Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department

Academic Program and Course Description Guide

Academic Program Description Form

University Name: Northern Technical University

Faculty/ Institute: Technical Institute / Mosul

Scientific Department: Refrigeration and Conditioning Techniques

Academic or Professional Program Name: Refrigeration and Conditioning

Final Certificate Name: Diploma in Refrigeration and Conditioning Techniques

Academic System: Courses

Description Preparation Date: 1 / 2 / 2025

File Completion Date: 10/2 / 2025

Signature:

Head of Department Name:

Assist, Prof. Mothana M. Mohamed Salih

Date: / / 2025

Signature:

Vice dean of scientific affairs:

Assist, Prof. Dr. Ahmed J. Ali

Date: 13 / 2 / 2025

The file is checked by:

Department of Quality Assurance and University Performance

Director of the Quality Assurance and University Performance Department:

Mohammed Khalid Yousif

Date: N / 2/ 2025

Signature:

Approval of the Dean

1-Program vision:

The department's vision is to be an innovative, pioneering, and influential entity in the field of refrigeration, air conditioning, thermal systems, and renewable energy technologies. Additionally, it aims to provide the labor market with highly skilled technical professionals capable of designing and building scalable thermal systems, diagnosing faults, performing preventive maintenance, and managing the operation of various systems. This will contribute to the development and service of the local and regional community and offer technical and scientific consultancy services in the specialty field while ensuring adherence to local and international quality standards, serving all segments of society, government institutions, and organizations

2-Program message:

To develop the curriculum both in terms of quality and quantity in line with the fundamental objectives of the Northern Technical University. This includes the creation of new tracks and channels in undergraduate studies to match the latest technological developments and ensure that the specializations align with scientific, professional progress, and the needs of the country and labor market in line with ongoing discoveries and rapid technological advancements across various aspects of contemporary human life

3- Program objectives

The department aims to graduate specialized technical professionals in the fields of air conditioning, refrigeration, and energy sciences. Additionally, it seeks to provide the community and labor market with skilled individuals capable of meeting the demands of scientific and practical progress and keeping pace with modern technology for the service of the country. To train technicians in air conditioning and refrigeration who are capable of serving the local market with technical skill and the use of modern technologies in the field.

To develop exceptional technicians skilled in installing and maintaining modern

refrigeration systems.

To instill sense of responsibility towards the community and maintain a constant readiness to contribute to the beautification and urban development of the region.

To meet the needs of the labor market by providing specialists in refrigeration and air conditioning design who are capable of decision – marking and working as part of a team.

To raise public awareness about the importance of using modern, energy – efficient, and environmentally – friendly technologies in refrigeration and air conditioning.

To offer local institutions better opportunities for expanding their markets and reaching larger consumer segments

4-Program accreditation:

nothing

5-Other external influences:

Summer training

6-Program structure:								
Program Structure	Number of Courses	Study Unit	Percentage	Notes *				
University requirements	10	20	18.5%	8 Essential 2 optional				
Institute requirements	3	7	6.5%	3 Essential				
Department requirements	26	82	75%	25 Essential 1 optional				
summer training	completed							
Other	/	There isn't any						

7- Program descri	ption			
Course or course code		Name of the	Units	Note
		course or course		
2024-2025/ first	AI=	Human Rights &	2	
2024-2023/ IIISt	NTU100	Democracy		
	NTU101	English Language 1	2	
	NTU102	Principles of Computer	2	
	NTU104	Arabic Language	2	
	NTU105	Sport	2	
	NTU107	France language	2	
	TIMO110	Principles of Mathematics	2	
	TIMO111	Applied Mathematics	2	
	TIMO112	Mechanical Workshops	3	
	PMTR136	Principles of Air Conditioning	4	
	PMTR137	Principles of Thermodynamics	4	
	PMTR138	Principles of Refrigeration	4	
	PMTR139	Applied Thermodynamics	4	
	PMTR140	Fluid Mechanics	4	
	PMTR141	Refrigeration and Air Conditioning Workshops	4	
	PMTR142	Principles of Electricity Technique	4	
	PMTR143	Principles of Engineering Drawing	3	
	PMTR144	Advanced Engineering Drawing	3	
	PMTR145	Engineering Mechanics	2	
	PMTR146	Advanced of Electricity Technique	4	
2024-2025 / 2ed	NTU200	English Language 2	2	
,	NTU201	Ethics of the Profession	2	
	NTU202	Baath Crimes	2	
	NTU203	Arabic Language	2	

PMTR240	Fundamentals of Cooling system	4	
PMTR241	Fundamentals of Air Conditioning	4	
PMTR242	Fundamentals of Heat transfer	4	
PMTR243	Fundamentals of refrigeration and air conditioning Maintenance	6	
PMTR244	Fundamentals of Control System	4	
PMTR245	Fundamentals of Air Conditioning System Drawing	3	
PMTR246	Advanced of Cooling system	4	
PMTR247	Applied Heat transfer	4	
PMTR248	Advanced of refrigeration and air conditioning Maintenance	6	
PMTR249	Project 1	1	
PMTR251	Advanced of Air Conditioning Systems Drawing	3	
PMTR252	Advanced of Air Conditioning	4	
PMTR253	Advanced of Control System	4	

8- Expected learning outcomes of the programme

Knowledge:

- 1. It aims to know the general principle of engineering drawing, which pave the way for understanding the drawing of the cooling system
- 2. It aims to know the principles of electricity, which pave the way for understanding the electricity of refrigeration devices
- 3. It aims to know the electronic control systems cooling device
- 4. It aims to know the principles of fluid mechanics, which pave the way for understanding what the cooling fluid is exposed to in cooling devices
- 5. It aims to know the heat transfer, which paves the way for understanding the methods of heat transfer in cooling devices
- 6. It aims to know the principles of thermodynamics, which pave the way for understanding the conversion of electrical energy into heating or cooling in refrigeration and air conditioning devices
- 7. It aims to know the types of cooling systems and methods of controlling their cooling

capacity

Skills

- 1- Gaining the skill of installing and operating refrigeration and air conditioning devices.
- 2- Determine the efficiency of refrigeration system by measuring their performance parameters.
- 3- Diagnosing mechanical, electrical and electronic malfunctions of cooling devices and methods of maintaining them.
- 4- Use laboratory and workshop tools with quality and care.

Value

- 1- Learning how to deal with others and work in a team spirit.
- 2- Learning and the ability to make appropriate decisions to address mistakes.
- 3- Learning how to manage and work on projects.

9-Teaching and learning strategies

- 1- Theoretical lectures and practical training in laboratories.
- 2- Discussions and scientific developments
- 3- Summer training in the public and private sectors
- 4- Scientific visits
- 5- E-learning and educational videos
- 6- Graduation research

- 1- Daily evaluation through class participation and oral tests.
- 2- Pre-tests and weekly reports on practical experiments.
- 3- Monthly and final exams include both theoretical and practical aspects.
- 4- Assigning homework

11-The teaching staff									
Faculty members									
Academic rank	specialization	Special requirements /skills (if any)	preparation of the teaching staff						
	general	Specialized		lecturer	staff				
Ass.prof	Mechanical Engineering	Thermal Engineering		staff					
lecturer	Mechanical Engineering	Thermal Power		staff					
Ass. lecturer	Air Conditioning and Refrigeration Engineering	Thermal engineering technologies		staff					
Ass. lecturer	Mechanical Engineering	Thermal Power Engineering		staff					
Ass. lecturer	Refrigeration and air conditioning engineering	Thermal engineering technologies		staff					
Ass. lecturer	Mechanical Engineering	Thermal Engineering		staff					
Ass. lecturer	Mechanical Engineering	Mechanical Engineering		staff					
Ass. lecturer	Water Resources Engineering	Irrigation Engineering		staff					

12-Professional development

Orienting new faculty members

- 1. Teamwork skills
- 2. Computer and Internet skills
- 3. Communication skills such as English language and presentation
- 4. Leadership skills and responsibility
- 5. Self-education and lifelong learning skills

Professional development

Professional development for faculty members

- 1- Sending workers for training inside and outside the country
- 2- Conducting field research related to the specialty of refrigeration, air conditioning
- 3- Employing new and appropriate educational methods that serve the information the student has acquired to help him in various fields of work.

13-Acceptance criterion

- 1- Central admission conditions approved by the Ministry of Higher Education and Scientific Research
- 2- Accepting students for professional studies specializing in refrigeration and air conditioning according to central controls
- 3- Acceptance for both genders

14- The most important sources of information about the program

- 1- Methodical scientific courses
- 2- External scientific sources (central libraries, the Internet, and social media)
- 3- Seminars, workshops and specialized courses with beneficiaries

15-Program development plan

- 1- Keeping pace with scientific development in the field of specialization with every new development.
- 2- Updating lectures.
- 3- Using modern methods in education.

	Program skills chart														
	Learning outcomes required from the program														
	values		ues		skills		Knowledge				Essential	Course name	Course code	Year/level	
										or					
C 4	C 3	C 2	C 1	B 4	B 3	B 2	B 1	A4	A 3	A2	A 1	optional			
*	*	*	*	*	*	*	*	*	*	*	*	Essential	Principles of Refrigeration	PMTR138	2024-2025/1st.
*	*	*	×	*	*	*	*	*	*	*	*	Essential	Advanced of refrigeration and air conditioning Maintenance	PMTR248	2024-2025/2ed.

Courses Description

First level / First semester

Principles of air conditioning

Course description

Introducing the student to the basic principles of the air conditioning process, related procedures, calculations, and applications on the air properties chart.

The educational institution	Northern Technical University - Technical
1. The educational institution	Institute / Mosul
2. Scientific Department/Centre	Refrigeration and Conditioning
2. Scientific Department/Centre	Technologies Department
3. Name/code of the course	Principles of Air Conditioning/PMTR136
4. Available forms of attendance	Mandatory
5. Semester/year	Courses
6. Number of academic hours	(2 theoretical + 2 practical) per week * 15
(total)	weeks = 60 hours
7. Date of preparation of this	10/2/2025
description	10/2/2023

8. Course objectives

The aim of studying the principles of air conditioning course is:

- Providing the student with basic information about the principles of air conditioning
- Introducing the student to the calculations of air conditioning operations
- Introducing the student to the applications of air conditioning operations
- The student applies the air conditioning process to the air properties diagram
- Meeting the needs of multiple sectors in the field of air conditioning with highly qualified staff

Course outcomes and teaching, learning and evaluation methodsCognitive objectives

- Make the student able to know and understand the principles of air conditioning.
- Make the student able to know and understand air conditioning processes through the use of air properties diagram.
- Enable students to obtain knowledge and understanding of scientific laws and

practical applications in the field of air conditioning.

B. The skills objectives of the course.

- Sound scientific research skills, constructive scientific discussions, and expressing opinions.
- Use and development skills.
- Thinking skills that enable the student to understand and solve scientific problems related to air conditioning operations.
- The skills and ability to apply the theoretical and practical experience gained from his studies in the areas of practical life.

Teaching and learning methods

- Theoretical lectures and practical training in laboratories.
- Applying theoretical topics practically in various educational laboratories
- Summer training
- Graduation research
- Scientific visits to various engineering projects related to the field of air conditioning.

Evaluation methods

- Daily written tests
- Providing weekly reports on the practical experiments carried out by the student
- Monthly and theoretical tests (theoretical and practical)
- Class participation and continuous evaluation of the student's performance in practice

C. Emotional and value-based goals

- Learning how to deal with others and work in a team spirit.
- Learning and the ability to make appropriate decisions to address mistakes.
- Encouraging the development of students' scientific thinking in memorizing and guessing.

Teaching and learning methods

- Commitment to theoretical and practical lecture schedules.
- Working in laboratories and workshops.
- Implementation of projects by students.
- E-Learning.

- Follow up on attendance and absence.
- Theoretical and practical tests
- Monitor behavior and behavior inside the classroom.
- Follow up on attendance at training sites and the extent of benefit.
- Submitting and discussing reports.
- Discussing graduation projects

D. Transferable general and qualifying skills (other skills related to employability and personal development).

- Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- Developing the student's ability to transfer information to practical reality after graduation.
- Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- Using modern technologies in the field of air conditioning.
- Competitive tests between groups of students for one section

- Extracurricular activities and homework.
- Participation and discussion in the classroom.

O. Course st	tructure	<u> </u>			
Week	Hour s	The required learning outcomes	Name of the unit/topic	Education method	Evaluation method
First + second	4	Principles of thermodynamic s, Property, State, Temperature (dry and wet), Absolute temperature, Thermometers, Pressure (atmospheric, gauge, absolute), Pressure	Principles of thermodynamic s, Property, State, Temperature (dry and wet), Absolute temperature, Thermometers, Pressure (atmospheric, gauge, absolute), Pressure	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams

	I				
		gauges, Heat (sensible and latent)	gauges, Heat (sensible and latent)		
Third	4	Air properties, Specific volume, Specific humidity, Relative humidity, Dew point, Enthalpy, Air Conditioning	Air properties, Specific volume, Specific humidity, Relative humidity, Dew point, Enthalpy, Air Conditioning	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Fourth + fifth	4	Dalton's law, Psychrometric properties calculation (Specific humidity, Relative humidity, Enthalpy, Pressure and Temperature)	Dalton's law, Psychrometric properties calculation (Specific humidity, Relative humidity, Enthalpy, Pressure and Temperature)	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
VI	4	Psychrometric chart	Psychrometric chart	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Seventh + eighth	4	Psychrometric chart using for (Air mixing process, Sensible cooling, Sensible heating)	Psychrometric chart using for (Air mixing process, Sensible cooling, Sensible heating)	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Ninth + tenth	4	Cooling and dehumidificatio	Cooling and dehumidificatio	Theoretic al and	Class and homework

		n, Sensible heat factor, By-pass factor, Contact factor	n, Sensible heat factor, By-pass factor, Contact factor	practical	assignment s, weekly and monthly exams
Eleventh + twelfth	4	Humidification, Cooling and humidification, Heating and humidification, Steam injection, Humidification	Humidification, Cooling and humidification, Heating and humidification, Steam injection, Humidification efficiency	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
thirteent h + fourteent h	4	Actual air conditioning processes, Air- mixing and cooling with dehumidificatio n and with reheat or without reheat, preheating of air and Humidification with reheat	Actual air conditioning processes, Air- mixing and cooling with dehumidificatio n and with reheat or without reheat, preheating of air and Humidification with reheat	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Fifteenth	4	Thermal comfort requirements in space, Comfort charts, Inside and outside design condition	Thermal comfort requirements in space, Comfort charts, Inside and outside design condition	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams

11. Infrastructure	
Required prescribed books	1. Air conditioning Engineering by W.P. Jones 2. Refrigeration and Air Conditioning by W. F. Stoecker, J. W. Jones 3. Refrigeration and Air Conditioning by C. P. Arora 4. Refrigeration and Air Conditioning by G. F. Hundy, A. R. Trott, T. C. Welch 5. التبريد والتكييف، عدنان ريكان مبادئ التبريد والتكييف، عدنان ريكان عبد الزهرة مبادئ هندسة تكييف الهواء والتثليج، د. خالد احمد الجودي
Main references (sources)	Scientific books in the Free Education Division
Recommended books and references	 Books related to air conditioning The presence of a laboratory specializing in air conditioning principles
(Scientific journals, reports,)	Websites concerned with air conditioning fields

12. Course Development Plan

- Keeping pace with scientific development in the field of specialization with every new development.
- Update lectures.
- Using modern methods in education.

Course description template The first level / first semester Fluid mechanics

Course description

Introducing the student to concepts and definitions. Fluid statics. Conservation of mass, momentum and energy. Bernoulli equation. Viscous flow, pipe flow, pipe losses.

1. The educational institution	Northern Technical University - Technical Institute / Mosul
2. Scientific Department/Centre	Refrigeration and Conditioning Technologies Department
3. Name/code of the course	Fluid mechanics/PMTR140
4. Available forms of attendance	Mandatory
5. Semester/year	Courses
6. Number of academic hours	(2 theoretical + 2 practical) per week * 15
(total)	weeks = 60 hours
7. Date of preparation of this description	10/2/2025

8. Course objectives

The aim of studying the fluid mechanics course is:

- Providing the student with basic information about fluid mechanics
- Introducing the student to the laws of conservation of mass, momentum and energy
- Introducing the student to calculations of viscous flow, pipe flow, and losses in pipes
- Meeting the needs of multiple sectors in the field of fluid mechanics with highly qualified staff

Course outcomes and teaching, learning and evaluation methodsCognitive objectives

- Make the student able to know and understand fluid mechanics
- Make the student able to know and understand the processes of fluid mechanics through the use of the law of conservation of mass, momentum and energy.
- Enable students to obtain knowledge and understanding of scientific laws and practical applications in the field of fluid statics.

B. The skills objectives of the course.

• Sound scientific research skills, constructive scientific discussions, and

expressing opinions.

- Use and development skills.
- Thinking skills that enable the student to understand and solve scientific problems related to the laws of fluid mechanics.
- The skills and ability to apply the theoretical and practical experience gained from his studies in the areas of practical life.

Teaching and learning methods

- Theoretical lectures and practical training in laboratories.
- Applying theoretical topics practically in various educational laboratories
- Summer training
- Graduation research
- Scientific visits to various engineering projects related to the field of fluid mechanics.

Evaluation methods

- Daily written tests
- Providing weekly reports on the practical experiments carried out by the student
- Monthly and theoretical tests (theoretical and practical)
- Class participation and continuous evaluation of the student's performance in practice

C. Emotional and value-based goals

- Learning how to deal with others and work in a team spirit.
- Learning and the ability to make appropriate decisions to address mistakes.
- Encouraging the development of students' scientific thinking in memorizing and guessing.

Teaching and learning methods

- Commitment to theoretical and practical lecture schedules.
- Working in laboratories and workshops.
- Implementation of projects by students.
- E-Learning.

- Follow up on attendance and absence.
- Theoretical and practical tests
- Monitor behavior and behavior inside the classroom.

- Follow up on attendance at training sites and the extent of benefit.
- Submitting and discussing reports.
- Discussing graduation projects

D. Transferable general and qualifying skills (other skills related to employability and personal development).

- Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- Developing the student's ability to transfer information to practical reality after graduation.
- Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- Using modern technologies in the field of air conditioning.
- Competitive tests between groups of students for one section

- Extracurricular activities and homework.
- Participation and discussion in the classroom.

