to install and maintain them.

4. Applying occupational health and safety guidelines: Understanding and following general safety guidelines in work environments, and the ability to

Reducing unhealthy behaviors and practicesSafe.

5. Familiarity with Personal Protective Equipment: Knowing how to use personal protective equipment correctly, including:

This is a means of protecting eyesight and hearing.and clothesProtective, to ensure safetyindividualsDuring work.

6. Risk assessment and application of prevention strategies: The ability to identify risks in the work environment and apply prevention strategies.

Effective prevention and risk reduction to ensure a safe and healthy working environment.

- 21. OutputsThe decisionTeaching, learning and assessment methods **Course outcomes**
- 1- Understanding the causes and effects of electrical injuries.
- 2- The ability to provide first aid to the injured.
- 3- Knowledge of fire alarm systems and how to deal with them.
- 4- Applying occupational health and safety guidelines in work environments.
- 5- Use personal protective equipment correctly.

Identification The Occupational Safety course is a core course that aims to provide students with the concepts and skills necessary to deal with occupational hazards, particularly those related to electrical current and fire-fighting systems, as well as personal protective measures. The course focuses on the theoretical aspect by examining the causes of electrical injuries, first aid methods, fire alarm systems, and the use of personal protective equipment.

Its importance:

- 1. Protecting lives—Prevention of injuries and deaths resulting from electric shock, fires, and occupational hazards.
- 2. Legal Compliance- Applying global safety standards and avoiding penalties.
- 3. Promoting preventive awareness- Training employees on dealing with emergencies and first aid.
- 4. Improve productivity— Reducing accidents ensures a safe and efficient work environment.

How is it determined?:

- 1. Compliance with laws and application of safety standards
- 2. Accident preventionAvoid work-related injuries and deaths
- 3. Cost savingsReducing accident losses and compensation
- 4. Qualifying cadresFilling the labor market's need for safety experts

5. Reputation protectionAvoid legal and media problems			
Outputs	Teaching and learning methods	Evaluation methods	
A- knowledge A1 - Understanding occupational hazards and prevention methods A2 - Knowledge of international safety standards A3 - Understanding Emergency Procedures A4- Identify personal protective equipment	1. Theoretica l lectures 2. Group discussions 3. Case studies	1. Theoretical tests 2. My work performance evaluation 3. Safiya's participation 4. Research reports	
B - Skills B1- Ability to implement safety procedures in the work environment B2 - Skill in using personal protective equipment correctly B3 - Ability to analyze and evaluate risks B4- Basic first aid skill	1. Interactive lectures 2. Real-life case studies 3. Field visits to facilities	1. Short and final tests 2. Performance evaluation during practical training 3. Applied projects 4. Field visit reports	
C- Values A1- Commitment to a culture of safety as a priority in the work environment A2- Take individual and collective responsibility for implementing safety standards. A3- Respect the regulations and preventive instructions without compromise A4- Promoting the spirit of initiative in spreading awareness of occupational safety	1. Interaction and application 2. modern technologies 3. group learning	1. Continuous assessment 2. Performance evaluation during practical training 3. Final evaluation 4. Field visit reports	

22. Course structure (Theoretical Vocabulary)

		Doguired			
week	watch es	Required learning outcomes	Unit name/topic	Teaching method	Evaluatio n method
the first	2	1- Understanding the main causes of electric shock 2- Identifying the conditions and factors causing electrical accidents.	Causes of electric shock	1.Show videos of electrical accidents with analysis of the causes. 2.Discussing real-life cases of common errors that cause electrical injuries.	Short test (objective questions) on the main causes of injury
the secon d	2	1- Classification of types of electrical injuries (burns, electrocution, organic effects) 2- Analysis of the severity of injuries according to the circumstances of the accident.	Types of electrical injur	1.Explaining the types of injuries (burns, electrocution, organ damage) through pictures and medical explanation. 2.Workshop on identifying injuries based on current intensity	Practical evaluation of classification of fictitious injuries by type
the third	2	1- Applying the steps to rescue the injured personBy electric current 2- Practice safety procedures during the rescue operation.	Relief The injured By current electrician - clearance The injured	1.Practical training on isolating the injured person from the electrical source using isolation tools 2.Simulate rescue scenarios with safety rules in place.	Evaluate students' performanc e during the simulation (application accuracy + response time).

Fourth	2	1- Mastering basic artificial respiration techniques 2Treating different types of burns according to their degree	Artificial respiration - burn treatment	Workshops, simulations	evaluation , Tests Skills
Fifth	2	Assessing the cumulative understanding of previous concepts	exam monthly	Written test, performance assessment	a test written, evaluation comprehens ive For skills The student
Sixth	2	1- Analysis of the effects of electrical leakage to the groun 2- Understanding trisks of ground volta	Effects of electric current passing through the ground	Lecture, case study	hidEditoria l, case study analysis
Sevent	2	1- Explanation of the components of a fire alarm system 2 - Understanding how the central control unit works	Fire Alarm Systems - Control Unit	Presentations, workshops	Test, performanc e evaluation
The eighth	2	1- Distinguishing between types of fire detectors (heat, smoke, flame) 2- Determine the optimal use of each type of reagent.	Fire Detectors - Heat Detectors - Smoke Detectors	Training, interactive lectures	evaluation, a test Editorial
Ninth	2	1 - Classification of buildings according to alarm system requirements 2- Applying equipment standards for alarm systems.	buildings that He should Provide it System warning from fire	Case studies, lectures	Written test, case analysis

eleven th	2	Assessing understanding of fire protection concepts 1- Comparison of different audible alarm methods 2- Choosing the	Alarm meansaudibleAnd bells and trumpets	Written test, performance assessment Lectures, training	Written test, comprehens ive assessment of student skills Test, performanc e evaluation
		appropriate system according to the work environment			
twelft h	2	1- Application of occupational health and safety guidelines 2 - Analysis of the impact of the work environment on safety	Occupational Health and Safety Guidelines	Interactive lectures, discussions	Written test, discussion questions
thirte enth	2	1 - Identify common unsafe practices 2- Proposing solutions to reduce risky behaviors	limit from Actions and practices Other Amana	Case studies, workshops	a test Editorial, analysis studies the condition
fourte enth	2	1- Selection and use of personal protective equipment 2- Applying vision and hearing protection standards	Personal Protective Equipment - Eye Protection - Hearing Protection	Training, presentations	Test, performanc e evaluation
fifteen	2	1- Evaluation of the effectiveness of different protective clothing 2- Applying criterifor selecting protectic clothing according to risks.		Lectures, training	evaluation, a test Editorial

Continuously updating the curriculum to keep pace with developments in the labor market (Curriculum Update Committee, Scientific Committee) such as:

- 1-Updating the curriculum to keep pace with developments in the field of occupational safety.
- 2-Holding scientific seminars with specialists in the field.
- 3- Keeping up with scientific developments in electrical safety systems.

24. infrastructure	24. infrastructure				
Classrooms, laboratories and	There are classrooms equipped to				
workshops	accommodate students and prepared to provide a suitable learning environment.				
3- Required textbooks	Occupational Safety Lectures Booklet "Principles of Occupational Safety and Health" by Philip J. Landrigan and William J. Rosenstock				
4- Main References (Sources)	"Fundamentals of Occupational Safety and Health" by Mark A. Friend and James P. Kohn "Introduction to Safety Management" by David L. Goetsch				
A-Recommended books and references (scientific journals, reports, etc.)	"Safety and Health at Work: A Practical Guide" by Michael R. McGarry "Occupational Health and Safety Management: A Practical Approach" by Charles D. Reese				
B- Electronic references, websites,	https://www.qrcodechimp.com/page/srcyif3uvk4a4				

25. Educational institution

Ministry of Higher Education and Scientific Research / Northern Techni University / Al-Hawija Technical Instit

26. Sectionscientific

Department of Electrical Technology

27. Course Name/Code

Electronics1

28. Available attendance forms

My presence

29. semester/year

Decisions

30. Number of study hours(kidney)

21 theoretical and 2 practical lessons every week

2*15=60

31. Date this description was prepared

19-6-2025

- 32. Course objectives (general objectives of the course)
 - **1-** Introducing the student to the different electronic components.
- **2 -** The student will be able to understand: electronic components made from different types of semiconductors. -Its composition-Its properties-Its uses in electronic circuits-Its Applications-Analysis of electronic circuits using optoelectronic components and their applications.
- 33. OutputsThe decisionTeaching, learning and assessment methods

 Course outcomes

By the end of the course, the student will be able to:

- 7. a descriptionBasic principles of operation of electronic components (e.g., diodes, transistors, amplifiers)
- 8. to explainProperties of analog and digital electronic circuits and their theoretical analysis
 - 9. Understand the role of electronic components in the design of modern systems (e.g., power supplies, digital logic).

identificationThis course description provides a concise summary of the main course features and the learning outcomes expected of the student,

demonstrating whether the student has made the most of the available learning opportunities. It must be linked to the program description.

Its importance:

- 1- Ensure that the skills acquiredKeep up with industry needs (e.g., circuit design, use of measuring instruments)
- 2- All modern devices rely on electronics, from smartphones to artificial intelligence systems and robots.
- 3- Students can develop innovative electronic projects (e.g., alarm systems, home automation, small medical devices).
- 4- Contributes to the knowledge economy by manufacturing local electronic products instead of relying on imports.

How is it determined?

- 7. Study of labor market needs
- 8. Review of professional standards
- 9. Evaluate students' capabilities and the workshop
- 10. Formulate clear and measurable goals
- 11. Linking with other courses
- 12. Periodic update according to developments

Evaluation methods	Teaching and learning methods	Outputs
1- Written tests (essay and objective questions). 2- Analytical reports on protection systems. 1-Theoretical tests 2- Practical tests 3- Reports	 Theoretical lectures using presentations. Real-life case studies of foundation failures. Short research on modern distribution systems 	Describe the basic principles of operation of electronic components (e.g., diodes, transistors, amplifiers). Explain and analyze the properties of analog and digital electronic circuits theoretically. Understand the role of electronic components in the design of modern systems (e.g., power supplies, digital logic)

1- Practical performance tests. 2- Project evaluation (design and implementation of a control circuit)	1- Practical experiments. 2- Simulation using programs such as: AutoCAD Electrical. 3- Field visits to electrical construction sites	B - Skills Analyze the behavior of electronic circuits using laws and theories (e.g., Ohm's Law, current and voltage analysis). Comparison of types of electronic circuits (analogys.digital) and identify its practical applications. Evaluating the performance of electronic circuits based on criteria of energy efficiency, cost, and stability
1- Peer evaluationFor team performance. 2- Observing behavior during practical training (commitment to safety). 3- Self-reports on practical experiences	1- Group discussions on professional ethics. 2- Role playingFor situations that require ethical decisions. 3- Observe and imitate models of distinguished professionals.	C- Values Commitment with safety standards at work to bearProfessional responsibilityIn implementing the foundations the jobWith a teamTo implement electrical projects respectStandards and regulations

Course structure A- (Theoretical vocabulary) 34. Required **Teaching** Unit watches learning **Evaluation** method week name/topic method outcomes Short test (theoretical) on the An introductory Semiconductor theory **3-Explaining the** - Atomic structure lecture about the classification of materials curriculum vocabulary Energy levels to the student method + **Crystals - Conduction** classification of 4- Learn about the in crystals - Gap materials (conductor, the first 2 classification of current - How gaps semiconductor, materials (conductive. move insulator) semiconductor, and insulator) and the properties of each type. 4-Student **Doping - positive** Theoretical **Component identification** understanding of the crystal type explanation of the testCrystal of the Mosul subbasicselectronics (PNegative crystal of principles of continent. 2 the second 5-Identify components type (NElectron theTronic Mosul sub-continent current and hole disaster current - total resistance 4-Introducing the **Semiconductor diodes** Study of the **Practical evaluation** properties of Silicon student to electrical - junction (PN) (comparisontheSilicon and and germanium the Formation of the germanium) materialssemiconductor thirdAnd 4 (Electrical, evacuation zone -5-Understanding the the fourth barrier potential -Mechanical) + their features and uses of energy hill - thermal applications effects - biased diode -

	_		1		
		materials in the field ofElectronic	forward bias - reverse bias - characteristic curves in the forward and reverse directions		
			- evanescent crossing current - minority carrier current -		
			surface leakage current - breakdown potential - breakdown		
			potentialPIV) Maximum forward		
			current - Maximum reverse voltage - (PIVmax) –		
			Equivalent circuit of a diode		
Fifth	2	4-Study of a binary current integrator 5-Understanding its types and applications	Diode as a rectifier – H wave rectifier – DC curr value and its calculation Effective value – Out frequency	a lectureDiodes as a current integrator	Students are assessed individually by giving them the opportunity to participate in the class by answering questions.
		3-Understand the topicFull wave unification 4-Calculating effective current values	Full-wave rectifier – using a center-phase transformer – bridge rectifier – calculating continuous and	Extract output frequency	Short tests and Evaluate participation in discussions
Sixth	2	5-Understanding the difference between a half-wave and full-wave rectifier	effective current values – extracting the output frequency – comparison between half-wave rectifier and full-wave rectifier – comparison between full-wave rectifiers		
SeventhThe eighth	2	3-Introducing the student to Filters and their types	Filters - Capac filtration - Filter (filter (RC) – DC rij output vol	types and comparison between them	Theoretical test aboutFilters
Ninth and tenth	2	3-Explaining the feeding circuits and their types 4-Knowing the difference between negative, positive and compound	Ripple Factor Voltage Multiplier Trimmer Circuits - Positive Trimmer - Negative Trimmer - Compound Trimmer	Explanation of the mechanism of pruning circuits	Surprise test for evaluation departments
eleventh and twelfth	4	pruning 4-Introducing the student to the Zener diode 5-Knowing the difference between a	Zener diode - structure - symbol - properties - breakdown refraction Zener refraction -	Theoretical explanation of Zener diode and refraction + refraction potential	Short test aboutZener diode

		Zener diode and a normal diode 6-Explaining the types of refraction	breakdown voltage - power tolerance - Zener impedance - temperature effects - Zener approximation Continuous voltage regulation		
13th and 14th	4	4-Introducing the student totransistor 5-Explanation of its composition and types 6-Explaining the areas of the zener	bipolar junction transistor-Its composition-Its regions-Its symbol- bias efforts-(αDC)- (βDCThe relationship between (αDC)- (βDCTypes of bias- Approximate connection formulas in transistor and equivalent circuit	studytransistor(Types, specifications, how to choose them)	Selection EvaluationtransistorsSuitable for different circles
Fifthten	2	3-studyTransistor characteristics curves 4-Explanation of work areas	Transistor characteristics curves- Work areas definition (ICBO) and (ICEO)- Current gain curve- The relationship between (IC) and (ICEO)	Explain the properties of the transistor, its working areas, and clarify the gain curve.	Knowledge assessmentWork areas

11- Cc	ourse struc	cture B-(Practical voca	abulary)		
week	watches	Required learning outcomes	Unit name/topic	Teaching method	Evaluation method
the first		-Familiarization with laboratory equipment - yourReport cardFor Afires.	Training on how to use laboratory equipment, prepare reports, and occupational safety	- Demo - Group practical application	Short theoretical test + practical application for first aid and safety
the second		- Drawing a voltage- current curve - Comparison between silicon and germanium	Forward bias diode properties and plotting of the diode characteristics of silicon and germanium	- Individual laboratory experiments - Analysis of results	Symbol and Tool Classification Test
the third		- Draw a reverse bias curve. Breakdown voltage measurement	Properties of diode in reverse bias and plotting of the	- Group work - Discuss the results	Practical evaluation

		characteristics		
		curve of silicon		
		and germanium		
		type		
	- Installation of the	half-wave rectifier	- Practical application	Lab Report +
F 41	calendar circuit		- Using the oscilloscope	Performance
Fourth	- Measure the output			Test
	voltage			
	- Comparison of evaluation	Full wave rectifier	- Comparative	Practical
Fifth	efficiency	(bridge)	experiments	assessment +
	- Output signal analysis	T 11	- Data analysis - Teamwork	short test
	Circuit design using transformer	Full wave rectifier	- Teamwork - Discussion of results	Technical report +
Sixth	- Measure the ripple ratio	using center-	- Discussion of Tesuits	presentation of
		phase		results
		transformer		
	- Filter effect	Half wave	- Laboratory experiments - Signal	Practical test + report
Seventh	analysis - Time	rectifier with	analysis	report
Seventin	constant calculation	filter (RC) and	W1W1, 212	
	Calculation	candidate (RL)		
	- Comparison of filter	Full wave rectifier	- Compare results - Edit	Performance
The sighth	performance	with filter (RC)	circles	Evaluation +
The eighth	- Improve output quality	and candidate		Theory Test
		(RL)		
	- Apply trimming types -	Trimming	- Practical experiments -	Lab Report +
	Modify waveforms	circuits	drawing waveforms	Classification
Ninth		(positive,		Test
		negative, and		
		compound)		
	- Building a multiplier	DC voltage	- Practical application -	Practical
40-41	circuit	multiplier circuits	Performance	assessment +
tenth	- Measure the output	(triple to	measurement	math test
	voltage	quadruple)		
	- Output signal analysis -	Obligor (positive,	- Laboratory	Technical
eleventh	Understanding voltage	negative and	experiments	Report + Short
	stabilization	compound)	- Data analysis	Test
	- Breakdown voltage	Properties of	- Group work - Discuss	Practical
truolfth	measurement -	Zener diode in	the results	assessment +
twelfth	Characteristics analysis	forward bias and		theoretical test
		reverse bias		
	- Design of an organizing	Properties of	- Practical application -	Lab Report +
	circle	Zener Diode in	modifying values	Performance
41. *4 41.	- Voltage stability	Voltage		Test
thirteenth	measurement	Regulation with a		
		Fixed Resistive		
		Load		
	- Circuit response analysis -	Properties of	- Stepwise experiments -	Practical
fourteenth	Adjusting load values	Zener Diode in	Analysis of results	assessment +
				analytical test

		Voltage Regulation with Variable Resistive Load		
fifteenth	-Measuring transistor coefficients -Understanding the properties of conduction	Common base transistor properties	- Laboratory experiments - Drawing curves	Technical Report + Classification Test

Continuously developing educational content to keep pace with modern requirements, such

as:

- $1\hbox{--Include} Qualitative specializations in line with digital transformation}\\$
 - 2-OrganizationDiscussion sessions with industry leaders
 - 3- Follow-upGlobal technical developments in the fieldElectronics
 - 4- ResidenceApplied exhibitions to showcase modern innovations
 - 5-DevelopmentField training programs in leading companies

36. infrastructure	
Well-equipped and equipped halls and laboratories	Classrooms, laboratories a
are available to provide a suitable environment for	worksho
teaching and learning.	WOIKSHO
1. Principles of Electronics 1984 - Written by Malvi	1
Translated by Badr Muhammad Ali Al-Watar - Dr. R	
Kar	5- Required textbooks
2. Industrial Electronics 1985 - Written by: D	i
Mahdi Faris, Nabil Younis Abdullah, Helmy An	
3. An Introduction to semiconductors (KI Gross &	6- Main References (Sources)
Rwo) Main References (Sources)
4. Power Electronics / Diaa Mahdi Faris, Yous	1)Recommended books and
Ibrahim Taha, Mosul University Press 19	references (scientific journals,
	reports, etc.)
https://youtu.be/yEHKsiIyF8s?si=CbGnmTHRUx2tBg2N	2)Electronic references,
	websites,

37. Educational institution

Ministry of Higher Education and Scientific Research / Northern Techni University / Al-Hawija Technical Instit

38. Sectionscientific

Department of Electrical Technology

39. Course Name/Code

Electronics2

40. Available attendance forms

My presence

41. semester/year

Decisions

42. Number of study hours (kidney)

21 theoretical and 2 practical lessons every week

2*15=60

43. Date this description was prepared

19-6-2025

- 44. Course objectives (general objectives of the course)
 - **1-** Introducing the student to the different electronic components.
- **2 -** The student will be able to understand: electronic components made from different types of semiconductors. -Its composition-Its properties-Its uses in electronic circuits-Its Applications-Analysis of electronic circuits using optoelectronic components and their applications.
- 45. OutputsThe decisionTeaching, learning and assessment methods

 Course outcomes

By the end of the course, the student will be able to:

- 10. a descriptionBasic principles of operation of electronic components (e.g., diodes, transistors, amplifiers)
- 11. to explainProperties of analog and digital electronic circuits and their theoretical analysis
 - 12.Understand the role of electronic components in the design of modern systems (e.g., power supplies, digital logic).

identificationThis course description provides a concise summary of the main course features and the learning outcomes expected of the student,

demonstrating whether the student has made the most of the available learning opportunities. It must be linked to the program description.

Its importance:

- 5- Ensure that the skills acquiredKeep up with industry needs (e.g., circuit design, use of measuring instruments)
- 6- All modern devices rely on electronics, from smartphones to artificial intelligence systems and robots.
- 7- Students can develop innovative electronic projects (e.g., alarm systems, home automation, small medical devices).
- 8- Contributes to the knowledge economy by manufacturing local electronic products instead of relying on imports.

How is it determined?

- 13. Study of labor market needs
- 14. Review of professional standards
- 15. Evaluate students' capabilities and the workshop
- 16. Formulate clear and measurable goals
- 17. Linking with other courses
- 18. Periodic update according to developments

Evaluation methods	Teaching and learning methods	Outputs
1- Written tests (essay and objective questions). 2- Analytical reports on protection systems. 1-Theoretical tests 2- Practical tests 3- Reports	 Theoretical lectures using presentations. Real-life case studies of foundation failures. Short research on modern distribution systems 	Describe the basic principles of operation of electronic components (e.g., diodes, transistors, amplifiers). Explain and analyze the properties of analog and digital electronic circuits theoretically. Understand the role of electronic components in the design of modern systems (e.g., power supplies, digital logic)

1- Practical performance tests. 2- Project evaluation (design and implementation of a control circuit)	1- Practical experiments. 2- Simulation using programs such as: AutoCAD Electrical. 3- Field visits to electrical construction sites	B - Skills Analyze the behavior of electronic circuits using laws and theories (e.g., Ohm's Law, current and voltage analysis). Comparison of types of electronic circuits (analogys.digital) and identify its practical applications. Evaluating the performance of electronic circuits based on criteria of energy efficiency, cost, and stability
1- Peer evaluationFor team performance. 2- Observing behavior during practical training (commitment to safety). 3- Self-reports on practical experiences	 1- Group discussions on professional ethics. 2- Role playingFor situations that require ethical decisions. 3- Observe and imitate models of distinguished professionals. 	C- Values Commitmentwith safety standards at work to bearProfessional responsibilityIn implementing the foundations the jobWith a teamTo implement electrical projects respectStandards and regulations

]	10.Course structure	A- (Theoretical vo	ocabulary) electronic 2
week	watches	Required learning outcomes	Unit name/topic	Teaching method	Evaluation method
First and Scond	4	5-studyTransistor characteristics curves 6-Explanation of work areas	Transistor characteristics curves-Work areas definition (ICBO) and (ICEO)-Current gain curve-The relationship between (IC) and (ICEO)	Explain the properties of the transistor, its working areas, and clarify the gain curve.	Knowledge assessmentWork areas

		2 Tooohing the student	Transistor bias	atudyDiag airanita	Evaluate nauticination in
		3-Teaching the student	circuits-Al-Qaeda	studyBias circuits and explaining the	Evaluate participation in discussions
Thind and		the typesTransistor	bias-emitter bias	difference between	uiscussions
Third and Fourth	4	bias circuits	bias-chitter bias	base and emitter bias	
rourm		4 C h-t		base and emitter bias	
		4-Comparison between them			
		4-Explaining the	Transistor in small	Lecture	Short tests and Evaluate
		application of the	signal amplification-	onEquivalent circuit	participation in discussions
		transistor in small	AC equivalent circuit-	(Its components,	F F
			perfect	measurement	
		signal amplification	approximation-	methods,	
		5-Study of voltage	Hybrid Constants-	importance)	
Fifth and	4	gain, current gain and	Equivalent circuit		
Sixth	4	power	using coefficients (h)-		
		power	Effort Gain-Gain the		
			current-Gaining		
			Power-Input and		
			output resistors-small		
			signal amplifiers-Al-		
			Qaeda Market		
		1- Explaining the use	Using transistors in	A theoretical	Evaluate participation in
Seventh		of transistors in	voltage regulation -	explanation of	discussions
And	4	voltage regulation.	series regulator -	voltage regulation	
Eighth			parallel regulator DC	and the difference	
			voltage source circuit	between series and	
		1 E/Thou are a	True officer Cald office	parallel types	Chart toot I amalastical
		1-FThey are a compositionJFET and	Junction field effect transistor (JEFT) –	1-theoretical lecture 2-Visual presentation	Short test + analytical
		its characteristics -	Its structure – Its	3-Group discussion	assignment
		Characteristic curves	symbol – Theory of	5-Group discussion	
		analysis	action –		
		unuysis	Characteristic curves		
			- Interchangeable		
Ninth and	4		conductivity curve –		
Tenth			Definition of the		
			narrowing potential		
			(VP),(IDSS),(VGSOff)		
			 Property curves 		
			(MOSFET) – (D-		
			MOSFET) – (E-		
			MOSFET)		
		1-Determine the action	Bias circles (FET) –	1-Solve numerical	Written assessment +
		point	Constant current	examples	problem solving
Eleventh		2-Bias circuit analysis	source bias – Self-	2-Software	
and	4		biased working point	simulation	
Twelfth			- Equivalent circuit of		
			(FETUseFET) In magnifying the small		
			magnifying the small sign		
			Comparison between	1-Case studies	Theoretical test + circuit
		1-Understanding Zoom		1-Case studies	THEOLEGICAL TEST + CHECUIT
		1-Understanding Zoom Applications	_		analycic
Thirteenth	2	Applications	the types of (FET)	2-Circuit analysis	analysis
Thirteenth	2	Applications 2-Amplifier circuit	the types of (FET) (FET, MOSFET) and		analysis
Thirteenth	2	Applications 2-Amplifier circuit analysis	the types of (FET) (FET, MOSFET) and between (BJT	2-Circuit analysis	
Thirteenth Fourteenth	2	Applications 2-Amplifier circuit	the types of (FET) (FET, MOSFET) and		analysis Comparative report + conceptual test

		2-TIron suitable	- Photodiode Seven-		
		applications	Segment Board Its		
			Structure and		
			Applications		
		1-Understanding the	Phototransistor -	1-Showcase	Short test + homework
Fifteenth	2	work of optical	Structure - Operation	experiences	
rnteentn	2	elements	- Applications -	2-Data analysis	
		2-Application Analysis	Process		

		10.Cou	rse structure B-(I	Practical vocabulary	y) electronic 2
, va o o l	watcł	Required learning	Unit	Teaching	Evaluation
week	watti	outcomes	name/topic	method	method
the first		- Current and voltage gain analysis -Drawing characteristic curves	Common emitter transistor properties	- Teamwork - Data Analysis	Practical assessment + theoretical test
the second		- Calculate voltage and current gain Frequency response analysis	Common Base Amplifier (Finding Voltage Gain and Current Gain)	- Advanced experiments - Using a signal generator	Lab report + analytical test
the third		- Hybrid Transaction Measurement - Circuit Analysis	Common emitter amplifier (find voltage gain and current gain) and plot frequency response curve	- Practical application - Model analysis	Performance Evaluation + Short Test
Fourth		- Voltage regulator design - Performance analysis	Common collector amplifier (finding voltage gain and current gain) and plotting the frequency response curve	- Practical project - Stability test	Project Report + Presentation
Fifth		- Determine hybrid coefficients (h) - Analysis of common emitter circuits	Hybrid transaction measurement (h- paramet.) for the common emitter formula	- Laboratory experiments - Use of measuring devices	Lab Report + Arithmetic Test
Sixth		- Comparison of hybrid transactions - Analysis of differences	Hybrid transaction measurement (h- paramet.) for the	- Making comparisons - Drawing curves	Practical assessment + theoretical test

		common base formula		
Seventh	- Application of coefficients in design - Power gain calculation	Hybrid transaction measurement (hparamet.) for the common denominator formula	- Circuit design - Performance measurement	Technical Report + Design Test
The eighth	- Voltage regulator design - Stability testing	Use of transistor in voltage regulation circuits (series regulator)	- Practical project - Modify parameters	Performance Evaluation + Presentation
Ninth	- FET characteristics analysis - VI curves drawing	Properties of field effect transistor (FET)	- Laboratory experiments - Comparison with BJT	Practical test + report
tenth	- Voltage gain calculation - Impedance analysis	common source amplifier	- Practical application - Using the oscilloscope	Performance Evaluation + Short Test
eleventh	- Current gain analysis - Matching circuit design	Joint Bank Amplifier	- Group work - Edit circuits	Lab report + analytical test
twelfth	- Optical response measurement - Efficiency calculation	Photodiode properties	- Experiments under variable lighting - Data recording	Practical assessment + theoretical test
thirteenth	- Alarm circuit design - Sensitivity test	Application circuit for using a photodiode	- Mini-project - Testing the waters	Practical presentation + technical report
fourteenth	- Optical properties analysis - Plotting response curves	Properties of phototransistor	- Advanced experiments - Using light sources	Lab Report + Performance Test
fifteenth	- Building an optical control system - Measuring response time	Application circuit for using phototransistor	- Final Project - Functional Test	Comprehensive Evaluation + Final Presentation

Continuously developing educational content to keep pace with modern requirements, such

as:

- $1\hbox{--Include} Qualitative specializations in line with digital transformation}\\$
 - 2-OrganizationDiscussion sessions with industry leaders
 - 3- Follow-upGlobal technical developments in the fieldElectronics
 - 4- ResidenceApplied exhibitions to showcase modern innovations