10. Course str	ucture				
Week	Hour s	The required learning outcomes	Name of the unit/topic	Education method	Evaluation method
First	4	Introduction to Fluid Mechanics (Definition, Properties of fluid, steady flow)	Introduction to Fluid Mechanics (Definition, Properties of fluid, steady flow)	Theoretica I and practical	Class and homework assignments , weekly and monthly exams
Second	4	Fluid static, Pressure of a certain depth	Fluid static, Pressure of a certain depth	Theoretica I and practical	Class and homework assignments , weekly and monthly exams
Third	4	Specific gravity,	Specific gravity,	Theoretica I and	Class and homework

		Viscosity (Newton's law of Viscosity, Types of fluids), effect of temperature on viscosity, effect of pressure on viscosity	Viscosity (Newton's law of Viscosity, Types of fluids), effect of temperature on viscosity, effect of pressure on viscosity	practical	assignments , weekly and monthly exams
Fourth	4	Pressure Measuremen t (Boarder gage, Piezometer, manometer, Pitot)	Pressure Measuremen t (Boarder gage, Piezometer, manometer, Pitot)	Theoretica l and practical	Class and homework assignments , weekly and monthly exams
Fifth	4	Floating and submerged calculation	Floating and submerged calculation	Theoretica I and practical	Class and homework assignments , weekly and monthly exams
VI + Seventh	4	Continuity equation with application	Continuity equation with application	Theoretica I and practical	Class and homework assignments , weekly and monthly exams
Eighth + Ninth	4	Bernoulli's equation with application	Bernoulli's equation with application	Theoretica I and practical	Class and homework assignments , weekly and monthly exams
Tenth + Eleventh	4	Energy equation with application	Energy equation with application	Theoretica I and practical	Class and homework assignments , weekly and

					monthly exams
Twelfth + Thirteenth	4	Momentum equation with application	Momentum equation with application	Theoretica I and practical	Class and homework assignments , weekly and monthly exams
Fourteent h + Fifteenth	4	Flow in pipes (parallel and series losses in pipes), Friction losses in pipes, Pumps connection	Flow in pipes (parallel and series losses in pipes), Friction losses in pipes, Pumps connection	Theoretica I and practical	Class and homework assignments , weekly and monthly exams

11. Infrastructure	
Required prescribed books	 Fluid Mechanics, Frank M. White, McGraw-Hill, 2011 Fundamentals of Fluid Mechanics by B.R. Munson, D.F. Young and T. H. Okiishi Schaum's Outline of Fluid Mechanics by Potter, Merle and Wiggert
Main references (sources)	Scientific books in the Free Education Division
Recommended books and references	 Books related to fluid mechanics The presence of a laboratory specializing in fluid mechanics
(Scientific journals, reports,)	Websites concerned with fluid mechanics fields

12. Course Development Plan

- Keeping pace with scientific development in the field of specialization with every new development.
- Update lectures.
- Using modern methods in education.

Course description template The first level / first semester Principles of thermodynamics

Course description

Introducing the student to information about the basic principles of thermodynamics, the first law, and the second law of thermodynamics.

4. The advantaged in the stage	Northern Technical University - Technical
1. The educational institution	Institute / Mosul
2. Scientific Department/Centre	Refrigeration and Conditioning Technologies
2. Scientific Department/Centre	Department
3. Name/code of the course	Principles of thermodynamics/PMTR137
4. Available forms of	Mandatory
attendance	ivialidatol y
5. Semester/year	Courses
6. Number of academic hours	(2 theoretical + 2 practical) per week * 15
(total)	weeks = 60 hours
7. Date of preparation of this	10/2/2025
description	10/2/2023
1	

8. Course objectives

The aim of studying the Principles of Thermodynamics course is:

- Providing the student with basic information about the principles of thermodynamics
- Introducing the student to the laws of thermodynamics
- Introducing the student to the calculations of the first and second laws of thermodynamics
- Meeting the needs of multiple sectors in the field of thermodynamics with highly qualified personnel

Course outcomes and teaching, learning and evaluation methodsCognitive objectives

- Make the student able to know and understand the principles of thermodynamics.
- Make the student able to know and understand the processes of thermodynamics through the use of the first and second laws.
- Enable students to obtain knowledge and understanding of scientific laws and practical applications in the field of thermodynamics.

B. The skills objectives of the course.

Sound scientific research skills, constructive scientific discussions, and

expressing opinions.

- Use and development skills.
- Thinking skills that enable the student to understand and solve scientific problems related to the laws of thermodynamics.
- The skills and ability to apply the theoretical and practical experience gained from his studies in the areas of practical life.

Teaching and learning methods

- Theoretical lectures and practical training in laboratories.
- Applying theoretical topics practically in various educational laboratories
- Summer training
- Graduation research
- Scientific visits to various engineering projects related to the field of thermodynamics.

Evaluation methods

- Daily written tests
- Providing weekly reports on the practical experiments carried out by the student
- Monthly and theoretical tests (theoretical and practical)
- Class participation and continuous evaluation of the student's performance in practice

C. Emotional and value-based goals

- Learning how to deal with others and work in a team spirit.
- Learning and the ability to make appropriate decisions to address mistakes.
- Encouraging the development of students' scientific thinking in memorizing and guessing.

Teaching and learning methods

- Commitment to theoretical and practical lecture schedules.
- Working in laboratories and workshops.
- Implementation of projects by students.
- E-Learning.

- Follow up on attendance and absence.
- Theoretical and practical tests
- Monitor behavior and behavior inside the classroom.
- Follow up on attendance at training sites and the extent of benefit.

- Submitting and discussing reports.
- Discussing graduation projects

D. Transferable general and qualifying skills (other skills related to employability and personal development).

- Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- Developing the student's ability to transfer information to practical reality after graduation.
- Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- Using modern technologies in the field of air conditioning.
- Competitive tests between groups of students for one section

- Extracurricular activities and homework.
- Participation and discussion in the classroom.

10. Course structure						
Week	Hour s	The required learning outcomes	Name of the unit/topic	Education method	Evaluation method	
First + second + Third	4	Thermodynamic term- measuring devices- properties- state – process- cycles –density and specific volume – the pressure (gage, vacuum, and absolute)- temperature relations (Celsius, Kelvin and ranking scale)	Thermodynamic term- measuring devices- properties- state – process- cycles –density and specific volume – the pressure (gage, vacuum, and absolute)- temperature relations (Celsius, Kelvin and ranking scale)	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams	
Fourth +	4	Energy-	Energy-	Theoretic	Class and	

Fifth + VI		renewable	renewable	al and	homework
		energy-	energy-	practical	assignment
		resources (solar	resources (solar	practical	s, weekly
		energy, wind	energy, wind		and
		energy, energy	energy, energy		
		of water falling,	of water falling,		monthly
		tidal energy)-	tidal energy)-		exams
		hydrocarbons	hydrocarbons		
		source (oil &	source (oil &		
		gas)-form of	gas)-form of		
		energy used in	energy used in		
		thermodynamic	thermodynamic		
		-potential	-potential		
		energy-kinetic	energy-kinetic		
		energy-heat-	energy-heat-		
		work. Internal	work. Internal		
		energy-flow	energy-flow		
		work.	work.		
		First law of	First law of		Class and
	4	thermodynamic	thermodynamic	Theoretic al and	homework
		s-flow system,	s-flow system,		assignment
Seventh +		non- flow	non- flow		s, weekly
eighth		system –steady	system –steady	practical	and
		–un steady –	–un steady –	practical	
		open –closed.	open –closed.		monthly
		examples.	examples.		exams
		Applications of	Applications of		
		the first law on	the first law on		Class and
		nozzle, diffuser,	nozzle, diffuser,		homework
Ninth +		condenser,	condenser,	Theoretic	assignment
Tenth +	4	evaporator,	evaporator,	al and	s, weekly
Eleventh		compressor,	compressor,	practical	and
		heat exchanger	heat exchanger (surface, open),	•	monthly
		(surface, open), turbine, boiler.	turbine, boiler.		exams
		, ,	examples.		SAGATA S
		examples. Thermodynamic	Thermodynamic		
		process	process		Class and
		undergoing at	undergoing at		homework
		constant	constant	Theoretic	assignment
Twelfth +	4	(pressure,	(pressure,	al and	s, weekly
thirteenth	7	volume,	volume,	practical	and
		temperature,	temperature,	practical	monthly
		enthalpy)-	enthalpy)-		·
		polytrophic	polytrophic		exams
		porytropine	porycropine		

		process- with	process- with		
		representation on a(P-V), (T-S) &(P-H) diagram.	representation on a(P-V), (T-S) &(P-H) diagram.		
Fourteent h + Fifteenth	4	The second law of thermodynamic s, statement of the second law, heat engine, heat pump, Entropy, Isentropic efficiency	The second law of thermodynamic s, statement of the second law, heat engine, heat pump, Entropy, Isentropic efficiency	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams

11. Infrastructure	
Required prescribed books	 "Fundamentals of Thermodynamics", Sonntag, Borgnakke and Van Wylen. "Thermodynamics: An Engineering Approach" by Cengel, Y. A., and Boles, M. A. "Engineering thermodynamics" by G. Boxer
Main references (sources)	Scientific books in the Free Education Division
Recommended books and references	 Books related to thermodynamics The presence of a laboratory specializing in thermodynamics principles
(Scientific journals,	Websites concerned with thermodynamics fields
reports,)	

12. Course Development Plan

- Keeping pace with scientific development in the field of specialization with every new development.
- Update lectures.
- Using modern methods in education.

Course description template The first level / first semester Principles of electrical technology

Course description

The course aims to provide the student with the scientific and practical foundations of electrical and machinery techniques, which the student will later use when practicing his specialty.

1. The educational institution	Northern Technical University - Technical
1. The educational institution	Institute / Mosul
2. Scientific Department/Centre	Refrigeration and Conditioning
2. Scientific Department/Centre	Technologies Department
2 Name/sada of the source	Principles of electrical technology
3. Name/code of the course	/PMTR142
4. Available forms of attendance	Mandatory
5. Semester/year	Courses
6. Number of academic hours	(2 theoretical + 2 practical) per week * 15
(total)	weeks = 60 hours
7. Date of preparation of this	10/2/2025
description	

8. Course objectives

The aim of studying the Principles of Electrical Technology course is:

- Providing the student with the scientific and practical foundations of electrical technologies
- Introducing the student to the electrical machines used
- Providing the student with the necessary skills that he will use later when practicing his specialty
- Meeting the needs of multiple sectors in the field of electricity technology with highly qualified staff

9. Course outcomes and teaching, learning and evaluation methods A. Cognitive objectives

- Make the student able to know and understand electrical technology
- Make the student able to know and understand the operations of the scientific and practical foundations of electrical technology.
- Enable students to obtain skills and understanding of scientific laws and practical applications in the field of electrical technologies

B. The skills objectives of the course.

• Sound scientific research skills, constructive scientific discussions, and

expressing opinions.

- Use and development skills.
- Thinking skills that enable the student to understand and solve scientific problems related to the laws of electrical machines.
- The skills and ability to apply the theoretical and practical experience gained from his studies in the areas of practical life.

Teaching and learning methods

- Theoretical lectures and practical training in laboratories.
- Applying theoretical topics practically in various educational laboratories
- Summer training
- Graduation research
- Scientific visits to various engineering projects related to the field of electrical technologies.

Evaluation methods

- Daily written tests
- Providing weekly reports on the practical experiments carried out by the student
- Monthly and theoretical tests (theoretical and practical)
- Class participation and continuous evaluation of the student's performance in practice

C. Emotional and value-based goals

- Learning how to deal with others and work in a team spirit.
- Learning and the ability to make appropriate decisions to address mistakes.
- Encouraging the development of students' scientific thinking in memorizing and guessing.

Teaching and learning methods

- Commitment to theoretical and practical lecture schedules.
- Working in laboratories and workshops.
- Implementation of projects by students.
- E-Learning.

- Follow up on attendance and absence.
- Theoretical and practical tests
- Monitor behavior and behavior inside the classroom.
- Follow up on attendance at training sites and the extent of benefit.

- Submitting and discussing reports.
- Discussing graduation projects

D. Transferable general and qualifying skills (other skills related to employability and personal development).

- Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- Developing the student's ability to transfer information to practical reality after graduation.
- Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- Using modern technologies in the field of air conditioning.
- Competitive tests between groups of students for one section

- Extracurricular activities and homework.
- Participation and discussion in the classroom.

10. Course structure						
Week	Hour s	The required learning outcomes	Name of the unit/topic	Educatio n method	Evaluation method	
First	4	Electrical units, symbols, and various measuring devices	Electrical units, symbols, and various measuring devices	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams	
Second	4	Potential difference - Ohm's law - connecting series, parallel and mixed resistors	Potential difference - Ohm's law - connecting series, parallel and mixed resistors	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams	
Third	4	Practical examples of solving	Practical examples of solving	Theoretic al and practical	Class and homework assignment	

		electrical circuits	electrical circuits		s, weekly and monthly exams
Fourth	4	Ways to obtain alternating current - types of electrical power plants	Ways to obtain alternating current - types of electrical power plants	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Fifth	4	Sine wave – the waveform of a current over time	Sine wave – the waveform of a current over time	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
VI	4	Electromagnetis m - field properties - magnetic materials and their types	Electromagnetis m - field properties - magnetic materials and their types	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Seventh +	4	Magnetic hysteresis, its harms, and ways to reduce it	Magnetic hysteresis, its harms, and ways to reduce it	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Eighth	4	Single-phase AC motors	Single-phase AC motors	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Ninth	4	Three-phase alternating	Three-phase alternating	Theoretic al and	Class and homework

		Т			1
		current - a method for distinguishing phases and types of connection	current - a method for distinguishing phases and types of connection	practical	assignment s, weekly and monthly exams
Tenth	4	Star connection - triangle connection - plate current - line current - face voltage - line voltage and power	Star connection - triangle connection - plate current - line current - face voltage - line voltage and power	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Eleventh	4	Examples of star and triangle connections	Examples of star and triangle connections	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Twelfth	4	Electrical transformers - theory of operation and components - laws of transformation - cross-sectional drawing - types	Electrical transformers - theory of operation and components - laws of transformation - cross-sectional drawing - types	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Thirteent h	4	Three-phase alternating current motors, their advantages and disadvantages - their types - their uses	Three-phase alternating current motors, their advantages and disadvantages - their types - their uses	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Fourteent h	4	The working principle of three-phase	The working principle of three-phase	Theoretic al and practical	Class and homework assignment

		motors and methods of starting the movement	motors and methods of starting the movement		s, weekly and monthly exams
Fifteenth	4	Methods for controlling engine speed changes - methods used to identify engine malfunctions and maintain them	Methods for controlling engine speed changes - methods used to identify engine malfunctions and maintain them	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams

11. Infrastructure			
Required prescribed books	 Electrical Technology, by Theraga Electrical Technology, by Hughes Electrical Technology, by Erick Electrical installation work, by Francis 		
Main references (sources)	Scientific books in the Free Education Division		
Recommended books and references	 Books related to electrical techniques The presence of a laboratory specializing in electrical techniques principles 		
(Scientific journals,	Websites concerned with electrical techniques fields		
reports,)			

12. Course Development Plan

- Keeping pace with scientific development in the field of specialization with every new development.
- Update lectures.
- Using modern methods in education.

Course description template The first level / first semester Principles of engineering drawing

Course description

Preparing the student to be able to deal with the drawing language, understand engineering plans and implement them.

1. The educational institution	Northern Technical University - Technical	
1. The educational institution	Institute / Mosul	
2. Scientific Department/Centre	Refrigeration and Conditioning	
z. Scientific Department/Centre	Technologies Department	
2 Name/sada of the source	Principles of engineering drawing	
3. Name/code of the course	/PMTR143	
4. Available forms of attendance	Mandatory	
5. Semester/year	Courses	
6. Number of academic hours	(3 practical) per week * 15 weeks = 45	
(total)	hours	
7. Date of preparation of this description	10/2/2025	

8. Course objectives

The aim of studying the Principles of Engineering Drawing course is:

- Providing the student with basic information about engineering drawing
- Introducing the student to drawing lines and their types
- Providing the student with the necessary skills to understand and implement engineering plans
- Meeting the needs of multiple sectors in the field of engineering drawing with highly qualified staff

Course outcomes and teaching, learning and evaluation methodsCognitive objectives

- Make the student able to know and understand the principles of engineering drawing.
- Make the student able to know and understand fonts and their types.
- Enable students to obtain the skills necessary to understand engineering drawings.

B. The skills objectives of the course.

- Sound scientific research skills, constructive scientific discussions, and expressing opinions.
- Use and development skills.

- Thinking skills that enable the student to understand engineering drawings.
- The skills and ability to apply the theoretical and practical experience gained from his studies in the areas of practical life.

Teaching and learning methods

- Theoretical lectures and practical training in laboratories.
- Applying theoretical topics practically in various educational laboratories
- Summer training
- Graduation research
- Scientific visits to various engineering projects related to the field of engineering drawings.

Evaluation methods

- Daily written tests
- Providing weekly reports on the practical experiments carried out by the student
- Monthly and theoretical tests (theoretical and practical)
- Class participation and continuous evaluation of the student's performance in practic

C. Emotional and value-based goals

- Learning how to deal with others and work in a team spirit.
- Learning and the ability to make appropriate decisions to address mistakes.
- Encouraging the development of students' scientific thinking in memorizing and guessing.

Teaching and learning methods

- Commitment to theoretical and practical lecture schedules.
- Working in laboratories and workshops.
- Implementation of projects by students.
- E-Learning.

Evaluation methods

- Follow up on attendance and absence.
- Theoretical and practical tests
- Monitor behavior and behavior inside the classroom.
- Follow up on attendance at training sites and the extent of benefit.
- Submitting and discussing reports.
- Discussing graduation projects

D. Transferable general and qualifying skills (other skills related to

employability and personal development).

- Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- Developing the student's ability to transfer information to practical reality after graduation.
- Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- Using modern technologies in the field of air conditioning.
- Competitive tests between groups of students for one section

- Extracurricular activities and homework.
- Participation and discussion in the classroom.