5-DevelopmentField training pr	ograms in leading companies
	13.infrastructure
Well-equipped and equipped halls and laboratories	Classrooms, laboratories a
are available to provide a suitable environment for	worksho
teaching and learning.	WOIKSIIC
1. Principles of Electronics 1984 - Written by Malvin	
Translated by Badr Muhammad Ali Al-Watar - Dr. Ri	
Kan	7- Required textbooks
2. Industrial Electronics 1985 - Written by: Di	
Mahdi Faris, Nabil Younis Abdullah, Helmy Am	
3. An Introduction to semiconductors (KI Gross &	8- Main References (Sources)
Rwoo	o- Main References (Sources)
4. Power Electronics / Diaa Mahdi Faris, Yous	1)Recommended books and
Ibrahim Taha, Mosul University Press 19	references (scientific journals,
	reports, etc.)
https://youtu.be/yEHKsiIyF8s?si=CbGnmTHRUx2tBg2N	2)Electronic references,
	websites,

Educational institution	.46
nistry of Higher Education and Scientific Research / Northern Techn University / Al-Hawija Technical Ins	
Scientific Department	.47
Department of Electrical Technology	ology
Course Name/Code	.48
DC mac	hines
Available attendance forms	.49
In-pe	rson
semester/year	.50
Modular Cou	rses
(Number of study hours (total	.51
75 = 1	5 *5
Date this description was prepared	.52

(Course objectives (general objectives of the course .53

- the basic theoretical principles of DC machines, including understand .1 similarity between magnetic and electric circuits, and the concepts of .electromotive force and magnetism
 - Distinguish between different types of DC machines in terms of their .2 ,power supply method (parallel, series, compound, self-contained .separate), and understand their main components and functions
- alyze the electrical and mechanical performance of DC generators and .3 otors by studying efficiency and losses, and knowing how to calculate .power, torque, and voltage equations
- Inderstand various operating effects such as product reaction, voltage .4 speed regulation, parallel operation conditions of generators, as well .as starting, stopping and reversing applications in motors
- Master performance-related calculations such as efficiency .5, ectromotive force, resistance and critical speed, and speed and torque .regulation under different loading conditions
- Learn about solar pumping systems linked to DC motors, understand .6 their configuration, advantages, and applications in industrial and . agricultural fields
 - Course outcomes, teaching, learning and assessment methods .54

 Course outcomes
- Gain basic theoretical knowledge related to DC machines, their .13 .components and operating methods
- Develop the computational and technical skills necessary to analyze .14 .the performance of generators and motors
- Develop the ability to apply concepts in practical fields, especially .15 .solar pumping systems
- Promoting professional values and awareness of the importance of .16 .electrical energy and its sustainable uses

My theory - This course covers the study of It is decided: identification DC machines in terms of their composition, internal structure, and basic , operating principles, with a focus on the types of generators and motors their operating characteristics, and analyzing their performance under various operating conditions. The course also covers calculations of electromotive force, efficiency, torque, and speed regulation, in addition to the applications of these machines in solar pumping systems. The course aims to prepare students to understand the theoretical and

practical aspects of these machines and their use in various energy fields

: Its importance

- ,Understand the basics of electrical machine operation -1 especially DC generators and motors, which enhances a deep understanding of the structure of electrical .power systems
- Enhance the ability to analyze and design control and -2 simulation systems for DC motors in industrial .applications
- Enabling students to conduct practical experiments -3 related to electrical and mechanical properties, linking .the theoretical and practical aspects
- Preparing students for renewable energy applications -4 especially in systems such as solar pumping that rely primarily on DC motors
- Qualifying students to work in the maintenance and -5 operation of machines in industrial facilities, power .plants, and the field of solar energy
- Enhance understanding of the concepts of losses -6 efficiency, and speed regulation, which are essential in .any efficient power system

? How is it determined

- Study of labor market needs .19
- Review of professional standards .20
- Evaluate students' capabilities and the workshop .21
 - Formulate clear and measurable goals .22
 - Linking with other courses .23
 - Periodic update according to developments .24

Evaluation methods	Teaching and learning methods	Outputs
Written tests (essay and -1 . (objective questions	-1 Theoretical lectures: to	ت- knowledge
Analytical reports on protection -2 . systems	provide basic concepts and .detailed explanation	Knowledge of the structure and -A1 parts of DC machines such as
Theoretical tests-1 Practical tests -2	Presentations and visual -2 media: to explain the	generators and motors and their basic .components

Reports -3	machine installation and	Understand the working principle -A2
Keports -3	operating stages	of DC generator and motor and the
	Class discussions: to -3	,types of power supply (separate
	enhance critical and	.(parallel, series, combined
	.analytical understanding	Distinguish between types of losses -A3
	Solving classroom -4	and efficiency and how to calculate
	problems and exercises: to	.them theoretically
	apply mathematical and	Analysis of load characteristics -A4
	.technical concepts	voltage and speed regulation of DC
	Field visits or virtual -5	.machines
	laboratories: to enhance	Identifying the methods of starting -A5
	understanding by linking it	engines, speed control and braking
	.to real-life application	.(stopping)
	Homework and short -6	Understand the relationship -A6
	research: to expand self-	between voltage, current and torque in
	knowledge and develop	.different operating conditions
	.analytical skills	Knowledge of DC machines -A7
	_	applications in industrial fields, and
		renewable energy systems such as solar
		.pumping systems
		B - Skills
		Operation and testing of DC - B1
		.machines in a laboratory environment
D (2 11) (6 1		
Detailed laboratory reports for -1		Measuring the electrical properties -B2
.each experiment	For direct laboratory -1	of generators and motors (such as
Tests The process inside The -2	experiments	.(voltage, current, efficiency
. laboratory	Training practical The -2	
Observation Direct from before -3	wave from before The	Draw and analyze experimental -B3
Professor during to implement		curves such as magnetization curves
. Experience	teacher	and load curves
Evaluation performance -4) Education Cooperative -3	Diagnose minor faults and -B4
Students in solution problems And	work within difference small	determine the causes of abnormal
. connect Circles	Projects Miniature To solve	.performance
· connect on eles	. problems Applied	Implementation and connection of -B4
Show verbal or writing For the-5		practical circuits for starting and speed
. project practical basic		.control systems
		Preparing technical reports based -B5
		on practical experiences and measured
		data
	Group discussions and .1	C- Values
Direct classroom and laboratory -1	classroom activities: to	Adherence to occupational safety -A1
observation: To assess behavior	encourage cooperation and	rules inside the laboratory when
	.respect for opinions	.handling machines
and discipline in the classroom and	Participation in the job -2	Teamwork and cooperation with -A2
.laboratory	Laboratory Collective : for	colleagues in implementing
: evaluation the job Collective -2	development spirit team	experiments and solving problems
from during quality cooperation	And bear Responsibility	Assume responsibility and -A3
. inside The group	Observation Direct inside -3	discipline in performing duties and
Calendar Self or calendar Peer -3	Laboratory: for planting	practical activities
evaluation: to measure interaction,	Commitment And discipline	Developing the spirit of initiative -A4
. trust, and accountability	Communicate And discipline	
Commitment In time And -4	·	and innovation in finding practical
. delivery Reports in Its dates	instructions teacher -4	.solutions to technical problems
Share The student in -5	Continuous : to plant values	Respect and maintain laboratory -A5
Discussions Safiya and interaction	like Trust Scientific And	.tools and equipment
Positive	. respect Laws	Enhancing self-confidence when -A6
1 0311117	Storm mental and -5	conducting experiments and submitting
	Storm mentar and -5	conducting experiments and submitting
	positions Dramatic or	reports.

simulation Real : To plant values Ethics and respect Professional	Commitment to scientific ethics in -A7 preparing reports and documenting .results
---	---

		(Course structure	e A- (Theoretical v	vocabula	ı ry .55
Evaluation method	Teaching method	Unit name/topic	Required learning outcomes	watches	week
Short test (theoretical)	An introductory lecture about the method + definitions of terms in magnetic + circuits computational examples	- Magnetic circuits Calculating - magnetomotive force Similarities between magnetic circuits and . electric circuits	Explaining the-5 curriculum vocabulary to the student Learn about-6 magnetic circuits and their similarities to .electrical circuits	2	the first
Theoretical test	theoretical explanation For the basic principles of DC + machines presentation of the parts of a DC machine	Basic principles of DC machines - Main parts of machines - Magnetic poles - Product .The external structure -	Student-6 understanding of the working principle of .DC machine Student's mouth for-7 the parts of a DC .machine	2	the second
Theoretical test	Presentation on the types of DC machines calculation examples + to calculate the induced electromotive force generated in each type of machine and to calculate the losses and efficiency of the machine	:Types of DC machines - separate power supply self-power supply - parallel - series) (compound Efficiency of DC - machines - Losses Types of losses - fixed) (losses and variable losses Power distribution stages in DC machines - Giving computational examples on how to calculate efficiency and losses	Introducing the-6 student to the types of DC machines and classifying them according to the type of power supply and the method of connecting .the field coils The student learns-7 how to calculate the efficiency of the .machine The student learns-8 how to measure the various losses in the .machine The student learns-9 the stages of power distribution in DC .machines	2	the third
Theoretical test	+ Presentation Calculation Examples	Electromotive force Factors affecting strength ctromotive force - giving hematical examples of how to calculate force	The student should -1 define the concept of electromotive force and distinguish it from .electric potential	2	Fourth

Γ	T		TT1		
		tromotive force for all	The student should -2		
		types	explain the factors that		
		.Generators	affect the amount of		
			.electromotive force		
			The student should -3		
			apply the appropriate		
			physical laws to		
			calculate the		
			.electromotive force		
			The student will -4		
			solve numerical		
			problems related to		
			calculating the		
			electromotive force of		
			different types of		
			generators		
			The student should -5		
			be able to distinguish		
			between types of		
			generators (DC, AC) in		
			terms of the method of		
			generating driving		
			.force		
			The student should -6		
			use the technical data		
			of the generators to		
			the EMF calculate		
			.generated by them		
			The student should -7		
			link physical variables		
			such as the number of		
			turns, magnetic flux,		
			and speed with the		
			.EMF value resulting		
Practical test in -1	A theoretical -1	dy of magnetization curve	The student -1		
the laboratory: to	presentation	(curve)	explains the behavior		
assess the student's	supported by	load (and how to find	of the magnetization		
ability to draw and	illustrations of the	(resistance	curve of a DC machine		
analyze the	magnetization curve	ritical and critical speed on	in the no-load		
magnetization	a data through	gnetization curve examples	condition and deduces		
curve and	and aprojector	of how	the relationship		
determine the	discussion of the	Driving force calculation	between voltage and		
resistance and	curve's behavior when		magnetic field.		
critical velocity	the field and current	resistance	magnetic nett.		
.from the data	.change	itical speed of DC machines	TEN 4 1 4 3		
om ene unu	· · · · · · · · · · · · · · · · · · ·	Speed of De machines	The student -2	2	Fifth
Analytical -2	Direct laboratory -2		calculates the critical	2	1 11(11
:laboratory reports	experiment using a		resistance and critical		
The student is	DC machine to		speed theoretically and		
	measure the no-load		practically using		
required to document the			experimental		
	voltage at different		equations and		
readings, analyze	speeds, and draw the		diagrams and deduces		
the results, and	.magnetization curve		their effect on the self-		
calculate critical			excitation process in		
values with a	Analytical activities -3		.the generator		
physical	and group discussions		_		
.interpretation	to solve real-life				

	T		1	1	ı
Short written test -3 (Quiz)	numerical examples including calculating critical ,EMF resistance, and critical .speed		-3 The student applies the steps of analyzing and calculating the electromotive force in different operating conditions with a practical explanation of the magnetization .prevention		
A detailed -1 analytical laboratory report Short written test -2 :(Quiz) Theoretical and numerical questions that measure the student's understanding of voltage regulation concepts and load .characteristics Practical -3 evaluation inside the laboratory	Theoretical explanation supported by interactive graphic displays: Presenting performance curves for each type of DC machine with practical examples from industrial realities, showing how voltage or torque changes with load .changes Integrated practical application :laboratory Conduct experiments DC machines on ,mounted, series) compound) to record ,values of voltage current, speed and .torque Voltage regulation analysis is performed practically by comparing the voltage under no load and .under full load	Study the load characteristics of all types of DC machines, draw their curves, and study the voltage regulation of different types of .generators	The student explains -1 the behavior of DC machines under the influence of loads of all types (motors and ,generators: shunt series, compound), and analyzes their operational characteristics based .on performance curves The student -2 accurately calculates the voltage regulation ,of DC generator types compares their performance under different load conditions, and is able to deduce the physical effects behind each .behavior The student applies -3 the steps of recording and analyzing experimental data to ,draw voltage-current ,speed-torque ,efficiency-load curves and uses these curves to evaluate the practical performance of .machines	2	Sixth
Laboratory -1 report Drawing -2 performance curves Calculate -3 voltage regulation and product .reaction effect Analyze the -4 method of reducing the effect by using an alternating pole	A detailed -1 theoretical explanation supported by graphs and diagrams: explaining the load characteristics and the effect of the load on ,voltage and torque with comparative curves between .generator types	duct reaction and its effect bregnancy and explaining is to reduce the effect of oduct reaction hematical examples	The student explains -1 the operating characteristics of DC motors under load with the ability to analyze the change in performance through voltage-current, speed- torque, and efficiencyload curves The student explains -2 the phenomenon of product reaction and	2	Seventh

	Ch		*4 *66 - 4 41		
or brush	Show a video or -2		its effect on the		
.distribution	practical simulation of		magnetic field and		
Short written test -5	the product's reaction		voltage regulation, and		
(Quiz)	using An explanatory		compares methods for		
Mathematical -6	video, then a detailed		reducing it, such as		
examples on voltage	discussion of ways to		,distributing the turns		
regulation and	.reduce it		using an alternating or		
voltage calculation			opposite pole, and the		
under load			inclination of the		
			.brushes		
			The student applies -3		
			analytical steps to		
			-		
			calculate voltage		
			regulation and the		
			effect of product		
			reaction through		
			realistic numerical		
A remitted to 1	A detailed 1	DC: Communication	.examples		
A written test -1	A detailed -1	DCin Communication	The student defines -1		
that includes	theoretical	machines	the rectification process		
interpretive	presentation		,in DC machines		
questions and	supported by		explains its steps and		
drawing diagrams	illustrations and time		the mechanism of its		
illustrating the	diagrams of currents		operation inside the		
standardization	,during consolidation		commutator, and		
process, in addition	with emphasis on the		differentiates between		
study to case	change in current		ideal and non-ideal		
analysis questions	within the coils as they		.rectification		
about the effects of	pass under the		Analyzes The -2		
poor	.brushes		student impact factors		
.standardization	simulation visible -2		Different like		
Report My -2	or an experience		Pregnancy rose an act		
laboratory or	/ Laboratory Virtual		Product And speed	2	The
simulation	Real Explain The		rotation on quality	2	eighth
: Analytical	spark The resulting on		Monotheism, It is		<u> </u>
Required In it from	ill Monotheism, And		suggested means		
The student	compare performance		practical To improve it		
analysis Data	when Use Poles		like Poles		
performance	Interchangeability or		,Interchangeability		
whenDC machine	Without it		tendency Brushes, And . distribution The rolls		
there are	discussions -3		. distribution The rolls		
standardization	Analytical and				
issues and provide a	activities Safiya				
technical report					
that includes					
.realistic solutions					
Display My -3					
presentation verbal					
or project small	A detailed 1	Onesating DC comments	The student ampleion 1		
Written test -1	A detailed -1	Operating DC generators	The student explains -1		
:(short or monthly)	theoretical	in parallel	the need to operate DC		
Questions about -2	explanation supported	Reasons for operating •	generators in parallel	•	NT2 41-
the basic conditions	by diagrams to	DC generators in parallel	in industrial electrical	2	Ninth
for parallel	illustrate the steps of	Conditions for •	systems and power		
connection	,parallel connection	operating DC generators	plants, and explains the		
	and the effect of	in parallel	operational and		

Numerical -3 problems to calculate load distribution and currents using the internal resistance .of each generator a report My -4 laboratory or paper : activity practical The student -5 connects two generators in .parallel / discussion Oral -6 Presentation My presentation	internal resistance and voltage curve on current distribution .between generators activity practical or -2 hypothetical inside laboratory solution Issues -3 Numerical Applied	Load distribution on • generators connected in parallel and giving mathematical examples	technical advantages of ,this (backup maintenance, voltage .(stability He specifies The -2 student Terms and Conditions necessary To deliver generators or more on parallelism ,like match effort Polarity, And agree curves to organize effort, And understands what It follows on breach With this Terms and . Conditions solves The student -3 Issues Numerical To distribute Pregnancy between Generators ,Tied on parallelism And it is calculated The current that Pull it all generator building on His resistance Interior And a curve to organize Effort		
Written test -1 including interpretive questions and numerical examples : Practical report -2 from the laboratory Classroom -3 analysis activity or : oral discussion	A detailed -1 theoretical explanation supported by animations and videos that illustrate the principle of torque generation, how counter-motive force is generated during rotation, and its effect .on current and speed Discussions Safiya-2 and analysis comparative It is required In it	DC motors Motor Operation Theory Reverse Electromotive - Force Backward Electromotive - Force Equation Comparison of DC Motors and Generators	The student explains -1 the theory of DC motor operation and analyzes how torque is generated as a result of the effect of the magnetic field on the .current conductors Explains The -2 student concept power The driver electrical Back EMF, and its It derived equation is explains its role in regulating the engine speed and protecting it from high current .during start-up Compare The -3 student between Generators and engines in terms ofDC function, power flow direction, operating characteristics, and internal parts	2	tenth

. Written test -1 -2 Practical/laboratory report Class discussion - 3 or individual/group : presentation	A theoretical - 1 explanation supported by schematic drawings and illustrative curves showing the relationship between torque, current, and speed, clarifying the concepts of the resulting torque within the product and the torque delivered to the drive .shaft simulation or -2 activity My laboratory practical To register) Data Operation voltage, The current Speed) and its use To account determination and ability in Cases different, including In it the condition (Dangerous (Greatest .(Ability Activities -3 Analytical and issues Numerical	Torque - Torque on the product - Torque on the (Shaft) drive shaft Power distribution in DC motors - Maximum electromagnetic power condition in DC motors	composition, and deduces the similarities and differences practically and theoretically. The student explains -1 the difference between the electromagnetic and the(Te) torque net mechanical torque on the drive shaft with the ability ,(T) to calculate each of them, and analyze the losses resulting from friction and mechanical losses. The student -2 analyzes the power distribution in a DC motor, starting with the electrical power input, then the internally generated power (electromagnetic and ,power) ending with the mechanical power. output The student -3 deduces the maximum power in condition ,motors understands its operational significance, and applies the equations associated with it	2	eleventh
:(Quiz/Short Exam		d torque of motors (parallel) Complex sequence	the relationship between speed and (Speed-Torque torque	2	twelfth

Mathematical -2 problems that explain how torque and speed change .with load Analyze the -3 relationship ,between current load, speed, and .torque Display My -4 presentation or : discussion Oral The student is asked to provide a comparison between the three .types	,type of motor explaining how these values change with changes in load and current, supported by real-life examples of applications for each .type discussion Safiya -2 comparison And collective analytical, It is required In it from students comparison between Types different, And present Examples from life Industrial on all type		forCharacteristics) .each type of DC motor The student applies -2 mathematical and analytical concepts to calculate the effect of a change in current or load on speed and torque, and deduces typical operating characteristics and problems associated . with each type		
A written test -1 that includes direct arithmetic problems to calculate speed regulation and analyze the effect of load on .performance discussion Oral -2 or an offer My : application Requests In it from The student clarification any type from Engines is suitable for aDC particular industrial application and why, supported by .calculations	Why? It is used in . that The application A theoretical -1 presentation supported by realistic numerical examples to calculate speed regulation in each type of DC motors with a technical interpretation of the .results activity -2 comparative My analysis inside the line ,or Using simulation Includes Tables Explain the difference in performance industrial between engine The shint In succession, The ship	- Speed regulation rate calculation examples Comparison of DC motors in various industrial applications	It is calculated The -1 student an average to organize speed For engines The current .Continuous Its significance is explained in evaluating .engine performance compare The -2 student between Types Engines The current continuous from where ,to organize speed behavior Determination, And the response under Loads different, And connects that By use industrial . optimum per Type	2	thirteenth
A written test containing applied numerical problems: such as calculating the resulting speed when the voltage is reduced, or determining the braking resistance required to stop a motor dynamically within a certain .time	Theoretical explanation supported by drawing control circuits and presenting numerical examples to calculate the speed when changing voltage or current in the field coils, with practical comparison of the .results	- DC motor speed control Speed regulation by voltage - Speed regulation by field Mathematical examples Reversing the direction of - rotation of the machine Methods of stopping engines - Dynamic stopping - Calculating examples	The student explains -1 the methods of controlling the speed of DC motors using armature voltage and magneticcontrol and ,field control solves mathematical problems that demonstrate the effect of each method on .speed Analyzes The -2 student mechanism	2	fourteenth

A written test or -1	Theoretical	Solar water pumping	reverse direction ,DC rotation engine and explains the different methods of ,stopping it (natural ,(dynamic, reversible with the application of computational examples that illustrate the behavior of torque and current during .these processes The student explains -1		
harmonic constraints of the cons	explanation supported by system installation diagrams and real-life photos of solar water ,pumping projects with a functional analysis of each .system component an exercise applied Clear or project Mini Project: In this the student ,project designs a solar pumping system suitable for an agricultural or home application, choosing the appropriate components according to the type of current .and consumption	systems Pumping SystemsSolar "-1 ic components of .2 solar pumping systems es of solar .3 pumping systems sification of water .1 nping systems according to the type of operating current DC pumps .1 AC pumps .2 vantages of solar .4 pumping systems advantages of .5 r pumping systems Solar nping	the working principle of solar pumping systems, and distinguishes between their basic components , such as: solar cells , control unit, pump water tank, mounting , structureetc. The student classifies -2 solar pumping systems according to the type of current(DC/AC) , compares them in terms of efficiency, system cost, complexity, and suitability for rural applications, and analyzes the advantages and disadvantages of each type.	2	fifteenth

	((Course structu	re B-(Practical v	ocabular	y -12
Evaluation method	Teaching method	Unit name/topic	Required learning outcomes	watches	week
Field evaluation -1) during work Observation	Direct instructional -1 explanation at the beginning of the experiment, supported	Study of -1 general safety methods - how to	The student -1 identifies the basic occupational safety	3	the first

	1		1	T	
which ,(Checklist	by explanatory panels or an	- write a report	procedures in the		
includes the	educational video on safety	introduction to	electrical machinery		
student's	.and connection method	distribution panels	laboratory, and follows		
commitment to	activity practical applied -2	on devices in the	them accurately during		
safety procedures	inside laboratory, It is done	laboratory and a	practical experiments		
and the accuracy of	In it to divide students to	general idea about	It is considered The -2		
implementing the	Groups To apply The two	the different types	student Report		
.delivery steps	methods practically And	of DC machines	practically organized It		
Report practical -2	. registration Notes	assembled by	contains on Elements		
Evaluated from	. registration notes	Lamp method -1	Basic (Introduction		
		<u>-</u>			
,where organization		Method of-2	steps the job, Data		
inclusion Data		measuring	,Results, Discussion		
,health Connections		resistance	.(Conclusion		
and analysis			Get to know The -3		
Results, with			student on ingredients		
comparison			paintings distribution		
between The two			in laboratory, And a		
methods practically			job all device linked By		
			running machinery The		
			current Continuous		
			He specifies The -4		
			student Types Different		
			For machines The		
			current continuous		
			And explains the		
			difference between		
			Engine The birth And		
			the principle a job all		
			From it		
			-5		
			Implemented		
			The student		
			practical		
			installation		
			DC machine		
			using the		
			lamp and		
			•		
			resistance		
			measurement		
			methods, and		
			the two		
			methods are		
			compared in		
			terms of		
			accuracy and		
			_		
			.safety		
Direct practical -1	A practical laboratory	Determine the	The student draws -1		
evaluation of					
	experiment to record open	magnetic	the magnetic		
performance within	voltage values versus	properties of a	E vs) properties curve		
,the laboratory	excitation current, using a	separate-fed DC	of a separately (If	3	the second
including	separate, self-powered, two-	generator at	powered generator at		
measurement	.speed generator	normal speed and	,two different speeds		
accuracy, safety	acting Results Graphically	then half-normal	and explains the		
compliance, and	inside the line and discussion	speed. Determine	relationship between		

accurate curve .drawing a report My -2 laboratory Includes comparison curves ,between Both cases and analysis technical To influence speed And type excitement on . effort The result	impact magnetism The remaining, And inclination The curve Differently type . The birth And his speed	the magnetic properties of a parallel self-fed DC generator at normal speed and then half-normal .speed	excitation and the .resulting voltage Analyzes The -2 student impact speed in a self-OCC on curve feeding generator parallel), comparing) performance at rated .speed and half speed		
Direct -1 practical evaluation in the : laboratory accuracy in ,taking readings determining the point of contact the between andOCC curve the resistance . line Laboratory -2 report including drawing and analysis of the curve, with a technical explanation of the nature of the critical resistance and its effect on voltage build-up	A practical -1 laboratory experiment in which the voltage is measured at different speeds with the excitation current constant, then the relationship between the voltage and speed is . drawn Analytical activity to -2 andOCC curve plot the intersect it with lines representing different resistance values to determine the critical . resistance	Speed-voltage relationship for a separately powered alternator and determination of the critical resistance	The student -1 analyzes the relationship between rotational speed and open-circuit output voltage, and concludes the effect of speed on the magnetic properties . curve The student -2 determines the critical resistance of the , generator practically explains its importance in the process of ,building self-voltage and draws a straight-line . resistance curve	3	the third
Practical -1 evaluation of students during the experiment in terms of accuracy ,of measurement speed control, and extracting correct data to draw the . curve Laboratory -2 report including drawings and	Direct laboratory -1 experiment by measuring the output voltage at different excitation currents, and the OCC curve drawing of the generator at the .two speeds discussion Safiya -2 Interactive To analyze The curve And inclination line	Determine the critical resistance of a parallel self-powered DC generator at normal speed and half .normal speed	The student -1 determines the critical resistance of a self-powered generator by drawing the magnetic) properties curve and (OCC intersecting it with .the load lines	3	Fourth

technical analysis to determine the critical resistance and comment on the differences between the two . cases Direct -1 practical evaluation during the experiment in terms of the accuracy of ,measurements connecting circuits, and extracting the data needed to .draw curves Report My -2 laboratory It contains on Fees Bayani And the interpretation Technical For differences between The birth separate ,The birth Self	resistance Passing by At a point origin, And specify value resistance. Critical Graphically Carry out an actual -1 or simulated laboratory experiment to measure the internal and external voltage when the load current changes for each of the two types Drawing My-2 statement Interactive inside the line or in The report practical To represent curve Properties and analysis Differences Operational.	A- Load characteristics of a separately powered DC generator and determine the internal and external characteristics .curve B- Load characteristics of a self-powered DC generator and determination of the curve Internal and external .properties	Analyze The -2 student impact speed on resistance Critical And he concludes the difference between Its value when speed regular And a half Speed The student -1 draws the curve of internal properties and (E vs IL) external properties for two (V vs IL) :generators separate and self- powered, and compares the behavior of each of .them Analyze The -2 student impact stream Pregnancy on effort Internal and external And it is explained role) Losses Interior lost voltage inside .(The product	3	Fifth
And explain Reasons Decrease in Effort A practical -1 test or	A theoretical lecture -1 supported by illustrative	Load characteristics	Distinguish the -1 load characteristics		
laboratory report in which the results of the experiment are analyzed and the electrical behavior is	drawings of voltage versus current curves for each type of .generator A practical -2 experiment in the	of a DC generator accumulative-) .(differential	of the accumulator and differential DC generator in terms of performance and voltage behavior with load .change	3	Sixth
.compared	laboratory during which both types (cumulative		Analyze the -2 curves of the		

Short written -2 or oral questions that measure the student's understanding of the differences between the two types and the behavior of each under different .loads	and differential) are operated and the load properties are .measured		relationship between voltage and current and explain the effect of cumulative or differential conduction on .stability		
A practical -1 laboratory report containing ,results, tables graphs, and .analysis An analytical -2 question in the ,theoretical test :such as Observing -3 the student's performance during the experiment connection) ,accuracy measurement ,accuracy practical .(understanding	A theoretical -1 explanation supported by graphs of the internal and external characteristics curves of .the series generator Practical activity -2 :inside the laboratory Connecting a series * .generator circuit Generator and load * .gradually Measure the required * .(V, I, E) values Draw curves based on * .practical values Group discussion -3 about generator ,behavior, when to use it and why it is not used much in modern .applications	Load characteristics of a DC generator (self-(powered series and finding the internal and external characteristics .curves	Understanding -1 the behavior of voltage and current in a self-powered series DC generator under the influence of .different loads Draw and -2 analyze the (E vs I) internal V vs) and external characteristics (I curves of the generator and explain the difference between .them	3	Seventh
Direct -1 observation of the student's performance during the experiment ,connection) ,operation .(monitoring Oral or -2 written	A brief theoretical -1 explanation before the experiment about the principles and conditions of parallel .operation Practical -2 implementation of the experiment inside the laboratory using two self-generators and	Parallel operation of a self-powered .DC generator	The student -1 should be able to distinguish the conditions required to operate two self-generators in .parallel The student -2 should be able to practically implement the	3	The eighth

questions after the experiment to measure understanding .of the concepts A practical -3 report that includes an explanation of the experiment ,steps, readings analysis of results, and .conclusions	current and voltage .measuring devices Group discussion -3 during and after the experiment to interpret the readings and analyze .the results		parallel operation experiment and analyze the behavior of generators during .operation		
Observing -1 the student's practical performance in implementing the electrical circuit safely .and accurately Ask -2 analytical questions about the effect of changing the field current or source voltage on speed and .torque A practical -3 report containing a description of ,the experiment readings, graphs observations , and conclusions	A short theoretical -1 presentation explaining the principle of each method with speed and .torque curves Practical -2 implementation of a speed control experiment inside the laboratory, observing .changes in performance Post-experiment -3 discussion to link theoretical results to practical results and .analyze the differences	How to control the speed of a parallel DC motor by A-Field current B-Source voltage	The student -1 should be able to distinguish between the two main methods of controlling the speed of a parallel DC motor (via field current and .(via source voltage The student -2 should practically carry out an experiment to change the motor speed using both methods, and record the relationship between the ,variables (speed .(current, voltage	3	Ninth
Direct -1 observation of the student's skills in ,connecting operating and safely measuring	A brief theoretical -1 explanation of the behavior of a series motor under load, with an explanation of the mathematical relationships and an	Load characteristics of a series DC motor and find the relationship between current-torque-	The student can -1 deduce the relationship between the load ,current, torque speed and efficiency of a series DC motor	3	tenth

during the .experiment Applied or -2 analytical questions to link theoretical concepts to .practical data A detailed -3 practical report :containing Readings table * ,.Graphs (e.g * .current vs .torque, speed vs ,current .efficiency vs (load Analysis of * the relationship with mechanical (BHP) power	approximate graph for .each relationship Practical -2 implementation of the motor experiment with gradual measurements of current, speed and torque, with calculation .BHP of efficiency and Analyze group data -3 after the experiment is completed to interpret the results and compare them with theoretical .values	efficiency-speed .BHP with	during operation under different .loads The student -2 should link the) mechanical power with the (BHP rest of the variables to explain the engine's performance .practically		
Direct -1 practical evaluation of the student's skill in operating the engine and taking accurate .measurements Analytical or -2 oral questions to test theoretical understanding of the relationships between .variables A practical -3 report that :includes Table of * readings for ,current, speed ,torque, power .and efficiency Relationship * :graphs	A brief theoretical -1 introduction explaining the difference between the accumulator compound engine and other engines, and the effect of the series engine .on performance curves Practical -2 implementation of the experiment by measuring the load ,current, motor speed torque, mechanical power, and efficiency at .different loads Analyze and compare -3 the results with parallel and series motors to understand the behavior .of the compound motor	Load characteristics of a series compound current motor and finding the relationship between current-torque- efficiency-speed .BHP with	The student will -1 be able to practically analyze the load characteristics of a series-compound DC motor, and understand the effect of the additional field component on . performance To deduce the -2 relationship between ,load current, torque ,efficiency, speed and mechanical (BHP) power through . experimental data	3	eleventh

	1	1		1	
.Current vs)					
Torque, Speed					
vs. Current					
.Efficiency vs					
_					
.vsBHP ,Load					
(Current					
Explain the *					
behavior of a					
compound					
_					
engine					
compared to					
other types of					
.engines					
Monitoring the -1	A theoretical presentation -1	A- Determine the	The student should -1		
student's practical	illustrating both the Solenoid	efficiency of a DC	explain the principle of		
performance in	and Hopkinson tests with	machine without	the Sollenbohn test and		
terms of accuracy in	basic equations and	load using the	how to use it to		
,connecting	.illustrative diagrams	Sollenbohn	estimate the efficiency		
operating devices	:Practical implementation -2	.method	of the machine without		
and reading values	Sollenbohn test on a DC *	b- Determine the	.loading it		
Written or oral -2	.motor without load	efficiency of a			
questions to	Hopkinson test by *	parallel-fed DC	The student should -2		
measure theoretical	connecting two machines in	machine (motor	practically perform the		
understanding and	parallel while monitoring the	generator) using	Hopkinson test on two		
practical steps for	input and output power.	the Hopkinson	similar machines and		
calculating	Group discussion after -3	.method	accurately calculate the	3	twelfth
.proficiency	each experiment to analyze		efficiency under	3	twentii
A practical -3	the differences between the		.operating conditions		
report for each test	.two methods				
:that includes			The student should -3		
Objectives of the -			compare the two		
experiment			methods in terms of		
			,accuracy, type of load		
Size chart -			and operating		
Solution steps and -			.requirements		
calculations					
Comparison -					
between the two					
methods					
Direct -1	A preliminary theoretical -1	Isolating losses	The student should -1		
observation of the	explanation that clarifies the	from a DC	distinguish between the		
student's	types of losses in a DC	.machine	,types of losses (copper		
performance while	machine and the source of		iron, mechanical) in a		
implementing the	.each type		.DC machine		
experiment steps	Practical experience in -2		The student should -2		
and connecting the	separating losses using		apply practical	_	
.devices accurately	:techniques such as		methods to separate	3	thirteenth
Short evaluation -2	No-load operation (to *		and estimate each type		
questions to explain	estimate iron and mechanical		of loss in the engine or		
the concepts of	(losses		.generator		
losses and their	Measure current, voltage *		To conclude the -3		
calculation	and resistance to determine		effect of each type of		
.equations	.copper losses		losses on the		
			performance and		

	T	T	T	Γ	
A practical -3	Analytical discussion of the *		efficiency of the		
report that	experimental results to		.machine		
:includes	understand how to improve				
Reading table for *	efficiency and reduce losses				
each part of the					
.experiment					
:Loss calculation *					
I2RI2R = Copper					
Iron and					
mechanical = from					
.no-load operation					
Approximate *					
graph of loss					
.distribution					
Conclusions -4					
about the losses that					
most affect					
.efficiency					
Observing -1	A theoretical and practical -1	Practical study of	The student should -1		
'students	explanation of the working	the components of	be familiar with the		
performance during	principle of the solar	a solar pumping	basic components of		
the process of	pumping system and the use	system	the solar pumping		
,connecting	.of DC motors in it		:system		
operating, and	Field study inside the -2		Solar panels, charge)		
dealing with the	laboratory or at a pilot site of		controller, voltage		
.system components	the system components and		,converter, DC motor		
Oral or written -2	.their practical connection		,water pump, sensors		
questions about the	Group discussion to -3		(electrical protection		
functions of each	clarify the effect of changing		The student -2		
component and how	radiation on the electrical		understands how to		
.it works	and mechanical performance		connect components	3	fourteenth
A practical -3	of the system		practically and operate		
:report containing	vor ene system		the system effectively		
.System diagram *			and efficiently		
Explain the *			To link the -3		
system components			characteristics of DC		
and their functions			motors to the behavior		
.Connecting steps *			of the solar system		
Observations on -4			during changes in solar		
system performance			radiation.		
under different			***************************************		
.conditions					
Practical -1	A simplified theoretical -1	Performance	The student will be -1		
assessment of the	presentation of the equations	analysis of a DC	able to analyze the		
student's ability to	of power, lift and water flow	motor-driven	relationship between		
connect the system	in solar pumping systems	water pump in a	solar radiation, output		
and measure	.DC motors using	solar pumping	,voltage, load current		
readings accurately	Practical implementation -2	system	and motor speed in a		
and safely	of an experiment to operate a	System	.solar pumping system		
Analytical -2	water pump connected to a		The student should -2	3	fifteenth
questions about the	solar panel (or a simulated		measure the		micentii
system performance	source) with changing the		performance of the		
under different			=		
	.radiation level or voltage		water pump in terms of		
conditions (such as	Collecting and analyzing -3		flow rate, hydraulic		
changing radiation	:data in terms of		lift, and motor power		
.(or load	Voltage and current *		under different		
	entering the motor		.radiation conditions		

A comprehensive -3	Rotational speed *	The student should -3	
practical report	Water pumping rate *	evaluate the efficiency	
:that includes	Hydraulic and electrical *	of the system as a	
Measurement *	efficiency	whole (from the panel	
,table (voltage	-	to the pump) and	
,current, speed, flow		deduce the factors	
.(lift		.affecting it	
Graphs (such as *			
the relationship			
between voltage and			
flux, or current and			
.(efficiency			
Analyze results *			
and compare			
theoretical and			
.actual performance			
-4			
Recommendations			
to improve system			
.efficiency			

Curriculum Development Plan .56

Continuously developing educational content to keep pace with modern requirements, such :as

- .Including qualitative specializations that are in line with the digital transformation -1
- .Organizing discussion sessions with industrial sector leaders -2
- .Following up on global technical developments in the electrical field -3
- .Holding applied exhibitions to display modern innovations -4
- . Developing field training programs in leading companies -5

		infrastructure	.57
Well-equipped and equipped halls and laboratories are	issrooms,	laboratories	and
available to provide a suitable environment for teaching			la a a
.and learning		works	nops
Electrical Machines (Dr. Muhammad Zaki Muhammad			
(Khader / University of Mosul]	Required textbooks	-9
Text book of electrical technology by BL Theraja	(Main F	References (Sources	-10
IEEE Transactions on Industrial Applications •	Recom	mended books and	()
International Journal of Electrical Power & •	,refe	rences (scientific jour	rnals
		(.report	s, etc

Energy Systems	
MIT OpenCourseWare – Massachusetts • Institute of Technology Electronics Tutorials •	ب,Electronic references ب,,websites

58. Educational institution

Ministry of Higher Education and Scientific Research / Northern Technica University / Al-Hawija Technical Institute

59. Scientific Department

Department of Electrical Technology

60. Course Name/Code

1 Electrical networks

61. Available attendance forms

In presence

62. semester/year

Decisions

63. (Number of study hours (total

60 = 15*4

64. Date this description was prepared

19-6-2025

65. (Course objectives (general objectives of the course

Complete knowledge of hydroelectric, thermal and gas generating stations and -1 .an idea about some other stations such as diesel

Using overhead lines - Mechanical calculations including 2-A: - Calculating tension and slack when the distances from the ground are equal- Calculating the weight of snow accumulated on the wire- Calculating the amount of wind pressure force acting on the wire

,Calculations of the basic elements of overhead lines - Electrical calculations 3-A including: - Calculating the resistance- Calculating the internal and external inductance of a single wire- Calculating the inductance of a three- way system consisting of three wires separated by equal distances from each other, Or at different distances or exchanged in location

Calculate the capacitance of the single - phase system A triode consisting of 4-A three wires spaced equally apart, or At different distances and exchange locations

66. Course outcomes, teaching, learning and assessment methods **Course outcomes**

A- Cognitive objectives

- 1. Operation and maintenance of electrical units of power plants. Introducing the student to the types of power stations and introducing the student to the operating mechanism of each type of station and the degree of efficiency of each type of power station
 - 2. Operation and maintenance of electrical equipment for the transmission and distribution of electrical energy.
 - 3. Maintenance of protection and control devices for the electrical power system.
 - 4. Extension and maintenance of underground and overhead cables.

Engineering Design Fundamentals: $^{Knowledge\ of}$ basic engineering design principles such as analysis and design of electrical and mechanical systems

Teaching and Evaluation Outputs learning methods methods 5. Theoretical ن- knowledge tests 4. Theor 6. My work The student gets to know Methods of -1 etical performance generating electrical energy lectures evaluation 5. Grou Distinguish between each type of .2 7. Safiya's p discussions participation .energy source 6. Case 8. Research studies Explain the mechanism of electrical .3 reports . energy production **B- Skills** 5. Short and 4. Interactive final tests The student gets to know Methods of -1 lectures 6. Performance generating electrical energy 5. Real-life case evaluation Distinguish between each type of .2 studies during 6. Field visits to practical .energy source facilities training Explain the mechanism of electrical .3 7. Applied . energy production projects

8. Field visit reports		
5. Continuous assessment 6. Performance evaluation during practical training 7. Final evaluation 8. Field visit reports	4. Interaction and application 5. modern technologies 6. group learning	Student participation in classroom activities and submitting assignments on time Adherence to occupational safety rules while working in laboratories Attention control and attention test (selective attention)

Numb	We	ekly hou	rs		Name of the materia
er of	M	Α	N	Second	1 Electrical networks
units				academic year	
4	4	2	2		

theoretical (1 Details of the curriculum for Electrical Networks curriculum) two hours per week

67. (C	67. (Course structure A- (Theoretical vocabulary						
week	watches Required learning outcomes Unit name/topic Teaching method Evaluation method						
and First second	2	The student learns how electrical energy is generated, the development	How to generate electrical ,energy energy ,development	presentations , documentary	research assignment on the stages of		

		of anover	electrical	conceptual map of	
		of energy			
		uses, and the components of	power system from	energy flow in the electrical system.	
		the electrical		electrical system.	
			generation to		
		power system	,consumption		
		from	standard		
		generation to	voltages		
		consumption, consumption, addition to			
		the standard			
		.voltages used	Hardan als atrais and	E-mlanatamy vidaa	L Amalastical manassi
		The student	Hydroelectric and	Explanatory video	+ Analytical report
		understands	thermal power plants	,comparative study	short descriptive
		the working		class discussion.	test.
		principle of			
		hydroelectric			
the third	2	and thermal			
		power plants			
		and compares			
		them in terms			
		of uses,			
		efficiency, and			
		.environment			_
		Identify gas	Gas	Real case	Oral
		and diesel	generating	presentation	presentation
		stations, and	stations and	+	+ in a group
		distinguish	an idea	application	individual
Fourth	2	between their	about some	study	written
		characteristics	other		assessment
		and	stations such		
		applications.	as diesel		
		Explains the) Bus Bar SystemBI	•	a test My work + my
		components of	and layouts	engineering	duty my house
		a bus bar	transformer stati	drawings,	
		system, and	inside and outs	interactive	
Fifth	2	analyzes the	buildings	,discussion	
FIICH	2	layouts of		practical examples.	
		transformer			
		stations inside			
		and outside			
		buildings.			
		Classifies air	Air lines, their uses, :	+ Video lecture	a question My article
		lines and	the division of lines i	comparison	+ exercise my house
Sixth	2	analyzes their	short, medium, and le	exercises	
SIXTH	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	use and types	.lines		
		,short)			
		(medium, long			
		Performs	Overhead	Solving	a test in the
Co41.	,	tension, sag,	- lines	applied	chapter
Seventh	2	,snow weight	mechanical	+ problems	
		and wind		numerical	
	<u>I</u>	1			1

calculations on overhead lines. Calculating - tension and relaxation when the distances from the ground surface are equal Calculate - the weight of snow accumulated on the wire Calculating - the amount of wind pressure acting on the wire calculating - the amount of wind pressure acting on the wire calculating - the amount of wind pressure acting on the swire calculating - the amount of wind pressure acting on the swire calculating - calculating - calculating - calculation calculate the internal and external inductance of single and inductance of a single wire calculation Calculate the internal and external inductance of a single wire calculation calculate the internal and external inductance of a single wire calculating the inductance of a single wire calculation consisting of three wires separated by a distance of At equal distances of a single-phase system and analyzes the effect of three-wire system consisting of three wires separated by a distance of a single-phase system and analyzes the effect of three-wire system consisting of three wires separated by a distance of a single-phase system and analyzes the effect of three-wire system at three-phase system and analyzes the effect of three-wire system and analyzes the effect of three-wires system and triple-phase system and analyzes the effect of three-wires system and triple-phase system and triple-p				1		
on overhead lines. Calculating - tension and relaxation when the distances from the ground surface are equal Calculate - the weight of snow accumulated con the wire Calculating - the amount of wind pressure acting on the wire external resistance and inductance of single and alriple wires The cighth 2 Calculates the internal and external resistance and inductance of single and alriple wires The cighth 2 Calculates the internal and external inductance of a single wire Calculation Calculate the internal and external inductance of a single wire calculation Calculate the internal and external inductance of a single wire calculation of the calculation of the distance of At equal distances of the each other, of different distances of a single wire consisting of three wires separated by a distance of At equal distances of a single-phase system a single-phase system a single-phase system and analyzes the effect of At equal or different discussion Collective wires separated by a discussion Collective w			pressure	calculations	simulation(
lines. tension and relaxation when the distances from the ground surface are equal Calculate - the weight of snow accumulated on the wire Calculating - the amount of wind pressure acting on the wire cating on the wire sistance and inductance of single and arriple wires Calculations including the internal and external resistance and inductance of single and arriple wire Calculation Calculate the internal and external inductance of a single wire Calculation Calculate the internal and external inductance of a single wire Calculating the internal and external inductance of a single wire Calculating the internal and external inductance of a single wire Calculating the internal and external inductance of a single wire Calculating the internal and external inductance of a single wire Calculating the internal and external inductance of a single wire Calculating the internal and external inductance of a single and triple-phase system and analyzes the effect of the consisting of three wires separated by a distance of a capacitance in single- and triple-phase systems and analyzes the effect of the consisting of three wires separated by a distance of a consisting of three wires separated by a distance of a capacitance of a capacitanc						
relaxation when the distances from the ground surface are cqual Calculate - the weight of snow accumulated on the wire Calculating - the amount of wind pressure acting on the wire calculating - the amount of wind pressure acting on the solution of the internal and external resistance and inductance of single and diriple wires aring on the calculation Calculate the internal and external inductance of a single and diriple wires are calculation to calculate the internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances for each other, of different distances capacitance in single- and triple-phase systems and analyzes the effect of at equal or different distances wires separated by a total distance of a single-phase system and analyzes the effect of at equal or different distances the consisting of three wires separated by a distance of a single-phase system and analyzes the effect of at equal or different distances the consisting of three wires separated by a distance of a single-phase system at three-phase system at the consisting of three wires separated by a distance of a single-phase system at the consisting of three wires separated by a distance of a solution exercises, discussion Collective at the constant of the constant						
when the distances from the ground surface are equal Calculate - the weight of snow accumulated on the wire Calculating - the amount of wind pressure acting on the wire sistance and inductance of single and triple wires The eighth 2 Calculates the internal and external resistance and inductance of single and triple wires The eighth 2 Calculates the internal and external inductance of a single wire Calculations calculations including Resistance - calculation Calculate the internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances from the ground problem of the problem of			lines.			
Calculates the internal and external resistance and inductance of single and triple wires Calculating the calculating the cighth The cighth 2					MATLAB).	
Calculates the internal and external resistance and inductance of single and triple wires Calculating the internal and external resistance and inductance of single and triple wire Calculating the internal and external resistance and inductance of a single wire Calculation Calculate the internal and external inductance of a single wire Calculation Calculate the internal and external inductance of a single wire Calculation Calculate the internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances from the external inductance of a three-wire system consisting of three wires sparated by a distance of At equal distances from the external inductance of a three-wire system consisting of three wires separated by a distance of At equal distances from the external inductance of a three-wire system consisting of three wires separated by a distance of At equal distances from the external inductance of a three-wire system consisting of three wires separated by a distance of At equal distances from the external inductance of a single-phase system at three-phase				when the		
Calculate the winternal and external resistance and inductance of a single and triple-phase system and analyzes the equal of Calculates free wires varies and analyzes the equit of Snow accumulated and the wire calculations of the basic elements of cheeting on the wire calculations of the cheeting of				distances		
Surface are coupal Calculate - the weight of snow accumulated .on the wire Calculating - the amount of wind pressure acting on the wire wire seistance and inductance of single and .triple wires The cighth 2 Calculates the internal and cexternal resistance and inductance of single and .triple wires 2 Calculates the internal and external inductance of a single wire Calculation Calculate the internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distances free ach other, of different distances .exchange locati Ninth 2 Calculates capacitance in single - and triple-phase systems and analyzes the effect of A t equal or different discussion Collective wires separated by a triple-phase systems and analyzes the effect of A t equal or different discussion Collective wires separated by a distance of a single-phase system a three-phase system consisting of three wires separated by a discussion Collective wires separate				from the		
Calculates the wings of some accumulated conthe wire Calculating the amount of wind pressure acting on the wire Calculations of the internal and cexternal resistance and inductance of single and single and single wire Calculations Calculates Calculations Calculates Calculations Calculates Calculations Calculation				ground		
Calculates the internal and caternal inductance of single wire Calculating the canount of single and three-wire system consisting of three wires separated by a danalyzes the capacitance of single-and triple-phase systems and analyzes the ansunt of such as the wire accumulated and three-wire systems and analyzes the capacitance in the weight of sonow accumulated and very calculating the sonow accumulated and very calculation on the wire accumulation of the wire accumulations. Calculations of the basic elements of calculations including calculations. Detailed electrical inductance of a single wire calculation Calculate the internal and external inductance of a three-wire system consisting of three wires separated by a distances from the capacitance of a single-and triple-phase system and analyzes the effect of At equal or different discussion Collective wires separated by a discussion Collective systems and analyzes the wires separated by a discussion Collective wires separated by a consisting of three wires separated by a discussion Collective systems and analyzes the wires separated by a discussion Collective wires separated by a consisting of three wires separated by a discussion Collective systems and analyzes the wires separated by a discussion Collective wires separated by a discussion Collective systems and analyzes the wires separated by a discussion Collective wires separated by a discussion Collective systems and analyzes the wires separated by a discussion collective wires separated by a discussion Collective systems and analyzes the wires separated by a discussion collective wires separated by a discussion collective systems and analyzes the wires separated by a discussion collective wires separated by a discussion collective systems and analyzes the wires separated by a discussion collective wires separated by a discussion collective systems and analyzes the discussion collective wires separated by a discussion collective systems and analyzes the discussion collective systems and a test My analyzes				surface are		
the weight of snow accumulated on the wire Calculating - the amount of wind pressure acting on the wire wire calculations of the internal and external resistance and inductance of single and three-wire sugartance of a single wire Calculation Calculate the internal and external inductance of a single wire Calculation three wire sugartated by a distance of At equal distances from each other, of different distances as single-phase system and analyzes the effect of At equal or different distance of a three-wire system consisting of three wires separated by At equal or different distances of a three-wires eystem and analyzes the effect of At equal or different distances of a three-wires eystem and analyzes the effect of At equal or different distances of a three-wires eystem and analyzes the effect of At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exparated by At equal or different distances of a discussion Collective wires exp				equal		
The cighth 2 Calculates the internal and external inductance of single and artive-wire system consisting of three wires systems and analyzes the internal and canculation the capacitance in single-and analyzes the internal and canculation the internal and inductance of single and analyzes the defect of At equal or different distances for the capacitance in single-and analyzes the defect of At equal or different distances of three wires separated by a distance of a single-and analyzes the defect of At equal or different distances of three wires separated by a distance of a single-phase system a three-phase syste				Calculate -		
The eighth 2 Calculates the internal and external inductance of a single wire Calculating the eighth 2 Calculates the internal and external inductance of a single wire Calculating the inductance of At equal distances of each other, o different distances from each other, o different distances system and analyzes the interpolation on the basic elements of electrical inductance of a single wire Calculation Calculate the inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances from each other, o different distances exchange location of the capacitance in single-phase system and analyzes the effect of At equal or different size of the consisting of three wires separated by a distance of At equal or different size of a single-phase system and analyzes the effect of At equal or different size of the consisting of three wires separated by a single-phase system and analyzes the effect of At equal or different size of the consisting of three wires separated by a single-phase system and analyzes the effect of At equal or different size of the consisting of three wires separated by a single-phase system and analyzes the effect of At equal or different size of the consisting of three wires separated by a single-phase system and analyzes the effect of At equal or different size of the consisting of three wires separated by a single-phase system and analyzes the effect of At equal or different size of the consisting of three wires separated by a single and transport the size of the consisting of three wires separated by a size of the consisting of three wires separated by a size of the consisting of three wires separated by a size of the consisting of three wires separated by a size of the consisting of three wires separated by a size of the consisting of three wires separated by a size of the consisting of three wires separated by a size of the consisting of three wires separated by a size of the consisting of three wires separat				the weight of		
Calculating the amount of wind pressure acting on the wire Calculates the internal and external resistance and inductance of single and acting on the cighth The cighth 2 Calculates the internal and external resistance and inductance of single and acting on the cighth Calculations of the basic clements of external electrical inductance of single and acting and calculations. Calculation Calculate the internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of each other, o different distances in cach other, o different distances for each other, o different distances of expacitance in single- and triple-phase systems and analyzes the effect of At equal or different triple-phase wires separated by a three-phase system and analyzes the effect of At equal or different triple-phase wires separated by a three-phase system wires separated by a three-phase system acting of three wires separated by a three-phase system and analyzes the effect of At equal or different triple-phase wires separated by a three-phase system wires separated by a three-phase system acting of three wires separated by a three-phase system wires separated by a three-phase system and analyzes the effect of At equal or different triple-phase wires separated by a three-phase system wires separated by a three-phase system acting of three wires separated by a three-phase system and analyzes the effect of At equal or different triple-phase wires separated by a three-phase system acting the separate and three-phase system and analyzes the effect of At equal or different triple-phase are three-phase system and analyzes the effect of At equal or different triple-phase acting the separate and training Practical training				snow		
Calculating - the amount of wind pressure acting on the wire Calculates the internal and external resistance and inductance of single and single and consisting of three wire separated by a distance of a single and triple-phase systems and analyzes the effect of single of the consisting of three wire separated by a test Academic of the amount of wind pressure acting on the wire wire sure sure acting on the wire wire sure acting on the basic elements of the calculations acting Practical + Explanations Detailed electrical including selectrical places and tire acting the calculation Calculate the internal and external inductance of a single wire Calculating the each other, of different distances from the capacitance of a single-phase system at three-phase system at three-phase system and analyzes the effect of the capacitance of three wires separated by a three phase system at three-phase system at three-phase system and analyzes the effect of the capacitance of three wires separated by a three phase system at three-phase system at three-phase system and analyzes the effect of three wires separated by a three phase wires separated by a three phase system and analyzes the effect of the capacitance of a three phase wires separated by a three phase system and analyzes the effect of the capacitance of a three phase system and analyzes the effect of the capacitance of a three phase system and analyzes the effect of the capacitance of a three phase system and analyzes the effect of the capacitance of a three phase system and analyzes the effect of three wires separated by a three phase system and analyzes the effect of the capacitance of a three phase system and analyzes the effect of the capacitance of a three phase system and analyzes the effect of the capacitance of a three phase system and a three phase and three phase system and analyzes the effect of the capacitance of a three phase and three phase and thr				accumulated		
The eighth 2 Calculates the internal and external resistance and inductance of single and triple-phase system and analyzes the effect of Ninth 2 Calculates the internal and external resistance and inductance of single and triple-phase system and analyzes the effect of Ninth Calculations of the basic elements of - overhead lines electrical calculations: including and external inductance of a single wire Calculation Calculate the inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of the each other, of the capacitance in single- and triple-phase system and analyzes the effect of At equal or different distances acting on the wire separated by a triple-phase system acting on the basic elements of training Practical +				on the wire		
The eighth 2 Calculates the internal and external resistance and inductance of single and triple-phase system and analyzes the effect of Ninth 2 Calculates the internal and external resistance and inductance of single and triple-phase system and analyzes the effect of Ninth Calculations of the basic elements of - overhead lines electrical calculations: including and external inductance of a single wire Calculation Calculate the inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of the each other, of the capacitance in single- and triple-phase system and analyzes the effect of At equal or different distances acting on the wire separated by a triple-phase system acting on the basic elements of training Practical +				Calculating -		
Calculates the internal and external resistance and inductance of single and .triple wires Calculations of the basic elements of - overhead lines electrical inductance of single and .triple wires Calculations calculation Calculate the internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances freach other, of different distances .exchange locati Calculating the capacitance in single- and triple-phase systems and analyzes the effect of At equal or different						
Calculates the internal and external resistance and inductance of single and .triple wires The eighth 2 Calculates Calculates Calculations of the basic elements of external resistance and inductance of single and .triple wires Calculation Calculate the internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of a single-phase system and analyzes the effect of Ninth Calculates Calculates Calculates Calculating the capacitance in single-phase system and analyzes the effect of At equal or different At equal or different Calculating the capacitance of a solution exercises discussion Collective Training Practical + Explanations Detailed Training Practical + Explanations Detailed Explanations Detailed A test My analysis a test My analysis a test My analysis a test My analysis				of wind		
Calculates the internal and external resistance and inductance of single and .triple wires The eighth 2 Calculates Calculates Calculations of the basic elements of external resistance and inductance of single and .triple wires Calculate the internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances freach other, of different distances .exchange locati Ninth 2 Calculates capacitance in single-and triple-phase systems and analyzes the effect of At equal or different At equal or different At equal or different At equal or different Training Practical + Explanations Detailed Training Practical + Explanations Detailed A test My analysis A test My analysis Training Practical + Explanations Detailed A test My analysis a test My analysis a test My analysis				pressure		
Calculates the internal and external resistance and inductance of single and .triple wires The eighth 2 Calculates the internal and external resistance and inductance of single and .triple wires Calculation Calculate the internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances in each other, of different distances exchange locati Ninth 2 Calculates capacitance in single- and triple-phase systems and analyzes the effect of At equal or different Calculations of the Explanations Detailed Explanations De						
internal and external resistance and inductance of single and attree-wire system consisting of three wires separated by a distance of each other, o different distances and insigle- and triple-phase system and analyzes the effect of At equal of different single- resistance over shear and electrical inductance of a calculation and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances from the capacitance of a single-phase system a three-phase system consisting of three wires separated by a discussion Collective wires separated by a discussion Collective at the capacitance of a single-phase system and analyzes the wires separated by a discussion Collective wires separated by a discussion Collective at the capacitance of a single-phase system and analyzes the wires separated by a discussion Collective wires separated by a discussion Collective at the capacitance of a single-phase system and analyzes the wires separated by a discussion Collective at the capacitance of a single-phase system and analyzes the wires separated by a discussion Collective at the capacitance of a single-phase system and analyzes the wires separated by a discussion Collective at the capacitance of a single-phase system and analyzes the wires separated by a discussion Collective at the capacitance of a single-phase system and analyzes the wires separated by a discussion Collective at the capacitance of a single-phase system and analyzes the wires separated by a discussion Collective at the capacitance and analyzes the wires separated by a discussion Collective at the capacitance and analyzes the wires separated by a discussion Collective at the capacitance and analyzes the wires separated by a discussion Collective at the capacitance and analyzes the wires separated by a discussion Collective at the capacitance and analyzes t				_		
internal and external resistance and inductance of single and at three-wire system consisting of three wires separated by a distance of each other, o different distances and insigle- and triple-phase systems and analyzes the effect of At equal of different single- and analyzes the effect of At equal of different single- resistance and electrical coverhead lines electrical celetrical coverhead lines electrical celetrical coverhead lines electrical coverhead lines electrical celetrical coverhead lines electrical celetrical celetrica			Calculates the	Calculations of the	training Practical +	a test My analysis
Principle wires and inductance of single and chipter wires separated by a distances of each other, or different distances capacitance in single- and triple-phase system and analyzes the effect of At equal of different distances consisting of three wires system and analyzes the effect of At equal of different distances clearly and consisting of three wires system and analyzes the effect of At equal of different distances of a single-phase system consisting of three wires separated by a distances from the capacitance of a single-phase system and analyzes the wires separated by a discussion Collective wires separated by a			internal and	basic elements of		
inductance of single and sincluding Resistance - calculation Calculate the - internal and external inductance of a single wire Calculating the - inductance of a three-wire system consisting of three wires separated by a distance of At equal distances freach other, o different distances exchange locati Ninth 2			external	- overhead lines	_	
Single and sincluding Resistance - calculation Calculate the internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances fresh each other, of different distances system and analyzes the effect of At equal or different specific to the consisting of three wires separated by a distance of a single-nhase system and analyzes the effect of At equal or different since separated by a discussion Collective single-nhase system and analyzes the effect of At equal or different since since separated by a discussion Collective single-nhase system and analyzes the effect of At equal or different since since since since single-nhase system and analyzes the effect of At equal or different since since since single-nhase system and analyzes the effect of At equal or different since since since since single-nhase system and analyzes the effect of At equal or different since since single nhase system and single-nhase system and analyzes the effect of At equal or different single nhase single			resistance and	electrical		
Single and sincluding Resistance - calculation Calculate the internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distances of At equal distances of each other, o different distances system and analyzes the effect of At equal or different Single and single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances of each other, or different distances system at triple-phase system at three-phase system and analyzes the effect of At equal or different			inductance of	,calculations		
The eighth 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4			single and	:including		
The eighth 2 Calculate the - internal and external inductance of a single wire Calculating the - inductance of a three-wire system consisting of three wires separated by a distance of At equal distances freach other, o different distances exchange locati Calculates capacitance in single- and triple-phase system a three-phase system a three-phase system and analyzes the effect of At equal or different A test Academic at three-phase system a three-phase system and analyzes the effect of At equal or different			_			
The eighth 2 internal and external inductance of a single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances freach other, or different distances exchange locati Calculates Calculating the capacitance in single- and triple-phase system and analyzes the effect of At equal or different distances of the consisting of three wires separated by the effect of At equal or different distances of the capacitance of a single-phase system at three-phase system and consisting of three wires separated by the effect of the capacitance of a single-phase system and consisting of three wires separated by the effect of the capacitance of a single wire Calculating the solution exercises, discussion Collective the consisting of three wires separated by the effect of the capacitance of a single wire Calculating the capacitance of a three-wire system at the capacitance of a three-wire system and consisting of three wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires separated by the capacitance of a three-wire system and analyzes the wires sep			•	calculation		
The eighth 2 single wire Calculating the - inductance of a three-wire system consisting of three wires separated by a distance of At equal distances from each other, or different distances exchange locati Ninth 2 Calculates Calculating the capacitance in single- and triple-phase systems and analyzes the effect of At equal or different				Calculate the -		
single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances fr each other, o different distances .exchange locati Calculates capacitance in single- and single- phase system consisting of three wires separated by a distance of At equal distances fr each other, o different distances .exchange locati Calculating the discussion Collective a test Academic discussion Collective At equal or different				internal and external		
single wire Calculating the inductance of a three-wire system consisting of three wires separated by a distance of At equal distances fr each other, o different distances .exchange locati Calculates capacitance in single- and single- phase system consisting of three wires separated by a distance of At equal distances fr each other, o different distances .exchange locati Calculating the discussion Collective a test Academic discussion Collective At equal or different	The			inductance of a		
Calculating the - inductance of a three-wire system consisting of three wires separated by a distance of At equal distances freach other, o different distances .exchange locati Calculates capacitance in capacitance of a single- and triple-phase system at three-phase system and analyzes the effect of At equal or different distances discussion Collective Calculating the inductance of a capacitance of a capacita		2				
Ninth Inductance of a three-wire system consisting of three wires separated by a distance of At equal distances freach other, o different distances .exchange locati Calculates Calculating the capacitance in single- and single-phase system at triple-phase systems and analyzes the effect of At equal or different				_		
three-wire system consisting of three wires separated by a distance of At equal distances freach other, o different distances .exchange locati Calculates Calculating the capacitance in single- and triple-phase system and analyzes the effect of At equal or different distances discussion Collective three-wire system consisting of three wires separated by At equal or different						
Calculates capacitance in single- and triple-phase systems and analyzes the effect of Consisting of three wires separated by a distance of At equal distances freach other, o different distances .exchange locati Calculating the- capacitance of a single-phase system a three-phase system a three-phase system and analyzes the wires separated by At equal or different						
Ninth Wires separated by a distance of At equal distances freach other, or different distances .exchange locati Calculates Calculating the capacitance in single- and single- phase system at triple-phase system a three-phase system consisting of three wires separated by effect of At equal or different				-		
Ninth 2 Calculates capacitance in single- and triple-phase system and analyzes the effect of At equal distances from each other, or different distances capacitance of a single- and triple-phase system at three-phase system consisting of three wires separated by At equal or different At equal distances from each other, or different solution exercises, discussion Collective Solution exercises, discussion Collective a test Academic discussion Collective				_		
Ninth At equal distances freach other, of different distances exchange locati Calculates capacitance in capacitance of a single- and triple-phase system a three-phase system consisting of three analyzes the effect of At equal or different At equal distances freach other, of distances solution exercises, discussion Collective a test Academic discussion Collective						
Ninth Calculates Calculating the-capacitance in single- and triple-phase system and analyzes the effect of At equal or different Calculates Calculating the-capacitance of a discussion Collective Calculates						
Ninth Calculates capacitance in single- and triple-phase systems and analyzes the effect of different distances .exchange locati Calculating the- capacitance of a single-phase system a three-phase system consisting of three wires separated by At equal or different						
Ninth Calculates capacitance in single- and triple-phase systems and analyzes the effect of Calculating the- capacitance of a single-phase system a three-phase system consisting of three wires separated by At equal or different Calculating the- solution exercises, discussion Collective						
Ninth Calculates capacitance in single- and triple-phase systems and analyzes the effect of Calculating the- capacitance of a single-phase system a three-phase system consisting of three wires separated by At equal or different Solution exercises, discussion Collective						
Ninth Capacitance in single- and single-phase system a three-phase system consisting of three analyzes the effect of Capacitance of a single-phase system a three-phase system consisting of three wires separated by At equal or different			Calculates		i	a test Academic
Ninth 2 single- and triple-phase system a three-phase system consisting of three analyzes the effect of At equal or different single- and single-phase system a three-phase system and consisting of three wires separated by a three-phase system and consisting of three wires separated by a three-phase system and consisting of three wires separated by a three-phase system and consisting of three wires separated by a three-phase system and consisting of three wires separated by a three-phase system and consisting of three wires separated by a three-phase system and consisting of three wires separated by a three-phase system and consisting of three wires separated by a three-phase system and consisting of three wires separated by a three-phase system and consisting of three wires separated by a three-phase system and consisting of three wires separated by a three-phase system and consisting of three wires separated by a three-phase system and consisting of three-p				_	· .	
Ninth 2 triple-phase system consisting of three analyzes the effect of At equal or different			_			
systems and consisting of three analyzes the wires separated by effect of At equal or different	NT* /3					
analyzes the wires separated by effect of At equal or different	Ninth	2				
effect of At equal or different	1		1			
distances from each				distances from each		