10. Course structure					
Week	Hours	The required learning outcomes	Name of the unit/topic	Education method	Evaluation method
First	3	The importance of engineering drawing - tools used - measuring drawing boards - zooming in and out - data table - types of lines in engineering drawing	The importance of engineering drawing - tools used - measuring drawing boards - zooming in and out - data table - types of lines in engineering drawing	Practical	Class and homework assignments, weekly and monthly exams
Second	3	Writing letters and numbers in Arabic and English	Writing letters and numbers in Arabic and English	Practical	Class and homework assignments, weekly and

					monthly
					exams
		Geometric	Geometric		
		operations	operations		
		include: -	include: -		
		Drawing a	Drawing a		
		perpendicular	perpendicular		
		straight line	straight line		
		and bisector of	and bisector of		
		another	another		
		straight line,	straight line,		
		dividing a	dividing a		
		straight line	straight line		
		into several	into several		
		equal sections,	equal sections,		
		finding the	finding the		
		center of a	center of a		
		known arc or a	known arc or a		
		known circle,	known circle,		
		drawing an arc	drawing an arc		
		with a known	with a known		Class and
		radius that	radius that		homework
- 1 · 1	2	touches two	touches two	5	assignments,
Third	3	known circles	known circles	Practical	weekly and
		from the	from the		monthly
		outside,	outside,		exams
		drawing an arc with a known	drawing an arc with a known		
		radius that	radius that		
		touches two	touches two		
		known circles	known circles		
		from the inside	from the inside		
		(drawing Two	(drawing Two		
		paintings) -	paintings) -		
		drawing an arc	drawing an arc		
		with a known	with a known		
		radius that	radius that		
		touches a	touches a		
		known circle	known circle		
		and a straight	and a straight		
		line, drawing	line, drawing		
		an arc with a	an arc with a		
		known radius	known radius		
		that touches	that touches		
		two circles	two circles		

		£	f.,		T
		from the	from the		
		inside, drawing	inside, drawing		
		a straight line	a straight line		
		that touches	that touches		
		two circles	two circles		
		from the	from the		
		outside	outside		
		(drawing a	(drawing a		
		painting)	painting)		
		Drawing	Drawing		
		regular	regular		
		polygons,	polygons,		
		drawing	drawing		
		polygons using	polygons using		Class and
		the general	the general		
		method,	method,		homework
Fourth	3	drawing	drawing	Practical	assignments,
	J	regular	regular		weekly and
		pentagons	pentagons		monthly
		(panel	(panel		exams
		drawing) -	drawing) -		
		applications to	applications to		
		engineering	engineering		
		operations	operations		
		Individuals of	Individuals of		
		simple	simple		
		geometric	geometric		
		surfaces	surfaces		
		(cylinder, cone,	(cylinder, cone,		
		pyramid)	pyramid)		
		Individuals of	Individuals of		
		truncated	truncated		Class and
		surfaces	surfaces		homework
		(drawing three	(drawing three		assignments,
Fifth	3	panels) -	panels) -	Practical	weekly and
		Methods of	Methods of		monthly
		drawing simple	drawing simple		•
		perspective,	perspective,		exams
		drawing a	drawing a		
		panel that	panel that		
		includes two	includes two		
		simple	simple		
		perspectives,	perspectives,		
		one at a 30	one at a 30		
		degree angle	degree angle		

		مالام مالا	و ما داد و ما داد و داد د		
		and the other	and the other		
		at a 45 degree	at a 45 degree		
		angle	angle		
		Methods of	Methods of		
		setting	setting		
		dimensions in	dimensions in		
		an engineering	an engineering		
		manner:	manner:		
		Drawing a	Drawing a		Class and
		painting that	painting that		homework
VI	3	includes two	includes two	Practical	assignments,
VI	3	perspectives	perspectives	Practical	weekly and
		while setting	while setting		monthly
		the dimensions	the dimensions		exams
		- drawing the	- drawing the		Схаттэ
		perspective of	perspective of		
		the circle (oval	the circle (oval		
		shape) at a 30-	shape) at a 30-		
		degree angle	degree angle		
		Drawing	Drawing		
		complex	complex		
		perspective	perspective		
		that contains	that contains		
		an ellipse at an	an ellipse at an		
		angle of 30	angle of 30		
		degrees	degrees		Class and
		(drawing two	(drawing two		homework
					assignments,
Seventh	3	panels) -	panels) -	Practical	1
		Drawing	Drawing		weekly and
		complex	complex		monthly
		perspective	perspective		exams
		(illustrating	(illustrating		
		methods for	methods for		
		moving	moving		
		centers)	centers)		
		(drawing two	(drawing two		
		panels)	panels)		
		Explaining the	Explaining the		Class and
		theory of	theory of		Class and
		projection,	projection,		homework
Eighth	3	drawing	drawing	Practical	assignments,
LIBITUI	3	projections for	projections for	Tractical	weekly and
		a simple	a simple		monthly
		perspective	perspective		exams
		(drawing two	(drawing two		

	1				I
		paintings) -	paintings) -		
		drawing three	drawing three		
		projections for	projections for		
		a relatively	a relatively		
		complex	complex		
		perspective	perspective		
					Class and
		Drawing	Drawing		homework
		projections of	projections of		assignments,
Ninth	3	complex	complex	Practical	weekly and
		perspectives	perspectives		monthly
		(two panels)	(two panels)		•
			_		exams
		Drawing	Drawing		
		perspective	perspective		
		from the three	from the three		Class and
		projections -	projections -		homework
		Drawing the	Drawing the		assignments,
Tenth	3	perspective	perspective	Practical	,
		from two	from two		weekly and
		projections and	projections and		monthly
		then deducing	then deducing		exams
		the third	the third		
		projection	projection		
		The theory of	The theory of		
		cutting in	cutting in		
		bodies and its	bodies and its		
		importance in	importance in		
		engineering	engineering		
		drawing, the	drawing, the		Class and
		angle of	angle of		homework
		insertion, types	insertion, types		assignments,
Eleventh	3			Practical	,
		of cutting lines,	of cutting lines,		weekly and
		parts that are	parts that are		monthly
		not cut	not cut		exams
		(drawing a	(drawing a		
		painting that	painting that		
		includes the	includes the		
		cut	cut		
		projections)	projections)		
					Class and
		Drawing	Drawing		homework
Twelfth	3	projections	projections	Practical	assignments,
		from complex	from complex		weekly and
		perspective	perspective		
					monthly

					exams
Thirteenth	3	Drawing perspective after cutting in different directions	Drawing perspective after cutting in different directions	Practical	Class and homework assignments, weekly and monthly exams
Fourteenth + Fifteenth	3	Drawing a painting that includes perspective and its projections after cutting	Drawing a painting that includes perspective and its projections after cutting	Practical	Class and homework assignments, weekly and monthly exams

11. Infrastructure	
Required prescribed books	 Engineering drawing by Cousins 1966. Engineering drawing by A. W. Boundy. Engineering drawing B. Dash Sharma. Technical drawing by Blackie.
Main references (sources)	Scientific books in the Free Education Division
Recommended books and references	 Books related to engineering drawing The presence of a laboratory specializing in engineering drawing principles
(Scientific journals, reports,)	Websites concerned with engineering drawing fields

12. Course Development Plan

- Keeping pace with scientific development in the field of specialization with every new development.
- Update lectures.
- Using modern methods in education.

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

First level / First semester Principles of Mathematics

Academic Program Description

This academic program description provides a concise summary of the most important features of the program and the learning outcomes expected of the student to achieve, demonstrating whether the student has made the most opportunities available. It is accompanied by a description of each course within the program.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	Principles of Mathematics /
	TIMO110
5- Available forms of attendance	Mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(2 theoretical) per week * 15 weeks
	= 30 hours
8-Date of preparing the description	10/2/2025

9- Course objectives:

The aim of studying the principles of Principles of Mathematics course is:

- Providing the student with basic information about the principles of Principles of Mathematics.
- Introducing the student to the use of mathematics in other scientific

- topics and increasing his ability to think logically when solving exercises.
- As well as increasing his ability and how to link data with his information to obtain a solution to the problem.
- As well as increasing his ability and how to link data with his information to obtain a solution to the problem.

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives

- Introducing the student to matrices, determinants, and their properties.
- Introducing the student to solving linear equations, linear equations, Cramer's method, applications, arc analysis, vectors, methods for measuring and calculating internal combustion engine performance parameters.
- Introducing the student to space vectors, analysis of limits, types of vectors, quantities, standard vector algebra, vector arithmetic operations.
- Introducing the student to the various types of engineering functions and how to use them.
- Introducing the student to the details, the derivative, the derivative of algebraic functions, applications of the chain rule, and the implicit function.
- Introducing the student to the foundations of integration, indefinite integration, and integration of algebraic functions.

B - The skills objectives of the course.

• Applications on the derivative (slope equation, perpendicular, velocity and acceleration), increase, decrease, maximum and minimum limits, inflection points, function graph.

Teaching and learning methods

- Theoretical lectures and the solution of various exercises by the subject professor
- Students' daily participation in solving class exercises.

- Giving homework to students.
- Applying theoretical topics practically in various areas of life and student research.
 - Theoretical lectures and practical training.
- Applying theoretical topics practically in various educational problems.
- Summer training
- Graduation research

Evaluation methods

- Daily written tests
- Submitting weekly reports on the practical experiments carried out by the student
- Monthly and theoretical tests (theory and practical)
- Class participation and continuous evaluation of the student's performance in practice

C- Emotional and value goals

- Learning how to deal with others and work in a team spirit.
- Learning and the ability to make appropriate decisions to address mistakes.

Teaching and learning methods

- Adherence to theoretical and practical lecture schedules..
- Implementation of projects by students.
- E-learning.

Evaluation methods

- Follow up on attendance and absence.
- Theoretical and practical tests
- Monitoring behavior and behavior inside the classroom.
- Follow up on attendance at training sites and the extent of benefit.
- Submitting and discussing reports.
- Discussing graduation projects

D - Transferable general and qualifying skills (other skills related to

employability and personal development).

- Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- Developing the student's ability to transfer information to practical reality after graduation.
- Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- Using modern technologies in the automotive field.
- Competitive tests between groups of students for one section

Evaluation methods

- Extracurricular activities and homework.
- Participation and discussion in the classroom.

11. Course Structure

Assessment method	Learning method	Unit name / or the subject	Required learning outcome	Hours	Week
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Applying theoretical topics practically in various areas of life and student research	2	1
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Solving linear equations Linear equations, Cramer's method, applications, arc analysis	2	2
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Vectors, analysis of limits, types of vectors, quantities, standard vectors, curve algebra, vector arithmetic operations	2	3
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Logarithm, definition of logarithm, laws of logarithm and how to use them, solving logarithmic equations	2	4

Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Trigonometric ratios and the relationship between them, some laws in trigonometric ratios, the function, the meaning of the function, the independent and dependent variables, the explicit function, the implicit function	2	5
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Measurements, the purpose of trigonometric and algebraic functions	4	6
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Applications of linear speed, areas	4	7
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Details, derivative, derivative of algebraic functions, applications of the implicit function chain rule	4	8
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Higher order derivative, derivative of the exponential function, derivative of the logarithmic function	2	9
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Derivative of trigonometric functions, derivative of circular functions	2	10
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Partial differentiation	2	11
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Applications on the derivative (slope equation, perpendicular, velocity and acceleration)	2	12
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Derivative applications (instantaneous change)	2	13
Classwork, homework,	Theoretical	Principles of	Increasing, decreasing,	2	14

weekly and monthly exams		Mathematics	maximum and minimum limits, inflection points, graphing the function		
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Mathematics	Integration, indefinite integration, integration of algebraic functions	2	15

12. Infrastructure

Required textbooks

- 1-Panal calter "Technical Mathematics"
- 2- Murray R. "Mathematical handbook"
- 3- Shantinarayam "Engineering Mathematics part 1 1987"
- 4- Garlick B. "Technical Mathematics" 1981.

The main references (sources)	the scientific books in the Free Education Division
A- Recommended books and references (Scientific journals, reports,)	 Books concerned with Engineering Mathematics The presence of a laboratory specializing in Engineering Mathematics
B - Electronic references, Internet sites	Sites concerned with Engineering Mathematics

13. Course development plane

- Keeping pace with scientific development in the field of specialization with every new development.
- Updating lectures.
- Using modern methods in education

Course Description Form

First Level / First Semester

Computer Principles

Course Description

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve, proving whether he or she has made the most of the available learning opportunities. It must be linked to the description of the programme.

1- Educational institution	Northern Technical University
2- Scientific Department / Center	Technical Institute / Mosul
3- Name of academic or	Department of Refrigeration and
vocational program	Conditioning
4- Course Name / Code	Computer PrinciplesTIMO114
5- Available Attendance Forms	Mandatory
6- Semester / Year	Decisions
7- Number of Credit Hours	(1 theoretical + 1 practical) per week *
(Total)	15 weeks = 30 hours
8-The history of prearation of this description	10 / 2/ 2025

9. Course Objectives

Preparing the student to be prepared to abide by the basic rules of dealing with the computer and managing it to help him in completing projects, printing matters, preparing statistics and graphs, creating presentations, engineering plans designs, etc., as well as providing him with the skills of dealing with Internet networks, electronic correspondence and web pages and avoiding the damage caused by them such as viruses and malicious programs.

10.Course Outcomes and Methods of Teaching, Learning and Assessment

A- Cognitive objectives

- Work on the student's comprehension of the material.
- The ability to analyze and apply what he has learned practically to the calculator .
- The evaluation should be carried out by presenting the material among students in the laboratory and then applying it by the students.

B - Skills objectives of the course.

- Direct questions and answers about the material.
- Analyze the student's ability to absorb through exercises, homework and reports.

Teaching and learning methods

Presenting the material on Power Point in the form of charts and pictures in order to attract the student's attention and help him not to feel bored . And the application of what has been presented on the calculator and conduct daily and monthly tests .

- Periodic and quarterly theoretical exams.
- Quizzes.

- Duties.
- Short reports and researches.

C. Emotional and value goals

- Providing the student with the skill of using the computer in a manner compatible with his need for each stage.
- Directing the student how to deal with the computer in proportion and achieve maximum benefit and avoid damage.

Teaching and learning methods

- Presentation of the material in the form of educational films
- Students are asked to conduct research and reports on the importance of using computers in our lives and using means of communication among themselves and make simple movies about that as well and discuss the reports

Evaluation methods

- Daily written tests
- Evaluate the student through his use of the computer and the implementation of practical issues on the computer
- Monthly and theoretical tests (theoretical and practical)
- Classroom participation and continuous evaluation of student performance

d . General and rehabilitative skills transferred (other skills related to employability and personal development).

- Encourage the student to write reports on the main topics.
- Urging the student to make practical projects on the calculator and make seminars among students.
- Urging the student to evaluate and correct the wrong answers in a way

that creates	that creates a scientific problem and tries to solve it.						

11. Course Structure

	111 Godf Sc Sti detaile					
Evaluation method	Method of education	Unit / Subject Name	Required Learning Outcomes	Hours	Week	
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	Computer cycle phases, generations and data Information + computer features, areas of use and components	2	First	
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	Types of computers and their classification + computer components, physical parts and input devices and directing	2	Second	
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	Computer box and software entity + setup systems and personal computer	2	Third	
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	Computer platform and factors to consider when buying a computer + main features of the PC and class questions	2	Fourth	
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	The ethics of the electronic world, forms of abuse, computer security + computer software licenses And types of licenses	2	V	
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	Intellectual property and electronic penetration + electronic penetration and types of penetration	2	Sixth	

	1		1		
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	The most common sources of penetration and security risks + malware computer viruses	2	Seventh
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	Damage caused by viruses and recipes + viruses The most important steps necessary to protect against penetration	2	Eighth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	Components and types of viruses Computer damage to health and questions of the chapter + the beginning of the second semester Introduction to the definition of the operating system, its functions and objectives	2	Ninth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	Operating system classification Examples of operating systems + Windows 7 operating system	2	X
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	Requirements for installing it and desktop components (using the calculator to know its contents) + Start menu and its contents (using the calculator to know its contents)	2	Eleventh
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	New features of Windows 7+ taskbar (use calculator to find out its contents)	2	Twelfth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	Media area (use the calculator to know its contents) + folders, files and icons	2	Thirteenth
Classroom and	Theoretical and	Computer Principles	(Using the calculator to know its contents) +	2	Fourteenth

home assignments and weekly and monthly exams	practical		performing operations on the windows (using the calculator to know its contents)		
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Computer Principles	Desktop backgrounds and control panel + (Using Calculator to navigate between Windows windows)	2	Fifteenth

12. Infrastructure	
Computer Fundamentals and Office	1 Required textbooks
Applications	
Ministry of Higher Education and Scientific	
Research Research and Development	
Department	
	2 Main references (sources)
Yusr Al-Mustafa Series for Science"Basics of	
Computer and Internet Office2010-2013,	
Dr. Ziad Muhammad Abboud, Dar Al-Dr.	
for Publishing and Distribution, Baghdad	

Use some research	Recommended books and
1.Encryption a text using affine cipher and	references (scientific
hiding it in the colored image by using the	journals , reports ,)
Quantization stage, Nada Abdul Aziz	
Mustafa ,Iraq, Baghdad, University of	
Baghdad, College of Languages	
2. The Effect of the Smoothing Filter on an	
Image Encrypted It in A BMP Image By the	
Blowfish Algorithm Then Hiding Nada Abdul	
Aziz Mustafa, Iraq, Baghdad, University of	
Baghdad, College of Languages	
3.Computer literacy BASICS 2012, LeBlanc,	
Brandon." A closer look at the, windows 7.	
2009	
A Commenting From James and Ja Language	
4.Computing Fundamentals, Innovative	
training works USA, Inc, 2006	
. Word 2010 Digital Classroom Book	websites ,B Electronic references
https://www.agitraining.com/books/micr	websites, Defectionic references
osoft-office-books/word-2010-digital-	
classroom-book	
Ciassi Uulii-DUUK	

13. Course Development Plan

- 1- Increasing and updating the topics of the course and the progress in the field of computers and modern applications spread globally
- 2- Using applications that serve the student in his academic and professional life after graduation

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

First level / First semester English language

Academic Program Description

This academic program description provides a concise summary of the most important features of the program and the learning outcomes expected of the student to achieve, demonstrating whether the student has made the most opportunities available. It is accompanied by a description of each course within the program.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	English language/First level/ntu101
5- Available forms of attendance	mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(2 theoretical) per week * 15 weeks
	= 30 hours
8-Date of preparing the description	10/2/2025

9- Course objectives:

The aim of studying the principles of English language course is:

- Providing the student with the basic information about English grammar.
- Providing the student how to read correctly in English language.
- Introducing the student to learn English vowels.
- Enable the student to speak English fluently.

10. Course outcomes and teaching, learning and evaluation methods

Cognitive objectives:

- Enable the student to read correctly.
- Enable the student to learn the English grammar.
- Enable the student to speak correctly.

Teaching and learning methods

- Lectures.
- Apply theoretical topics practically.
- Summer training
- Graduation research.

Evaluation methods

- Daily written tests
- Submitting weekly reports on the practical experiments carried out by the student
- Monthly and theoretical tests (theory).

- Emotional and value goals

- Learning how to deal with others and work in a team spirit.
- Learning and the ability to make appropriate decisions to address mistakes.

Teaching and learning methods

- Adherence to theoretical and practical lecture schedules.
- Working in laboratories .
- Implementation of projects by students.
- E-learning.

Evaluation methods

- Follow up on attendance and absence.
- Theoretical and practical tests
- Monitoring behavior and behavior inside the classroom.
- Follow up on attendance at training sites and the extent of benefit.
- Submitting and discussing reports.
- Transferable general and qualifying skills (other skills related to employability and personal development).
 - Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
 - Developing the student's ability to transfer information to practical reality after graduation.
 - Developing the student's ability to find appropriate solutions.

Teaching and learning methods

Competitive tests between groups of students for one section

- Extracurricular activities and homework.
- Participation and discussion in the classroom.