		distances and	other, and they		
		.site switching	.exchange locations		
		review	Solve various	session Review,	a test shor
tenth	2	Solution Issues	problems for the	exercises Safiya	Academi
tentn	_	from Weeks	seventh and eighth		
		previous	weeks		
		Analyzes	Solving short lines,	fee circles Electrical	+ Drawing circle
		short and	including	+ Applications	geometry problem
		medium lines	representing them as		
		and	an electrical circuit		
		represents	and calculating their		
		them with	.efficiency		
		electrical	The solution of the		
eleventh	2	circuits(T ,π)	intermediate lines is		
		and,	:divided into		
		calculates	T- shaped electrical		
		their efficiency	.circuit		
		v	Represent it as an		
			electrical circuit in		
			the shape of the		
			letterri.		
		Learn about	Overhead	View videos + view	a report Practical
		the types of	transmission line	models of insulators	Tes
		air transport	insulators, their		
		insulators, the	,types, shapes		
twelfth	2	phenomenon	installation		
**********	_	of discharge	discharge		
		its causes and	phenomenon, its		
		methods of	causes, and methods		
		.treatment	.used to get rid of it		
		knowledge	- Ground cal	Use Models or Fees	a report M
		ingredients	- compone		researc
thirteenth	2	Midwives floor	classification - range	Grapine	researe
		And its types	cables		
		procedure	Calculating	workshop work ,	a test technica
		Accounts	capacitance and	solve Issues	Academi
		Capacity And	inductance for single-	SUIVE ISSUES	Acaucini
fourteenth	2	the	pole and three-pole		
		conversation	grounding cables		
		For midwives	grounding cables		
		to understand	Voltage gradient in	Case studies of	a too
		Gradient	cables, loss	+ collapse	a tes comprehensiv
fifteenth	2	effort And lost	calculation and	discussion of causes	ultimat
meenin		Insulation in		and prevention.	uiuillat
		Midwives	angle in insulators, cable breakdown	anu prevenuon.	
		Milawives	cable breakdown		

practical (1 of the curriculum for Electrical Networks Details curriculum) two hours per week

13 -(C	13-(Course structure B-(Practical vocabulary					
1	-4-1	Required learning	II.:///	Teaching	Evaluation	
week	watches	outcomes	Unit name/topic	method	method	
the first	2	recognize The student on ingredients laboratory Electrical, Appliances basic, mechanism Its operation and procedures Safety inside The laboratory	Learn about laboratory equipment	session Introductory inside Lab + Presentation My explanation Practical + Discussion around Use Tools .	note performance The student inside Lab + Questions directly on ingredients Devices + Evaluation behavior Safety	
Second and third	2	can The student from delivery Transformers Y way and download it With loads balanced And other balanced , analytical impact that on an effort tie	Loading distribution transformers with balanced and unbalanced resistive and inductive loads in they shape, ∆ and the effect of that on the neutral voltage	to implement experiments Process for connecting transformers With loads Various + Discussion Results within Groups .	a report practical detailed on all Experience + Evaluation performance during Delivery + Questions Analytical in end Experience	
Fourth	2	can The student from to implement practical synchronization between Converter synchronicity Trilogy The stage and the network Foreign Ministry and analysis Her steps	Synchronization between the three- phase synchronous transformer and the external network	to explain theoretical For synchronization + execution practical For the experience with tracking Signs Synchronization	evaluation success practical Synchronization + Report Detailed + Discussion around Mistakes potential	
Fifth	2	He paints The student curve Pregnancy Based on to Data Taken from experience And explains behavior order under Loads Different	Draw a load curve	to gather Data from experiments Previous + Training on The drawing The graph And analysis.	delivery fee My statement Explanatory + Questions Analytical on behavior Pregnancy	
Sixth	2	Explains The student Ways to improve Factors ability, and applies practically Use Capacitors To improve it.	Improving the power factor of networks	to explain theoretical around concept Factors Ability + Execution an experience Using Capacitors.	a report It contains on the accounts Improvements + Testing practical To measure bezel Improvement	
Seventh	2	It is concluded The student Elements line Transfer (Study the transmission line	procedure Tests practical Using	a report detailed With results +	

eighth and ninth	2	resistance, impedance, inductance) from Tests The palace And pregnancy. compare The student between features line Transportation when suppository In types different from Loads (resistive, inductive, capacitive) from where voltage And the current.	model and calculate the basic elements by load and short circuit .test Study of the characteristics of the transmission line model at the receiving end when loaded with resistive, inductive and capacitive, loads	Models Lines Transport + Analysis Readings . to implement experiments Multiple with all type from Loads + Discussion Differences .	questions Oral on accuracy Measurements And its interpretation . a report Comparison + Representation Results in Tables Fees + Test practical basic .
tenth	2	It is calculated The student amount drop effort in model line Transport, compare that With the results expected	Voltage drop on transmission line model	measurement Voltage on Lines during Download + Compare values The calculated And the measurement.	analysis Results Written + Test applied small.
eleventh	2	Applies The student Techniques compensation Facial For lines Transportation And he rules on Its effectiveness in to improve Performance.	Face compensation for power transmission lines	to explain detailed on Techniques Compensation + Experience Using simulation or tools Laboratory	a report Lab + Discussion Artistic around impact Compensation
twelfth	2	He specifies The student type Holidays in cables floor building on road Delivery And readings, whether He was The stage connected On the ground or castle between Phases	Identify faults in ground cables using One phase -1 connection to the In case -2 ground of short circuit between phases	an offer Scenarios Faults + Implementation experiments a statement Holidays Practically.	analysis condition Holidays in Report + Questions Applied To determine Holidays building on Measurements .
thirteenth and fourteenth	2	Review The student experiments previous In a way comprehensive And corrects Concepts wrong, with Strengthening Skills The process.	General review of experiences	Sessions review practical Group + Replay to implement parts from experiments According to The need	sharing Active + Test preparatory practical or My theory
fifteenth	2	Applies The student all Skills acquired in exam practical comprehensive Covers all experiments	Practical exam with experiments	a test practical complete Includes to implement an	revision immediate According to performance

	experience and analysis Its	
	results under	Evaluation
	supervisior	Written
	direct	

68. Curriculum Development Plan

Continuously updating the curriculum to keep pace with developments in the :labor market (Curriculum Update Committee, Scientific Committee) such as

- 4- Updating the curriculum to keep pace with developments
 - . in the field of electrical networks
- 5-. Holding scientific seminars with specialists in the field
- 6- Monitoring scientific developments in electrical network systems and power generation

69. infra	astructure	
Classroor	ns, laboratories and worksho	There are classrooms equipped to accommodate students and prepared to provide a suitable learning environment
11- Req	uired textbooks	Electrical Networks Lectures Booklet 1 " Electrical Machines and Power Systems" Study and Analysis
12- (Ma	nin References (Sources	"Power System Analysis "2 John J. Grainger & William D. Stevenson
'	commended books and es (scientific journals etc	" Transmission and distribution of electrical energy" Author: Dr. Mahmoud Gilani Publisher: Dar Al-Fajr for Publishing and Distribution - Cairo
ڪ) ,Eld ,websit	ectronic references ses	https://www.qrcodechimp.com/pa ge/srcyif3uvk4a4

70. Educational institution

Ministry of Higher Education and Scientific Research / Northern Technica University / Al-Hawija Technical Institute

71. Scientific Department

Department of Electrical Technology

72 Course Name/Code

1 Maintenance Workshop

73. Available attendance forms

In presence

74. semester/year

Decisions

75. (Number of study hours (total

45 = 15*3

76. Date this description was prepared

19-6-2025

77. (Course objectives (general objectives of the course

The student will also be able to:

- 1. Uses various equipment, tools and components used in workshops.
- .2 Acquires technical skills and experience in the field of various electrical maintenance works.
 - 3. Gain self-confidence to practice electrical engineering work, track fau and learn how to repair them. .4

78. Course outcomes, teaching, learning and assessment methods **Course outcomes**

A- 1 identification The student on works Maintenance For devices Electrical

A-2 identification The student on Business Technical electrical in Track Malfunctions For devices electrical And get to know on How to Fixit A -3 identification The student on various the components electrical and electronic

How to Use it in building circles Electrical

A-4 identification The student on How to Unlock And installation

Yes In the face of machines Electrical A -5 identification The student on How to to examine machines electrical after Wrapit

Outputs	Teaching and learning methods	Evaluation methods
knowledge A-1 Introducing the student to electrical appliances maintenance work. A-2 Introducing the student to electrical technical work in tracing faults in electrical devices and learning how to repair them. A-3 Introducing the student to the various electrical and electronic components and how to use them in building electrical circuits. A-4 Introducing the student to how to disassemble and assemble electrical machine parts	7. Theor etical lectures 8. Grou p discussions 9. Case studies	9. Theoretical tests 10. My work performance evaluation 11. Safiya's participation 12. Research reports
B- Skills B1 - Acquire the skill of assembling DC machines, methods of rewinding DC machines. B2 - Acquire the skill of designing and studying three-phase electrical transformers. B3 - Acquire the skill of rewinding Stator coils of a three-phase induction motor and a squirrel cage. B-4 Acquire the skill of assembling the engine and testing the engine under the load assigned to it. B-5 Acquire the skill of periodic maintenance of a split-phase motor, conduct the necessary tests on it, identify faults and methods of treating them.	7. Interactive lectures 8. Real-life case studies 9. Field visits to facilities	9. Short and final tests 10. Performa nce evaluation during practical training 11. Applied projects 12. Field visit reports
C-Values C-1 Practical skills enable The student researches identifying and treating faults in electrical appliances. C-2 Practical skills that enable the student to cooperate In working with others. C-3 Maintaining the safety of the equipment and furniture in the workshop, as they are public property. C-4 The student's ability to think in an organized manner and thus make decisions	7. Interaction and application 8. modern technologies 9. group learning	9. Continuous assessment 10. Performa nce evaluation during practical training 11. Final evaluation 12. Field visit reports

ame of the material		W	eekly ho	urs	Numb
Maintenance	Second	N	Α	M	er of
¹ Workshop	academic year				units
		0	3	3	3

course 1 Details of the curriculum for the Maintenance Workshop practical curriculum only) three hours each week)

Course	structur	re -10	,		
week	watches	Outputs Learning required	or the topic / name Unity	Teaching method	Evaluation method
the first	3	acquisition Skill and experience Technical in Unity theme	 installation machinery The current continuous Ways re He wrapped machinery direct current fee Detailed 	to implement exercises	evaluation continuous
the second	3	acquisition Skill and experience Technical in Unity theme	stabilizing Brushes - How to cleaning surface Units the situation Applied For brushes carbon - carbon	to implement exercises	evaluation continuous
the third	3	acquisition Skill and experience Technical in Unity theme	a test Communication And the pieces And isolation	to implement exercises	evaluation continuous
the four	3	acquisition Skill and	Files member Production For the birth	to implement	evaluation
		experience Technical in	stream continuous- to prepare and	exercises	continuous
		topic Unity	collecting information- He wrapped file		
			member Production And install Files on		
			Examples Simplified on Sewers the heart Iron Wrap		
Fifth	3	acquisition Skill and	Insulation Palo Varnish- drying - delivery The	to implement	evaluation
		experience Technical in	children Shelf Final- choice Final For	exercises	continuous
		topic Unity	member Production- fee complete For		
			member Production		
			Fully His files And its connections and its uses		
Sixth	3	acquisition Skill and	Files field- to gather Information For files	to implement	evaluation
	experience Technical in Unity theme	parallelism And the sequence- formation	exercises	continuous	
			Connectors same The clip The big one-		
			Properties Domain files succession And		
			parallelism Ways Tie it in god.Wrap on		

			. Template		
Seventh Eighth+	3	acquisition Skill and experience Technical in	a job Files And install Monogamy Poles-	to implement exercises	evaluation continuous
Ligituit		Unity theme	Test Complete machine- converter	CACICISCS	Continuous
			electrician- to equip And cut sheets Iron		
			Heart And collect it He wrapped Files And		
			isolation Varnished and training		
			simplified before Form on a job template Wrap		
Ninth	3	acquisition Skill and	delivery And connect The children Shelf	to implement	evaluation
		experience Technical in	- a test Polarity- a test Listen Arriya - a	exercises	continuous
		topic Unity	test The contract And test Insulation in		
			Files.		
			Examples on design And replay He wrapped adapter small ability		
tenth	3	acquisition Skill and	- D A ship Transformers The three Phases	to implement	evaluation
		experience Technical in	design basic Detailed drawing	exercises	continuous
		topic Unity			
eleventh	3	acquisition Skill and	to equip And cutting sheets the heart Iron And Installation And - Wrapping files - collect it	to implement exercises	evaluation continuous
		experience Technical in	drying - isolation Palo Varnish	0.000	
twelfth	3	topic Unity acquisition Skill and	a toot lagkage a toot Liston Arriva a toot Delarity	to implement	evaluation
twellti	3	experience Technical in Unity theme	a test leakage - a test Listen Arriya a test Polarity	exercises	continuous
the third	3	acquisition Skill and	Engines deductive(Hittah) re He	to implement	evaluation
ten		experience Technical in Unity theme	wrapped Files fixed member For engine	exercises	continuous
			inductive tripartite Phases The cage		
			squirrel- account And drawing shape		
			The year For files And Remove		
			Materials Insulating and cleaning		
			sewers- isolation Sewers Member		
			constant-He wrapped		
			Files And its formation then Install it on sewers		
the fourteen	3	acquisition Skill and experience Technical in Unity theme	He wrapped And delivery I Shelf Files And test Listen Arriya	to implement exercises	evaluation continuous

fifteenth	3	acquisition Skill	to choose - to choose The contract in Files	to implement	evaluation
		and experience Technical in	Select leak - Insulation And its measurement	exercises	continuous
		Unity theme	Ground For the engine		

- 11 structure Infrastructure :	
1-books The reporter Required	The booklet Laboratory private In the workshop
2- the reviewer Home (Sources)	- 1 He wrapped Engines electrical ,.Dr moon
	- 2 Reference in Transformers electrical, Franklin Sticant,
	SA
A books References that	- 1Troubleshooting And maintenance machines Electrical Bank
Recommended It has(settings International For shapes Illustrative Technical.
magazines) Scientific, Reports	
,)	
for - the reviewer electronic, Sites Intern	et1 location The Institute Technical /Al-
	Rumaitha- 2Sites Companies Global

- 12 plan development The decision Academic :

- 1Participation in The state Art Different Private By the material To gain My coach The workshop expertise Bigger

2 examining on last what I reached for him Technology Modern in This is amazing The material .

	T 1 . 1	•	. • .	. •	
70	Educational	1110	†1 † 1	111A	n
79.	Educational	1112	นน	นแบ	ш

Ministry of Higher Education and Scientific Research / Northern Technica University / Al-Hawija Technical Institute

80. Scientific Department

Department of Electrical Technology

81 Course Name/Code

Programmable Logic Control(PLC)

82 Available attendance forms

My presence

83. semester/year

Decisions

84. (Number of study hours (total

45 = 15*3

85. Date this description was prepared

19-6-2025

86. (Course objectives (general objectives of the course

1- identification The student on principles Control logical The programmer .

-2 Introducing the student to how programmable logic controls the operation of equipment and devices for various purp

87. Course outcomes, teaching, learning and assessment methods

Course outcomes

A-1 identification The student principles a job

Control logical The programmer. A - 2

identification The student Special Azt Use the

PLC

A- 3 identification The student System Store Information in the PLC

A-4 Introducing the student to the PLC instructions A-5 Introducing the student to the PLC programming languages

Outputs	Teaching and learning methods	Evaluation methods
 Knowledge A-1 identification The student principles a job Control logical The programmer. A- 2 identification The student features Use the PLC 	10. Theor etical lectures 11. Grou p discussions 12. Case studies	13. Theoretic al tests 14. My work performance evaluation 15. Safiya's participation 16. Research reports
B- Skills B- 1acquisition The student skill programming PLC B- The student acquires the skill of 2 using PLC to control the field in factories .and laboratories B- 3 acquisition The student skill maintenance Units the PLC	10. Interactive lectures 11. Real-life case studies 12. Field visits to facilities	13. Short and final tests 14. Performa nce evaluation during practical training 15. Applied projects 16. Field visit reports
C-Values C-1 Encouraging the development of students' professional and technical thinking. C-2 Working to develop a distinguished personality for the student by developing cultural and social awareness that qualifies him, after graduation, to contribute effectively to serving his community. C-3 Expanding the cognitive horizon and using brainstorming to generate new ideas. C-4 Practical skills that enable the student to usePLC applications in future life.	10. Interaction and application 11. modern technologies 12. group learning	13. Continuo us assessment 14. Performa nce evaluation during practical training 15. Final evaluation 16. Field visit reports

lame of the material		Weekly hours	
----------------------	--	--------------	--

Programmable Logic	Second	N	Α	M	Numb
Control	academic year				er of
					units
		1	2	3	3

theoretical and (1 Details of the curriculum for Electrical Networks practical curriculum) three hours per week

10 structure Course: name Unity/or the topic Learning Evaluation week road education watches outcom method es Required Chapter 1 Introduction to Programmable Controllers 1-Understan Lectures+ evaluation direct the first 3 1 Definition ding the Applications practical + Exams 1-2 A Historical Background topic of 1-3 Principles of Operation unity 1-4 PLCs Versus Other Types of Controls. 1-5 PLC Product Application Ranges. 1-6 Ladder Diagrams and the PLC 1-7 Advantages of PLCs Number Systems and Codes Understan Lectures+ evaluation direct the second 3 2-1 Number Systems ding the Applications practical + Exams 2-2 Number Conversions topic of 2-3 One's and Two's Complement 2-4 Binary Codes unity 2-5 Register Word Formats... Chapter 3 Logic Concepts Understan evaluation direct Lectures+ the third 3 3-1 The Binary Concept ding the Applications practical + Exams **Logic Functions** topic of 3-3 Principles of Boolean Algebra and Logic unity PLC Circuits and Logic Contact Symbology Processors, the Power Supply, and Programming Dev es Lectures+ Understan evaluation direct the four 3 Introduction 4-1 ding the Applications practical + Exams 4-2 **Processors** topic of 4-3 **Processor Scan** unity 4-4 **Error Checking and Diagnostics** 4-5 The System Power Supply 4-6 Programming Devices

Fifth	3	Understan	The Memory System and I/O Interaction	Lectures+	evaluation direct
	3	ding the	5-1 Memory Overview	Applications practical	+ Exams
		topic of	5-2 Memory Types5-3 Memory Structure and Capacity		
		unity	5-4 Memory Organization and I/O Interaction		
Sixth	2	Understan	Configuring the PLC Memory—I/O Addressing 5-	Lectures+	evaluation direct
Sixui	3	ding the	6 Summary of Memory, Scanning, and I/O Interaction 5		
		topic of	7 Memory Considerations.	applications practical	Lamis
		-			
		unity	The Discourte Imput/Output System	T	1 (1)
Seventh	3	Understan	The Discrete Input/Output System 7-1 Introduction to Discrete I/O Systems		evaluation direct
		ding the	7-2 I/O Rack Enclosures and Table Mapping	Applications practical	+ Exams
		topic of	7-3 Remote I/O Systems.		
		unity	7-3 PLC Instructions for Discrete Inputs		
			7-5 Types of Discrete Inputs.		
The eighth	3	Understan	PLC Instructions for Discrete Outputs	Lectures+	evaluation direct
1110 01811111	5	ding the	8-1 Discrete Outputs	Applications practical	+ Exams
		topic of	8-2 Discrete Bypass/Control Stations		
		unity	8- 3 Interpreting I/O Specifications 8-4 Summary of Discrete I/O		
NT d		Understan	The Analog Input/Output System	Lectures+	evaluation direct
Ninth	3		9-1 Overview of Analog Input Signals	Applications practical	
		ding the	9-2 Instructions for Analog Input Modules.	Applications practical	+ EXAMS
		topic of	9-3 Analog Input Data Representation.		
		unity	9-3 Analog Input Data Handling		
			9-5 Analog Input Connections.		
			9-6 Overview of Analog Output Signals	_	
tenth	3	Understan	Instructions for Analog Output Modules		evaluation direct
		ding the	10-8 Analog Output Data Representation 10-9 Analog Output Data Handling	Applications practical	+ Exams
		topic of	10-10 Analog Output Data Handing 10-10 Analog Output Connections		
		unity	10-11 Analog Output Bypass/Control Stations		
eleventh	2	Understan	Special Function I/O and Serial Communication Inter-	Lectures+	evaluation direct
Cicveitiii	3	ding the	axing	Applications practical	
		topic of	11-1 Introduction to Special I/O Modules	ippiications practical	1 DAMIIIS
		unity	11-2 Special Discrete Interfaces		
		unity	11-3 Special Analog, Temperature, and PID Interfaces		
			11-4 Positioning Interfaces.		
			11-5 ASCII, Computer, and Network Interfaces 11-6 Fuzzy Logic Interfaces		
			8-7 Peripheral Interfacing		
the second	2	Understan	Programming Languages	Lectures+	evaluation direct
the second	3	ding the	12-1 Introduction to Programming Languages	Applications practical	
ten		_	12-2 Types of PLC Languages.	applications practical	LAGIIIS
		topic of	12-3 Ladder Diagram Format 12-		
		unity	4 Ladder Relay Instructions		
			12-5 Ladder Relay Programming		
			12-6 Timers and Counters		
			12-7 Timer Instructions		

the third ten	3	Understan ding the topic of unity	Counter Instructions 13-9 Program/Flow Control Instructions 13-10 Arithmetic Instructions 13-11 Data Manipulation Instructions. 13-12 Data Transfer Instructions. 13-13 Special Function Instructions 13-14 Network Communication Instructions 13-15 Boolean Mne.	Lectures+ Applications practical	evaluation direct + Exams
the fourteen	3	Understan ding the topic of unity	PLC System Documentation 14-1 Introduction to Documentation 142 Steps for Documentation 14-3 PLC Documentation Systems -4 Conclusion.	Lectures+ Applications practical	evaluation direct + Exams
fifteenth	3	Understan ding the topic of unity	PLC Start-Up and Maintenance 15-1 PLC System Layout 15-2 Power Requirements and Safety Circuitry 15-3 Noise, Heat, and Voltage Considerations 15-4 I/O Installation, Wiring, and Precautions	Lectures+ Applications practical	evaluation direct + Exams

Infrastructure:	
1-banksalibe ineparture Required nt Private With 1	Laccitu Commonde programmer
(PLG) mariaman Hama (Cannaca)	the marriagram Deleted Drythe meetonicle and existing I have library. The
2-the reviewer Home (Sources)	the reviewer Related By the material and existing I have library The
.2 examining on last what I reached for him Technolog	notitaten in Applications the .PLC
A books References that 3 stay Do Art Developmental For the cadre laboratory Whi Recommended It has(books and magazines Scientific related to the subject of PLC: Basics Develop Their ability in training Students in the Line Instructions , applications.
pintugaZinesy Scientific, Reports	
2.4 th open laboratory specialized With material the PLC	
for - the reviewer electronic, Sites Internet	locationThe Institute sources Internet different, Sites Companies
Uses	Global

88. Educational institution

Ministry of Higher Education and Scientific Research / Northern Techni University / Al-Hawija Technical Institute

89. Sectionscientific

Department of Electrical Technology

90. Course Name/Code

industrial establishments ELTP208

91. Available attendance forms

in presence

92. semester/year

Decisions

93. Number of study hours(kidney)

4*15=60

94. Date this description was prepared

19-6-2025

- 95. Course objectives (general objectives of the course)
 - 1- Training the student on the methods of foundationsIndustrialComparis between different types of foundations
 - 2 Understand the main concepts and know the rules and laws used calculating electrical loads and cable si

 The capacity of the circuit breaker to be connect

- 3- Introducing the student to the types of cables and the load capacity of ea cable. To the maximumA current that can pass through
- 4 -Preparing the student to study the various calculations required in electri installations and to become familiar with the various theories for studying those calculation

5Preparing and enabling the student to establish factories and heavy equipment and how control them from equipment used in factories and electrical laborator

- 96. OutputsThe decisionTeaching, learning and assessment methods **Course outcomes**
- 17. Understanding industrial basics (voltage, current, resistance).
- 18. Installation of foundations(Lighting, control circuits, factory establishment motors).
- 19. Use of protection devices (breakers, fuses, grounding and controls).
- 20. Reading electrical diagrams And implement it practically.
- 21. Implementing safety procedures And risk prevention.
- 22. Breakdown maintenance(Detect and repair common faults).

identificationIt is a theoretical-practical course that aims to teach students the basics of designing, installing, and maintaining electrical systems in facilities (such as homes, laboratories, and workshops), which the course seeks to achieve for students.