11. Course Structure

NO.		Grammar	Vocabulary	Everyday English
1	Unit one Getting to know you	Tenses/; Present, past, future p6-8 Questions: Where were you born? p6-8 What do you do? Questions words: Who ?, Why ?, How much ? p7	Using a bilingual dictionary p9 Parts of speech: adjective, preposition p9 Words with more than one meaning	a book to read I booked a table. p9
2	Unit two The way we live	Present tenses Present Simple Most people live in the south. p14 Present Continuous What's he doing at the moment? p16 have/have got	We have a ofp population 15 Have you got a mobile phone? p16 Describing countries a beautiful country the coast This country exports wool. p14 Collocation Daily life listen to music talk to my friends	Making conversation Asking questions Showing that you're p21 interested
3	Unit three It all went wrong	Past tenses Past Simple .He heard a noise What did you do last night? p23 Past Continuous A car was waiting. p24 Irregular verbs saw, went, told p23	Making connections breakImend, lose/find p23 Nouns, verbs, adjectives and Suffixes to make different parts of speech discuss, discussion p28 Making negatives pack, unpack p28	Time expressions the eighth of January at six o'clock on Saturday in 1995 p29

		Overetite very also and		Driese and
4	shopping Let's go	Quantity much and many much butter? How How many eggs? p30 some and any some apples, any grapes p31 something, anyone, nobody, everywhere p32 a few, a little, a lot of p31 Articles	a shopkeeper, an old shop, the River Thames He sells bread. p33 Buying things milk, eggs, cket bread, a pa of crisps a can of Coke, shampoo, soap jumpers, department store antique shop, newsagent, trainers a tie, conditioner, first class stamps	Prices and shopping 1.99£ 160\$ What's the exchange frate How much is a pair of jeans? p37
5	Unit five What do you Verb patterns 1	want to do? want/hope to do, enjoy/like doing p38 looking forward to doing, 'd like to do p38 Future intentions going to and will She's going to travel .the world I'll pick it up for you. p40	Hot verbs have, go, come ccidenthave an a go wrong come first p44	How do you feel? Nervous, fed up Cheer up!
6	Unit six Tell me! What's it like!	What's it like in Paris?/ Compartive& superlative adjectives big, bigger, biggest good, better, best p48	Talking about towns modern -buildings, night life p47 Money make money, inherit p50 Synonyms and antonyms lovely, beautiful, interested, bored	Directions farm, wood, pond opposite the car park over the bridge p53

			p52	
7	Unit seven Famous couples	Present Perfect and Past Simple She has written 20 .novels He wrote 47 novels. p54 for and since for three years since 1985 p56 Tense revision *Where do you live How long have you *lived there Why did you move? p56 Past participles lived, written p54	Bands and music guitar, keyboards make a record p57 Adverbs slowly, carefully, just, still, too p60 Word pairs this and that	ladies and gentlemen p60 Short answers Do you like 'cooking .Yes, I do No, I don't. p61
8	Unit eight Do's and don'ts have got) to)	You have to pay bills. got to go. p62 I've should You should talk to .your boss You shouldn't drink coffee at night. p64 must You must go to the dentist. p64Jobs receptionist, miner, chef p63	Travelling abroad visa, documents p64 Words that go together Verb + complement take responsibility, live abroad p68	At the doctor's a cold, the 'flu food poisoning a temperature a prescription p69
9	Unit nine Going places	Time and conditional clauses as soon as, when, while, until When we're in .Australia, we'llWhat if pass my exams, If I I'll p71	Hot verbs / take, get, do, make take a photo, get angry, do me a favour make up your mind p76	Hotels a double room, ground floor p76 In a hotel I'd like to make a .reservation Can I have a credit card number? p77
10	Unit ten Scared to death	Verb patterns 2 manage to do, used to do, go walking p78 Infinitives Purpose	Shops post office bookshop p80 Describing feelings and	Exclamations He was so !scared He's such an !Idiot

		I went to the shops to buy some shoes. p80 what, etc. + infinitive I don't know what to say. p80 something, etc. + infinitive I need something to eat. p80	situations frightening, frightened worrying, worried	I've spent so much money! p85
11	Unit eleven Things that Passives	-changed the Coca enjoyed all Cola is .over the world world It was Invented 9-In 1886. p86 participles Verbs and past grown, produced p87	Verbs and nouns that go together tell a story, keep a promise p89 Notices	Keep off the grass Out of order p93
12	Unit twelve Dreams and Second conditional	reality If I were a princess, I'd live In a castle. p94 p94 might I might go to 97-America. p96	Phrasal verbs go away, take off your coat The plane took .off .I gave up my job Take them off. p100 Social expressions 2	!Congratulations .Never mind I haven't a clue. pl0I
13	Unit thirteen Earning a living	Present Perfect Continuous I've been living on .the streets for a year How long have you been selling The Big *Issue p!02 Present Perfect Simple versus Continuous .He's been running He's run five miles, p104	Jobs and the alphabet game bookseller, architect Word formation death, die variety, various p105 Adverbs mainly, possibly, exactly, carefully p105	Telephoning fls that Mike .I'm afraid he's out Can I take a message? p109
14	Unit fourteen Love you and leave you	Past Perfect They had met only one week earlier, p110	Words in context pi 16 Saying goodbye Have a safe	Thank you for a lovely

		Reported statements She told me that she .loved John She said that she'd met him six months .ago	!journey	evening, p117
15	unit fifteen	learning new words	Vocabulary	

12. Infrastructure

1- Required textbooks	New headway /beginner
2- The main references (sources)	the scientific books in the Free Education Division
A- Recommended books and references (Scientific journals, reports,)	
B - Electronic references, Internet	Sites concerned with the English
sites	language

13. Course development plan

- Keeping pace with scientific development in the field of specialization with every new development.
- Updating lectures.
- Using modern methods in education.

Course description template First level/second semester Principles of cooling

Course description

Introducing the student to the basic methods of refrigeration, the types of systems used and their basic parts, and focusing on the vapor compression system, its main components and the refrigeration fluids used in it.

1. The educational institution	Northern Technical University - Technical
1. The educational institution	Institute / Mosul
2. Scientific Department/Centre	Refrigeration and Conditioning Technologies
2. Scientific Department/Centre	Department
3. Name/code of the course	Principles of Cooling/PMTR138
4. Available forms of attendance	Mandatory
5. Semester/year	Courses
6. Number of academic hours	(2 theoretical + 2 practical) per week * 15
(total)	weeks = 60 hours
7. Date of preparation of this	10/2/2025
description	10/2/2023

8. Course objectives

The aim of studying the Principles of Refrigeration course is:

- Providing the student with basic information about the principles of refrigeration
- Introducing the student to the types of systems used and their basic parts
- Introducing the student to the vapor compression system
- Meeting the needs of multiple sectors in the field of refrigeration with highly qualified staff

Course outcomes and teaching, learning and evaluation methodsCognitive objectives

- Make the student able to know and understand the principles of refrigeration.
- Make the student able to know and understand cooling processes through the use of types of systems.
- Enable students to obtain knowledge and understanding of scientific laws and practical applications in the field of refrigeration and cryogenic fluids.

B. The skills objectives of the course.

• Sound scientific research skills, constructive scientific discussions, and expressing opinions.

- Use and development skills.
- Thinking skills that enable the student to understand and solve scientific problems related to refrigeration operations.
- The skills and ability to apply the theoretical and practical experience gained from his studies in the areas of practical life.

Teaching and learning methods

- Theoretical lectures and practical training in laboratories.
- Applying theoretical topics practically in various educational laboratories
- Summer training
- Graduation research
- Scientific visits to various engineering projects related to the field of cooling.

Evaluation methods

- Daily written tests
- Providing weekly reports on the practical experiments carried out by the student
- Monthly and theoretical tests (theoretical and practical)
- Class participation and continuous evaluation of the student's performance in practice

C. Emotional and value-based goals

- Learning how to deal with others and work in a team spirit.
- Learning and the ability to make appropriate decisions to address mistakes.
- Encouraging the development of students' scientific thinking in memorizing and guessing.

Teaching and learning methods

- Commitment to theoretical and practical lecture schedules.
- Working in laboratories and workshops.
- Implementation of projects by students.
- E-Learning.

- Follow up on attendance and absence.
- Theoretical and practical tests
- Monitor behavior and behavior inside the classroom.
- Follow up on attendance at training sites and the extent of benefit.
- Submitting and discussing reports.
- Discussing graduation projects

D. Transferable general and qualifying skills (other skills related to employability and personal development).

- Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- Developing the student's ability to transfer information to practical reality after graduation.
- Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- Using modern technologies in the field of air conditioning.
- Competitive tests between groups of students for one section

- Extracurricular activities and homework.
- Participation and discussion in the classroom.

10. Course structure					
Week	Hour s	The required learning outcomes	Name of the unit/topic	Education method	Evaluation method
First	4	Methods of heat transfer, specific heat, critical pressure, critical temperature, Phase change	Methods of heat transfer, specific heat, critical pressure, critical temperature, Phase change	Theoretica I and practical	Class and homework assignments , weekly and monthly exams
Second	4	Refrigeration, Refrigerant, Classification of refrigerants (main and secondary), Required properties, Selection of refrigerant	Refrigeration, Refrigerant, Classification of refrigerants (main and secondary), Required properties, Selection of refrigerant	Theoretica I and practical	Class and homework assignments , weekly and monthly exams
Third	4	Ozone layer, Importance of	Ozone layer, Importance of	Theoretica I and	Class and homework

		ozone layer,	ozone layer,	practical	assignments
		Ozone hole,	Ozone hole,	p. a. carea.	, weekly and
		Ozone	Ozone		monthly
		depleting	depleting		exams
		substances,	substances,		
		international	international		
		efforts to	efforts to		
		shrink the	shrink the		
		ozone hole,	ozone hole,		
		Ozone layer	Ozone layer		
		friendly	friendly		
		refrigerant,	refrigerant,		
		Time table for	Time table for		
		alimenting the	alimenting the		
		bad effect of	bad effect of		
		ordinary	ordinary		
		refrigerant	refrigerant		
		Refrigeration	Refrigeration		
		methods,	methods,		
		Natural and	Natural and		
		industrial	industrial		
		system,	system,		
		Vapor-	Vapor-		
		compression	compression		
		system,	system,		Class and
		Absorption	Absorption	Theoretica	homework
Fourth +	4	system,	system,	l and	assignments
Fifth		Steam-jet	Steam-jet	practical	, weekly and
		system,	system,	•	monthly
		Thermoelectri	Thermoelectri		exams
		c system,	c system,		
		Liquefaction	Liquefaction		
		of gases	of gases		
		system Air	system Air		
		system in air	system in air		
		craft and others	craft and others		
		Pressure-			Class and
		enthalpy chart	Pressure-	Theoretica	homework
VI	4	for common	enthalpy chart for common	I and	assignments
		refrigerants	refrigerants	practical	, weekly and
		remigerants	remgerants		, weekly allu

					monthly
					exams
Seventh + Eighth	4	Vapor- compression system, Theoretical calculation (heat added, heat rejected, Compressor work, COP, Quantity of refrigerant)	Vapor- compression system, Theoretical calculation (heat added, heat rejected, Compressor work, COP, Quantity of refrigerant)	Theoretica I and practical	Class and homework assignments , weekly and monthly exams
Ninth + Tenth	4	Actual vapor compression system, the effect of [vapor superheating in the suction line, Sub-cooling in the liquid line, Pressure drop (pressure losses) and heat exchanger] on COP	Actual vapor compression system, the effect of [vapor superheating in the suction line, Sub-cooling in the liquid line, Pressure drop (pressure losses) and heat exchanger] on COP	Theoretica I and practical	Class and homework assignments , weekly and monthly exams
Eleventh + Twelfth	4	Compressors, Classification, working principles, Types (reciprocating, rotary, centrifugal, screw and other types), Construction, Refrigerants suitable for	Compressors, Classification, working principles, Types (reciprocating, rotary, centrifugal, screw and other types), Construction, Refrigerants suitable for	Theoretica I and practical	Class and homework assignments , weekly and monthly exams

					г
		different	different		
		applications of	applications of		
		compressors,	compressors,		
		Approximate	Approximate		
		range of	range of		
		capacity	capacity		
		covered by	covered by		
		various	various		
		compressor	compressor		
		types	types		
		Condensers	Condensers		
		and cooling	and cooling		
		towers,	towers,		Class and
		Classification	Classification		Class and
		of condensers	of condensers	Theoretica	homework
Thirteenth	4	(air-cooled,	(air-cooled,	l and	assignments
		water-cooled,	water-cooled,	practical	, weekly and
		evaporative),	evaporative),		monthly
		Classification	Classification		exams
		of cooling	of cooling		
		towers.	towers.		
		Expansion	Expansion		
		devices types	devices types		
		(manual	(manual		
		device,	device,		
		automatic	automatic		Classand
		valve,	valve,		Class and
Farmtaant		thermostatic	thermostatic	Theoretica	homework
Fourteent	4	valve,	valve,	l and	assignments
h		electronic	electronic	practical	, weekly and
		valve, low and	valve, low and		monthly
		high side float	high side float		exams
		valve, capillary	valve, capillary		
		tube), the	tube), the		
		applications	applications		
		for each type.	for each type.		
		Evaporators	Evaporators		Class and
		types (natural	types (natural	Theoretica	homework
Fifteenth	4	and forced	and forced	l and	assignments
		convection,	convection,	practical	, weekly and
		flooded and	flooded and	•	monthly

	dry	dry	exams
	expansion),	expansion),	
	the	the	
	applications	applications	
	for each type	for each type	

11. Infrastructure			
	7. Air conditioning Engineering by W.P. Jones		
	8. Refrigeration and Air		
	Conditioning by W. F. Stoecker, J. W. Jones		
	9. Refrigeration and Air		
Poquired prescribed	Conditioning by C. P. Arora		
Required prescribed	10. Refrigeration and Air		
books	Conditioning by G. F. Hundy, A. R. Trott, T. C. Welch		
	مبادئ التبريد والتكييف، عدنان ريكان مبادئ التبريد والتكييف، عدنان ريكان		
	موسى، حيان عبد الغني عبد الزهرة		
	مبادئ هندسة تكييف الهواء والتثليج، د.		
	خالد احمد الجودي		
Main references	Scientific books in the Free Education Division		
(sources)			
December and add be also	Books related to cooling		
Recommended books	The presence of a laboratory specializing in cooling		
and references	principles		
(Scientific journals, Websites concerned with cooling fields			
reports,)	0		

12. Course Development Plan

- Keeping pace with scientific development in the field of specialization with every new development.
- Update lectures.
- Using modern methods in education.

Course description template First level/second semester Applied thermodynamics

Course description

Providing the student with information about vapor and liquid-vapor mixtures. Ideal gas, air cycle, study of the Carnot energy cycle and vice versa. Energy cycles

1. The educational institution	Northern Technical University - Technical Institute / Mosul	
2. Scientific Department/Centre	Refrigeration and Conditioning Technologies Department	
3. Name/code of the course	Applied thermodynamics/PMTR139	
4. Available forms of	Mandatory	
attendance		
5. Semester/year	Courses	
6. Number of academic hours	(2 theoretical + 2 practical) per week * 15	
(total)	weeks = 60 hours	
7. Date of preparation of this description	10/2/2025	

8. Course objectives

The aim of studying the Principles of Thermodynamics course is:

- Providing the student with basic information about steam and gases
- Introducing the student to the ideal gas-liquid mixture
- Introducing the student to the air cycle and studying the Carnot energy cycle and vice versa
- Meeting the needs of multiple sectors in the field of thermodynamics with highly qualified personnel

Course outcomes and teaching, learning and evaluation methods Cognitive objectives

- Make the student able to know and understand applied thermodynamics.
- Make the student able to know and understand thermodynamic processes through the use of the air cycle and the study of the Carnot energy cycle and vice versa.
- Enable students to obtain knowledge and understanding of scientific laws and practical applications in the field of thermodynamics.

B. The skills objectives of the course.

• Sound scientific research skills, constructive scientific discussions, and expressing opinions.

- Use and development skills.
- Thinking skills that enable the student to understand and solve scientific problems related to the laws of thermodynamics.
- The skills and ability to apply the theoretical and practical experience gained from his studies in the areas of practical life.

Teaching and learning methods

- Theoretical lectures and practical training in laboratories.
- Applying theoretical topics practically in various educational laboratories
- Summer training
- Graduation research
- Scientific visits to various engineering projects related to the field of thermodynamics.

Evaluation methods

- Daily written tests
- Providing weekly reports on the practical experiments carried out by the student
- Monthly and theoretical tests (theoretical and practical)
- Class participation and continuous evaluation of the student's performance in practice

C. Emotional and value-based goals

- Learning how to deal with others and work in a team spirit.
- Learning and the ability to make appropriate decisions to address mistakes.
- Encouraging the development of students' scientific thinking in memorizing and guessing.

Teaching and learning methods

- Commitment to theoretical and practical lecture schedules.
- Working in laboratories and workshops.
- Implementation of projects by students.
- E-Learning.

- Follow up on attendance and absence.
- Theoretical and practical tests
- Monitor behavior and behavior inside the classroom.
- Follow up on attendance at training sites and the extent of benefit.
- Submitting and discussing reports.

• Discussing graduation projects

D. Transferable general and qualifying skills (other skills related to employability and personal development).

- Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- Developing the student's ability to transfer information to practical reality after graduation.
- Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- Using modern technologies in the field of air conditioning.
- Competitive tests between groups of students for one section

- Extracurricular activities and homework.
- Participation and discussion in the classroom.

10. Course structure					
Week	Hours	The required learning outcomes	Name of the unit/topic	Education method	Evaluation method
First + second	4	Study of steam. Steam properties- using steam tables.	Study of steam. Steam properties- using steam tables.	Theoretical and practical	Class and homework assignments, weekly and monthly exams
Third + Fourth + Fifth	4	Calculations of the properties for liquid-vapor mixture (wet steam), examples of using steam tables	Calculations of the properties for liquid-vapor mixture (wet steam), examples of using steam tables	Theoretical and practical	Class and homework assignments, weekly and monthly exams
VI + Seventh +	4	Ideal Gas: Specific heat at constant	Ideal Gas: Specific heat at constant	Theoretical and practical	Class and homework assignments,

		volume,	volume,		weekly and		
		specific heat	specific heat		monthly		
		at constant	at constant		exams		
		pressure,	pressure,				
		equation of	equation of				
		ideal gas	ideal gas				
		state, gas	state, gas				
		constant,	constant,				
		universal gas	universal gas				
		constant	constant				
		Standard air	Standard air				
Fighth +	Eighth + Ninth + Tenth +		•	cycles: Carnot	cycles: Carnot		Class and
•				power cycle-	power cycle-		homework
Tenth +		reversed	reversed	Theoretical	assignments,		
Eleventh +	4	Carnot cycle	Carnot cycle	and	weekly and		
Twelfth +		(refrigeration	(refrigeration	practical	monthly		
Thirteenth		& heat pump	& heat pump		exams		
		applications).	applications).				
		Examples	Examples		Class and		
		The Rankine	The Rankine		Class and homework		
Fourteenth	cycle,	cycle,	Theoretical				
+ Fifteenth	Ι Δ	processes of	processes of	and	assignments, weekly and		
· inteentii		the cycle,	the cycle,	practical	monthly		
		examples.	examples.		exams		
					CAUTIS		

11. Infrastructure			
Required prescribed books	 "Fundamentals of Thermodynamics", Sonntag, Borgnakke and Van Wylen. "Thermodynamics: An Engineering Approach" by Cengel, Y. A., and Boles, M. A. "Engineering thermodynamics" by G. Boxer 		
Main references (sources)	Scientific books in the Free Education Division		
	Books related to thermodynamics		
Recommended books and	The presence of a laboratory specializing in		
references	thermodynamics		
(Scientific journals, reports,)	Websites concerned with thermodynamics fields		

12. Course Development Plan

- Keeping pace with scientific development in the field of specialization with every new development.
- Update lectures.
- Using modern methods in education.

Course description template The first level / second semester Advanced electrical technology

Course description

The course aims to provide the student with the scientific and practical foundations of electrical and machinery techniques, which the student will later use when practicing his specialty.

1. The educational institution	Northern Technical University - Technical Institute / Mosul		
2. Scientific Department/Centre	Refrigeration and Conditioning Technologies Department		
3. Name/code of the course	Advanced electrical technology /PMTR146		
4. Available forms of attendance	Mandatory		
5. Semester/year	Courses		
6. Number of academic hours	(2 theoretical + 2 practical) per week * 15		
(total)	weeks = 60 hours		
7. Date of preparation of this description	10/2/2025		

8. Course objectives

The aim of studying the Principles of Electrical Technology course is:

- Providing the student with the scientific and practical foundations of electrical technologies
- Introducing the student to the electrical machines used
- Providing the student with the necessary skills that he will use later when practicing his specialty
- Meeting the needs of multiple sectors in the field of electricity technology with highly qualified staff

Course outcomes and teaching, learning and evaluation methodsCognitive objectives

- Make the student able to know and understand electrical technology
- Make the student able to know and understand the operations of the scientific and practical foundations of electrical technology.
- Enable students to obtain skills and understanding of scientific laws and practical applications in the field of electrical technologies

B. The skills objectives of the course.

• Sound scientific research skills, constructive scientific discussions, and expressing opinions.

- Use and development skills.
- Thinking skills that enable the student to understand and solve scientific problems related to the laws of electrical machines.
- The skills and ability to apply the theoretical and practical experience gained from his studies in the areas of practical life.