Its importance:

- 1- Providing safe electricityFor homes and factories.
- 2- Prevent fires and electric shocks.
- 3- Operate machinery and equipment efficiently.
- 4- Meet the requirements of regulations and standard specifications.
- 5- Facilitate maintenance and reduce breakdowns

How is it determined?:

- 25. Study of labor market needs
- 26. Review of professional standards
- 27. Evaluate students' capabilities and the workshop
- 28. Formulate clear and measurable goals
- 29. Linking with other courses
- 30. Periodic update according to developments

Outputs	Teaching and learning methods	Evaluation methods
ζ- knowledge	rearming metrious	
A1-During the academic year, the student learns the basics of electrical installations. A2-The student learns about electrical installations, how to read them, and the factors affecting them A3-The student learns the types of connections used in home installations A4-knowledgeSafety standardsand the risk of electric shock	 Theoretical lectures using presentations. Real-life case studies of foundation failures. Short research on modern distribution systems 	1- Written tests (essay and objective questions). 2- Analytical reports on protection systems. 1-Theoretical tests 2- Practical tests 3- Reports
B - Skills B1-Ability to design and conduct experiments, analyze and interpret data. B2-Ability to identify, formulate and solve problems. B3 -Mastery of the necessary mathematical, basic and engineering sciences. B4-Ability to use the techniques and skills required in the work.	1- Practical experiments (workshops on electrical installations). 2- Simulation using programs such as:AutoCAD Electrical. 3- Field visits to electrical construction sites	1- Practical performance tests (such as installing a lighting circuit). 2- Project evaluation (design and implementation of a control circuit)
C- Values A1-Commitmentwith safety standards at work A2-to bearProfessional responsibilityIn implementing the foundations A3-the jobWith a teamTo implement electrical projects A4-respectStandards and regulations(such as delivery terms)	1- Group discussions on professional ethics. 2- Role playingFor situations that require ethical decisions. 3- Observe and imitate models of distinguished professionals.	1- Peer evaluationFor team performance. 2- Observing behavior during practical training (commitment to safety). 3- Self-reports on practical experiences

97. Course structure A- (Theoretical vocabulary)						
week	watches	Required learning outcomes	Unit name/topic	Teaching method	Evaluation method	
the first	2	Identify cables-Cable components and	• cables-Cable components and	An introductory lecture about the method + classification	,	

		operating voltage, cable	operating voltage,	of materials	classification of
		• • • • • •	cable types	(conductor,	materials
		types according to the	according to the	semiconductor,	
		type of insulation	type of insulation	insulator)	
		(MIMPVCTRSVRI) and	(MIMPVCTRSVRI)		
		paper cables with lead	•		
		sheath.	and paper cables		
			with lead sheath.	701 4° 1	T31 4 * 1
		8-Student understanding of the basicsCable extension and	Cable laying	Theoretical explanation of the	Electrical circuit
		faults	methods, possible	principles of electricity	components
		9-Get to knowIdentify faults	faults in cables, how	(potential difference,	identification
the second	2	inelectrical circuits	to determine the	current, resistance) +	test
			type and location of	presentation of the	
			the fault.	components of an	
				electrical circuit	
		10-Introducing the student	Protection of	Study of the properties	Practical
		toHow to protect and handle	electric motors,	of copper and	Evaluation
the third	2	motors from overcurrents	protection against	aluminum (electrical, mechanical) + their	(Comparison between
			overcurrents due to	applications	Copper and
			short circuits	applications	Aluminum
		4- TStudent supervisorHow to	Protection again	Explanation of	
T 41		protect and handle motors	overcurrents due	insulating materials	Short test on the
Fourth	2	from overcurrents	increased loads	(air, oil, solids) +	properties of insulators
				permittivity laws	insulators
		6-Study of propertiesLines	Protection against	Lecture on Magnetism	Students are
		and how to deal with the fall of	the disappearance	(Force, Magnetic	assessed
		one of the phases	or fall of one of the	Materials, Laws)	individually by
Fifth	,		phases and		giving them the
riitii	2		protection against		opportunity to participate in
			voltage drop		the class by
					answering
					questions.
		6-Understand the	Circuit breakers,	Application of	Short test
		topicbreakersmagnetic circuits	types (oil, SF6,	Kirchhoff's laws to	andEvaluate
Sixth	2		vacuum breakers,	magnetic circuits	participation ir
			air pressure		discussions
			breakers)		
		4-Introducing the student	Substations, Busba		Theoretical tes
Seventh	2	toSubstations, Busbars, and	Pneumatic Switchbo	properties (tensile,	on mechanica
Seventin	-	Switchboards	Classification of	stress, elasticity)	properties
			Control Par		
		5-Study stagesLighting and	Lighting, basics of	Explanation of the	Power
		the foundations of optical	optical engineering,	stages of energy transmission	transmission
The	2	engineering	light sources,	(generation,	diagram ⊣ distributior
eighth	-	6-Knowing how electrical	lighting systems and	transmission,	panels
		energy is generated,	their types, light	distribution) +	explanation
		transmitted and distributed	measuring devices	distribution panels	,p.:33140101
		7-Solving various questions to	Solved	Theoretical	Short test or
Nim41-	,	strengthen the student's	questions on	explanation of	types of
Ninth	2	knowledge of the subject, such	how to design	generation,	stations and
			and calculate		

		as lighting for halls, workshops, and laboratories.	electrical lighting for	transmission and distribution systems.	transformer capacities
		8-Teaching a student how to supply electricity to a buildingIn additionTo know the capacity of the electrical transformers used	halls, workshops and courtyards	+Visual presentation of building power supply diagrams + practical examples. +Workshop on installing distribution panels	capacities
tenth	2	3-Knowing and studying electrical switches and their types 4-Teaching the student toInsulation and grounding	Grounded system and isolated system comparison in case of fault, equalities and advantages of each system	Explanation of electrical switch types + drawing of application circuits	Circle drawing test using keys.
eleventh	2	7-Introducing the student to the protection devices used inIndustrial establishments andelectrical 8-Learn about fuses, their types, advantages and disadvantages 9-Teaching the student how to select a fuse and coordinate the fuses in the same electrical circuit.	Voltage drop in single-phase and three-phase feeders, meaning of voltage drop, causes of voltage drop, damage resulting from voltage drop, testing feeder sizes (cables), factors on which current rates depend	Study of fuses (types, specifications, how to choose them)	Evaluating the selection of suitable fuses for different circuits
twelfth	2	3-Solve questions to strengthen the student	Solved questions on voltage drop calculations	Sweet questions and training	Short tests andEvaluate participation in discussions
thirteenth	2	7-Study of electrical wiring systems 8-Knowing how to number wires and cables at work and taking into account the colors of the wires whenEstablishment	Technical methods of wiring, study of wiring systems, wiring methods, and methods used for this	View wiring systems(BB, TRS, PVC) + Wire numbering	Wiring systems knowledge assessment.
fourteenth	2	5-Teaching the student the typesFoundationshousehold electrical 6-Know the advantages and disadvantages of each type, safety requirements and general appearance.For establishmentAnd the tools used in it	Establishing dangerous places (examples of dangerous places) The specifics of establishing in dangerous places and the steps that must be taken for that	Home Foundation Study (Safety Requirements, Tools, Cost)	Evaluate participation in discussions

fifteenth	2	6-studyGroundingKnowing its components and connection and connection equipment 7-Know the different ways to reduce resistance.Groundingand the necessary equipment and devicesGround it 8-Teaching the student the importance ofGroundingThe difference between grounded and ungrounded systems and measurement methods	substations,	for and	Lecture on grounding (components, measurement methods, importance)	Short tests andEvaluate participation in discussions
		measurement methods				

14- Course structure B-(Practical vocabulary)

week	watches	Required learning outcomes	Unit name/topic	Teaching method	Evaluation method
the first	2	4-Implementing safety procedures in workshops and factories. 5-First aid for electric shock. 6-Take fire prevention measures.	Warnings and precautions to be taken while working in workshops and factories, as well as training on how to provide first aid for electric shock and how to warn of fires.	Lecture and practical application of safety and first aid	Short theoretical test + practical application for first aid and safety
the second	2	Recognizing symbols for electrical tools and components.	Knowing the symbols for devices, tools, and all necessary pendants used in electrical installations	Display electrical symbols and classify tools	Symbol and Tool Classification Test
the third	2	Preparing cables for work-Peeling process- Preparing ends for reinforced and plastic insulated cables. Use of mechanical piston-Hydraulic crimping of the metal ends of the cable connectors	Preparing cables for work-Peeling process-Preparing ends for reinforced and plastic- insulated cables using a mechanical pressHydraulic crimping of the metal ends of the cable connectors	Practical training on Wasalti workTwist and T	Practical evaluationImplementation of Twist and T joints
Fourth	2	Use of fuses of all kinds (wireable)- Khartoum-High capacity circuit	Use of fuses of all kinds (wireable)- Khartoum-High capacity circuit	Practical application of my connectionMarried Joint and T with Weld	Evaluation of the quality of joints and welding(Married Joint and T)

					-
		breaker (HCCB) for	breaker (HCCB)		
		power circuit	for power circuit		
		protection including	protection		
		dismantling,	including		
		installation and fixing	dismantling,		
		using small circuit	installation and		
		breaker-Thermal	fixing using small		
		curve drawing of the	circuit breaker-		
		breaker	Thermal curve		
			drawing of the		
			breaker		
		Thermal and magnetic	Thermal and	Practical application	Check straight connections
		protection starters	magnetic	ofto implement	andT with welding
		(direct-on-line	protection starters	connectionStraight	
		starters) Use of	(direct-on-line	and T for CTS wires	
		starters with different	starters) Use of	with solder	
		operating voltages to	starters with		
Fifth	2	start the engine,	different operating		
		including internal	voltages to start		
		rewiring of the starter-	the engine,		
		Adjusting current	including internal		
		limits	rewiring of the		
			starter-Adjusting		
			current limits		
		The key to the knife	The key to the	Practical training	Aluminum joint and
		and how to use it to	knife and how to	forConnecting and	welding evaluation
		control an electrical	use it to control an	welding aluminum and	welding evaluation
Sixth	2	circuit-How to protect	electrical circuit-	paper cables	
Sixtii	1	the user from the	How to protect the	paper cables	
		dangers of sparks	user from the		
		uangers of sparks	dangers of sparks		
		Multiple keys-	Multiple keys-Use	Practical application	Circuit installation test
			of different types	ofInstalling a simple	(switch + lamp)
		Use of	of it-Use the	lighting circuit (switch	(switch + lamp)
		different types		9 9	
Seventh	2	of it-Use the	specified keys to end the movement.	+ lamp) with a	
Sevenui	-	specified keys	ena the movement.	systemCleat	
		to end the			
		movement.			
		Measuring ground	Measuring ground	Implementation and	Parallel Circuit
		resistance using a	resistance using a	practical application	Installation Evaluation
		ground meter-	ground meter-	ofInstalling two lamps	
		Measurement of the	Measurement of	in parallel in a	
		laboratory grounding	the laboratory	systemCleat	
The		network, ground	grounding	#J # 11 = = = = = = = = = = = = = = = = =	
eighth	2	leakage circuit	network, ground		
8		breakers, and selection	leakage circuit		
		of the disconnecting	breakers, and		
		current	selection of the		
		Current	disconnecting		
			current		
		1- Using voltage		Practical training	Evaluation of lighting, fan
		breakers for leakage	1- Using voltage	forInstallation of	and socket circuit
Ninth	2	current 2- Creating an	breakers for	lighting circuit, fan	installation
14111111		automatic circuit to fill		and socket with	instanation
		automatic circuit to fill	leakage		
			current 2-	separate control	1

	1				
		the tanks using a float	Creating an		
		switch	automatic		
			circuit to fill		
			the tanks using		
			a float switch		7 17 4 4 4 4 7 4
		Use specific keys	Use specific keys	Training onTwo-way	Ladder circuit installation
		1- In elevators, a	1- In elevators, a	lamp control circuit	test
		circuit is created to	circuit is created to	installation (ladder	
		achieve the elevator	achieve the	system)	
		operation theory and	elevator operation		
		implement it.	theory and		
		2- Use the specified	implement it.		
40416	2	keys in the crane to	2- Use the specified		
tenth	2	create a circuit that	keys in the crane to create a circuit		
		shows the operation of the crane in the	that shows the		
		transport and	operation of the		
		ascension states and	crane in the		
		implement the circuit.	transport and		
		implement the circuit.	ascension states		
			and implement the		
			circuit.		
		Stopping the engines	Stopping the	Practical application	3-Place Control Circuit
		(braking) in a way	engines (braking)	ofInstalling a 3-way	Installation Evaluation
		1- Direct currentDC	in a way	control circuit	
		Brake	1- Direct	usingTwo Pole Relay	
eleventh	2	2- Reverse	currentDC Brake	using 1 wo 1 ore iteray	
		currentCounter	2- Reverse		
		current braking	currentCounter		
			current braking		
		3D electrical energy	3D electrical	Practical training	Multi-lamp circuit
		meters-Disassembly	energy meters-	forInstalling a control	installation evaluation
		and assembly	Disassembly and	circuit for multiple	
		Connect and play-How	assembly	lamps usingTwo-way	
		to set the meter to	Connect and play-	switch.	
twelfth	2	measure power factor	How to set the		
twentn	2	using an ammeter.	meter to measure		
		Using a magnetic ring	power factor using		
		to measure current	an ammeter. Using		
		and voltage.	a magnetic ring to		
			measure current		
			and voltage.		
		Making a control	Making a control	Practical application	Test andFluorescent lamp
		circuit to operate a	circuit to operate a	ofInstallation and	operation check
thirteenth	2	three-phase induction	three-phase	operation of a	
		motor using contactors	induction motor	fluorescent lamp	
		in the following way?	using contactors in	withThermal Relay	
		(ID) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	the following way?	T 1 440 3	
		Three-phase induction	Three-phase	Implementation and	Evaluation of installing
	1	motor starter switch (induction motor	practical application	two fluorescent lamps in
		/Y) Mapping	starter switch (/Y)	ofInstalling two	series
fourteenth	2	(connection and	Mapping	fluorescent lamps in series with Chook.	
		disconnection diagram	(connection and	series with Chook.	
		for different switch	disconnection		
	1	states) Studying	diagram for different switch		
	L	possible faults.	unierent switch		

		Rotary switches and	states) Studying		
		their use in starting a	possible faults.		
		three-phase induction	Rotary switches		
		motor-to reverse the	and their use in		
		trend-To operate a	starting a three-		
		motor from two	phase induction		
		sources-To operate	motor-to reverse		
		two motors alternately	the trend-To		
			operate a motor		
			from two sources-		
			To operate two		
			motors alternately		
		Metal pipe installation	Metal pipe	Practical training	Mercury and sodium
		(pipe cutting)-Make a	installation (pipe	forInstallation of a	lamp installation test
		tooth for her-	cutting)-Make a	mercury lamp and a	
		Connection using	tooth for her-	sodium lamp	
fifteenth	2	plugs-Making a bend	Connection using		
		for the bream using a	plugs-Making a		
		bending machine)	bend for the bream		
			using a bending		
			machine)		

98. Curriculum Development Plan

Continuously developing educational content to keep pace with modern requirements, such

as:

- 1-IncludeQualitative specializations in line with digital transformation
 - 2-OrganizationDiscussion sessions with industry leaders
 - 3- Follow-upGlobal technical developments in the electrical field
 - 4- ResidenceApplied exhibitions to showcase modern innovations
 - 5-DevelopmentField training programs in leading companies

99. infrastructure					
Class	srooms, laboratories	a Well-equipped and equipped halls and laboratories			
Workshops		are available to provide a suitable environment for			
		teaching and learning.			
		Home and industrial electrical installations			
13-	Required textbooks	•Basics of Electricity and Electrical Circuits			
		International Electrical Code (IEC) - Latest Editi			
		"Electrical Engineering: Principles and Applications"			
14-	Main Defenences (Course	"Electrical Engineering: An Introduction"			
14-	Main References (Source	"Fundamentals of Electrical Engineering"			
		"Electricity and Electronics for HVAC"			

A- Recommended books and
references (scientific journals,
reports, etc.)

Electrical Systems Design Electric Power Systems: A Conceptual Introduction "Electrical Engineering: Know It All"

B-Electronic references, websites,....

https://www.qrcodechimp.com/page/srcyif3uvk4a4

100. educational institution

Ministry of Higher Education and Scientific Research / Northern Technical University / Al-Hawija Technical Institute

101. Scientific Department

Department of Electrical Technology

102. Name of the Scheduled / Digital electronics

ELTP 105 Electrical Installations

103. Available attendance forms

In presence

104. semester/the second

Decisions

105. 4/Number of study hours

60=15*4

106. Date this description was prepared

2025-6-20

107. (Course objectives (general objectives of the course

• Logic circuit applications (The mosque HalfThe perfect collector, the half-and-full ,subtractor, the comparisons

- Encodersand circles Prediction
- (Identifying types of series circuitsTD,(JK),(SR Flip flop
- Learn about the types of recorders and methodsIts design,How to enter and exit .dataIncluding,And scroll the records to the right and to the left
 - Identify the typesCounters,Synchronous and asynchronous, and their design methods

Specific objectives

Outputs	Teaching and learning methods	Evaluation methods
Acquire the skill of designing and connecting comparator and switching circuitsFor systemsDecimal and binary		
 Building circles(The mosqueThe half and full offererFor numbersUp to four ranks Building different types of oscillators and generating square waves Building progressive positive meter circuitsAnd descending and circlesDigital to analog conversion 	Theoretical lectures -1 .using presentations Real-life case studies -2 .of foundation failure A brief research on -3 modern distribution systems	Written tests (essay and objective -1 .(questions Analytical reports on protection -2 .systems Theoretical tests -1 Practical tests -2 Reports -3
B - Skills ,Ability to design and conduct experiments-B1 .analyze and interpret data Ability to identify, formulate and solve-B2 .problems Mastery of the necessary mathematical, basic- B3 .and engineering sciences Ability to use the techniques and skills required-B4 .in the work	Practical experiments -1 workshops in electrical) .(installations Simulation using -2 :programs such as .AutoCAD Electrical Field visits to electrical -3 construction sites	Practical performance tests (such -1 .(as installing the lighting circuit Project evaluation (control circuit -2 (design and implementation
C- Values Commitmentwith occupational safety standards-A1 to bearProfessional responsibilityIn-A2 implementing the foundations the jobWith the teamTo implement electrical-A3 projects respectStandards and Regulations(such as-A4 (delivery terms	Group discussions on -1 .professional ethics Role-playing in -2 situations that require .making ethical decisions Observe and imitate -3 models of distinguished .professionals	Peer evaluation of team -1 .performance Monitoring behavior during -2 practical training (commitment to .(safety Self-reports on practical -3 experiences

108. (structure The decision-(Vocabulary Theory

week	hour s	Required learning outcomes	/Unit name	Teaching method	Evaluation method
the first	2	Definition of number systems Historical overview System components	Number systems	Learn about digital systems	Learn about digital systems
the second	2	Convert from decimal to binary Converting from decimal to other systems Convert from hexadecimal to binary	Converting between number systems	Learn about digital :systems the binary system	Learn about digital systems and the gateway system
the third	2	Convert from binary to octal Convert from hexadecimal to octal Convert from octal to hexadecimal	Converting between number systems	Identifying Digital 16 Systems	Learn about modular circuits
Fourth	2	Addition and subtraction in binary 1 Supplement 2 Supplement	- Collection the proposal in order The duoY.Use The 2F the complement the first .proposal The duoY	Learn about digital ,systems the gateway system	Getting to know the vibrators
Fifth	2	Gates and their importance Fundamentals of logic gates	Gates logical,Foundations . Gates logical	Getting to know the electronic gates	Identifying meters
Sixth	2	circleANDElectr onic NOT Using diode	ANDUsing This He would like And resistance,gate NOT Using diode	Learn about Punic algebra	Learn about data conversion circuits
Seventh	2	((gate NAND ((gate NOR	gate NAND)Lao(,gate)No(NORgate)o ,r(confinement A XOR	Learn about modular circuits	,Traditional tests ,assignments formative ,assessment -practical tests, self and peer ,assessment participation and contribution
The eighth	2	Bolognese relation Finding the truth table	De Morquin's theory	Learn about transmissio n circuits	,Traditional tests ,assignments formative ,assessment -practical tests, self and peer ,assessment

					participation and
					contribution
		Writing the		Getting to	,Traditional tests
		equation from		know De	,assignments
		the logic circuit		Morcain's	formative
		the logic circuit		theory	assessment
Ninth	2		De Morquin's theory	theory	-practical tests, self
Millen	-	Use of both	De Morquin's theory		and peer
		types of total			,assessment
		results			participation and
					contribution
		Karnaugh Map		Learn	,Traditional tests
		for Dusty People		about the	,assignments
		for Dusty I copic		Karnaugh	formative
				map	assessment
tenth	2		Karnaugh Map	шар	-practical tests, self
tentn	_	Examples	ixamaagn wap		and peer
		Liamples			,assessment
					participation and
					contribution
		Karnaugh map	Karnaugh Map	Learn	,Traditional tests
		for three	ixamaagn wap	about the	,assignments
		variables		Karnaugh	formative
		variables		map	assessment
eleventh	2			шар	-practical tests, self
cicventin	-				and peer
		Examples			,assessment
					participation and
					contribution
		Karnaugh map	Karnaugh Map	Learn	,Traditional tests
		for four	Karnaugh Wap	about the	assignments,
		variables		Karnaugh	formative
		variables		map	,assessment
twelfth	2			шир	practical tests
011011	-				self- and peer
		Examples			,assessment
					participation and
					contribution
		Single-order		Digital	,Traditional tests
		digital		Comparato	assignments
		comparator		r	formative
		Two-order		Recognition	,assessment
thirteenth	2	digital	Digital Comparator	g	practical tests
		comparator	9		self- and peer
		tompurator			assessment
					participation and
					contribution
		binary to octal		Recognize	,Traditional tests
				the	assignments,
	1			ascending	formative
	1				,assessment
fourteenth	2	binary to	rDecoder		practical tests
	-	decimal	-200401		self- and peer
					,assessment
	1	į		1	
					participation and

,Traditional tests	Learn		Octal to binary	
assignments,	about			
formative	descending			
,assessment	circuits			
practical tests,		Encoding	decimal to	fifteenth
self- and peer			binary	
,assessment			-	
participation and				
contribution				

15-(structure theScheduledfor-(Vocabulary The process						
week	hours	Required learning outcomes	Unit name/the topic	Teaching method	Evaluation method	
the first	2	Learn about digital systems	Number systems	,Presentation ,explanation questions and ,answers discussion	Traditional ,tests ,assignments formative ,assessment ,practical tests self- and peer ,assessment participation and contribution	
the second	2	Learn about digital systems: the binary system	Converting between number systems	,Presentation ,explanation questions and ,answers discussion	Traditional ,tests ,assignments formative ,assessment ,practical tests self- and peer ,assessment participation and contribution	
the third	2	Identifying Digital Systems 16	Converting between number systems	,Presentation ,explanation questions and ,answers discussion	Traditional ,tests ,assignments formative ,assessment ,practical tests self- and peer ,assessment participation and contribution	
Fourth	2	Learn about digital	Collection the - proposal in	,Presentation ,explanation	,Traditional tests ,assignments	

		41	and a The		C
		systems, the	order The	questions and	formative
		gateway system	duoY.Use The	answers	assessment
			complement the first	discussion	practical tests
			2F the proposal The		self- and peer
			.duoY		,assessment
					participation and
					contribution
		Getting to		,Presentation	,Traditional tests
		know the		explanation,	,assignments
		electronic gates		questions and	formative
			Gates	,answers	,assessment
Fifth	2		logical,Foundations	discussion	practical tests
			. Gates logical		self- and peer
					,assessment
					participation and
					contribution
		Learn about		,Presentation	Traditional
		Punic algebra		,explanation	,tests
			ANDLIcina This Us	questions and	,assignments
			ANDUsing This He would like And	answers	formative
Sixth	•			discussion	,assessment
Sixth	2		resistance,gate		practical tests
			NOT Using diode		self- and peer
					,assessment
					participation
					and contribution
		Learn about		,Presentation	Traditional
		modular		,explanation	,tests
		circuits		questions and	,assignments
			(gateNAND	answers	formative
Seventh	2		gate)No(NOR,)	discussion	,assessment
Seventin			gate)or(confinement		practical tests
			,A XOR		self- and peer
					,assessment
					participation
					and contribution
		Learn about		,Presentation	Traditional
		transmission		explanation,	,tests
		circuits		questions and	,assignments
				answers	formative
The eighth	2		De Mocan's theory	discussion	,assessment
The eighth	<u> </u>		De mocan s meory		practical tests
					self- and peer
					,assessment
					participation
					and contribution
		Learn about		,Presentation	Traditional
		programmable		explanation,	,tests
		logic devices		questions and	assignments,
				answers	formative
Ninth	2		De Moon's theory	discussion	,assessment
18111111	<u></u>		De Mocan's theory		practical tests
					self- and peer
					,assessment
					participation
					and contribution
	I	1	ı	i	

		Getting to		,Presentation	Traditional
		know the		,explanation	tests,
		vibrators		questions and	assignments,
		VIDIATOIS		,answers	formative
				discussion	,assessment
tenth	2		Karnaugh Map	41504551011	practical tests
					self- and peer
					assessment
					participation
					and contribution
		Learn about		,Presentation	Traditional
		flip flop		,explanation	,tests
		circuits		questions and	,assignments
				,answers	formative
eleventh	2		Karnaugh Map	discussion	,assessment
cie ventin	_		ramaagn wap		practical tests
					self- and peer
					,assessment
					participation
		Ido-4:6-:		Drozent-ti	and contribution Traditional
		Identifying meters		,Presentation	
		meters		explanation, questions and	tests, assignments
				,answers	formative
				discussion	assessment
twelfth	2		Karnaugh Map	discussion	practical tests
					self- and peer
					,assessment
					participation
					and contribution
		Identifying	Digital Comparator	,Presentation	Traditional
		meters		,explanation	,tests
				questions and	assignments
				,answers	formative
thirteenth	2			discussion	,assessment
					practical tests
					self- and peer ,assessment
					participation
					and contribution
		Learn about	decoder Decoder	,Presentation	Traditional
		data	2000001	,explanation	,tests
		conversion		questions and	assignments
		circuits		answers	formative
fourteenth	2			discussion	,assessment
Tourteenth	<u> </u>				practical tests
					self- and peer
					,assessment
					participation
		T .	C. E. F. F.	Donate 4 4	and contribution
		Learn about	Coding Encoding	,Presentation	Traditional
		data		explanation,	,tests
fifteenth	2	conversion circuits and		questions and	assignments, assignments
fifteenth	2			answers, discussion	
		.digital systems		uiscussion	,assessment ,practical tests
					self- and peer
					sen- and peer

		,assessment
		participation
		and contribution

109. Curriculum Development Plan

,Continuous development of educational content to keep pace with modern requirements

:such as

IncludeQualitative specializations in line with digital transformation1-

Discussion sessions on regulation with industry leaders 2-

Follow-upGlobal technological developments in the electrical field3

ResidenceApplied exhibitions to showcase modern innovations4

Developmental field training programs in leading companies 5

110. infrastructure			
Classrooms, laboratories, and workshops	Available Halls and laboratories Equipped Preparing well To .provide environment suitable For teaching and learning		
15- Required textbooks	Compositions electrical Household and industrial basics electricity and circles electrical• The code electrician International(IEC) -Release Late		
16- Main references	Engineering electrical:Principles and applications "Engineering electrical:introduction" "basics Engineering electrical" electricity and electronics For systems heating and ventilation and a "conditioning air		
A)Recommended books and references	:Digital DesignBy M. Morris Mano This book is considered one of the basic books in the field of digital circuit design Digital FundamentalsBy Thomas L. Floyd: This book covers the basic concepts and practical applications of digital circuits Websites Coursera:Offering training courses of Coursera:Offering training courses in digital electronics from prestigious universities edX:Offers similar courses covering the basics of digital circuits and their design scientific journals IEEE Xplore:Contains recent articles and research in the field of digital electronics		

These resources provide comprehensive coverage of the basic .concepts and practical applications of digital circuits

• Suggested related links: in formatQRC

for)Library AFor electronics
....,and websites

111 Educational institution

Ministry of Higher Education and Scientific Research / Northern Technica University / Al-Hawija Technical Institute

112. Scientific Department

Department of Electrical Technology

113. Course Name/Code

2 Electrical networks

114. Available attendance forms

In presence

115. semester/year

Decisions

116. (Number of study hours (total

60 = 15*4

117. Date this description was prepared

19-6-2025

118. (Course objectives (general objectives of the course

Complete knowledge of hydroelectric, thermal and gas generating -1
.stations and an idea about some other stations such as diesel
Using overhead lines - Mechanical calculations including 2-A: Calculating tension and slack when the distances from the ground are
equal- Calculating the weight of snow accumulated on the wireCalculating the amount of wind pressure force acting on the wire
Calculations of the basic elements of overhead lines - Electrical 3-A
calculations, including: - Calculating the resistance- Calculating the
internal and external inductance of a single wire- Calculating the
inductance of a three- way system consisting of three wires separated by
equal distances from each other, Or at different distances or exchanged in
location

Calculate the capacitance of the single - phase system A triode 4-A consisting of three wires spaced equally apart, or At different distances and exchange locations

119. Course outcomes, teaching, learning and assessment methods

Course outcomes

- A- Cognitive objectives
 - 5. Operation and maintenance of electrical units of power plants.