Teaching and learning methods

- Theoretical lectures and practical training in laboratories.
- Applying theoretical topics practically in various educational laboratories
- Summer training
- Graduation research
- Scientific visits to various engineering projects related to the field of electrical technologies.

Evaluation methods

- Daily written tests
- Providing weekly reports on the practical experiments carried out by the student
- Monthly and theoretical tests (theoretical and practical)
- Class participation and continuous evaluation of the student's performance in practice

C. Emotional and value-based goals

- Learning how to deal with others and work in a team spirit.
- Learning and the ability to make appropriate decisions to address mistakes.
- Encouraging the development of students' scientific thinking in memorizing and guessing.

Teaching and learning methods

- Commitment to theoretical and practical lecture schedules.
- Working in laboratories and workshops.
- Implementation of projects by students.
- E-Learning.

Evaluation methods

- Follow up on attendance and absence.
- Theoretical and practical tests
- Monitor behavior and behavior inside the classroom.
- Follow up on attendance at training sites and the extent of benefit.
- Submitting and discussing reports.

• Discussing graduation projects

D. Transferable general and qualifying skills (other skills related to employability and personal development).

- Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- Developing the student's ability to transfer information to practical reality after graduation.
- Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- Using modern technologies in the field of air conditioning.
- Competitive tests between groups of students for one section

Evaluation methods

- Extracurricular activities and homework.
- Participation and discussion in the classroom.

10. Course structure					
Week	Hour s	The required learning outcomes	Name of the unit/topic	Educatio n method	Evaluation method
First	4	Electrical units, symbols, and various measuring devices	Electrical units, symbols, and various measuring devices	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Second	4	Potential difference - Ohm's law - connecting series, parallel and mixed resistors	Potential difference - Ohm's law - connecting series, parallel and mixed resistors	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Third	4	Practical examples of solving electrical	Practical examples of solving electrical	Theoretic al and practical	Class and homework assignment s, weekly

		circuits	circuits		and
		0.1.00.1.00			monthly
					exams
		Ways to obtain	Ways to obtain		Class and homework
Fourth	4	alternating current - types of electrical	alternating current - types of electrical	Theoretic al and practical	assignment s, weekly and
		power plants	power plants		monthly exams
Fifth	4	Sine wave – the waveform of a current over time	Sine wave – the waveform of a current over time	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
VI	4	Electromagnetis m - field properties - magnetic materials and their types	Electromagnetis m - field properties - magnetic materials and their types	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Seventh +	4	Magnetic hysteresis, its harms, and ways to reduce it	Magnetic hysteresis, its harms, and ways to reduce it	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Eighth	4	Single-phase AC motors	Single-phase AC motors	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Ninth	4	Three-phase alternating current - a	Three-phase alternating current - a	Theoretic al and practical	Class and homework assignment

		.1 1.0	.1 1.0		,. 1
		method for distinguishing phases and types of connection	method for distinguishing phases and types of connection		s, weekly and monthly exams
Tenth	4	Star connection - triangle connection - plate current - line current - face voltage - line voltage and power	Star connection - triangle connection - plate current - line current - face voltage - line voltage and power	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Eleventh	4	Examples of star and triangle connections	Examples of star and triangle connections	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Twelfth	4	Electrical transformers - theory of operation and components - laws of transformation - cross-sectional drawing - types	Electrical transformers - theory of operation and components - laws of transformation - cross-sectional drawing - types	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Thirteent h	4	Three-phase alternating current motors, their advantages and disadvantages - their types - their uses	Three-phase alternating current motors, their advantages and disadvantages - their types - their uses	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams
Fourteent h	4	The working principle of three-phase motors and	The working principle of three-phase motors and	Theoretic al and practical	Class and homework assignment s, weekly

	methods of starting the movement	methods of starting the movement		and monthly exams
Fifteenth 4	Methods for controlling engine speed changes - methods used to identify engine malfunctions and maintain them	Methods for controlling engine speed changes - methods used to identify engine malfunctions and maintain them	Theoretic al and practical	Class and homework assignment s, weekly and monthly exams

11. Infrastructure	
Required prescribed books	 Electrical Technology, by Theraga Electrical Technology, by Hughes Electrical Technology, by Erick Electrical installation work, by Francis
Main references (sources)	Scientific books in the Free Education Division
Recommended books and references	 Books related to electrical techniques The presence of a laboratory specializing in electrical techniques principles
(Scientific journals,	Websites concerned with electrical techniques
reports,)	fields

12. Course Development Plan

- Keeping pace with scientific development in the field of specialization with every new development.
- Update lectures.
- Using modern methods in education.

Course description template The first level / second semester Advanced engineering drawing

Course description

Preparing the student to be able to deal with the drawing language, understand engineering plans and implement them.

1. The educational institution	Northern Technical University - Technical Institute / Mosul		
2. Scientific Department/Centre	Refrigeration and Conditioning Technologies Department		
3. Name/code of the course	Advanced engineering drawing /PMTR144		
4. Available forms of attendance	Mandatory		
5. Semester/year	Courses		
6. Number of academic hours	(3 practical) per week * 15 weeks = 45		
(total)	hours		
7. Date of preparation of this description	10/2/2025		

8. Course objectives

The aim of studying the Principles of Engineering Drawing course is:

- Providing the student with basic information about engineering drawing
- Introducing the student to drawing lines and their types
- Providing the student with the necessary skills to understand and implement engineering plans
- Meeting the needs of multiple sectors in the field of engineering drawing with highly qualified staff

Course outcomes and teaching, learning and evaluation methodsCognitive objectives

- Make the student able to know and understand the principles of engineering drawing.
- Make the student able to know and understand fonts and their types.
- Enable students to obtain the skills necessary to understand engineering drawings.

B. The skills objectives of the course.

- Sound scientific research skills, constructive scientific discussions, and expressing opinions.
- Use and development skills.
- Thinking skills that enable the student to understand engineering drawings.

• The skills and ability to apply the theoretical and practical experience gained from his studies in the areas of practical life.

Teaching and learning methods

- Theoretical lectures and practical training in laboratories.
- Applying theoretical topics practically in various educational laboratories
- Summer training
- Graduation research
- Scientific visits to various engineering projects related to the field of engineering drawings.

Evaluation methods

- Daily written tests
- Providing weekly reports on the practical experiments carried out by the student
- Monthly and theoretical tests (theoretical and practical)
- Class participation and continuous evaluation of the student's performance in practic

C. Emotional and value-based goals

- Learning how to deal with others and work in a team spirit.
- Learning and the ability to make appropriate decisions to address mistakes.
- Encouraging the development of students' scientific thinking in memorizing and guessing.

Teaching and learning methods

- Commitment to theoretical and practical lecture schedules.
- Working in laboratories and workshops.
- Implementation of projects by students.
- E-Learning.

Evaluation methods

- Follow up on attendance and absence.
- Theoretical and practical tests
- Monitor behavior and behavior inside the classroom.
- Follow up on attendance at training sites and the extent of benefit.
- Submitting and discussing reports.
- Discussing graduation projects
 - D. Transferable general and qualifying skills (other skills related to employability and personal development).

- Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- Developing the student's ability to transfer information to practical reality after graduation.
- Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- Using modern technologies in the field of air conditioning.
- Competitive tests between groups of students for one section

Evaluation methods

- Extracurricular activities and homework.
- Participation and discussion in the classroom.

10. Course structure					
Week	Hours	The required learning outcomes	Name of the unit/topic	Education method	Evaluation method
First	3	Three- dimensional drawings - preparing a three- dimensional drawing board	Three- dimensional drawings - preparing a three- dimensional drawing board	Practical	Class and homework assignments, weekly and monthly exams
Second	3	Box command, practical examples with dimensions	Box command, practical examples with dimensions	Practical	Class and homework assignments, weekly and monthly exams
Third	3	Cylinder command with applied examples and dimensioning	Cylinder command with applied examples and dimensioning	Practical	Class and homework assignments, weekly and

					monthly
					exams
					Class and
		Wedge	Wedge		homework
		command	command		assignments,
Fourth	3	with practical	with practical	Practical	weekly and
		examples and	examples and		monthly
		dimensioning	dimensioning		exams
		Cono	Como		Class and
		Cone	Cone		homework
		command, Torus	command, Torus		assignments,
Fifth	3	command,	command,	Practical	weekly and
		Sphere	Sphere		monthly
		command	command		exams
					Class and
					homework
		Assembling 3D drawings	Assembling 3D drawings	Practical	assignments,
VI	3				weekly and
					monthly
					exams
					Class and
					homework
		Modify, Solid	Modify, Solid Editing, Subtract	Practical	assignments,
Seventh	3	Editing,			weekly and
		Subtract			monthly
					exams
					Class and
					homework
		Modify, Solid	Modify, Solid		assignments,
Eighth	3	Editing, Union	Editing, Union	Practical	weekly and
		, J	, , , , , , , , , , , , , , , , , , ,		monthly
					exams
					Class and
					homework
	Modify, Solid	Modify, Solid		assignments,	
Ninth	Ninth 3	Editing,	Editing,	Practical	weekly and
	Intersect	Intersect		monthly	
					exams
					Class and
Tenth	3	3 Practical examples	Practical examples	Practical	homework
					assignments,
		l .	l		43316111161163,

П		1		1	, , , , , , , , , , , , , , , , , , ,
					weekly and
					monthly
					exams
					Class and
		Drainations	Drainations		homework
Eleventh	3	Projections with applied	Projections with applied	Practical	assignments,
Lieveiitii	3	examples	examples	Fractical	weekly and
		Cxampics	Cxampics		monthly
					exams
					Class and
		Dania dia da	Destantions		homework
Twelfth	3	Projections with applied	Projections with applied	Practical	assignments,
iweiitii	3	examples	examples	Practical	weekly and
		examples	examples		monthly
					exams
				Class and	
		Projections 3 with applied examples	Projections with applied examples	Practical	homework
Thirteenth	2				assignments,
Ininteentii	3			Practical	weekly and
					monthly
					exams
					Class and
		Diagon with	Diagon with		homework
Fourteenth	3	Pieces with	Pieces with	Practical	assignments,
Fourteentii	3	applied examples	applied examples	Practical	weekly and
	Cxampics	Cxampics		monthly	
				exams	
					Class and
		Diogog:+h	Diogog:+h		homework
Fifteenth	Pieces with eenth 3 applied examples	Pieces with	Practical	assignments,	
Finteentii		applied examples	riactical	weekly and	
				monthly	
					exams

11. Infrastructure	
Required prescribed books	5. Engineering drawing by Cousins 1966.6. Engineering drawing by A. W. Boundy.7. Engineering drawing B. Dash Sharma.8. Technical drawing by Blackie.

Main references (sources)	Scientific books in the Free Education Division
Recommended books and references	 Books related to engineering drawing The presence of a laboratory specializing in engineering drawing principles
(Scientific journals, reports,)	Websites concerned with engineering drawing fields

12. Course Development Plan

- Keeping pace with scientific development in the field of specialization with every new development.
- Update lectures.
- Using modern methods in education.

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

First level / Second semester Applied Mathematics

Academic Program Description

This academic program description provides a concise summary of the most important features of the program and the learning outcomes expected of the student to achieve, demonstrating whether the student has made the most opportunities available. It is accompanied by a description of each course within the program.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	Applied Mathematics / TIMO111
5- Available forms of attendance	Mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(2 theoretical) per week * 15 weeks
	= 30 hours
8-Date of preparing the description	10/2/2025

9- Course objectives:

The aim of studying the Applied of Mathematics course is:

1. Introducing the student to using mathematics in other scientific topics and increasing his ability to think logically when solving exercises, as well as increasing his ability and how to link data with his information to obtain a solution to the problem.

- 2. Providing the student with information to increase the logical ideas to solve any problem.
- 3. Providing the student with information about the conecting of the giving data with his information

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives

- 1- Integration of exponential and logarithmic functions, as well as integration of trigonometric functions
- 2- Definite integral, applications (distance under the curve, distance between the curve).
- 3- The rotational magnitudes and arc length of the curve.
- 4- Integration methods, retail integration.
- 5- Statistical operations, frequency distributions, histograms, and frequency curve

B - The skills objectives of the course.

Introducing the student to using mathematics in other scientific topics and increasing his ability to think logically when solving exercises, as well as increasing his ability and how to link data with his information to obtain a solution to the problem.

Teaching and learning methods

A:

- 1- Theoretical lectures and the solution of various exercises by the subject professor.
- 2- Theoretical lectures and the solution of various exercises by the subject professor
- 3- Students participate daily in solving class exercises.
- 4- Giving homework to students.
- 5- Applying theoretical topics practically in various areas of life and student research

B:

1. Theoretical lectures and practical training.

- 2. Applying theoretical topics practically in various educational problems.
- 3. Summer training
- 4. Graduation research
- 5. Scientific visits to various engineering projects related to the field of cars.

Evaluation methods

- 1. Daily written tests
- 2. Submitting weekly reports on the practical experiments carried out by the student
- 3. Monthly and theoretical tests (theory and practical)
- 4. Class participation and continuous evaluation of the student's performance in practice

C- Emotional and value goals

- 1. Learning how to deal with others and work in a team spirit.
- 2. Learning and the ability to make appropriate decisions to address mistakes.

Teaching and learning methods

- 1. Adherence to theoretical and practical lecture schedules..
- 2. Implementation of projects by students.
- 3. E-learning.

Evaluation methods

- 1. Follow up on attendance and absence.
- 2. Theoretical and practical tests
- 3. Monitoring behavior and behavior inside the classroom.
- 4. Follow up on attendance at training sites and the extent of benefit.
- 5. Submitting and discussing reports.
- 6. Discussing graduation projects

D - Transferable general and qualifying skills (other skills related to employability and personal development).

- 1. Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- 2. Developing the student's ability to transfer information to practical reality after graduation.

3. Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- 1. Using modern technologies in the automotive field.
- 2. Competitive tests between groups of students for one section

Evaluation methods

- 1. Extracurricular activities and homework.
- 2. Participation and discussion in the classroom.

11. Course Structure

Assessment method	Learning method	Unit name / or the subject	Required learning outcome	Hours	Week
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	Integration of exponential and logarithmic functions	2	1
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	Integration of trigonometric functions	2	2
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	Definite integral, applications (distance under the curve, distance between the curve)	2	3
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	The rotational magnitudes and arc length of the curve	2	4
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	Approximation in integration (trapezoid rule, Simpson's rule)	2	5
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	Integration methods, retail integration	4	6

Classically beautiful		Applied			
Classwork, homework,		Mathematics	Integration by compensation		_
weekly and monthly	Theoretical		method	4	7
exams					
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	Integration by partial fraction method	4	8
Classwork, homework, weekly and monthly	Theoretical	Applied Mathematics	Solving differential equations of first order and first order, discrete homogeneous	2	9
exams		A1:- J		2	
Classwork, homework,		Applied Mathematics	Differential equations - linear	Z	
weekly and monthly	Theoretical		- applications		10
exams					
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	Complex numbers - addition - subtraction - division - multiplication	2	11
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	Applied formula: Converting the carpenteric characteristic to linear and vice versa	2	12
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	Statistical operations, frequency distributions, histograms, and frequency curve	2	13
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	Mean, range, standard deviation, variance	2	14
Classwork, homework, weekly and monthly exams	Theoretical	Applied Mathematics	Possibilities	2	15

- 12. Infrastructure
- 1-Panal calter "Technical Mathematics"
- 2- Murray R. "Mathematical handbook"
- 3- Shantinarayam "Engineering Mathematics part 1 1987"
- 4- Garlick B. "Technical Mathematics" 1981.

2- The main references (sources)	the scientific books in the Free Education Division
B - Electronic references, Internet	Sites concerned with Engineering
sites	Mathematics

13. Course development plan

- 1- Keeping pace with scientific development in the field of specialization with every new development.
- 2- Updating lectures.
- 3- Using modern methods in education

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

Second level / First semester Principles of Refrigeration Systems

Academic Program Description

This academic program description provides a concise summary of the main features of the program and the expected learning outcomes for students to achieve, demonstrating whether they have maximized their benefit from the available learning opportunities. It must be linked to the program description.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	Principles of Refrigeration Systems /
	PMTR240
5- Available forms of attendance	mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(2 theoretical + 2 practical) per week
	* 15 weeks = 60 hours
8-Date of preparing the description	10/2/2025

Course Objectives:

The objective of studying the Fundamentals of Refrigeration Systems course is:

1. To understand the principles of compression refrigeration systems.

- 2. To introduce students to refrigerants and differentiate between them.
- 3. To familiarize students with refrigeration stations and the pipes installed within these stations.

10- Course Outcomes and Teaching, Learning, and Assessment Methods:

A- Cognitive objectives

- 1. Understanding the function of each part of the compression system.
- 2. Familiarity with the operation principle of the compression system and its accessories.
- 3. Knowledge of compound systems and their practical applications.
- 4. Understanding the types of pipes used in refrigeration and air conditioning and their connection methods.

B - Skills Objectives:

- 1. Calculating compressor work, added and removed heat in the evaporator and condenser, and cycle performance coefficients.
- 2. Reading the chemical composition of refrigerants and numbering them.
- 3. Proper selection of components of the compression refrigeration system.

Teaching and learning methods

- 1. Theoretical lectures and practical training in laboratories.
- 2. Applying theoretical topics practically in various educational laboratories
- 3. Summer training
- 4. Graduation research
- 5. Scientific visits to various engineering projects related to the field of air conditioning and refrigeration.

Evaluation methods

- 1. Daily written tests
- 2. Weekly reports on practical experiments conducted by the student
- 3. Monthly and theoretical tests (theory and practical)
- 4. Classroom participation and continuous assessment of student performance practically.

C- Emotional and Ethical Objectives:

- 1. Learning how to deal with others and work in a team spirit.
- 2. Learning and the ability to make appropriate decisions to address mistakes.
- 3. Teaching students how to handle each system to facilitate the maintenance process.

Teaching and learning methods

- 1. Adherence to theoretical and practical lecture schedules.
- 2. Working in laboratories and workshops.
- 3. Implementation of projects by students.
- 4. E-learning.

Evaluation methods

- 1. Attendance and absenteeism monitoring.
- 2. Theoretical and practical tests
- 3. Monitoring behavior and behavior inside the classroom.
- 4. Monitoring attendance at training sites and level of engagement.
- 5. Submitting and discussing reports.
- 6. Discussion of graduation projects.

D - Transferable general and qualifying skills (other skills related to employability and personal development).

- 1. Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- 2. Developing the student's ability to transfer information to practical reality after graduation.
- 3. Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- 1. Utilizing modern technologies in the field of refrigeration and air conditioning.
- 2. Competitive tests between groups of students for one section

Evaluation methods

- 1. Extracurricular activities and homework.
- 2. Participation and discussion in the classroom.

11. Course Structure

Assessment	Learning	Unit name /			
method	method	or the subject	Required learning outcome	Hours	Week
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Principles of Refrigeration Systems	Compression Refrigeration System (Theory and Practice)	8	2 - 1
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Principles of Refrigeration Systems	Refrigerants	4	3
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Principles of Refrigeration Systems	Selection of Components for the Compression System / Evaporator - Condenser - Compressor - Condensing Unit	8	5 - 4
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Principles of Refrigeration Systems	The Balance of the Compression Group	4	6
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Principles of Refrigeration Systems	Compound Compression System - Multiple Compressors {Presence of an Intercooler - Presence of a Flash Tank} or Multiple Evaporators	12	- 8 - 7 9
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Principles of Refrigeration Systems	General Considerations for Designing and Extending the Pipe Network (Discharge Line - Liquid Line - Suction Line - Water Pipes)	4	- 10 - 11 12
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Principles of Refrigeration Systems	Accessories of the Compression System / Objective - Location	8	- 13 15-14

12. Infrastructure

1- Required textbooks	1- Modren Air - Condition practice by Harris
	2- Principle & Refrigeration by Dossat
	3- Refrigeration & Air – conditioning by ARORA.
	4- Handbook of air-conditioning system design by carrier air-conditioning company.
	5- Refrigeration and Air- conditioning by Stoecker
	6- Refrigeration & Air- conditioning by Ballany.
	7- Refrigeration & Air- conditioning by Jordan & Priester
	8-Commercial Refrigeration by Andarase
2- The main references (sources)	the scientific books in the Free Education Division
A- Recommended books and references (Scientific journals,	 Books concerned with Refrigeration Systems
reports,)	The presence of a laboratory specializing in the principles of Refrigeration Systems
B - Electronic references, Internet sites	Sites concerned with Refrigeration Systems

- 13. Course development plan
- 1- Keeping pace with scientific development in the field of specialization with every new development.
- 2- Updating lectures.
- 3- Using modern methods in education.

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

Second level / First semester Principles of Heat Transfer

Academic Program Description

This academic program description provides a concise summary of the most important features of the program and the learning outcomes expected of the student to achieve, demonstrating whether the student has made the most opportunities available. It is accompanied by a description of each course within the program.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	Principles of Heat Transfer/PMTR242
5- Available forms of attendance	mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(2 theoretical + 2 practical) per week
	* 15 weeks = 60 hours
8-Date of preparing the description	10/2/2025

9- Course objectives:

The aim of studying the principles of heat transfer course is to introduce the student on the main general principles of the heat transfer science and its practical applications in the field of air conditioning for example; through studying this course, the student can be able to calculate the (heating/cooling) load of a building, thermal conductivity, thickness and type of the insulation used in the heat exchanger and the HVACR systems

applications.			

10- Outcomes of course and teaching, learning and evaluation methods

A- Cognitive objectives

- 1. Introduce the student by the basic principles and importance of heat transfer science in a technical field and a life in general.
- 2. The student gets to know how the heat is transferred by three main modes (conduction, convection and radiation).
- 3. The student knows how to calculate the thermal resistance and the heat flux through any thermal system at different cases depending on the shape of the system studied.
- 4. The student knows how the influence of substance's states (solid, liquid and gas) on heat transfer modes.
- 5. The student knows the different between heat transfer modes.
- 6. In this course mainly we focus to understand the principle of heat conduction mode and its applications in HVACR.

B - The skills objectives of the course.

- 1. Theoretically, in the classroom we learn the methods of calculating the heat transfer amounts and any other unknown such as temperature, thickness, thermal conductivity and heat transfer area of any simple or composite (Plane/Cylindrical) wall.
- 2. Practically, in the laboratory we learn how to calculate the value of thermal conductivity of any solid material by matching the theoretical information (heat conduction equation and the principle of themo-electric analogue network to draw the thermal resistances network of the thermal system) with practical parameters (T,Q,A,x,D conducted or insulated material...etc.) in order to compare the theoretical and practical results of the same case study.

Teaching and learning methods

- 1. Theoretical lectures and practical training in laboratories.
- 2. Applying theoretical topics practically in various educational laboratories
- 3. Summer training
- 4. Graduation research

5. Scientific visits to various engineering projects related to the field of HVACR.

Evaluation methods

- 1. Daily written tests
- 2. Submitting weekly reports on the practical experiments carried out by the student
- 3. Monthly and theoretical tests (theory and practical)
- 4. Class participation and continuous evaluation of the student's performance in practice

C- Emotional and value goals

- 1. Learning how to deal with others and work in a team spirit.
- 2. Learning and the ability to make appropriate decisions to address mistakes.
- 3. The student learned how to maintain, calibrate and design the HVACR system in order to satisfy the human comfort conditions and the world sustainable aims.

Teaching and learning methods

- 1. Adherence to theoretical and practical lecture schedules.
- 2. Working in laboratories and workshops.
- 3. Implementation of projects by students.
- 4. E-learning.

Evaluation methods

- 1. Follow up on attendance and absence.
- 2. Theoretical and practical tests
- 3. Monitoring behavior and behavior inside the classroom.
- 4. Follow up on attendance at training sites and the extent of benefit.
- 5. Submitting and discussing reports.
- 6. Discussing graduation projects

D - Transferable general and qualifying skills (other skills related to employability and personal development).

1. Developing the student's ability to deal with modern technologies related

to the course's syllabus.

- 2. Developing the student's ability to transfer information to practical reality after graduation.
- 3. Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- 1. Using modern technologies in the HVACR field.
- 2. Competitive tests between groups of students for one section

Evaluation methods

- 1. Extracurricular activities and homework.
- 2. Participation and discussion in the classroom.

11. Course Structure

		Theoretical & Practic	al Sylla	bus	
Assessment method	Learning method	Unit name / or the subject	Required learning outcome	Hou rs	Week
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	Basic principles and importance of heat transfer.	2	1
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	The three kinds of heat transfer, conduction heat transfer, convection heat transfer, radiation heat transfer, examples	2	2
Classwork, homework, weekly and monthly exams	Practical	Principles of Heat Transfer	Algebra sensible heat gain and latent heat gain	2	1-2
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	Conduction of heat transfer in the steady state conduction through a homogeneous plans wall	2	3

Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	Conduction through a composite plans wall, heat resistance. conduction through a homogeneous cylinder wall	2	4
Classwork, homework, weekly and monthly exams	Practical	Principles of Heat Transfer	Experimental measurements to determine the thermal conductivity of different materials	2	3-4
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	Conduction through a composite cylinder wall, influence of variable conductivity, examples	2	5
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	Heat transfer by convection, Reynolds concept of similarity of the flow of fluids and the viscosity, the most important dimensionless groups, examples	2	6
Classwork, homework, weekly and monthly exams	Practical	Principles of Heat Transfer	Determination heat transfer from vertical and horizontal plates by free convection	2	5-6
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	Heat transfer by free convection , heat transfer from vertical and horizontal surfaces , examples	2	7
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	Heat transfer by free convection from horizontal square plates, heat transfer proportion of air at atmospheric pressure and properties of water. examples	2	8
Classwork, homework, weekly and monthly exams	Practical	Principles of Heat Transfer	Determination heat transfer by free convection from horizontal cylinders	2	7-8
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	Heat transfer by free convection from horizontal square plates, heat transfer proportion of air at atmospheric pressure and properties of water. examples	2	9

Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	Heat transfer by forced convection, the heating of fluids in turbulent flow through pipes, examples	2	10
Classwork, homework, weekly and monthly exams	Practical	Principles of Heat Transfer	Determination the mixing – cup temperature (temperature of fluid flowing through a pipe)	2	9-10
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	The heating of fluids flowing normal to single wires and tubes the heating of fluids flowing normal to tube banks, examples	2	11-12
Classwork, homework, weekly and monthly exams	Practical	Principles of Heat Transfer	Determination heat transfer by forced convection in turbulent flow through pipes (heating and cooling)	2	11-12
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	Heat transfer by the combined effect of conduction and convection, heat transfer between two fluids through a plane wall, heat transfer between two fluids through a cylinder wall, examples	4	13
Classwork, homework, weekly and monthly exams	Practical	Principles of Heat Transfer	Determination heat transfer by forced convection for liquids of high viscosity in streamline flow through pipe	2	13
Classwork, homework, weekly and monthly exams	Theoretical	Principles of Heat Transfer	Types of heat exchangers, the log mean temperature difference, examples	2	14-15
Classwork, homework, weekly and monthly exams	Practical	Principles of Heat Transfer	Determination heat transfer by forced convection for liquids of high viscosity in streamline flow through pipe + Experimental the overall coefficient of heat transfer of different walls	2	14-15

12. Infrastructure

1- Required textbooks	 Elements of heat transfer, obert McGrow – Hill – 1984. Physical similarity and Dimensional analyses Dancan Edward Arnold – 1953. 		
	and Hawking John Wiley & Sons,		
		Inc. 1957.	
	4- Heat transfer by Holman.		
2- The main references (sources)	the scientific books in the Free		
	Education Division		
A- Recommended books and	1. Books concerned with Heat		
references (Scientific journals,	Transfer.		
reports,)	2. The presence of a laboratory		
	specializing in the principles of Heat		

Transfer.

Sites concerned with Heat Transfer.

- 13. Course development plan
- 1- Keeping pace with scientific development in the field of specialization with every new development.
- 2- Updating lectures.

sites...

3- Using modern methods in education.

B - Electronic references, Internet

Course Description Form

Second Level / First Semester

Fundamentals of air conditioning design systems

Course Description

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve, proving whether he or she has made the most of the available learning opportunities. It must be linked to the description of the programme.

1- Educational institution	Northern Technical University	
2- Scientific Department / Center	Technical Institute / Mosul	
3- Name of academic or	Department of Refrigeration and	
vocational program	Conditioning	
4- Course Name / Code	Basics of Air Conditioning Systems	
	Design / PMTR241	
5- Available Attendance Forms	Mandatory	
6- Semester / Year	Decisions	
7- Number of Credit Hours	(2 theoretical + 2 practical) per week *	
(Total)	15 weeks = 60 hours	
8- The history of preparation of	10 / 2 / 2025	
this description		

9. Course Objectives

The aim is to develop knowledge of the basics of air conditioning design systems. The course will include the following topics:-

- 1- Heat transfer methods, how to calculate thermal resistance by conduction and convection methods, in addition to calculating the total coefficient of heat transfer, calculating heat transferred through flat and composite walls.
- 2- Air conditioning and comfort, physiological reactions of cooling and heating
- 3- Calculations of thermal loads for both heating load and cooling load, heating and cooling systems to slap the air.

10. Course Outcomes and Methods of Teaching, Learning and Assessment

A- Cognitive objectives

Enhancing the analytical abilities of students by giving an introduction by studying the basics of air properties, as well as the sufficiency of calculating thermal resistances for connection and load, and the blindness of calculating heating and cooling loads for the space to be adapted.

B - Skills objectives of the course.

Study the basics of designing air conditioning systems.

Teaching and learning methods

Weekly lectures include

- Provide students with the basics and topics related to the previous learning outcomes of skills to solve practical problems through speech, lecture or experiments.
- Solving a set of practical and practical examples by the academic staff.
- Through discussion, students are involved by solving some practical

problems.

- The practical laboratories of the department are followed up by the academic staff of the department.
- Asking the student to visit the library and the international information network (Internet) to obtain additional knowledge of the study materials

Presenting a seminar by the student in front of his fellow students to enhance his confidence.

Evaluation methods

- Evaluate students individually by giving an opportunity for classroom participation by answering questions.
- Evaluating students collectively through daily exams with practical and theoretical questions.
- ❖ Evaluate students collectively by giving extracurricular assignments such as writing special reports or those related to practical experiments in laboratories .

Semester exams for the curriculum in addition to the mid-year exam and the final exams for the first and second round

C. Emotional and value goals

Analyze the results obtained by the student through conducting practical experiments and reach the extent of their truth through .

- 1- Observation and perception
- 2- Analysis and interpretation
- 3- Conclusion and evaluation

Teaching and learning methods

- Using modern means in presenting the scientific and theoretical side, such as Data Show devices , to attract attention and attract students in an interesting way by displaying some films related to the subject to reach the idea better to the student.
- Give students extracurricular assignments that require them to exert skills and self-explanations in experimental ways.
- Interrogate students through panel discussions by asking thinking

- questions (how, why, when, where, any) for specific topics .
- Using the method of brainstorming and feedback in order to activate the accumulated experiences of students by linking what has been taken from the study materials in the previous academic stages and linking them to the new.

Providing students with practical skills by conducting practical experiments on laboratory equipment

Evaluation methods

- Daily written tests
- Provide weekly reports on practical experiments carried out by the student
- Monthly and theoretical tests (theoretical and practical)
- Classroom participation and continuous evaluation of student performance

d. General and rehabilitative skills transferred (other skills related to employability and personal development).

- 1- Enabling students of mechanical engineering sciences in their applied and cognitive aspects .
- 2- Developing the student's ability to analyze information and interpret the data obtained through practical experiments or the use of manual skills or using a computer.
- 3- Enabling the student to use the special and general equations of the subjects and how to benefit from them in analyzing problems and extracting results accurately.
- 4- Enabling the student to conduct a field survey to identify the problems that fall on the shoulders of the engineer or technician within the workshop or laboratory.

11. Course Structure

Evaluation method	Method of education	Unit / Subject Name	Required Learning Outcomes	Hours	Week
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Heat transfer - heat transfer by conduction - heat transfer coefficient, heat transfer by convection + calculation of cooling coil capacity(1)	4	First
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Heat transfer by radiation, heat transfer through walls + calculation of cooling coil capacity(2)	4	Second
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Heat transfer through composite walls, total heat transfer coefficient + calculation of heating coil capacity(1)	4	Third
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Air condition and comfort + calculation of heating coil capacity(2)	4	Fourth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Air movement, relative humidity, wet and dry temperature + calculation of the performance coefficient of the room air conditioner	4	V
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Heating load losses, heating load calculation(1) + determination of heat pump performance	4	Sixth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Calculation of heating load(2) + thermal balance in the air conditioner	4	Seventh

Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Heating load calculation(3) +water coil capacity calculation	4	Eighth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Refrigeration Load Transactions and Calculations(1) +Scientific Visit	4	Ninth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Cooling load transactions and calculations(2) +Air Distribution	4	X
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Cooling load transactions and calculations(3) + Central fan performance determination (1)	4	Eleventh
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Cooling load transactions and calculations(4) + determination of central fan performance(2)	4	Twelfth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Heating and cooling systems + pressure loss channel study (1)	4	Thirteenth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Fundamentals of air conditioning design systems	Psychometric chart, perceptible and latent heat, composition of air coming out of heating and cooling + pressure loss channel study(2)	4	Fourteenth
Classroom and home assignments and weekly and	Theoretical and practical	Fundamentals of air conditioning design systems	Computer-aided cooling load calculation + pressure loss channel study(3)	4	Fifteenth

monthly exams			

12. Infrastructure	
PRINCIPLES OF HEATING VENTILATING AND AIR CONDITIONING by ASHRAE	Required textbooks 1
Principles of Air Conditioning and Refrigeration Engineering by Dr. Khaled Al- Judi	2 Main references (sources)
Related books and magazines	Recommended books and scientific) references (, reports , journals
	B Electronic references, websites

13. Course Development Plan

on the vocabulary Add hours for practical training and watch practical applications of the study

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

Second level / First semester Fundamentals of Air Conditioning System Drawing

Academic Program Description

This academic program description provides a concise summary of the main features of the program and the expected learning outcomes for students to achieve, demonstrating whether they have maximized their benefit from the available learning opportunities. It must be linked to the program description.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	Fundamentals of Air Conditioning
	System Drawing/ PMTR245
5- Available forms of attendance	mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(3 practical) per week * 15 weeks =
	45 hours
8-Date of preparing the description	10/2/2025

Course Objectives:

The objective of studying the Advanced of Air Conditioning Systems Drawing course is:

1. Teaching the student the basics of architectural drawing

- 2. Introducing the drawing of air ducts and their accessories.
- 3. Introducing the drawing of piping for air conditioning units.
- 4. Introducing the details of the machine rooms and their drawing.

10- Course Outcomes and Teaching, Learning, and Assessment Methods:

A- Cognitive objectives

- 1. Learn to read architectural plans.
- 2. Learn to read mechanical work plans of all kinds.
- 3. Learn to distribute machines in machine rooms.
- 4. Learn and draw the control parts and valves related to the pipe network and devices. B Skills Objectives:
 - 1. Layout of air ducts and chilled water pipes on the architectural plan.
 - 2. Knowing the appropriate locations of valves and other control devices.
 - **3.** Correct selection of device locations before drawing air ducts and pipe networks.

Teaching and learning methods

- 1. Theoretical lectures and practical training in laboratories.
- 2. Applying theoretical topics practically in various educational laboratories
- 3. Summer training
- 4. Graduation research
- 5. Scientific visits to various engineering projects related to the field of air conditioning and refrigeration.

Evaluation methods

- 1. Daily written tests
- 2. Weekly reports on practical experiments conducted by the student
- 3. Monthly and theoretical tests (theory and practical)
- 4. Classroom participation and continuous assessment of student performance practically.

C- Emotional and Ethical Objectives:

- 1. Learning how to deal with others and work in a team spirit.
- 2. Learning and the ability to make appropriate decisions to address

Teaching and learning methods

- 1. Adherence to theoretical and practical lecture schedules.
- 2. Working in laboratories and workshops.
- 3. Implementation of projects by students.
- 4. E-learning.

Evaluation methods

- 1. Attendance and absenteeism monitoring.
- 2. Theoretical and practical tests
- 3. Monitoring behavior and behavior inside the classroom.
- 4. Monitoring attendance at training sites and level of engagement.
- 5. Submitting and discussing reports.
- 6. Discussion of graduation projects.

D - Transferable general and qualifying skills (other skills related to employability and personal development).

- 1. Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- 2. Developing the student's ability to transfer information to practical reality after graduation.
- 3. Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- 1. Utilizing modern drawing programs in the field of refrigeration and air conditioning.
- 2. Competitive tests between groups of students for one section

Evaluation methods

- 1. Extracurricular activities and homework.
- 2. Participation and discussion in the classroom.

11. Course Structure

Assessment method	Learning method	Unit name / or the subject	Required learning outcome	Hours	Week
Classwork, homework, weekly and monthly exams	Practical	Fundamentals of Air Conditioning System Drawing	Drawing an architectural plan for a multi-floor building	3	1
Classwork, homework, weekly and monthly exams	Practical	Fundamentals of Air Conditioning System Drawing	A general idea of drawing air ducts in a single line style	3	2
Classwork, homework, weekly and monthly exams	Practical	Fundamentals of Air Conditioning System Drawing	Drawing an air duct with two lines indicating the dimensions	3	3
Classwork, homework, weekly and monthly exams	Practical	Fundamentals of Air Conditioning System Drawing	Drawing a complete air duct diagram (containing bend, T-branch, and other connections) with the dimensions	6	4 - 5
Classwork, homework, weekly and monthly exams	Practical	Fundamentals of Air Conditioning System Drawing	Drawing complete ductwork diagram with connection to air handling unit	3	6
Classwork, homework, weekly and monthly exams	Practical	Fundamentals of Air Conditioning System Drawing	Drawing a complete diagram of the air ducts with details of grille and diffusers in their locations, with dimensions and air quantities.	3	7
Classwork, homework, weekly and monthly exams	Practical	Fundamentals of Air Conditioning System Drawing	A general idea of drawing water pipes for air conditioning units (cooling water system - heating water system - condensing water system)	6	8-9
Classwork, homework,	Practical	Fundamentals of Air	Drawing the fan coil duct network with single -	6	10-11

weekly and monthly exams		Conditioning System Drawing	double - triple - quadruple doors		
Classwork, homework, weekly and monthly exams	Practical	Fundamentals of Air Conditioning System Drawing	Drawing of the double riser tube within a cooling system	3	12
Classwork, homework, weekly and monthly exams	Practical	Fundamentals of Air Conditioning System Drawing	Drawing a diagram of a pipeline network, including control and measuring devices	3	13
Classwork, homework, weekly and monthly exams	Practical	Fundamentals of Air Conditioning System Drawing	Machine room layout drawing (single line and two piping lines)	3	14
Classwork, homework, weekly and monthly exams	Practical	Advanced of Air Conditioning Systems Drawing	Drawing sections of the . machine room to explain the pipeline extension within the space of the room	3	15

12. Infrastructure

1- Required textbooks	1- Mechanical Drawing by Feach		
	Thomas.		
	2- Sourcebook of H. V. A. C.		
	Details by Frank E. Beaty, Jr. P. E.		
	3- Handbook & Air-condition		
	system design by Carrier.		
2- The main references (sources)	the scientific books in the Free		
	Education Division		
A- Recommended books and	1. Books concerned with		
references (Scientific journals,	Refrigeration Systems		
reports,)	2. The presence of a laboratory		
	specializing in the principles of		
	Refrigeration Systems		
B - Electronic references, Internet	Sites concerned with Refrigeration		
sites	Systems		

13. Course development plan

- 1- Keeping pace with scientific development in the field of specialization with every new development.
- 2- Updating lectures.
- 3- Using modern methods in education.