Introducing the student to the types of power stations and introducing the student to the operating mechanism of each type of station and the degree of efficiency of each type of power station

- 6. Operation and maintenance of electrical equipment for the transmission and distribution of electrical energy.
- 7. Maintenance of protection and control devices for the electrical power system.
- 8. Extension and maintenance of underground and overhead cables.

Engineering Design Fundamentals: $^{\rm Knowledge\ of}$ basic engineering design principles such as analysis and design of electrical and mechanical systems

		7
Outputs	Teaching and learning methods	Evaluation methods
	13. Theor etical lectures 14. Grou p discussions 15. Case studies	17. Theoretic al tests 18. My work performance evaluation 19. Safiya's participation 20. Research reports
B- Skills The student gets to know Methods of -1 generating electrical energy Distinguish between each type of .2 .energy source Explain the mechanism of electrical .3 . energy production	13. Interactive lectures 14. Real-life case studies 15. Field visits to facilities	17. Short and final tests 18. Performa nce evaluation during practical training 19. Applied projects 20. Field visit reports
C-Values Student participation in classroom activities and submitting .assignments on time	13. Interaction and application 14. modern technologies 15. group learning	17. Continuo us assessment 18. Performa nce evaluation during practical training

Attention control and attention test (selective attention)		
---	--	--

ame of the material		W	eekly ho	urs	Numb
² Electrical networks	Second	N	Α	M	er of
	academic year				units
		2	2	4	4

theoretical 2 Details of the curriculum for Electrical Networks curriculum) two hours per week

120. (Course structure A- (Theoretical vocabulary					
week	watches	Required learning outcomes	Unit name/topic	Teaching method	Evaluation method
the first	2	to understand Unity theme	DC distribution networks and distributors that are fed from one end to the other that are fed .from two ends Single-ended AC distributors	Interactive lectures supported by PowerPoint presentations, documentary videos, and a conceptual map of energy flow in the electrical system.	A + short test research assignment on the stages of development of energy systems

	1	1			
the second	2	to understand Unity theme	Ring distributors of - all types comparison between different distributors	Explanatory video, comparative study class discussion.	+ Analytical report short descriptive test.
the third	2	to understand Unity theme	Solve various examples for the first and second weeks	Real case presentation + application study	Oral presentation + in a group individual written assessment
Fourth	2	to understand Unity theme	Conditions for the stability of synchronous generators operating in parallel with the grid - load capacity curve How synchronous generators operate in parallel with each other and with the grid	☐ Analysis of engineering ,drawings interactive ,discussion practical examples.	Practical test + homework
Fifth	2	to understand Unity theme	Methods for improving power factor are divided :into Static capacitors Synchronous motors - Phase advance devices	+ Video lecture comparison exercises	Essay question + homework
Sixth	2	to understand Unity theme	Types of errors in electrical networks and their division:into Symmetrical faults and fault current calculation in an electrical circuit	Solving applied + problems numerical simulation(via programs such as MATLAB).	Class test

		- Asymmetrical		
		errors and		
		fault current		
		calculation in		
		electrical		
		circuit		
		Basic Units -		
) Calculation		
		PU (
	to	Protection	Practical training +	Analytical test
	understand	,principles	detailed	,
	Unity theme	,definition	explanations	
	Officy therite	various	•	
		systems, and		
		uses of		
		protection		
		,relays		
		,disconnectors		
		and circuit		
Seventh 2		breakers in the		
		electrical		
		power system		
		and measuring		
		,devices		
		:including		
		Voltage -		
		- transformers		
		Current		
		transformers		
	to	Relays, their	Exercise solutions,	achievement test
	understand	classification	group discussion	
	Unity theme	according to	g- oup	
	Officy theffic	their working		
		,theory		
The		inductive		
eighth 2		relays against		
3		overcurrent,		
		against reverse		
		,power		
		electronic		
		relays		
	to	How to protect	Review session,	Short achievement
	understand	overhead lines	classroom exercises	test
	Unity theme	Distance -		3000
	Officy uncille	protection		
NI. (1		(line		
Ninth 2		impedance		
		measurement		
		- (protection		
		Bar protection		
1	1		i	

		to	How to protect	Electrical circuit	+ Drawing circles
		understand	power	drawing +	geometry problems
4 4]-		Unity theme	transformers	applications	V 1
tenth	2	Office the first	using		
			differential		
			protection		
		to	How to protect	View videos + view	Practical report +
		understand	synchronous	models of insulators	test
		Unity theme	generators		
			:using		
			-Differential		
eleventh	2		Protection		
			-Digital		
			Protection		
			-Reverse		
			Power		
			Protection		
		to	Stator	Use of models or	Research report
		understand	overcurrent	graphs	
twelfth	2	Unity theme	protection and		
twenth	2	, , , , , ,	rotor		
			overcurrent		
			protection		
TPL .		to	Percentage	Workshop, problem	Technical
The thirteenth	2	understand	Reactance	solving	achievement test
tiiirteeittii		Unity theme			
		to	Power circuit	Case studies of	Final comprehensive
£ 4 4 h	2	understand	diagram at the	+ collapse	exam
fourteenth	2	Unity theme	receiving end	discussion of causes	
		Officy anomic		and prevention.	
		to	Economic		Practical report +
		understand	operation of		test
		Unity theme	power plants		
fifteenth	2		,load factor		
miteenth	4		,load capacity		
			calculating the		
			cost per		
			kilowatt-hour		

course (practical 2 of the curriculum for the Electrical Networks $^{\rm Details}$ curriculum) two hours per week

16-(Course structure B-(Practical vocabulary					
week	watches	Required learning outcomes	Unit name/topic	Teaching method	Evaluation method

		The student learns	Fixed time relay	Denotical	Mr. mode
the first	2	The student learns about the operation of a fixed-time relay as a means of protection against overcurrent.	Fixed time relay against overcurrent	Practical explanation of the device + conducting an experiment on a protection board	My work performance note + brief report
Second and third	2	The student understands the principle of the inverse function against increasing current and applies it to a real device.	Inverse function against overcurrent	Theoretical explanation + experience connecting and testing the device	Technical Report + Analytical Questions
Fourth	2	The student applies a directional earth fault protection experiment and analyzes the results.	Directional earth fault protection	Schematic view of the connection + practical implementation of the experiment	Wiring diagram + written conclusions
Fifth	2	The student will be able to measure the useless power in an electrical circuit.	Measurement of useless power	Practical connection of devices + reading and discussing the results	Correct reading + interpretation of results in a report
Sixth	2	The student learns about the different types of cables and their components.	Identify the components of different types of .cables	View real samples + compare features	Field Notes + Worksheet
Seventh	2	The student observes the components of the gas station and its function during the visit.	Visit to a gas station	Field visit + questions directed by the accompanying engineer	Descriptive report of the visit + analytical question
eighth and ninth	2	The student learns about the parts of a steam power plant and the mechanism of power generation in it.	Visit to a steam station	Field visit + practical explanation of the components	Detailed report + comparison with a gas station
tenth	2	The student follows the stages of work in a hydroelectric station and analyzes its energy production.	Visit to a hydroelectric station	Field visit + asking questions to technicians	Technical report + oral summary
eleventh	2	The student performs a breakdown voltage test on transformer oil.	Breakdown voltage test of a sample of transformer oil	Explanation of test steps + practical implementation	Reading values + recording a practical report
twelfth	2	Learn about the types of high and low voltage circuit breakers and their working principle.	Identify the high and low voltage circuit breaker	Real-world hardware demonstration + hands-on experience	Descriptive report + diagram

thirteenth and fourteenth	2	Understands the principle of automatic recovery of transmission lines and performs simulations of their condition.	Automatic restoration of transmission lines	Theoretical explanation + implementation of an experiment using a protection board	Performance Report + Practice Questions
fifteenth	2	Carries out overload and short circuit protection experiments on transmission lines.	Protection of transmission lines against overload and short circuit current	Fault simulation + monitoring of protection device performance	Results analysis + practical test

121. Curriculum Development Plan

Continuously updating the curriculum to keep pace with developments in the :labor market (Curriculum Update Committee, Scientific Committee) such as

- 7- Updating the curriculum to keep pace with developments
 - . in the field of electrical networks
- 8- .Holding scientific seminars with specialists in the field
- 9- Monitoring scientific developments in electrical network systems and power generation

122. infrastructure			
Classrooms, laboratories and worksho			
	accommodate students and prepared		
	to provide a suitable learning .environment		
	Electrical Networks Lectures Booklet		
17 Degrined toutheeles	2		
17- Required textbooks	" Electrical Machines and Power		
	Systems" Study and Analysis		
18- (Main References (Sources	"Power System Analysis "2 John J.		
18- (Main References (Sources	Grainger & William D. Stevenson		
	" Transmission and distribution of		
Recommended books and	electrical energy"		
references (scientific journals (.reports, etc	Author: Dr . Mahmoud Gilani		

	Publisher: Dar Al-Fajr for
	Publishing and Distribution - Cairo
ζ) ,Electronic references	https://www.qrcodechimp.com/pa
,websites	ge/srcyif3uvk4a4

123. Educational institution

Ministry of Higher Education and Scientific Research / Northern Technica University / Al-Hawija Technical Institute

124 Scientific Department

Department of Electrical Technology

125 Course Name/Code

2 Maintenance Workshop

126. Available attendance forms

In presence

127. semester/year

Decisions

128. (Number of study hours (total

45 = 15*3

129. Date this description was prepared

19-6-2025

130. (Course objectives (general objectives of the course

The student will also be able to:

- 1. Uses various equipment, tools and components used in workshops.
- .2 Acquires technical skills and experience in the field of various electrical maintenance works.
 - 3. Gain self-confidence to practice electrical engineering work, track fau and learn how to repair them. .4

131. Course outcomes, teaching, learning and assessment methods

Course outcomes

A- 1 identification The student on works Maintenance For devices Electrical

A-2 identification The student on Business Technical electrical in Track Malfunctions For devices electrical And get to know on How to Fixit A -3 identification The student on various the components electrical and electronic

How to Use it in building circles Electrical

A-4 identification The student on How to Unlock And installation

Yes In the face of machines Electrical A -5 identification The student on How to to examine machines electrical after Wrapit

Outputs	Teaching and learning methods	Evaluation methods
knowledge A-1 Introducing the student to electrical appliances maintenance work. A-2 Introducing the student to electrical technical work in tracing faults in electrical devices and learning how to repair them. A-3 Introducing the student to the various electrical and electronic components and how to use them in building electrical circuits. A-4 Introducing the student to how to disassemble and assemble electrical machine parts	16. Theor etical lectures 17. Grou p discussions 18. Case studies	 21. Theoretic al tests 22. My work performance evaluation 23. Safiya's participation 24. Research reports
B- Skills B1 - Acquire the skill of assembling DC machines, methods of rewinding DC machines. B2 - Acquire the skill of designing and studying three-phase electrical transformers. B3 - Acquire the skill of rewinding Stator coils of a three-phase induction motor and a squirrel cage. B-4 Acquire the skill of assembling the engine and testing the engine under the load assigned to it. B-5 Acquire the skill of periodic maintenance of a split-phase motor, conduct the necessary tests on it, identify faults and methods of treating them.	16. Interactive lectures 17. Real-life case studies 18. Field visits to facilities	21. Short and final tests 22. Performa nce evaluation during practical training 23. Applied projects 24. Field visit reports
C-Values C-1 Practical skills enable The student researches identifying and treating faults in electrical appliances. C-2 Practical skills that enable the student to cooperate In working with others. C-3 Maintaining the safety of the equipment and furniture in the workshop, as they are public property. C-4 The student's ability to think in an organized manner and thus make decisions	16. Interaction and application 17. modern technologies 18. group learning	21. Continuo us assessment 22. Performa nce evaluation during practical training 23. Final evaluation 24. Field visit reports

ame of the material		W	eekly ho	urs	Numb
Maintenance	Second	N	Α	M	er of
² Workshop	academic year				units
		0	3	3	3

course 2 Details of the curriculum for the Maintenance Workshop practical curriculum only) three hours each week)

Course	e structur			T	1
week	watches	Outputs Learning required	or the topic / name Unity	Teaching method	Evaluation method
the first	3	acquisition Skill and experience Technical in Unity theme	Motor assembly and motor testing at the specified load - Study of the starting phase of three-phase motors - Direct method - Self-starter method	to implement exercises	evaluation continuous
the second	3	acquisition Skill and experience Technical in Unity theme	Induction motor protection devices and the use of timers	to implement exercises	evaluation continuous
the third	3	acquisition Skill and experience Technical in Unity theme	Change the final drive connection from star to .triangle and note∆ operated -Y The motor is originally the differences in current and torque in both .cases	toimplement exercises	evaluation continuous
the four	3	acquisition Skill and experience Technical in topic Unity	Single phase induction motor, practical study of different types of single phase induction motors motor construction - capacitor motor - split - phase motor	to implement exercises	evaluation continuous
Fifth	3	acquisition Skill and experience Technical in topic Unity	Split-phase motor winding, testing, and periodic maintenance – faults and how to treat them – reversing the direction of rotation of the motor	to implement exercises	evaluation continuous
Sixth	3	acquisition Skill and experience Technical in Unity theme	Split-phase motor drawing - multiple examples	to implement exercises	evaluation continuous
Seventh Eighth+	3	acquisition Skill and experience Technical in Unity theme	Shaded pole motor winding of different types	to implement exercises	evaluation continuous
Ninth	3	acquisition Skill and experience Technical in topic Unity	- Continuity test - Polarity test - Ground test Short circuit test	to implement exercises	evaluation continuous
tenth	3	acquisition Skill and	Electrical and mechanical faults and their treatment methods	to implement exercises	evaluation continuous

		experience Technical in			
		topic Unity			
eleventh	3	acquisition Skill and	Winding the capacitor motor, carrying out the	to implement	evaluation
		experience Technical in	- necessary tests on it - polarity continuity test ground fault - short circuit between the coils	exercises	continuous
		topic Unity			
twelfth	3	acquisition Skill and	Winding the ceiling and table fan motor and	to implement	evaluation
		experience Technical in	performing the necessary tests	exercises	continuous
		Unity theme			
the third	3	acquisition Skill and	Home appliance maintenance - home	to implement	evaluation
ten		experience Technical in	refrigerator - mechanical and electrical faults	exercises	continuous
		Unity theme	and their treatment methods		
the fourteen	3	acquisition Skill	Home appliance maintenance - home	to implement	evaluation
		and experience Technical in	freezers - home air conditioners - mechanical	exercises	continuous
		Unity theme	- and electrical faults and their solutions		
		,	periodic maintenance		
fifteenth	3	acquisition Skill	Home appliance maintenance - washing	to implement	evaluation
		and experience Technical in	- machine - electrical faults and how to fix them	exercises	continuous
_		Unity theme	periodic maintenance		

- 11 structure Infrastructure :	
1-books The reporter Required	The booklet Laboratory private In the workshop
2- the reviewer Home (Sources)	- 1 He wrapped Engines electrical ,.Dr moon - 2 Reference in Transformers electrical , Franklin Sticant , SA
A books References that Recommended It has(magazines) Scientific, Reports ,	- 1Troubleshooting And maintenance machines Electrical Bank settings International For shapes Illustrative Technical.
for - the reviewer electronic, Sites Internet	-1 location The Institute Technical /Al- Rumaitha - 2Sites Companies Global

- 12 plan development The decision Academic :

- 1Participation in The state Art Different Private By the material To gain My coach The workshop expertise Bigger
- 2 examining on last what I reached for him Technology Modern in This is amazing The material .

132 Educational institution

Ministry of Higher Education and Scientific Research / Northern Technical University / Al-Hawija Technical Institute

133. Sectionscientific

Department of Electrical Technology

134. Course Name/Code

Engineering drawingELTP106

135. Available attendance forms

in presence

136. semester/year

Decisions

137. Number of study hours(kidney)

3*30=90

138. Date this description was prepared

22-6-2025

139. Course objectives (general objectives of the course)

- 1 Understanding the basic rules of engineering drawing using a computer.
- -2 Draw basic models using this program.
- -3 Design and draw the proposed models.

140. OutputsThe decisionTeaching, learning and assessment methods **Course outcomes**

- **1-** Engine Detailed drawings: accurately show the dimensions and components of the design.
- 2-Assembly drawings: show how the components will be fitted together.
- 3-Diagrams (architectural/electrical/mechanical): represent the general systems and subsystems.
- 4-Bills of materials (BOM): list parts, materials, and quantities.
- 5-3D models: to realistically display the design.
- 6-Digital manufacturing files (STL, DXF, etc.): used in manufacturing and printing machines.
- 7-Revision and release documents: document various changes and releases.

identification:

ering drawing is a universal language for engineers and technicians, used to convey design ideas with complete accuracy, in addition to being a key tool for implementing manufacturing, infrastructure, architecture, and others, by adhering to unified standards.(ISO/ASME/ANSI) Specifies the characteristics of the shape, dimensions, materials, tolerances, and type of sections and surfaces.

Its importance:

- **1: 3D representation on a 2D surface**: Via orthogonal projection methods (front/top/side projection)
- 2: Accurate and clear specifications: Includes length, angles, scales, line type, tolerances, materials, surface description, and data such as the artist's name, references, and time stamps.

How is it determined: So that it includes all the information necessary to ensure that the item is manufactured or executed accurately and clearly. In general, the output is divided into a detailed drawing(Detail Drawing) and Assembly Drawing

	Teaching and	Evaluatio
Outputs	learning methods	n
	learning methods	methods
	Direct practical	1 -
	training:Using	Monitor
A-knowledge	AutoCAD in	students'
A1-knowledgeAnd understanding basics The	classespaternal	performa
drawing Engineering Using AutoCAD	uncleWhy with	nce step
A2 - IDAnddrawing shapesEngineering	realistic examples in	by step
BasicUsing the computer	drawing?Engineerin	during
A3-knowledgeAnd understanding orders The	g.	practical
program	•Interactive	lessons,
A4 - Knowing how to draw	education :	providing
shapesBinaryDimensions	Combining short	immediat
A5 - Knowing how to draw shapesThe	theoretical	e
TrilogyDimensions	explanation with	feedback
A6-Knowledge of writing and setting dimensions	practical application,	to
For shapes Engineering	and encouraging	improve
	students to solve	performa
	exercises gradually	nce.

	(from simple to complex).). •cooperation and offers:Implement small projects within teams to enhance teamwork and present the results for discussion.	2- Use short exercises after each unit to measure understa nding of key concepts and command s.
B -Skills B1 - Drawing shapesEngineering BinaryDimensions B2 - Drawing shapesEngineering The TrilogyDimensions B3-to implementCommands to get the drawingEngineering B4 - Putting the dimensions of the drawing and writing on the drawing	1.Direct practical training: •Using AutoCAD in computer labs with gradual exercises (from simple to complex)). 2.Project-based learning: •Implement small projects (such as creating electrical diagrams) to link theory with practice 3.Collaboration and Offers: •Work in teams to create integrated drawings and present the results for group discussion.	1- Short practical evaluation: •Quick tests during classes to measure mastery of basic command s (such as drawing shapesD/3D).2 2- Applied projects: •Evaluate a final project (such as creating a complete

		engineeri ng drawing) with an emphasis on accuracy and adherenc e to standards 3- Peer assessme nt: •Students participat e in evaluatin g each other's work under the supervisi on of the teacher to promote self- assessme nt.
C-values A1 - Instilling a spirit of creativity in students and ensuring that they find innovative solutions to various problems. A2 - Developing students' ability to work as effective teams that produce distinguished results.	Stimulating the creative side of students by presenting various scientific problems and asking students to find appropriate scientific solutions	Direct evaluatio n: This evaluatio n is carried out by the instructor

A3 - Developing a sense of responsibility among students and preparing them psychologically to bear the burdens placed on their shoulders. A4 - Developing the values of diligence and perseverance in completing work to achieve satisfactory results.

for them in various ways. Developing the spirit of cooperation among students by forming work teams and motivating students to make all necessary efforts to work in different circumstances and with different people.

directly, by observing the student's interactio n during the lecture and recording the notes. About that Practical projects: The student's ability to achieve and innovate. to work within teams, and to produce results and solutions to various scientific problems are evaluated

141. Course structure (Theoretical and practical vocabulary)

week	watche	Required learning outcomes	Unit name/topic	Teaching method	Evaluatio n method
the first	3hou rs	Introducing the student to the interfaces program AutoCAD How to use	The importance of engineering drawing. Getting to know the interfaces AutoCAD program	Show about Road power point With the app	Through participat ion and exams
the secon d	3hours	How to use Commands for purpose The drawing	Display orders borderDrawin g and units	Show about Road power point With the app	Through participat ion and exams
the third	3hours	Student education On how Using commands For more accurate drawing	Drawing accuracy commands GRID , POLAR, OSNAP	Show about Road power point With the app	Through participat ion and exams
Fourth	3hours		Drawing commands ElementsRect angle Circle, Polygon, Arc	Show about Road power point With the app	Through participat ion and exams
Fifth	3hours	Student education Use Commands	Modification ordersErase Copy, Move, Mirror,	Show about Road power point With the app	Participat ion

Sixth	3hours	To modify and facilitate The drawing Student education On the dimensions of the drawing precisely	Put different dimensions on Drawing elements and control it Using a square Dimensions mode dialogue	Show about Road power point With the app	Through participat ion and exams
Seven th	3hours	How to control Font type and color	Control specifications Drawing types of lines, Element colors, Its characteristics	Show about Road power point With the app	Through participat ion and exams
The eighth	3hours	How to use Commands to facilitate The drawing	Element drawing commands Ellipse, Donut, Wipeout, Revision Cloud	Show about Road power point With the app	Through participat ion and exams
Ninth	3hours	Student education Use Commands To modify and facilitate The drawing	Modification orders OtherOffset, Scale, Stretch, Rotate	Show about Road power point With the app	Through participat ion and exams
tenth	3hours	Knowing how Add text Line control color and others	Add texts Its methods and control With its specifications	Show about Road power point With the app	Through participat

					ion and exams
eleven th	3hours	To know the account spaces Sizes and lengths	Dealing withorders tape Parametric	Show about Road power point With the app	Through participat ion and exams
twelfth	3hours	How to use misleading And specification and others	Hovering and shading and sectors	Show about Road power point With the app	Through participat ion and exams
thirtee nth	3hours	Student education Use Commands to work Layers and control	Layers And control its settings	Show about Road power point With the app	Through participat ion and exams
fourte enth	3hours	Teaching the student how to drawing blocks	Blocks(Blocks)	Show about Road power point With the app	Through participat ion and exams
fifteen th	3hours	Student education Types of blocks	Types of blocks And include and control itforits specifications.	Show about Road power point With the app	Through participat

ion and			
exams			

142. Curriculum Development Plan

Continuously updating the curriculum to keep pace with developments in the labor market (Curriculum Update Committee, Scientific Committee) such as:

- 10- Updating the curriculum to keep pace with developments in the field Engineering drawing.
- 11- Follow up on scientific developments inUpdate the program continuously.

143. infrastructure	
Classrooms, laboratories and workshops	accommodate students and are prepared
	To provide a suitable environment for learning
19- Required textbooks	The prescribed engineering drawing lectures binder
20- Main References (Sources)	https://faculty.uobasrah.edu.iq/upload s/teaching/1711798938.pdf
A- Recommended books and references (scientific journals, reports, etc.)	https://www.smartdraw.com/cad/engi neering-drawing- software.htm?srsltid=AfmBOoqDqQ2hj W1riiDu_ZmtTLd6- itW7EDrm7zUii1JMSEtmWi8ii2i
B-Electronic references, websites,	https://www.qrcodechimp.com/page/srcyif 3uvk4a4

144. Educational institution

Ministry of Higher Education and Scientific Research / Northern Technical Univers / Al-Hawija Technical Institute

145. Sectionscientific

Department of Electrical Technology

146. Course Name/Code

electrical drawingELTP106

147. Available attendance forms

In presence

148. semester/year

Decisions

149. Number of study hours (kidney)

3*30=90

150. Date this description was prepared

22-6-2025

151. Course objectives (general objectives of the course)

- 1. Understand the basic rules of electrical drawing using a computer.
- -2 Draw basic models using this program.
- -3 Design and draw the proposed models.
- 152. OutputsThe decisionTeaching, learning and assessment methods

Course outcomes

- 1. Circuit Diagrams
- 2. Electrical Wiring Diagrams
- 3. Distribution Diagrams
- 4. Load and Cable Schedules
- 5. Grounding Diagram
- 6. Bill of Materials (BOM)
- 7. Documents

identification: An electrical diagram is a graphic representation of electrical components and circuits using standard symbols. This diagram is intended to

simplify understanding how electrical devices and materials are connected within a system. It is used to illustrate how electrical current flows in a circuit and is used in the design and maintenance of electrical systems such as lighting, heating, cooling, and power systems..

Its importance: Electrical drawings are of great importance in the design, operation, and maintenance of electrical systems. Here are some aspects that highlight the importance of this type of drawing:

- 1. Electrical circuit design illustration
- 2. Facilitate maintenance and repair
- 3. Precise system control
- 4. Ensure safety and security

How is it determined: It is determined based on the type of electrical system, the components used, the required connections, and safety and efficiency requirements. By accurately identifying these factors, an effective electrical drawing can be created to aid in the design, operation, and maintenance of a safe and efficient electrical system..

Outputs	Teaching and learning methods	Evaluation methods
	•Direct	1- Monitor
2- knowledge	practical	students'
	training:Using	performance
A1-knowledgeAnd understanding basics	AutoCAD in	step by step
The drawing Electrician Using AutoCAD	classespaternal	during
A2 - IDAnddrawing shapeselectrical	uncleWhy with	practical
BasicUsing the computer	realistic	lessons,
A3-knowledgeAnd understanding	examples in	providing
ordersThe program	drawing?Engine	immediate
A4-Knowledge of writing and setting	ering.	feedback to
dimensions For shapes Electrical	•Interactive	improve
5- Knowing the symbols of the electrical	education:	performance
circuit	Combining short	
6- How to draw an integrated electrical	theoretical	2- Use short
circuit	explanation with	exercises
	practical	after each
	application, and	unit to

	encouraging students to solve exercises gradually (from simple to complex).). •cooperation and offers:Implemen t small projects within teams to enhance teamwork and present the results for discussion.	measure understandi ng of key concepts and commands.
B -Skills B1-Drawing symbols that are not in the program B2-Integrated circuit drawing B3-to implementCommands to getelectrical drawing B4 - Putting the dimensions of the drawing and writing on the drawing	4.Direct practical training: •Using AutoCAD in computer labs with gradual exercises from simple to complex. 5.Project-based learning: •Implement small projects (such as creating electrical diagrams) to link theory with practice 6.Collaboration and Offers: •Work in teams to create	1- Short practical evaluation: •Quick tests during classes to measure mastery of basic commands. 2- Applied projects: •Evaluate a final project (such as creating a complete engineering drawing) with an emphasis on accuracy and

	integrated drawings and present the results for group discussion.	adherence to standards 3- Peer assessment: •Students participate in evaluating each other's work under the supervision of the teacher to promote self-assessment.
C-values A1 - Instilling a spirit of creativity in students and ensuring that they find innovative solutions to various problems. A2 - Developing students' ability to work as effective teams that produce distinguished results. A3 - Developing a sense of responsibility among students and preparing them psychologically to bear the burdens placed on their shoulders. A4 - Developing the values of diligence and perseverance in completing work to achieve satisfactory results.	Stimulating the creative side of students by presenting various scientific problems and asking students to find appropriate scientific solutions for them in various ways. Developing the spirit of cooperation among students by forming work teams and motivating students to make all necessary	Direct evaluation: This evaluation is carried out by the instructor directly, by observing the student's interaction during the lecture and recording the notes. About that Practical projects: The student's ability to achieve and innovate, to

efforts to work	work within
in different	teams, and
circumstances	to produce
and with	results and
different people.	solutions to
	various
	scientific
	problems
	are
	evaluated.