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

Second level / First semester Ethics of the Profession

Academic Program Description

This academic program description provides a concise summary of the most important features of the program and the learning outcomes expected of the student to achieve, demonstrating whether the student has made the most opportunities available. It is accompanied by a description of each course within the program.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	Ethics of the Profession / NTU 201
5- Available forms of attendance	mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(2 theoretical) per week × 15 weeks
7- Number of Study Hours (total)	= 60 hours
8-Date of preparing the description	10 / 2 /2025

9- Course objectives:

The aim of studying the professional ethics course:

- 1. Knowing the basics of professional ethics and general rules.
- 2. Know the difference between work behaviors, profession, and craft.
- 3. Knowing the methods and means of consolidating the values of professional ethics and how to apply the ethics of practicing the profession.

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives

- 1. Understanding, knowing and understanding the basics of work and professional ethics.
- 2. The student will be able to recognize how to apply it.

B - The skills objectives of the course.

- 1. Realizing the importance of ethics at work.
- 2. The learner must have the ability to apply the basics of professional ethics and how to use them.
- 3. Cultivate problem-solving skills in various professional situations through commitment to ethical conduct and behavior.

Teaching and learning methods

- 1. Theoretical lectures
- 2. Group discussions
- 3. Examples of curriculum-specific topics

Evaluation methods

- 1. Periodic and quarterly theoretical exams.
- 2. Quizzes.
- 3. Duties.
- 4. Short reports and research.

C- Emotional and value goals

- 1- Enhancing the student's level of understanding through modern methods.
- 2- Instilling the spirit of initiative in students in line with practical skills.
- 3- Promoting cooperative education.
- 4- Providing students with skills related to modern learning theories.

Teaching and learning methods

- 1. Discussion during the lecture.
- 2. Writing reports on scientific material.
- 3. Daily, weekly and quarterly exams.

Evaluation methods

- 1. Follow up on attendance and absence.
- 2. Theoretical tests.
- 3. Follow up on interaction and participation within the classroom.
- 4. Submitting and discussing reports.

D - Transferable general and qualifying skills (other skills related to employability and personal development).

Teaching and learning methods

- 1. Applying the skills of modern interactive teaching methods among students.
- 2. Motivating scientific competition among students.
- 3. Assigning the preparation of reports that enhance the creation of a spirit of knowledge among students.

Evaluation methods

- 1. Extracurricular activities and homework.
- 2. Participate and discuss in the classroom and allow room for expressing opinions in order to evaluate the extent of benefit..

11. Course Structure

Assessment method	Learning method	Unit name / or the subject	Required learning outcome	Hours	Week
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1.The concept of ethics and its origins 2. The general principles of ethics	Understanding the lecture and consolidating the concepts and how to apply them	2	1
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. sources of ethics 2. Ethical values	Understanding the lecture and consolidating the concepts and how to apply them	2	2
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. Importance of Ethics 2. Work, Profession, and Work Behaviors	Understanding the lecture and consolidating the concepts and how to apply them	2	3
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. Standards Governing the Profession 2. Professional Ethics	Understanding the lecture and consolidating the concepts and how to apply them	2	4
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. Characteristics and traits of professional ethics 2. acceptable level of professional ethics	Understanding the lecture and consolidating the concepts and how to apply them	2	5
Daily assessments	Theoretical	1. values, and professional ethics	Understanding the lecture and consolidating the concepts and	2	6

homework assignments, in-class participation,	and Group discussions	2. fostering honesty, integrity, justice, good communication, and excellence in work	how to apply them		
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. Unethical administrative behavior patterns 2. corruption and its types	Understanding the lecture and consolidating the concepts and how to apply them	2	7
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. Bribery and its types 2. The difference between bribery and gifts	Understanding the lecture and consolidating the concepts and how to apply them	2	8
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. the main motivations behind corruption and bribery 2. the concept of cheating and cheating in the workplace	Understanding the lecture and consolidating the concepts and how to apply them	2	9
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. aspects of cheating in job performance 2. Methods for instilling professional ethics	Understanding the lecture and consolidating the concepts and how to apply them	2	10
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. means and methods for instilling professional ethics 2. formulation of the ethical code for the profession	Understanding the lecture and consolidating the concepts and how to apply them	2	11
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. Enhancing ethical behavior in the workplace according to Crittenden and Kinnock 2. Work, administrative profession, and the ethical concept of administrative professional ethics	Understanding the lecture and consolidating the concepts and how to apply them	2	12
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. The importance of professional ethics for engineering disciplines 2. Types of professional ethics for engineering specializations	Understanding the lecture and consolidating the concepts and how to apply them	2	13
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1.Patterns of ethical behavior 2.Patterns of unethical behavior	Understanding the lecture and consolidating the concepts and how to apply them	2	14
Daily assessments homework assignments, in-class participation,	Theoretical and Group discussions	1. Factors influencing ethical behavior 2. Determinants of business ethics	Understanding the lecture and consolidating the concepts and how to apply them	2	15

12. Infrastructure

1- Required textbooks

The unified manual for the basics of professional ethics for students of

	technical institutes (Central Technical University), prepared by: 1. Dr. Kareem Abd Sajer 2. Dr. Raghad Hassan Hussein 3. Dr. Kholoud Abdel Amir Maklaf 4. Dr. Ahmed Abdel Qasim 5. Dr. Muhammad Hassan Al-Helou
2- The main references (sources)	Scientific books in the Free Education Division, the institute library, and the university library.
A- Recommended books and references (Scientific journals, reports,)	1. The approved binding is based on more than fifty Arab references and eighteen foreign sources.
B - Electronic references, Internet sites	Websites concerned with professional ethics

- 13. Course development plan
- 1- Keeping pace with scientific development in the field of specialization with every new development.
- 2- Updating lectures.
- 3- Using modern methods in education.

13. Course development plan

The development plan includes the planned curriculum to keep pace with scientific developments and modern information, in addition to giving the subject of ethics greater importance, especially during the summer training period, due to the student's presence in the field of work, which enables him to learn and apply what has been studied theoretically during the academic year.

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

Second level / First semester English language

Academic Program Description

This academic program description provides a concise summary of the most important features of the program and the learning outcomes expected of the student to achieve, demonstrating whether the student has made the most opportunities available. It is accompanied by a description of each course within the program.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	English language/Second
	level/ntu200
5- Available forms of attendance	mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(2 theoretical) per week * 15 weeks
	= 30 hours
8-Date of preparing the description	10/2/2025

9- Course objectives:

The aim of studying the principles of English language course is:

- 1. Providing the student with the basic information about English grammar.
- 2. Providing the student how to read correctly in English language.
- 3. Introducing the student to learn English vowels.
- 4. Enabling the student to speak English fluently.

10. Course outcomes and teaching, learning and evaluation methods

Cognitive objectives

- 1. Enabling the student to read correctly.
- 2. Enabling the student to learn the English grammar.
- 3. Enabling the student to speak correctly.

Teaching and learning methods

- 1. Lectures.
- 2. Apply theoretical topics practically.
- 3. Doing Exercises
- 4. Groups Role-playing

Evaluation methods

- 1. Daily written tests
- 2. Submitting weekly reports on the practical experiments carried out by students.
- 3. Monthly and theoretical tests (theory).

- Emotional and value goals

- 1. Learning how to deal with others and work in a team spirit.
- 2. Learning and the ability to make appropriate decisions to address mistakes.

Teaching and learning methods

- 1. Adherence to theoretical and practical lecture schedules.
- 2. Working in laboratories.
- 3. Implementation of projects by students.
- 4. E-learning.

Evaluation methods

- 1. Follow up on attendance and absence.
- 2. Theoretical and practical tests
- 3. Monitoring behavior and behavior inside the classroom.
- 4. Follow up on attendance at training sites and the extent of benefit.
- 5. Submitting and discussing reports.

- Transferable general and qualifying skills (other skills related to employability and personal development).
- 1. Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- 2. Developing the student's ability to transfer information to practical reality after graduation.
- 3. Developing the student's ability to find appropriate solutions.

Teaching and learning methods

Competitive tests between groups of students for one section

Evaluation methods

- 1. Extracurricular activities and homework.
- 2. Participation and discussion in the classroom.

11. Course Structure:

NO.		Grammar	Vocabulary	Everyday English
1	Unit one Getting to know you	Tenses/; Present, past, future p6-8 Questions: Where were you born? p6-8 What do you do? Questions words: Who ?, Why ?, How much ? p7	Using a bilingual dictionary p9 Parts of speech: adjective, preposition p9 Words with more than one meaning	a book to read I booked a table. p9
2	Unit two The way we live	Present tenses Present Simple Most people live in the south. p14 Present Continuous What's he doing at the moment? p16 have/have got	We have a population ofp 15 Have you got a mobile phone? p16 Describing countries a beautiful country the coast This country exports	Making conversation Asking questions Showing that you're interested p21

3	Unit three It all went wrong	Past tenses Past Simple .He heard a noise What did you do last night? p23 Past Continuous A car was waiting. p24 Irregular verbs saw, went, told p23	wool. p14 Collocation Daily life listen to music talk to my friends Making connections breaklmend, lose/find p23 verbs, and 'Nouns adjectives Suffixes to make different parts of speech discuss, discussion p28 Making negatives pack, unpack p28	Time expressions the eighth of January at six o'clock on Saturday in 1995 p29
4	Unit four shopping Let's go	many Quantity much and How much butter? How many eggs? p30 some and any some apples, any grapes p31 something, anyone, nobody, everywhere p32 a few, a little, a lot of p31 Articles	a shopkeeper, an old shop, the River Thames He sells bread. p33 Buying things ead, a milk, eggs, br 'packet of crisps a can of Coke, 'shampoo, soap jumpers, 'department store antique shop, newsagent, 'trainers a tie, conditioner, first class stamps	Prices and shopping 1.99£ 160\$ What's the exchange frate How much is a pair of jeans? p37
5	Unit five What do you Verb patterns 1	want to do? want/hope to do, enjoy/like doing p38 looking forward to doing, 'd like to do p38 Future intentions going to and will She's going to travel the .world I'll pick it up for you. p40	Hot verbs come have, go have an accident go wrong come first p44	How do you feel? Nervous, fed up Cheer up!
6	Unit six Tell me! What's it like!	What's it like in Paris?/ Compartive& superlative adjectives big, bigger, biggest good, better, best p48	towns Talking about modern buildings, life p47-night Money make money, inherit p50 Synonyms and antonyms lovely, beautiful,	Directions farm, wood, pond opposite the car park over the bridge p53

			interested, bored p52	
7	Unit seven Famous couples	Past Present Perfect and Simple She has written 20 .novels He wrote 47 novels. p54 for and since for three years since 1985 p56 Tense revision *Where do you live How long have you lived *there Why did you move? p56 Past participles lived, written p54	Bands and music keyboards 'guitar make a record p57 Adverbs slowly, carefully, just, still, too p60 Word pairs this and that	ladies and gentlemen p60 Short answers 'Do you like cooking .Yes, I do No, I don't. p61
8	Unit eight Do's and don'ts have got) to)	You have to pay bills. I've got to go. p62 should You should talk to your .boss You shouldn't drink coffee at night. p64 must You must go to the dentist. p64Jobs receptionist, miner, chef p63	Travelling abroad visa, documents p64 Words that go together Verb + complement take responsibility, live abroad p68	At the doctor's a cold, the 'flu food poisoning a temperature a prescription p69
9	Unit nine Going places	Time and conditional clauses as soon as, when, while, until When we're in Australia, .we'll forWhat if I pass my exams, I'll If p71	Hot verbs / take, get, do, make take a photo, get angry, do me a favour make up your mind p76	Hotels a double room, ground floor p76 In a hotel I'd like to make a .reservation Can I have a credit card number? p77
10	Unit ten Scared to death	Verb patterns 2 manage to do, used to do, go walking p78 Infinitives Purpose I went to the shops to buy some shoes. p80 what, etc. + infinitive I don't know what to say. p80 something, etc. + infinitive	Shops post office bookshop p80 Describing feelings and situations frightening, frightened worrying, worried	Exclamations !He was so scared !He's such an Idiot I've spent so much money! p85

		I need something to eat. p80		
11	Unit eleven Things that Passives	Cola is-changed the Coca enjoyed all over the .world world It was Invented In 9-p86 .1886 participles Verbs and past grown, produced p87	Verbs and nouns that go together tell a story, keep a promise p89 Notices	Keep off the grass Out of order p93
12	Unit twelve Dreams and Second conditional	reality If I were a princess, I'd live In a castle. p94 p94 might I might go to America. 97-p96	Phrasal verbs go away, take off your coat .The plane took off .I gave up my job Take them off. p100 Social expressions 2	!Congratulations .Never mind I haven't a clue. pl0l
13	Unit thirteen Earning a living	Present Perfect Continuous I've been living on the .streets for a year How long have you been 'selling The Big Issue p!02 Present Perfect Simple versus Continuous .He's been running He's run five miles, p104	Jobs and the alphabet game bookseller, architect Word formation death, die variety, various p105 Adverbs mainly, possibly, exactly, carefully p105	Telephoning Is that Mike I'm afraid he's out Can I take a message? p109
14	Unit fourteen Love you and leave you	Past Perfect They had met only one week earlier, p110 Reported statements She told me that she .loved John She said that she'd met .him six months ago	Words in context pi 16 Saying goodbye Have a safe !journey	Thank you for a lovely evening, p117
15	unit fifteen	learning new words	Vocabulary	

12. Infrastructure

1- Required textbooks

New headway plus.

- 13. Course development plan
- 1- Keeping pace with scientific development in the field of specialization with every new development.
- 2- Updating lectures.
- 3- Using modern methods in education.

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

Second level / Second semester Advanced Refrigeration Systems

Academic Program Description

This academic program description provides a concise summary of the main features of the program and the expected learning outcomes for students to achieve, demonstrating whether they have maximized their benefit from the available learning opportunities. It must be linked to the program description.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	Advanced Refrigeration Systems /
	PMTR246
5- Available forms of attendance	mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(2 theoretical + 2 practical) per week
	* 15 weeks = 60 hours
8-Date of preparing the description	10/2/2025

Course Objectives:

The objective of studying the Advanced Refrigeration Systems course is:

1. Introducing students to the control devices used in refrigeration systems.

- 2. Familiarizing students with the differences between various refrigeration systems and their operation methods.
- 3. Introducing students to food preservation techniques.

10- Course Outcomes and Teaching, Learning, and Assessment Methods:

A- Cognitive objectives

- 1. Understanding the function of each control device.
- 2. Understanding the operational principle of each system.
- 3. Familiarity with economic systems and systems that use clean energy.
- 4. Understanding the practical applications of each system.
- 5. Understanding the basic principles of constructing cold store and food preservation methods.

B - Skills Objectives:

- 1. Knowing the temperature and pressure values in absorption systems and other systems.
- 2. Selecting the appropriate refrigeration system for food preservation.
- 3. Overview of the heat load of food in refrigerated and frozen storage facilities.

Teaching and learning methods

- 1. Theoretical lectures and practical training in laboratories.
- 2. Applying theoretical topics practically in various educational laboratories
- 3. Summer training
- 4. Graduation research
- 5. Scientific visits to various engineering projects related to the field of air conditioning and refrigeration.

Evaluation methods

- 1. Daily written tests
- 2. Weekly reports on practical experiments conducted by the student
- 3. Monthly and theoretical tests (theory and practical)
- 4. Classroom participation and continuous assessment of student performance practically.

C- Emotional and Ethical Objectives:

- 1. Learning how to deal with others and work in a team spirit.
- 2. Learning and the ability to make appropriate decisions to address mistakes.

3. Teaching students how to handle each system to facilitate the maintenance process.

Teaching and learning methods

- 1. Adherence to theoretical and practical lecture schedules.
- 2. Working in laboratories and workshops.
- 3. Implementation of projects by students.
- 4. E-learning.

Evaluation methods

- 1. Attendance and absenteeism monitoring.
- 2. Theoretical and practical tests
- 3. Monitoring behavior and behavior inside the classroom.
- 4. Monitoring attendance at training sites and level of engagement.
- 5. Submitting and discussing reports.
- 6. Discussion of graduation projects.

D - Transferable general and qualifying skills (other skills related to employability and personal development).

- 1. Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- 2. Developing the student's ability to transfer information to practical reality after graduation.
- 3. Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- 1. Utilizing modern technologies in the field of refrigeration and air conditioning.
- 2. Competitive tests between groups of students for one section

Evaluation methods

- 1. Extracurricular activities and homework.
- 2. Participation and discussion in the classroom.

11. Course Structure

Assessment method	Learning method	Unit name / or the subject	Required learning outcome	Hours	Week
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Advanced Refrigeration Systems	Control devices used in refrigeration systems + Repair methods and writing practical reports	8	1 - 2
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Advanced Refrigeration Systems	Absorption refrigeration system / Operating principle - Features - Use in refrigeration and condensation / Comparison with compression system - Use of solar energy for operation	12	3-4-5
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Advanced Refrigeration Systems	Steam jet Refrigeration system	8	6 - 7
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Advanced Refrigeration Systems	air Vortex tube Features - Types	12	8-9-
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Advanced Refrigeration Systems	air liquefaction system Features - Types	8	11 -12
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Advanced Refrigeration Systems	Thermoelectric refrigeration system	4	13
Classwork, homework, weekly and monthly exams	Theoretical and Practical	Advanced Refrigeration Systems	Food preservation technology - Refrigerated warehouse designs - Calculating warehouse loads - Types of warehouses	8	14 - 15

1- Required textbooks	8- Modren Air – Condition practice by Harris9- Principle & Refrigeration by Dossat
	10- Refrigeration & Air – conditioning by ARORA.
	11- Handbook of air- conditioning system design by carrier air-conditioning company.
	12- Refrigeration and Air- conditioning by Stoecker
	13- Refrigeration & Air- conditioning by Ballany
	14- Refrigeration & Air- conditioning by Jordan & Priester
	8-Commercial Refrigeration by Andarase
2- The main references (sources)	the scientific books in the Free Education Division
A- Recommended books and	1. Books concerned with Refrigeration
references (Scientific journals, reports,)	Systems 2. The presence of a laboratory
	specializing in the principles of Refrigeration Systems
B - Electronic references, Internet sites	Sites concerned with Refrigeration Systems

- 13. Course development plan
- 1- Keeping pace with scientific development in the field of specialization with every new development.
- 2- Updating lectures.
- 3- Using modern methods in education.

Course Description Form

Second Level / Second Semester

Advanced Air Conditioning

Course Description

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve, proving whether he or she has made the most of the available learning opportunities. It must be linked to the description of the programme.