153. Course structure (Theoretical and practical vocabulary)

week	watc hes	Required learning outcomes	Unit name/topic	Teaching method	Evaluation method
the first	3hou rs	Introducing the student to the interfaces program AutoCAD How to use	The importance of drawingelectric ian. Getting to know the interfaces AutoCAD program	Show about roadPower Point With the app	Through participa tion and exams
the seco nd	3hou rs	How to use Commands purpose The drawing	Display orders borderDrawing and units	Show about roadPower Point With the app	Through participa tion and exams
the third	3hou rs	Student education On how Using commands For more accurate drawing	Drawing accuracy commands GRID , POLAR, OSNAP	Show about roadPower Point With the app	Through participa tion and exams

Four th	3hou rs	How to use Ready-made commands	Drawing commands ElementsRecta ngle Circle, Polygon, Arc	Show about roadPower Point With the app	Through participa tion and exams
Fifth	3hou rs	Student education Use Commands To modify and facilitate The drawing	Modification ordersErase Copy, Move, Mirror,	Show about roadPower Point With the app	Participa tion
Sixth	3hou rs	Student education On the dimensions of the drawing precisely	dimensionDiffe rent on Drawing elements and control it Using a square Dimensions mode dialogue	Show about roadPower Point With the app	Through participa tion and exams
Seve nth	3hou rs	How to control Font type and color	Control specifications Drawing types of lines, Element colors, Its characteristics	Show about roadPower Point With the app	Through participa tion and exams
The eight h	3hou rs	How to use Commands to facilitate The drawing	Element drawing commands Ellipse, Donut, Wipeout, Revision Cloud	Show about roadPower Point With the app	Through participa tion and exams

Nint h	3hou rs	Student education Use Commands To modify and facilitate The drawing	Modification orders OtherOffset, Scale, Stretch, Rotate	Show about roadPower Point With the app	Through participa tion and exams
tenth	3hou rs	Knowing how Add text Line control color and others	Add texts Its methods and control With its specifications	Show about roadPower Point With the app	Through participa tion and exams
elev enth	3hou rs	To know account spaces Sizes and lengths	Dealing withorders tape Parametric	Show about roadPower Point With the app	Through participa tion and exams
twelf th	3hou rs	How to Use Tools for drawing Required circle	drawing circles Electrical using Existing symbols Or draw non- symbols Present in the program	Show about roadPower Point With the app	Through participa tion and exams
thirt eent h	3hou rs	Student education How to do it Drawing and operation	drawing an operating circuit And a control circuit for the engine	Show about roadPower Point With the app	Through participa tion and exams

fourt eent h	3hou rs	Student education	Drawing models cable trays	Show about roadPower Point With the app	Through participa tion and exams
fiftee nth	3hou rs	Student education Print on The program	Printing	Show about roadPower Point With the app	Through participa tion and exams

154. Curriculum Development Plan

Continuously updating the curriculum to keep pace with developments in the labor market (Curriculum Update Committee, Scientific Committee) such as:

- 12- Updating the curriculum to keep pace with developments in the fieldelectrical drawing.
- 13- Follow up on scientific developments in Update AutoCAD software continuously.

1 ~ ~	!f 1 1
1 7 7	Intractriction
155.	infrastructure

Classrooms, laboratories and workshops	Equipped laboratories are available to accommodate students and are prepared To provide a suitable environment for learning	
21- Required textbooks	Electrical drawing lecture notes	
22- Main References	https://faculty.uobasrah.edu.iq/uploa	
(Sources)	ds/teaching/1711798938.pdf	
	https://www.smartdraw.com/cad/eng	
A-Recommended books and	ineering-drawing-	
references (scientific journals,	software.htm?srsltid=AfmBOoqDqQ2h	
reports, etc.)	jW1riiDu_ZmtTLd6-	
	itW7EDrm7zUii1JMSEtmWi8ii2i	

B-Electronic references,	https://www.qrcodechimp.com/page/srcyi
websites,	f3uvk4a4

156. Educational institution/

Ministry of Higher Education and Scientific Research / Northern Technical University / Al-Hawija Technical Institute

157. Scientific Department

Electrical techniques

158. / Course Name/Code

/ 1 ComputerNTU102

159. Available attendance forms

In presence

160. / Chapter/Year

2025/2024 / Second semester

161. (Number of study hours (total

45=15*3

162. Date this description was prepared

2025/6/20

163. (Course objectives (general objectives of the course

This course aims to introduce students to the basic concepts of information technology and computer use. This course includes studying computer hardware components such ,as the processor, memory and input/output units, as well as software, as , including operating systems and various applications . well as the concept of computer viruses and how to deal with them

course 1 Top scorer of the University Computer Science:

- Provide students with a comprehensive understanding of computer components and their functions
- Develop students' skills in using operating systems and basic software.
- Knowledge of computer generations
- Knowledge of using software
- Learn how to format floppy disks
- Educating students about the importance of information security and data protection methods.
- Knowing the concept of computer viruses and how to deal with them
- Know how to access the Internet
- Learn about computer components
- Learn about the evolution of computers throughout history
- Dealing with operating systems
- Gaining the skill of using the Windows operating system
- Learn about software types
- Identify and use storage unit types
- Perform basic computer maintenance
- Understanding networking basics
- Application of information security principles
- Gain the skill to get rid of viruses that may infect the computer
- Use of office software

Searching the Internet and Using Email

Enable students to understand the basics of networking and use the Internet

.effectively

164. Course outcomes, teaching, learning and assessment methods

Course outcomes

identification: It is a set of knowledge, skills and values that the course seeks to achieve in students.

Its importance: It provides the learner with a clear idea of what he will be able to do after completing the course, and helps in designing and evaluating academic courses.

How is it determined? The course outcomes are determined based on the objectives of the academic program to which the course belongs.

Outputs	Teaching and learning methods	Evaluation methods
		Oral and written questions and -1
Knowledge: outputs	1. Lecture using	discussions
By the end of this course, the student is :expected to be able to	PowerPoint 2. Discussion with	Presentation of the lecture -2
Identify the hardware and software .1	students	Data Show -3 Using
.components of the computer	3. Display exercise solutions for each	solve Show explanations And -3
	.topic	mathematical problems

Explain the difference between operating .2 .systems and application programs Describe the basics of the Internet and .3 .networks Understanding the basic concepts of .4 .information security Distinguish between types of software and .5 .their uses in the work environment	4. Assigning students to practical cases 5. Student costs for preparing reports on course topics	,Practical application -4 ,cooperative learning brainstorming
Running and using popular operating .1 systems such asWindows . Microsoft Office ,applications (Word .(Excel, PowerPoint Send and receive email and manage .3 .attachments Browse the Internet effectively using .4 .search engines Perform file saving, retrieval, and .5 .organization operations on the computer	Practical (applied) training .1 Project-based learning .2 Cooperative learning .3 .Simulation and software .4 Self-education using the .5 Internet Targeted training .6 Practical duties .7	Practical application .1 Projects .2 Direct observation .3 Homework and practical .4 activities Self-assessment .5 Presentations .6
Third: Valuesand Attitudes:	Class discussions .1 Case studies .2	Direct observation .1

Demonstrate commitment to .1
.computer and information ethics
Respecting the intellectual property .2
.rights of software and digital content
Work as a team when carrying out .3
.joint tasks and projects
Demonstrate interest in developing .4
.personal technical skills
Adhere to safety and cybersecurity .5
.procedures when using the computer

Values-based learning .3
Group activities .4
Behavioral role model of the .5
teacher

Class discussions and .2 participation
Achievement book .3
Questionnaires and self- .4 assessment

165. (Theoretical and practical vocabulary) Course structure

week	Methods of measurement and evaluation	Technologies used	Teaching method	Chapter title	Theoretica I time And my work	Subheadings
the first	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using	Theoreti cal and practical	Introduction to the computer and its history of development	1 hour theoretical hours of 2 work	History of computer development from the first generation to the current generation

		Microsoft Board , practical ,application collaborative learning, and .brainstorming				Introduction to computer types ,desktop) ,laptop, tablet .(server Introduction to the computer and its history of development
the second	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical ,application collaborative learning, and .brainstorming	Theoreti cal and practical	Computer hardware components	11 hour theoretical hours of 2 work	The main physical components of a computer are the) processor CPU ,() memoryRAM storage units ,()HDD, SSD ,(and input and .output units Explain the function of

						each component and how it .works
the third	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical ,application collaborative learning, and .brainstorming	Theoreti cal and practical	- Software and operating systems	1 hour theoretical hours of 2 work	Software :definition Operating systems (such asWindows, Linux and (application .programs Functions and types of operating .systems Familiarize yourself with different user .interfaces
Fourth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4	Presenting the lecture using the , data show presenting	Theoreti cal and practical	Operating system Windows 11	1 hour theoretical hours of 2 work	Windows system concept

	Final written -5 exam Cooperative -6 learning	explanations, and solving mathematical problems using Microsoft Board, practical, application collaborative learning, and .brainstorming				Its advantages and basic requirements How to create and manage files and folders Organize files effectively and use file .systems Data Backup and Restore
Fifth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical ,application collaborative learning, and .brainstorming	Theoreti cal and practical	Desktop Home Screen Components	1 hour theoretical hours of 2 work	Icon concept How to deal with mouse activities The importance and components of the taskbar

Sixth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical ,application collaborative learning, and .brainstorming	Theoreti cal and practical	Start menu	1 hour theoretical hours of 2 work	UseStart to access programs The concept of assigned tasks Exit the system andshut down the calculator
Seventh	Assignments and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical ,application collaborative learning, and .brainstorming	Theoreti cal and practical	My Computer	1 hour theoretical hours of 2 work	Getting to knowMy Computer tablets Formatting floppy disks Dealing with the trash Recover deleted items

The eighth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical ,application collaborative learning, and .brainstorming	Theoreti cal and practical	Control Panel	1 hour theoretical hours of 2 work	Taking advantage of control panel programs Control Panel Icons Settings in the control panel Desktop background appearance Add and remove programs
Ninth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical application, and .learning	Theoreti cal and practical) Programs Accessories (1 hour theoretical hours of 2 work	Benefit from additional) programs Accessories (Like calculator and calendar

tenth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical ,application collaborative learning, and .brainstorming	Theoreti cal and practical	Use of media programs	1 hour theoretical hours of 2 work	Image media Video media Window Media player
eleventh	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture , using data show ,presenting explanations and solving mathematical problems usingMicrosoft Board ,practical application ,collaborative learning .and brainstorming	Theoretical and practical	Help	1 hour theoretical hours of 2 work	Learn how to get helpand its different .methods
Twelve	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam	Presenting the lecture , using data show ,presenting explanations and solving mathematical problems usingMicrosoft Board , ,practical application	Theoretical and practical	Information security	1 hour theoretical hours of 2 work	Basic principles of information security Types of cyber ,threats (viruses malware, data

	Cooperative -6 learning	collaborative learning, and brainstorming				protection ,strategies ,passwords (encryption
thirteenth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture , using data show ,presenting explanations and solving mathematical problems usingMicrosoft Board , ,practical application ,collaborative learning .and brainstorming	Theoretical and practical	Networks and the Internet	1 hour theoretical hours of 2 work	Introduction to Computer Networks Types of networks LAN, WAN How to connect ,to the Internet Internet protocols
Fourteenth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture , using data show ,presenting explanations and solving mathematical problems usingMicrosoft Board , ,practical application ,collaborative learning .and brainstorming	Theoretical and practical	Online Search and Web Tools	1 hour theoretical hours of 2 work	Use search engines effectively Evaluating the credibility of online sources Introduction to cloud tools and services like Google Drive
The fifteenth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4	Presenting the lecture , using data show ,presenting explanations and solving mathematical problems	Theoretical and practical	Online Search and Web Tools	1 hour theoretical hours of 2 work	Learn about artificial intelligence platforms

Final written -5 usingMicrosoft Board , practical application Cooperative -6 learning .and brainstorming	manage email Send and receive emails
--	--------------------------------------

Curriculum Development Plan

Continuously updating the curriculum to keep pace with developments in the labor market (Curriculum Update :Committee, Scientific Committee) such as

- 14- Develop curricula that are compatible with the labor market
- 15- Holding scientific seminars and conferences aimed at updating curricula
- 16- Follow up on scientific developments in the field of specialization

Infrastructure -11	
Classrooms, playgrounds	a Available
workshops	
23- Required textbooks	Available
	The book "Computer Basics and Office Applications" by Dr. Ziad -1
24- Main References	:Muhammad Abboud, Dr. Ghassan Hamid Abdul Majeed and others
(Sources)	This book covers the basics of computer science, according to the
	/ curriculum of the Ministry of Higher Education and Scientific Research

Research and Development Department, and is a reference for first-year students in all Iraqi universities

- .2 :The book "Computer Principles" by Dr. Osama Youssef Khalil This book covers the basics of computer hardware, software, and .operating systems, and is a good reference for beginners
- .3 The book "Introduction to Computers" by Dr. Muhammad Al-:Saeed

This book provides a detailed explanation of the computer and its .components, types of software, and networks

.4 The book "Principles of Computer and Information Technology" by :Dr. Hossam El-Din Mustafa

It contains a simplified explanation of the various components of the computer, along with an explanation of the programs and applications used in it

- .5 The book "Computer Basics and Applications" by Dr. Abdullah :Hassan
- This book covers a variety of topics including computer components operating systems, word processing, and spreadsheets
- .6 The book "Introduction to Computers and Their Applications" by : Dr. Abdul Rahman Al-Shaiji

The book covers the basic principles of computers in terms of hardware and software, and includes practical applications

.7 The book "Computer Principles: A Comprehensive Guide" by a group of authors

A comprehensive book that explains in detail everything related to .computer components, software, and networks, with illustrative examples

†) Recommended books and references (scientific (.journals, reports, etc	1. Hasoub Academy": website o ,Provides comprehensive articles and lessons on computer basics programming, and operating systems. 2. Learn"" website: o
4) ,Electronic references ,websites	.1w3schools.com To learn programming languages such asHTML, CSS, JavaScript2geeksforgeeks.org .Detailed explanation of programming concepts and algorithms .3tutorialspoint.com .Lessons in computer, networking, cyber security , operating systems .4mozilla.org) A comprehensive reference for web developersHTML, CSS, JavaScript .(

166 Educational institution/

Ministry of Higher Education and Scientific Research / Northern Technical University / Al-Hawija Technical Institute

167. Scientific Department

Electrical techniques

168. / Course Name/Code

Computer2 /NTU201

169 Available attendance forms

In presence

170. / Chapter/Year

2025/2024 / First semester

171. (Number of study hours (total

45=15*3

172. Date this description was prepared

2025/6/20

173. (Course objectives (general objectives of the course

This course aims to introduce students to the basic concepts of information technology and computer use. This course includes studying computer hardware components such ,as the processor, memory and input/output units, as well as software, as , including operating systems and various applications well as the concept of computer viruses and how to deal with them

course 2 Top scorer of the University Computer Science:

- Provide students with a comprehensive understanding of computer components and their functions.
- Develop students' skills in using operating systems and basic software.
- Knowledge of computer generations
- Knowledge of using software
- Learn how to format floppy disks
- Educating students about the importance of information security and data protection methods.
- Knowing the concept of computer viruses and how to deal with them
- Know how to access the Internet
- Learn about computer components
- Learn about the evolution of computers throughout history
- Dealing with operating systems
- Gaining the skill of using the Windows operating system
- Learn about software types
- Identify and use storage unit types
- Perform basic computer maintenance

- Understanding networking basics
- Application of information security principles
- Gain the skill to get rid of viruses that may infect the computer
- Use of office software
- Searching the Internet and Using Email

Enable students to understand the basics of networking and use the Internet .effectively

174. Course outcomes, teaching, learning and assessment methods

Course outcomes

identification: It is a set of knowledge, skills and values that the course seeks to achieve in students.

Its importance: It provides the learner with a clear idea of what he will be able to do after completing the course, and helps in designing and evaluating academic courses.

How is it determined? The course outcomes are determined based on the objectives of the academic program to which the course belongs.

Knowledge: outputs By the end of this course, the student is :expected to be able to Identify the hardware and software .1 .components of the computer Explain the difference between .2 operating systems and application .programs Describe the basics of the Internet and .3 .networks Understanding the basic concepts of .4 .information security Distinguish between types of software .5 .and their uses in the work environment Second: Skills outputs:	6. Lecture using PowerPoint 7. Discussion with students 8. Display exercise	Oral and written questions and discussions Display the lecture -2 using The data show Presenting -3 explanations and solving mathematical .problems Practical -4 application, cooperative learning, brainstorming
Running and using popular operating .1 systems such as Windows . Microsoft Office ,applications (Word .(Excel, PowerPoint Send and receive email and manage .3 .attachments Browse the Internet effectively using .4 .search engines	Practical (applied) training .1 Project-based learning .2 Cooperative learning .3 .Simulation and software .4 Self-education using the Internet .5 Targeted training .6 Practical duties .7	Practical application .1 Projects .2 Direct observation .3 Homework and .4 practical activities Self-assessment .5 Presentations .6

	erform file saving, retrieval, and .5 organization operations on the .computer				
Third: Valuesand Attitudes: Demonstrate commitment to computer .1 .and information ethics Respecting the intellectual property .2 .rights of software and digital content Work as a team when carrying out .3 .joint tasks and projects Demonstrate interest in developing .4 .personal technical skills Adhere to safety and cybersecurity .5 .procedures when using the computer		Class discuss Case studies Values-based Group activi Behavioral r teacher	.2 I learning .3	Direct observation .1 Class discussions and .2 participation Achievement book .3 Questionnaires and .4 self-assessment	
175. (7	Theoretical and practical v	ocabulary) C	ourse structure		
week	Methods of measurement and evaluation	Teachi s used g metho	Chapter title	Theoretical time And my work	Subheadings

the first	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical ,application collaborative learning, and .brainstorming	Theore tical and practic al	Introduction to Microsoft Office	1 hour theoretical hours of 2 work	Learn about - Office programs The importance of , Word, Excel and PowerPoint in the work environment
the second	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical , application collaborative learning, and .brainstorming	Theore tical and practic al	Getting started withMicrosoft Word	11 hour theoretica I hours 2 of work	Main - interface Create a new - document Save and - open) documents HDD, SSD ,(drives

the third	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical ,application collaborative learning, and .brainstorming	Theore tical and practic al	Formatting text in Word	1 hour theoretica I hours 2 of work	Font - formatting Paragraphs Distances - and separat Icons and - lists	ion
Fourth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical ,application	Theore tical and practic al	Working with tables and images inWord	1 hour theoretical hours of 2 work	Insert tables Insert and - edit images Working wit illustrations	h -

Fifth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	collaborative learning, and .brainstorming Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board, practical ,application collaborative learning, and .brainstorming	Theore tical and practic al	Insert other elements inWord	1 hour theoretical hours of 2 work	Insert - hyperlinks Add equation - Use of - symbols
Sixth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical , application	Theore tical and practic al	Print and final review inWord	1 hour theoretical hours of 2 work	Preview - before printing Review - spelling and grammatical .errors Prepare the - page for printing

Seventh	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	collaborative learning, and .brainstorming Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical , application collaborative learning, and .brainstorming	Theore tical and practic al	Working with documents inWord	1 hour theoretical hours of 2 work	Create a table - of contents Add indexes - Use of - patterns and templates
The eighth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical , application	Theore tical and practic al	Working on projects inWord	1 hour theoretical hours of 2 work	Final project - UsingWord Submitting - the project work

	Assignments -1 and duties	collaborative learning, and .brainstorming Presenting the lecture using the	Theore tical	Getting Started with Microsoft Excel	1 hour theoretical	Main interface - Create -
Ninth	Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	, data show presenting explanations, and solving mathematical problems using Microsoft Board, practical ,application collaborative learning, and .brainstorming	and practic al		hours of 2 work	spreadsheets Data types - ((texts
tenth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture using the , data show presenting explanations, and solving mathematical problems using Microsoft Board , practical , application	Theore tical and practic al	Function inExcel	1 hour theoretical hours of 2 work	Equations Mathematical and financial functions

		collaborative learning, and .brainstorming				
eleventh	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture , using data show ,presenting explanations and solving mathematical problems usingMicrosoft Board ,practical application ,collaborative learning .and brainstorming	Theoretic al and practical	Formatting tables and creating charts	1 hour theoretical hours of work 2	Formatting cells and tables Create charts - Customize - charts
The second ten	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture , using data show ,presenting explanations and solving mathematical problems using Microsoft Board , practical application ,collaborative learning .and brainstorming	Theoretic al and practical	Printing inExcel	1 hour theoretical hours of work 2	Prepare the - page for printing Report - coordination Use multiple - worksheets
thirteenth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture , using data show ,presenting explanations and solving mathematical problems usingMicrosoft Board , practical application ,collaborative learning .and brainstorming	Theoretic al and practical	Getting Started with Microsoft PowerPoint	1 hour theoretical hours of work 2	Main interface - Create a new- presentation Save and open - presentations

Fourteenth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture , using data show ,presenting explanations and solving mathematical problems using Microsoft Board ,practical application ,collaborative learning .and brainstorming	Theoretic al and practical	Design slides and content inPowerPoint	1 hour theoretical hours of work 2	Text formatting - Insert images and tables Add shapes and - illustrations
The fifteenth	Assignments -1 and duties Quiz -2 Practical test -3 Monthly test -4 Final written -5 exam Cooperative -6 learning	Presenting the lecture , using data show ,presenting explanations and solving mathematical problems usingMicrosoft Board ,practical application ,collaborative learning .and brainstorming	Theoretic al and practical	Professional effects and presentation	1 hour theoretical hours of work 2	Add transitions an .motion effects Practice giving - professional presentations

Curriculum Development Plan

Continuously updating the curriculum to keep pace with developments in the labor market (Curriculum Update :Committee, Scientific Committee) such as

- 17- Develop curricula that are compatible with the labor market
- 18- Holding scientific seminars and conferences aimed at updating curricula
- 19- Follow up on scientific developments in the field of specialization

Infrastructure-11	
Classrooms, playgrounds	a Available
workshops	
25- Required textbooks	Available
26- Main References (Sources)	The book "Computer Basics and Office Applications" by Dr. Ziad -1 :Muhammad Abboud, Dr. Ghassan Hamid Abdul Majeed and others This book covers the basics of computer science, according to the / curriculum of the Ministry of Higher Education and Scientific Research Research and Development Department, and is a reference for first-year .students in all Iraqi universities .2 :The book "Computer Principles" by Dr. Osama Youssef Khalil This book covers the basics of computer hardware, software, and .operating systems, and is a good reference for beginners .3 The book "Introduction to Computers" by Dr. Muhammad Al- :Saeed This book provides a detailed explanation of the computer and its .components, types of software, and networks .4 The book "Principles of Computer and Information Technology" by :Dr. Hossam El-Din Mustafa

	It contains a simplified explanation of the various components of the computer, along with an explanation of the programs and applications used in it .5 The book "Computer Basics and Applications" by Dr. Abdullah: Hassan ,This book covers a variety of topics including computer components operating systems, word processing, and spreadsheets .6 The book "Introduction to Computers and Their Applications" by: Dr. Abdul Rahman Al-Shaiji The book covers the basic principles of computers in terms of hardware and software, and includes practical applications .7 The book "Computer Principles: A Comprehensive Guide" by a group of authors A comprehensive book that explains in detail everything related to computer components, software, and networks, with illustrative examples
ن) Recommended books and references (scientific (.journals, reports, etc	6. Hasoub Academy": website o ,Provides comprehensive articles and lessons on computer basics programming, and operating systems. 7. Learn"" website: o

	 It contains many Arabic books in the field of computers, including books on basic principles. My Educational Lessons YouTube Channel: Provides a visual explanation of computer principles and programming concepts in Arabic.
ر) ,Electronic references ,websites	.1w3schools.com To learn programming languages such asHTML, CSS, JavaScript2geeksforgeeks.org .Detailed explanation of programming concepts and algorithms .3tutorialspoint.com .Lessons in computer, networking, cyber security, operating systems .4mozilla.org) A comprehensive reference for web developersHTML, CSS, JavaScript.(

176. ducational institution/

Ministry of Higher Education and Scientific Research / Northern Technical University / Al-Hawija Technical Institute

177. Scientific Department

Electrical techniques

178. / Course Name/Code

/SportsNTU 104

179. Available attendance forms

My presence

180. / Chapter/Year

2025/2024 / First semester

181. (Number of study hours (total

30=15*2

182. Date this description was prepared

2025/6/18

183. (Course objectives (general objectives of the course

The goal of sports courses is to develop the individual physically, psychologically, and socially . through sports activities. Here are the most important general objectives of the sports course

University Sports Course Top Scorer:

.1Developing physical fitness and general health:

Enhancing students' physical fitness levels in line with the requirements of university life and daily activities.

Contribute to the prevention of chronic diseases associated with lack of movement (such as obesity, heart (disease, diabetes.

Developing motor and .2athletic skills:

Providing students with basic and advanced skills in selected sports activities (such as: football, basketball, volleyball, swimming, or fitness exercises.

Developing neuromuscular coordination and various motor abilities.

Promoting positive values and .3behaviors:

Instilling the concepts of sportsmanship, commitment, discipline, and cooperation.

Building positive healthy behaviors that contribute to improving the quality of life.

.4Raising awareness of the importance of physical activity:

Enabling the student to understand the relationship between physical activity and mental and physical health.

Encouraging students to adopt an active and continuous lifestyle after university.

Developing psychological and social .5aspects:

Strengthening self-confidence, controlling emotions, and accepting loss.

Enhancing communication and teamwork skills in an educational sports environment.

Supporting the academic and applied aspects in related disciplines (for specialized students .6):

Enabling students to understand sports rules, laws and training principles.

Preparing students for career paths in athletic training, public health, or physical education

184. Course outcomes, teaching, learning and assessment methods **Course outcomes**

identification: It is a set of knowledge, skills and values that the course seeks to achieve in students.

Its importance: It provides the learner with a clear idea of what he will be able to do after completing the course, and helps in designing and evaluating academic courses.

How is it determined? The course outcomes are determined based on the objectives of the academic program to which the course belongs.

Knowledge: outputs Identify the benefits of physical activity for -1 .general health Knowing the rules and methods of different -2 .sports Understanding the concepts of physical -3 fitness, nutrition, and safety during physical .performance	Teaching and learning methods Theoretical explanation -1 .and classroom discussions Use of multimedia and -2 .presentations Linking mathematical -3 .concepts to life applications	Theoretical tests -1 multiple choice, true or) .(false, essay .Oral questions -2 Teacher's comments -3 on understanding and .class participation
Skills: outputs Performing basic motor skills (such as -1 .(running, jumping, throwing Properly implementing skills related to group -2 .and individual sports Use sports equipment and tools in a correct -3 .and safe manner	.Learning by doing -1 Individual and group -2 .training Learning based on -3 .educational stations Practical simulation of -4 .games	Direct observation -1 .during performance Practical evaluation -2 .using the rubric Filming and -3 reviewing the .performance Practical -4 .competitions

Third: Valuesand Attitudes:
Enhancing the spirit of cooperation and -1
.teamwork during sports activities
Commitment to the rules of the game and -2
.sportsmanship
Respect colleagues and teachers and behave -3

.ethically in competitions

Cooperative group -1
.activities
Discussions about the -2
importance of values in
.sports
Educational situations -3
.during play
A good example from the -4
.teacher

Classroom -1
observation of behavior
and values during the
.activity
Self-evaluation and -2
'my colleagues
. evaluation
Reports or records of -3
.student behavior in class
.And sustainable

185. (Course structure (Theoretical and practical vocabulary

Methods of measurement and evaluation	Technologi es used	Teaching method	Subheadings	Time(theoreti cal/ practic al)	Chapter title	
Written test-	Presentati	Lecture+	Definition of physical	1 hour	Introduction to	
Oral	on–	Discussio	education- its	theoreti	Physical	
participation	Smart	n	objectives- its	cal	Education	
	Board		importance			
Share- Short	PowerPoin	Interactiv	The importance of	1 hour	Health and	
Quiz	t- Video	e lecture	sports for general	theoreti	Sports	
		+	and mental health	cal		

		discussio n			
Note- Fitness Test	Sports Equipment - Video	Practical explanati on+ groups	Strength- Endurance - Speed- Flexibility- Balance	2 hours theoreti cal	Components of physical fitness
My work performance evaluation	Video- Timer	Practical training+ supervisi on	The Importance of Warm-Up– Practical Applications	2 hours theoreti cal	Warm-up and cool-down
Practical calendar	Simple Tools- Video	Group activity+ applicatio n	Flexibility exercises- dynamic and static balance	2 hours theoreti cal	Flexibility and balance
Running Test- Performance Monitoring	Running Track- Temporary	Training stations	Endurance Tests- Progressive Exercises	2 hours	Muscular and cardiac endurance
Recording Results- Notes	Weights- Resistance bands	targeted training	Resistance Training- Strength Basics	theoreti cal	Muscle strength
Timing Test- Notes	Cones- Timing	Individual + group training	Speed Tests- Agility Exercises	2 hours	Speed and agility

Theoretical Test- Participation	Blackboard - Video	Explanati on+ Discussio n	Football- Basketball- Volleyball	theoreti cal	Team Games Rules	
Practical evaluation	Balls- Network	Field training	Passing- Shooting- Control	2 hours	football skills	
Individual Performance Note	Balls- Hoops	Training stations	Dribbling- Shooting- Passing	theoreti cal	basketball skills	
Share and rate	Volleyball- Net	Pair+ Group Training	Send- Pass-Smash	2 hours	volleyball skills	
Group evaluation	Whistle- Refereeing Tools	Supervis ed matches	Skills Application- Team Division	theoreti cal	Practical matches	
Interact and share	Examples and scenarios	Discussio n and dialogue	The concept of sportsmanship-ethics of play	2 hours	sportsmanship and ethics	
Final exam+ comprehensive performance evaluation	Full tools	Compreh ensive testing and evaluatio n	Comprehensive Review- Practical Tests	theoreti cal	Final assessment	

Curriculum Development Plan

Continuously updating the curriculum to keep pace with developments in the labor market (Curriculum :Update Committee, Scientific Committee) such as

- 20- Develop curricula that are compatible with the labor market
- 21- Holding scientific seminars and conferences aimed at updating curricula
- 22- Follow up on scientific developments in the field of specialization

186. infrastructure	
Classrooms, playgrounds a	Available
workshops	
27- Required textbooks	Available
28- Main References (Sources)	Physical Education and Sports - Foundations and Concepts :Author Dr. Nabil Awadallah, Dr. Khalil Balasma :Edition 2018 ,Third Edition :publisher Arab Thought House, Cairo

	Physical Education and Sports - Foundations and Concepts
	:Author
j) Recommended books	Dr. Nabil Awadallah, Dr. Khalil Balasma
and references (scientific	:Edition
(.journals, reports, etc	2018 ,Third Edition
	:publisher
	Arab Thought House, Cairo
	https://sdl.edu.sa
Electronic references,	
,websites	,A major source of books, research and academic journals in Arabic and English <
	Available to Saudi university students via unified access

187. Educational institution/
Ministry of Higher Education and Scientific Research / Northern Technical University / Al-Haw
Technical Institute
188. Scientific Department
Electrical techniques
189. / Course Name/Code
/ 1 MathematicsTIAH100
190. Available attendance forms
In presence
191. / Chapter/Year

2025/2024 / First semester

192. (Number of study hours (total

30=15*2

193. Date this description was prepared

2025/6/19

(Course objectives (general objectives of the course .8

Providing learners with basic mathematical knowledge and skills that enhance logical and analytical thinking, enable them to solve problems systematically, and apply mathematical concepts to real-life and academic situations, while developing academic values such as .discipline, precision, and teamwork

: University Sports Course Top Scorer

- Gain the mathematical knowledge necessary for the prescribed topics and understand the meanings behind each mathematical concept
- Develop an understanding of the nature of the foundations of mathematics as an integrated system of fundamental mathematical concepts, which will provide a significant basis for understanding other mathematical disciplines
- .The learner should be able to know the methods of solving equations
- .The learner will be able to solve partial differential equations
- .The student should be able to calculate the area and volume of objects

.The learner will be able to solve all differential and integral problems

Course outcomes, teaching, learning and assessment methods .9 Course outcomes

identification: It is a set of knowledge, skills and values that the course seeks to achieve in students.

Its importance: It provides the learner with a clear idea of what he will be able to do after completing the course, and helps in designing and evaluating academic courses. How is it determined? The course outcomes are determined based on the objectives of the academic program to which the course belongs.

Outputs	Teaching and learning methods	Evaluation methods
Knowledge: outputs Acquiring basic mathematical _1 .concepts and terms Understanding and interpreting_2 mathematical theories and laws Distinguishing between different_3 .types of mathematical problems	.Theoretical lectures _1 Explanation using_2 .examples .Presentations _3 Using visual and _4 .interactive means	 Test theory Oral questions Safiya's participation Discussions and written questions
Second: Skills outputs: Solve mathematical problems using _1 .correct and systematic steps Applying mathematical concepts in _2 .real-life situations Using mathematical tools or _3 .software in analysis and calculation	Solving classroom and _1 .individual exercises .Problem-based learning _2 Using educational_3 programs such asExcelr . Mathematical applications .in practical life	1 - Evaluate practical performance in solving .problems Homework and -2 .practical projects . Practical tests -3

	Skills - based -4
	.assessment
	Classroom -1
Open and respectful -1 .discussions in class	observation of behavior .And discipline
Cooperative learning in -2	
.groups	Colleagues evaluate -2
Providing life situations -3	.each other
that reinforce values	
.through mathematics	Individual reports on -3
Raising open questions -4	educational experience
with more than one solution	.and behavior
	Self-assessment -4 .questionnaires
	.discussions in class Cooperative learning in -2 .groups Providing life situations -3 that reinforce values .through mathematics Raising open questions -4

(Coı	<u>irse structure</u>	(theoretical a	nd practical	l vocabular	y .10

	-					Chapter title
Measurement methods	Technolo gies	Teachi ng metho d	Main title	Subtitle	theoreti cal	week
Written test	Explanati ,on Questions and	a lecture	Trigonome tric ratios	Properties of trigonomet ric ratios	hours 2	First week

	,Answers Discussio n					
Written test	Explanati ,on Questions and ,Answers Discussio n	a lecture	logarithms	logarithms	hours 2	The second week
Oral exam	Explanati ,on Questions and ,Answers Discussio n	a lecture	Differentia tion and derivation	Differentiat ion and derivation	hours 2	The third week
Written test	Explanati ,on Questions and ,Answers Discussio n	a lecture	Differentia tion and derivation	Derivative laws of algebraic functions	hours 2	4 Week

Written test	Explanati ,on Questions and ,Answers Discussio n	a lecture	Differentia tion and derivation	composite function (chain rule)	hours 2	5 Week
Oral exam	Explanati ,on Questions and ,Answers Discussio n	a lecture	Differentia tion and derivation	Practical exercises	hours 2	6 Week
Written test	Explanati ,on Questions and ,Answers Discussio n	a lecture	Differentia tion and derivation	Derivative of implicit ,functions derivative of trigonomet ric ,functions and inverse trigonomet	hours 2	The seventh week

Written test	Explanati ,on Questions and ,Answers Discussio n	a lecture	Differentia tion and derivation	ric functions Practical exercises	hours 2	The eighth week
Written test	Explanati ,on Questions and ,Answers Discussio n	a lecture	Derivation	Derivation rules	hours 2	9 Week
Written test	Explanati ,on Questions and ,Answers Discussio n	a lecture	Derivation	Completing the derivation rules	hours 2	The tenth week
Written test	Explanati ,on Questions	a lecture	Derivation	Derivative of	hours 2	Week eleven

	and ,Answers Discussio n			logarithmic functions		
Oral exam	Explanati ,on Questions and ,Answers Discussio n	a lecture	Derivation	Practical exercises	hours 2	The twelfth week
Oral exam	Explanati ,on Questions and ,Answers Discussio n	a lecture	integration	integration	hours 2	thirteent h week
Oral exam	Explanati ,on Questions and ,Answers Discussio n	a lecture	integration	Complete integration	hours 2	Fourteen th week

Written test Explanati ,on Questions and ,Answers Discussio n	lecture	integration	Practical exercises	hours 2	The fifteenth week
--	---------	-------------	---------------------	---------	--------------------------

Curriculum Development Plan

Continuously updating the curriculum to keep pace with developments in the labor market (Curriculum Update Committee, Scientific Committee) such :as

- -1 Course analysis and needs identification (review of current (educational outcomes
- -2 Updating scientific content and diversifying teaching and learning .methods
- . Follow up on scientific developments and improve evaluation methods -3

Infrastructure-11	
Classrooms, playgrounds	a Available
workshops	
29- Required textbooks	Available
30- Main References	
(Sources)	Thomas Calculus 12th edition George B. Thomas.
	Maurice D. Weir.

	Joel R. Hass .
ش) Recommended books and references (scientific (.journals, reports, etc	Journal of the American Mathematical Society (JAMS (.Mathematics for Science and Engineering - Author: Adnan Yousef Al-Atoum Real Analysis - Dr. Abdul Karim Adwan Introduction to Linear Algebra - Dr. Mohamed Rizk Basics of Statistics - Dr. Mohamed Fathy
ص) ,Electronic references ,websites	Khan Academy Free Interactive Lessons – Coursera Mathematics courses from prestigious universities edX Massive Open Courses – Project Euclid Access to mathematics and statistics research ArXiv Archive of Recent Research in Mathematics –

Educational institution/	
Ministry of Higher Education and Scientific Research / Northern Technical University / Al-	
Hawija Technical Institute	
Scientific Department	
Electrical techniques	
/ Course Name/Code	
101 / 2 Mathematics TIAH	

Available attendance forms

In presence

/ Chapter/Year

2025/2024 / Second semester

(Number of study hours (total

30=15*2

Date this description was prepared

2025/6/19

(Course objectives (general objectives of the course .8

Providing learners with basic mathematical knowledge and skills that enhance logical and analytical thinking, enable them to solve problems systematically, and apply mathematical concepts to real-life and academic situations, while developing academic values such as .discipline, precision, and teamwork

: University Sports Course Top Scorer

- Gain the mathematical knowledge necessary for the prescribed topics and understand the meanings behind each mathematical concept
- Develop an understanding of the nature of the foundations of mathematics as an integrated system of fundamental mathematical concepts, which will provide a significant basis for understanding other mathematical disciplines
- .The learner should be able to know the methods of solving equations
- .The learner will be able to solve partial differential equations
- .The student should be able to calculate the area and volume of objects
- .The learner will be able to solve all differential and integral problems

Course outcomes, teaching, learning and assessment methods.9 Course outcomes

identification: It is a set of knowledge, skills and values that the course seeks to achieve in students.

Its importance: It provides the learner with a clear idea of what he will be able to do after completing the course, and helps in designing and evaluating academic courses. How is it determined? The course outcomes are determined based on the objectives of the academic program to which the course belongs.

Outputs	Teaching and learning methods	Evaluation methods
Knowledge: outputs Acquiring basic mathematical concepts _1 .and terms Understanding and interpreting_2 mathematical theories and laws Distinguishing between different types of_3 .mathematical problems	Theoretical _1 .lectures Explanation using_2 .examples .Presentations _3 Using visual and _4 .interactive means	 Theoretical tests Oral questions Safiya's participation and discussions Written questions
Skills: outputs Solve mathematical problems using _1 .correct and systematic steps Applying mathematical concepts in real2 .life situations Using mathematical tools or software in _3 .analysis and calculation	Solving classroom _1 and individual .exercises Problem-based _2 .learning Using educational_3 programs such as Excelr Mathematical.	2 - Evaluate practical performance in solving .problems Homework and -2 .practical projects

	applications in .practical life	. Practical tests -3 Skills - based -4 .assessment
Third: Valuesand Attitudes:	Open and -1 respectful	Classroom -1 observation of behavior .And discipline
Commitment to accuracy and discipline -1 .in solving exercises and problems	.discussions in class Cooperative -2 .learning in groups	Colleagues evaluate -2 .each other
Enhancing the value of cooperation and -2 .teamwork	Providing life -3 situations that reinforce values	Individual reports on -3 educational experience
Respecting different opinions in -3 .mathematical thinking methods	.through mathematics Raising open -4 questions with more . than one solution	.and behavior Self-assessment -4 .questionnaires

(Course structure (theoretical and practical vocabulary .10

Chapter title						
week	theoretical	Subtitle	Main title	Teaching method	Technologies	Measurement
First week	hours 2	Matrices and determinants	Matrices	a lecture	Explanation Questions ,and Answers Discussion	Written test

The second week	hours 2	Types of arrays	Matrices	a lecture	,Explanation Questions ,and Answers Discussion	Written test
The third week	hours 2	Some algebraic operations on the matrix	Matrices	a lecture	,Explanation Questions ,and Answers Discussion	Oral exam
4 Week	hours 2	Finding the determinants of a matrix of 3×3 capacity	Matrices	a lecture	,Explanation Questions ,and Answers Discussion	Written test
5 Week	hours 2	Linear transactions	Linear transactions	a lecture	,Explanation Questions ,and Answers Discussion	Written test
6 Week	hours 2	Cramer's theory or rule	Cramer's rule	a lecture	,Explanation Questions ,and Answers Discussion	Oral exam
The seventh week	hours 2	Practical exercises	Cramer's rule	a lecture	Explanation Questions ,and Answers Discussion	Written test

The eighth week	hours 2	Vectors and numerical values	Vectors	a lecture	,Explanation Questions ,and Answers Discussion	Written test
9 Week	hours 2	Algebraic operations on vectors	Vectors	a lecture	,Explanation Questions ,and Answers Discussion	Written test
The tenth week	hours 2	Practical exercises	Vectors	a lecture	Explanation Questions ,and Answers Discussion	Written test
Week eleven	hours 2	Complex numbers	Complex numbers	a lecture	Explanation Questions ,and Answers Discussion	Written test
The twelfth week	hours 2	Algebraic operations on complex numbers	Complex numbers	a lecture	Explanation Questions and Answers Discussion	Oral exam
thirteenth week	hours 2	Practical exercises	Complex numbers	a lecture	Explanation Questions ,and Answers Discussion	Oral exam
Fourteenth week	hours 2	Complex number	Complex numbers	a lecture	Explanation, Questions	Oral exam

		writing formulas			,and Answers Discussion		
The fifteenth week	hours 2	Practical exercises	Complex numbers	a lecture	Explanation Questions ,and Answers Discussion	Written test	

Curriculum Development Plan

Continuously updating the curriculum to keep pace with developments in the labor market (Curriculum Update Committee, Scientific :Committee) such as

- 23- Course analysis and needs identification (review of (current learning outcomes
- 24 Updating scientific content and diversifying teaching and learning methods
- 25- Follow up on scientific developments and improve . evaluation methods

Infrastructure-11

Classrooms, playgrounds a	Available
workshops	
31- Required textbooks	Available
32- Main References	Thomas Calculus 12th edition George B. Thomas.
(Sources)	Maurice D. Weir.
	Joel R. Hass .
ض) Recommended books and references (scientific (.journals, reports, etc	Journal of the American Mathematical Society (JAMS (.Mathematics for Science and Engineering - Author: Adnan Yousef Al-Atoum Real Analysis - Dr. Abdul Karim Adwan Introduction to Linear Algebra - Dr. Mohamed Rizk Basics of Statistics - Dr. Mohamed Fathy
ط) ,Electronic references ,websites	Khan Academy Free Interactive Lessons – Coursera Mathematics courses from prestigious universities edX Massive Open Courses – Project Euclid Access to mathematics and statistics research ArXiv Archive of Recent Research in Mathematics –

194. Educational Institution

Ministry of Higher Education and Scientific Research / Northern Techni
University / Hawija Technical Instite

195. **Scientific Department**:

Department of Electrical Technologies

196. **Course Title / Code:**

Power Electronics 1

197. Available Attendance Mode:

In-person

198. **Semester / Academic Year:**

Modular Courses

199. **Total Study Hours:**

 $5 \times 15 = 75$

200. Date of Course Description Preparation:

19-06-2025

201. Course Objectives (General Objectives):

- 1- To introduce students to the basic and electronic components of power systems such as transformers, thyristors, and control circuits.
- 2- To enable students to analyze and design power electronic circuits to achieve high performance and required efficiency.
- 3- To enhance students' understanding of protection techniques in powe systems, such as overcurrent and electrical stress protection.
- 4- To link theoretical knowledge with practical and industrial applications fields such as smart grids and industrial electronics.

202. Course Learning Outcomes and Methods of Teaching, Learning, and Assessment:

Learning Outcomes:

- 1. Understand the components and types of power electronic circuits.
- 2. Analyze and diagnose the performance of power electronic circuits.
- 3. Design electronic systems for power control.

- 4. Apply protection techniques in power electronic systems.
- 5. Use simulation tools to analyze circuits (such as MATLAB/Simulink).
- 6. Work collaboratively and effectively solve engineering problems.

Course Definition:

A course that explores how electronic devices and circuits are used to efficiently control and distribute electrical energy, with a focus on analysis, design, and protection in power systems.

Course Importance:

- Enabling precise control in electrical power systems.
- Improving the efficiency of power conversion and distribution.
- Developing skills in the design and maintenance of power electronic devices.
- Supporting modern industrial applications such as smart grids and electric drives.
- Enhancing understanding of safety and protection in power systems.

How Objectives Are Determined:

- Studying the needs of the current industrial and engineering market.
 Reviewing relevant academic curricula and standards.
 - Analyzing student needs and prior knowledge in the field.
 - Identifying the practical and theoretical skills required by the job market.
 - Keeping up with technological advancements in the field of power electronics.

Outcomes	Teaching and Learning Methods	Assessment Methods	
Knowledge	- Theoretical lectures	- Written exams	
Understanding power circuit components	- Reading references and books	- Short questions	
2. Comprehending control and power concepts	- Presentations	- Periodic evaluations	

3. Identifying protection techniques	- Case studies	- Written reports
4. Knowing basics of simulation software	 Simulation using MATLAB/Simulink 	- Electronic tests
Skills	- Practical lab training	 Practical project evaluations
Analyzing electrical circuits	- Circuit design projects	- Project reports
Designing electronic systems	- Teamwork	 Presentation assessments
3. Applying protection techniques	- Classroom discussions	 Class participation evaluation
4. Using simulation tools	- Solving applied problems	- Practical performance evaluation
Evaluation	 Comprehensive content review 	- Final exams
1. Measuring theoretical understanding	- Periodic tests	- Written exams
2. Evaluating practical skills	- Applied projects	- Practical performance evaluation
3. Measuring teamwork and collaboration skills	- Group activities	- Group work evaluation
4. Monitoring improvement and innovation	- Presentations and research	- Research reports and articles

Chapter One

Time Distributi on	Theor y	Practic al	Main Title	Subtopic	Teaching Method	Technologi es	Assessme nt Methods
Week 1	2 hours	3 hours	Power Electroni cs	Introductio n of Power Electronics	Theoretic al explanati on and practical applicatio n	Use of data show, presentati on, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e

Week 2	2 hours	3 hours	Power Electroni cs	Classificati on of Power Electronic Converters	Theoretic al explanati on and practical applicatio n	Use of data show, presentati on, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e
Week 3	2 hours	3 hours	Power Electroni cs	Single Phase Half Wave Uncontroll ed Rectifier	Theoretic al explanati on and practical applicatio n	Use of data show, presentati on, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e
Week 4	2 hours	3 hours	Power Electroni cs	Single Phase Full Wave Uncontroll ed Rectifier	Theoretic al explanati on and practical applicatio n	Use of data show, presentati on, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e

Chapter Two

Time Distribution	Theory	Practical	Main Title	Subtopic	Teaching Method	Technologies	Assessment Methods
Week 5	2 hours	3 hours	Three Phase Rectifier (uncontrolled)	Three phase half bridge uncontrolled rectifier	Theoretical explanation and practical application	Use of data show, presentation, explanation, Q&A, discussion	Daily quizzes, daily assignments, student inquiries, attendance

Week 6	2 hours	3 hours	Three Phase Rectifier (uncontrolled)	Three phase full bridge uncontrolled rectifier	Theoretical explanation and practical application	Use of data show, presentation, explanation, Q&A, discussion	Daily quizzes, daily assignments, student inquiries, attendance
Week 7	2 hours	3 hours	Three Phase Rectifier (uncontrolled)	Comparison between single phase and three phase	Theoretical explanation and practical application	Use of data show, presentation, explanation, Q&A, discussion	Daily quizzes, daily assignments, student inquiries, attendance

Chapter Three

Time Distribution	Theory	Practical	Subtopic	Teaching Method	Technologies	Assessment Methods
Week 8	2 hours	3 hours	Transistor as Switch	Introduction and Operating Modes of Transistors	Theoretical explanation and practical application	Use of data show, presentation, explanation, Q&A, discussion
Week 9	2 hours	3 hours	Transistor as Switch	BJT switching time	Theoretical explanation and practical application	Use of data show, presentation, explanation, Q&A, discussion

Week 10	2 hours	3 hours	Transistor as Switch	Improving BJT Switching Time	Theoretical explanation and practical application	Use of data show, presentation, explanation, Q&A, discussion
---------	---------	---------	-------------------------	------------------------------------	--	---

Chapter Four

Time Distributi on	Theor y	Practic al	Main Topics	Subtopics	Teaching Method	Technologi es	Assessme nt Methods
Week 11	2 hours	3 hours	Field Effect Transist or	MOSFET	Theoretic al explanati on and practical applicatio n	Use of data show, presentati on, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e
Week 12	2 hours	3 hours	Field Effect Transist or	Working Principle of MOSFET	Theoretic al explanati on and practical applicatio n	Use of data show, presentati on, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e

Week 13	2 hours	3 hours	Field Effect Transist or	Unijunction Transistor (UJT)	Theoretic al explanati on and practical applicatio n	Use of data show, presentati on, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e
Weeks 14 and 15	2 hours	3 hours	Field Effect Transist or	UJT Characterist ics	Theoretic al explanati on and practical applicatio n	Use of data show, presentati on, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e

10. Course Development Plan

Continuous development of educational content to keep pace with modern requirements such as:

- Integrating the latest digital technologies and tools into the course.
- Regularly updating scientific and practical information.
- Including real case studies and modern industrial applications.
- Encouraging interactive learning and practical projects.
- Reviewing and adapting content based on student feedback and labor market needs.

11. Infrastructure

Providing classrooms equipped with modern display technologies (projector, smart board).

Classrooms, Laboratories, and Workshops

Laboratories equipped with measurement devices and power electronics circuit simulators.	
Practical workshops for conducting experiments and circuit design.	
Basic books covering principles of power electronics, such as: • Power Electronics – Muhammad H. Rashid • Power Electronics: Converters, Applications and Design – Ned Mohan	Required Textbooks
Recommended books and references (scientific journals, reports, etc.): Peer-reviewed scientific journals such as IEEE Transactions on Power Electronics Technical reports from electronics and energy companies	Main References (Sources)
Specialized books on control and power systems	

203. Educational Institution

Ministry of Higher Education and Scientific Research / Northern Techni
University / Hawija Technical Institu

204. Scientific Department:

Department of Electrical Technologies

205. Course Title / Code:

Power Electronics 2

206. Available Attendance Mode:

In-person

207. **Semester / Academic Year:**

Modular Courses

208. **Total Study Hours:**

 $5 \times 15 = 75$

209. Date of Course Description Preparation:

19-06-2025

210. Course Objectives (General Objectives):

- 5- To introduce students to the basic and electronic components of power systems such as transformers, thyristors, and control circuits.
- 6- To enable students to analyze and design power electronic circuits to achieve high performance and required efficiency.
- 7- To enhance students' understanding of protection techniques in powe systems, such as overcurrent and electrical stress protection.
- 8- To link theoretical knowledge with practical and industrial applications fields such as smart grids and industrial electronics.

211. Course Learning Outcomes and Methods of Teaching, Learning, and Assessment:

Learning Outcomes:

- 7. Understand the components and types of power electronic circuits.
- 8. Analyze and diagnose the performance of power electronic circuits.
- 9. Design electronic systems for power control.

- 10. Apply protection techniques in power electronic systems.
- 11. Use simulation tools to analyze circuits (such as MATLAB/Simulink).
- 12. Work collaboratively and effectively solve engineering problems.

Course Definition:

A course that explores how electronic devices and circuits are used to efficiently control and distribute electrical energy, with a focus on analysis, design, and protection in power systems.

Course Importance:

- Enabling precise control in electrical power systems.
- Improving the efficiency of power conversion and distribution.
- Developing skills in the design and maintenance of power electronic devices.
- Supporting modern industrial applications such as smart grids and electric drives.
- Enhancing understanding of safety and protection in power systems.

How Objectives Are Determined:

- Studying the needs of the current industrial and engineering market.
 - Reviewing relevant academic curricula and standards.
 - Analyzing student needs and prior knowledge in the field.
 - Identifying the practical and theoretical skills required by the job market.
 - Keeping up with technological advancements in the field of power electronics.

Outcomes	Teaching and Learning Methods	Assessment Methods
Knowledge	- Theoretical lectures	- Written exams
Understanding power circuit components	- Reading references and books	- Short questions
2. Comprehending control and power concepts	- Presentations	- Periodic evaluations

3. Identifying protection techniques	- Case studies	- Written reports
4. Knowing basics of simulation software	- Simulation using MATLAB/Simulink	- Electronic tests
Skills	- Practical lab training	 Practical project evaluations
Analyzing electrical circuits	- Circuit design projects	- Project reports
Designing electronic systems	- Teamwork	 Presentation assessments
3. Applying protection techniques	- Classroom discussions	- Class participation evaluation
4. Using simulation tools	- Solving applied problems	- Practical performance evaluation
Evaluation	 Comprehensive content review 	- Final exams
Measuring theoretical understanding	- Periodic tests	- Written exams
2. Evaluating practical skills	- Applied projects	- Practical performance evaluation
3. Measuring teamwork and collaboration skills	- Group activities	- Group work evaluation
4. Monitoring improvement and innovation	- Presentations and research	- Research reports and articles

Chapter One

Wee k	Theor y Time	Practica I Time	Main Title	Sub-title	Teaching Method	Techniques	Assessmen t Methods
Wee k 1	2 hours	3 hours	Amplifier s	Operationa I Amplifier	Theoretica I explanatio n and practical application	Using data show device, presentatio n, explanation, Q&A, discussion	Daily quizzes, daily homework, student inquiries, attendance

Wee k 2	2 hours	3 hours	Amplifier s	Inverting Voltage Amplifier	Theoretica I explanatio n and practical application	Using data show device, presentatio n, explanation, Q&A, discussion	Daily quizzes, daily homework, student inquiries, attendance
Wee k 3	2 hours	3 hours	Amplifier s	Non- Inverting Voltage Amplifier	Theoretica I explanatio n and practical application	Using data show device, presentatio n, explanation, Q&A, discussion	Daily quizzes, daily homework, student inquiries, attendance
Wee k 4	2 hours	3 hours	Amplifier s	Application s of Amplifier	Theoretica I explanatio n and practical application	Using data show device, presentatio n, explanation, Q&A, discussion	Daily quizzes, daily homework, student inquiries, attendance

Chapter Two

Wee k	Theor y Time	Practica I Time	Main Title	Sub-title	Teaching Method	Techniques	Assessment Methods	
----------	--------------------	--------------------	---------------	-----------	--------------------	------------	-----------------------	--

Wee k 1	2 hours	3 hours	Amplifier S	Operationa I Amplifier	Theoretica I explanatio n and practical applicatio n	Use of data show device, presentatio n, explanation, Q&A, discussion	Daily quizzes, daily assignment s, student inquiries, attendance
Wee k 2	2 hours	3 hours	Amplifier s	Inverting Voltage Amplifier	Theoretica I explanatio n and practical applicatio n	Use of data show device, presentatio n, explanation, Q&A, discussion	Daily quizzes, daily assignment s, student inquiries, attendance
Wee k 3	2 hours	3 hours	Amplifier s	Non- Inverting Voltage Amplifier	Theoretica I explanatio n and practical applicatio n	Use of data show device, presentatio n, explanation, Q&A, discussion	Daily quizzes, daily assignment s, student inquiries, attendance
Wee k 4	2 hours	3 hours	Amplifier s	Application s of Amplifier	Theoretica I explanatio n and practical applicatio n	Use of data show device, presentatio n, explanation, Q&A, discussion	Daily quizzes, daily assignment s, student inquiries, attendance

Time Distribution	Theory	Practical	Main Title	Sub-title	Teaching Method	Techniques	Assessment Methods
Week 8	2 hours	3 hours	Thyristor Construction, Characteristics and Family	Thyristor definition and characteristics	Theoretical explanation and practical application	Use of data show device, presentation, explanation, Q&A, discussion	Daily quizzes, daily assignments, student inquiries, attendance
Week 9	2 hours	3 hours	Thyristor Construction, Characteristics and Family	Thyristor Family	Theoretical explanation and practical application	Use of data show device, presentation, explanation, Q&A, discussion	Daily quizzes, daily assignments, student inquiries, attendance
Week 10	2 hours	3 hours	Thyristor Construction, Characteristics and Family	Test	Theoretical explanation and practical application	Use of data show device, presentation, explanation, Q&A, discussion	Daily quizzes, daily assignments, student inquiries, attendance

Chapter Four

Time Distributi on	Theor y	Practic al	Main Titles	Sub-titles	Teaching Method	Techniques	Assessmen t Methods
--------------------------	------------	---------------	----------------	------------	--------------------	------------	------------------------

Week 11	2 hours	3 hours	AC to DC Convert er	What is an AC/DC Converter	Theoretic al explanati on and practical applicatio n	Use of data show device, presentatio n, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e
Week 12	2 hours	3 hours	AC to DC Convert er	Applicatio ns	Theoretic al explanati on and practical applicatio n	Use of data show device, presentatio n, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e
Week 13	2 hours	3 hours	AC to DC Convert er	Half Wave Single Phase Controlled AC/DC Converter	Theoretic al explanati on and practical applicatio n	Use of data show device, presentatio n, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e
Weeks 14 and 15	2 hours	3 hours	AC to DC Convert er	Full Wave AC/DC Converter (Resistive Load)	Theoretic al explanati on and practical applicatio n	Use of data show device, presentatio n, explanatio n, Q&A, discussion	Daily quizzes, daily assignmen ts, student inquiries, attendanc e

10. Course Development Plan

Continuous development of educational content to keep pace with modern requirements such as:

- Integrating the latest digital technologies and tools into the course.
- Regularly updating scientific and practical information.
- Including real case studies and modern industrial applications.
- Encouraging interactive learning and practical projects.
- Reviewing and adapting content based on student feedback and labor market needs.

11. Infrastructure	
Providing classrooms equipped with modern display technologies (projector, smart board).	
Laboratories equipped with measurement devices and power electronics circuit simulators.	Classrooms, Laboratories, and Workshops
Practical workshops for conducting experiments and circuit design.	
Basic books covering principles of power electronics, such as: • Power Electronics – Muhammad H. Rashid • Power Electronics: Converters, Applications and Design – Ned Mohan	Required Textbooks
Recommended books and references (scientific journals, reports, etc.): Peer-reviewed scientific journals such as IEEE Transactions on Power Electronics	Main References (Sources)
Technical reports from electronics and energy companies	

Ī	
	Specialized books on control and power
	systems