1- Educational institution	Northern Technical University
2- Scientific Department / Center	Technical Institute / Mosul
3- Name of academic or vocational program	Department of Refrigeration and Conditioning
4- Course Name / Code	Advanced Air Conditioning / PMTR252
5- Available Attendance Forms	Mandatory
6- Semester / Year	Decisions
7- Number of Credit Hours (Total)	(2 theoretical + 2 practical) per week * 15 weeks = 60 hours
8- The history of preparation of this description	10 / 2 / 2025

9. Course Objectives

The goal is to develop knowledge of advanced air conditioning. The course will include the following topics:-

- 1- Design of air ducts and their types, calculation of pressure losses, including installations, in addition to kinetic energy and air discharge in rooms, study of fans and their types, fan laws and specifications.
- 2- Study of vibration and its sources, pipe design and types, pump calculations, types of air conditioning systems and water and air systems.
- 3- Application of air conditioning systems in the building, air filtration methods, air washing, energy distribution in air conditioning systems.

10.Course Outcomes and Methods of Teaching, Learning and Assessment

A- Cognitive objectives

Enhancing the analytical abilities of students by giving an introduction by studying the methods of air distribution and the selection of air conditioning systems inside the building, as well as how to choose fans, study and calculate piping systems, choose pumps, in addition to filtration and washing of air and methods of energy distribution for air conditioning systems.

B - Skills objectives of the course.

Advanced Air Conditioning Study.

Teaching and learning methods

Weekly lectures include

- Provide students with the basics and topics related to the previous learning outcomes of skills to solve practical problems through speech, lecture or experiments.
- Solving a set of practical and practical examples by the academic staff.
- ❖ Through discussion, students are involved by solving some practical

problems.

- The practical laboratories of the department are followed up by the academic staff of the department.
- Asking the student to visit the library and the international information network (Internet) to obtain additional knowledge of the study materials

Presenting a seminar by the student in front of his fellow students to enhance his confidence.

Evaluation methods

- Evaluate students individually by giving an opportunity for classroom participation by answering questions.
- Evaluating students collectively through daily exams with practical and theoretical questions.
- Evaluate students collectively by giving extracurricular assignments such as writing special reports or those related to practical experiments in laboratories.

Semester exams for the curriculum in addition to the mid-year exam and the final exams for the first and second round

C. Emotional and value goals

Analyze the results obtained by the student through conducting practical experiments and reach the extent of their truth through .

- 1- Observation and perception
- 2- Analysis and interpretation
- 3- Conclusion and evaluation

Teaching and learning methods

- Using modern means in presenting the scientific and theoretical side, such as Data Show devices, to attract attention and attract students in an interesting way by displaying some films related to the subject to reach the idea better to the student.
- Give students extracurricular assignments that require them to exert skills

- and self-explanations in experimental ways.
- Interrogate students through panel discussions by asking thinking questions (how, why, when, where, any) for specific topics .
- Using the method of brainstorming and feedback in order to activate the accumulated experiences of students by linking what has been taken from the study materials in the previous academic stages and linking them to the new.

Providing students with practical skills by conducting practical experiments on laboratory equipment

Evaluation methods

- Daily written tests
- Provide weekly reports on practical experiments carried out by the student
- Monthly and theoretical tests (theoretical and practical)
- Classroom participation and continuous evaluation of student performance

${\bf d}$. General and rehabilitative skills transferred (other skills related to employability and personal development).

- 1- Enabling students of mechanical engineering sciences in their applied and cognitive aspects .
- 2- Developing the student's ability to analyze information and interpret the data obtained through practical experiments or the use of manual skills or using a computer.
- 3- Enabling the student to use the special and general equations of the subjects and how to benefit from them in analyzing problems and extracting results accurately.
- 4- Enabling the student to conduct a field survey to identify the problems that fall on the shoulders of the engineer or technician within the workshop or laboratory.

11. Course Structure

Evaluation method	Method of education	Unit / Subject Name	Required Learning Outcomes	Hours	Week
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Design of air ducts and their types + study of the performance and efficiency of the central heat pump	4	First
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Calculation of pressure losses in installation(1) + connecting pumps in series	4	Second
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Calculation of pressure losses in installation(2) + connecting pumps in parallel	4	Third
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Kinetic energy and air distribution in rooms + scientific film	4	Fourth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Fans and their types + performance of parallel pipe series and network	4	V
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Fan laws and specifications + equilibrium block for cooling tower	4	Sixth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Vibration and its sources + rudder balance of cooling tower	4	Seventh

Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Design of pipes and their types + calculation of heat transfer coefficient in the cooling tower	4	Eighth
home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Pump calculations + types of air conditioning systems + pressure loss in pipes and bending(1)	4	Ninth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Water & Air Systems(1) + Pressure Loss in Pipes and Bending(2)	4	X
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Water & Air Systems(2) + Pressure Loss in Pipes and Bending(3)	4	Eleventh
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Application of air conditioning systems in the building + calculation of the perceived heat in the system	4	Twelfth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Air filtration methods + inherent heat calculation in the system	4	Thirteenth
Classroom and home assignments and weekly and monthly exams	Theoretical and practical	Advanced Air Conditioning	Air washing + air filtration and its types	4	Fourteenth
Classroom and home assignments and weekly and	Theoretical and practical	Advanced Air Conditioning	Energy distribution in air conditioning systems + scientific visit	4	Fifteenth

monthly exams			

12. Infrastructure	
PRINCIPLES OF HEATING VENTILATING AND AIR CONDITIONING by ASHRAE	Required textbooks 1
Principles of Air Conditioning and Refrigeration Engineering by Dr. Khaled Al- Judi	2 Main references (sources)
Related books and magazines	Recommended books and scientific) references (, reports , journals
	B Electronic references, websites

13. Course Development Plan

Add hours for practical training and watch practical applications on the vocabulary of the study

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

Second level / Second semester Applied Heat Transfer

Academic Program Description

This academic program description provides a concise summary of the most important features of the program and the learning outcomes expected of the student to achieve, demonstrating whether the student has made the most opportunities available. It is accompanied by a description of each course within the program.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	Applied Heat Transfer/PMTR247
5- Available forms of attendance	mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(2 theoretical + 2 practical) per week
	* 15 weeks = 60 hours
8-Date of preparing the description	10/2/2025

9- Course objectives:

The aim of studying the principles of heat transfer course is to introduce the student on the main general principles of the heat transfer science and its practical applications in the field of air conditioning for example; through studying this course, the student can be able to calculate the (heating/cooling) load of a building, thermal conductivity, thickness and type of the insulation used in the heat exchanger and the HVACR systems

applications.			

10- Outcomes of course and teaching, learning and evaluation methods

A- Cognitive objectives

- 7. Introduce the student by the heat transfer applications in the technical field and life in general.
- 8. How can the condensation, boiling radiation heat transfer happened?
- 9. What is the heat transfer by extended surfaces (fins)?
- 10. The student gets to know how the heat is transferred by three main modes (conduction, convection and radiation).
- 11. The student knows what are the types of heat exchangers, applications and calculations.
- 12. The student knows how the radiation heat transfer happens.

B - The skills objectives of the course.

- 1. Theoretically, in the classroom we learn how can we understand the influence of Grashof, Prandtol, Renolds, Nusslts numbers on fluid mechanics and heat transfer calculations by matching between the properties of (fluids and materials) and using the empirical equations of convection heat transfer.
- 2. Practically, in the laboratory we are learning how we can to do the convection and radiation heat transfer experiments for different case studies in order to have the heat transfer aspects parameters.

Teaching and learning methods

- 1. Theoretical lectures and practical training in laboratories.
- 2. Applying theoretical topics practically in various educational laboratories
- 3. Summer training
- 4. Graduation research
- 5. Scientific visits to various engineering projects related to the field of HVACR

Evaluation methods

- 1. Daily written tests
- 2. Submitting weekly reports on the practical experiments carried out by the student
- 3. Monthly and theoretical tests (theory and practical)
- 4. Class participation and continuous evaluation of the student's performance in practice

C- Emotional and value goals

- 1. Learning how to deal with others and work in a team spirit.
- 2. Learning and the ability to make appropriate decisions to address mistakes.
- 3. The student learned how to maintain, calibrate and design the HVACR system in order to satisfy the human comfort conditions and the world sustainable aims.

Teaching and learning methods

- 1. Adherence to theoretical and practical lecture schedules.
- 2. Working in laboratories and workshops.
- 3. Implementation of projects by students.
- 4. E-learning.

Evaluation methods

- 1. Follow up on attendance and absence.
- 2. Theoretical and practical tests
- 3. Monitoring behavior and behavior inside the classroom.
- 4. Follow up on attendance at training sites and the extent of benefit.
- 5. Submitting and discussing reports.
- 6. Discussing graduation projects

D - Transferable general and qualifying skills (other skills related to employability and personal development).

- 1. Developing the student's ability to deal with modern technologies related to the course's syllabus.
- 2. Developing the student's ability to transfer information to practical reality after graduation.
- 3. Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- 1. Using modern technologies in the HVACR field.
- 2. Competitive tests between groups of students for one section

Evaluation methods

- 1. Extracurricular activities and homework.
- 2. Participation and discussion in the classroom.

11. Course Structure

		Theoretical & Practical Syllabus			
Assessment method	Learning method	Unit name / or the subject	Required learning outcome	Hou rs	Week
Classwork, homework, weekly and monthly exams	Theoretical	Applied Heat Transfer	Heat exchanger effectiveness ratio, examples		
Classwork, homework, weekly and monthly exams	Practical	Applied Heat Transfer	Types of heat exchangers and drawing temperature distribution	2	1-2
Classwork, homework, weekly and monthly exams	Theoretical	Applied Heat Transfer	Heat transfer through fins , condensation and boiling heat transfer	2	2
Classwork, homework, weekly and monthly exams	Practical	Applied Heat Transfer	Determination fouling factors	2	3
Classwork, homework, weekly and monthly exams	Theoretical	Applied Heat Transfer	Heat transfer by radiation , the concept of a perfect black body	2	4
Classwork, homework,	Practical	Applied Heat	Determination the log mean temperature difference	2	

weekly and monthly exams		Transfer			
Classwork, homework, weekly and monthly exams	Theoretical	Applied Heat Transfer	Stefan – boltzmann's law of total radiation, general equation for heat exchange by radiation between black surfaces, examples	2	5
Classwork, homework, weekly and monthly exams	Practical	Applied Heat Transfer	Determination the effectiveness NTV. Method	2	
Classwork, homework, weekly and monthly exams	Theoretical	Applied Heat Transfer	Heat exchange by radiation between large parallel black plane, examples	2	6-7-8
Classwork, homework, weekly and monthly exams	Practical	Applied Heat Transfer	Conduction – convection – systems) consider the one – dimensional fin exposed to a surrounding fluid and determination the fin efficiency of different fins.	2	6
Classwork, homework, weekly and monthly exams	Practical	Applied Heat Transfer	Determination the absorptivity and reflectivity and transmissivity when radiant energy strikes a material surface	2	7-8
Classwork, homework, weekly and monthly exams	Theoretical	Applied Heat Transfer	Heat exchange by radiation between large parallel planes of different emissivity , examples	2	9-10-11
Classwork, homework, weekly and monthly exams	Theoretical	Applied Heat Transfer	Heat conduction in series with convection and radiation, examples	2	12-13
Classwork, homework, weekly and monthly exams	Practical	Applied Heat Transfer	Method of constructing a black body enclosure. And heat exchange by radiation between black equal parallel and opposite squares or discs or rectangles	2	9-10-11- 12-13
Classwork, homework, weekly and monthly exams	Theoretical	Applied Heat Transfer	Heat transfer through air space, examples	2	14
Classwork, homework, weekly and monthly exams	Practical	Applied Heat Transfer	Heat transfer through air spaces	2	14
Classwork, homework, weekly and monthly exams	Theoretical	Applied Heat Transfer	General problems , home works	2	15
Classwork, homework, weekly and monthly exams	Practical	Applied Heat Transfer	Heat conduction in series with convection and radiation	2	15

12. Infrastructure

1- Required textbooks	1- Elements of heat transfer, obert McGrow – Hill – 1984.
	2- Physical similarity and Dimensional analyses Dancan Edward Arnold – 1953. 3- Heat and mass transfer Jakob and Hawking John Wiley & Sons, Inc. 1957. 4- Heat transfer by Holman.
2- The main references (sources)	the scientific books in the Free Education Division
A- Recommended books and references (Scientific journals, reports,)	 Books concerned with Heat Transfer. The presence of a laboratory specializing in the principles of Heat Transfer.
B - Electronic references, Internet sites	Sites concerned with Heat Transfer.

13. Course development plan

- Keeping pace with scientific development in the field of specialization with every new development.
- Updating lectures.
- Using modern methods in education.

Course Description Form

Second Level / Second Semester

Arabic Language

Course Description

This course description provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the student to achieve, proving whether he has made the most of the available learning opportunities. It must be linked to the programme description.

Northern Technical University	1. Educational institution
Technical Institute / Mosul	2. Scientific Department / Center
Department of Refrigeration and Conditioning	3. Name of academic or vocational program
Arabic NTU 203 /	4. Course Name/Code
Mandatory	5. Available Attendance Forms
Decisions	6. Semester / Year
(2 theoretical) per week × 15 weeks = 30 hours	7. Number of Credit Hours (Total)
10/2/2025	8. The history of preparation of this description

9. Course Objectives

Objective of studying the professional ethics course:

- Providing the student with the skill of speaking Arabic in a sound eloquent language away from the colloquial and addressing common mistakes.
- ❖ Developing the linguistic wealth of students and educating students about what the Arabic language represents as a tool of thinking, and a meansof expression between them and their society, so they accept to learn it with conviction and interest .
- ❖ Developing the queen of sentence structure and avoiding writing words with prevailing errors and how to formulate administrative discourse .

10. Course Outcomes and Methods of Teaching, Learning and Assessment

A- Cognitive objectives

- 1. Motivating students to love the Arabic language.
- **2.** Recognize the strengths of beauty in the Arabic language.
- **3.** Introducing students to the correct words , their structures and sound methods.
- 4. Providing the student with a linguistic wealth that enables him to read correctly, and develop his spelling and written ability.

B - Skills objectives of the course.

- 1 L am a man of the same age Developing students' abilities in various branches of the Arabic language from reading, spelling and grammar.
- 2 . The student should acquire the ability to think systematically in terms of sequencing linguistic elements $\,$, and linking them to each other

.

Teaching and learning methods

- ❖ Analyze the material and explain it to students with examples.
- Discussion through questions and answers.
- Solve questions related to the topic that has been explained.

Evaluation Methods:

- Periodic and quarterly theoretical exams.
- · Quizzes.
- Duties.
- Short reports and researches.

C - Emotional and value objectives:

- Addressing some misconceptions and maintaining the integrity of the language of students.
- 2. Make the student an "influential" element that interacts positively with his community in a clear and eloquent language.
- 3. Make the student speak in a sound and understandable language.

Teaching and learning methods

- Discussion during the lecture.
- Writing reports for the subject.
- Daily, weekly and quarterly exams.

Evaluation methods

- Follow-up attendance and absence.
- Theoretical tests.
- Follow up the interaction and participation inside the classroom.
- Reporting and discussion.
- d. General and qualifying-transfer skills (other skills related to employability and personal development).

Teaching and learning methods

- Apply the skills of modern interactive teaching methods among students.
- Motivate competition among students by providing examples of linguistic errors and trying to correct them.
- Commissioning the work of reports that enhance the creation of a spirit of knowledge among students.

•	ation methods Extra–curricular activities and homework.
•	Participation and discussion in the classroom and allow for the
•	
	expression of opinions in order to assess the extent of benefit.

11. Course Structure

Week	Hours	Required Learning Outcomes	Unit / Subject Name	Method of education	Evaluation method
First	2	Identify the elements and expressions	The subject and the predicate	theoretical	Classroom and home assignments and weekly and monthly exams
Second	2	Identify the elements of the actual sentences and the expression of each element according to its location	Verb, subject and object	theoretical	Classroom and home assignments and weekly and monthly exams
Third	2	differentiate between necessary and transitive verbs and the reasons for transgression of the verb	Necessary and transitive verb	theoretical	Classroom and home assignments and weekly and monthly exams
Fourth	2	Identify the types of apparent and hidden pronouns and the impact of each of them and their syntactic state	Pronouns	theoretical	Classroom and home assignments and weekly and monthly exams
v	2	Identify the original and subsidiary parsing signs	Original and subsidiary parsing marks	theoretical	Classroom and home assignments and weekly and monthly exams
Sixth	2	Identify the five verbs, their expressions, and the signs of expression	The Five Verbs	theoretical	Classroom and home assignments and weekly and monthly exams
Seventh	2	Recognize conjunctions and their meanings	Conjunctions and their meanings	theoretical	Classroom and home assignments and weekly and monthly exams
Eighth	First monthly exam				
Ninth	2	Know the rules for writing the number and countable	Number and countable	theoretical	Classroom and home assignments and weekly and

					monthly exams
tenth	2	differentiate between a Connecting and cutting hamza and where to use each	Connecting and cutting hamza	theoretical	Classroom and home assignments and weekly and monthly exams
Eleventh	2	Identify excess letters in the Arabic language and the reasons for writing or deleting them	Extra characters	theoretical	Classroom and home assignments and weekly and monthly exams
Twelfth	2	Knowledge of the rules of Nun and Tanween	Noon and Tanween	theoretical	Classroom and home assignments and weekly and monthly exams
Thirteenth	2	Learn how to formulate a management letter correctly	Administrative discourse	theoretical	Classroom and home assignments and weekly and monthly exams
Fourteenth	2	Correction of common linguistic errors	Some common language errors	theoretical	Classroom and home assignments and weekly and monthly exams
Fifteenth	Second Monthly Exam				

12. Infrastructure

1- Required textbooks	The unified binding of the Arabic language, which is taught in all departments of the Technical Institute / Mosul, which is prepared by: 1. A.L. Susan Mustafa Hussein
2- Main references (sources)	Books and dictionaries in the Arabic language in the Institute and the University Library.
Recommended books and references (Scientific journals, reports,)	All language dictionaries, books and writings of linguists and grammarians.
B Electronic references, websites	Sites that are interested in the Arabic language

13. Course Development Plan

- 1. Adding literary topics that would endear the Arabic language in addition to consolidating the values inherited from Arab and Islamic history.
- 2. Include poetry and poem because of its importance in improving the student's ability to formulate and pronounce the correct words in addition to helping to accumulate the correct words in the student's mind, which helps him to express in an eloquent language free of errors and colloquial terms

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

Second level / Second semester

Maintenance of advanced refrigeration and air-conditioning

Academic Program Description

This academic program description provides a concise summary of the most important features of the program and the learning outcomes expected of the student to achieve, demonstrating whether the student has made the most opportunities available. It is accompanied by a description of each course within the program.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	Maintenance of advanced refrigeration
	and air-conditioning
	equipment(mandatory)/pmtr248
5- Available forms of attendance	mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(2 theoretical + 4 practical) per week *
	15 weeks = 90 hours
8-Date of preparing the	10/2/2025
description	

9- Course objectives:

Teaching the student and providing him with the necessary skills and experience to maintain and operate air conditioning and refrigeration equipment.

10. Course outcomes and teaching, learning and evaluation methods

A- Cognitive objectives

- 1. The student's knowledge of the thermal cycles of the air conditioning and cooling units
- 2. The student knows how to determine the efficiency of the compressors.
- 3. Methods of measuring and calculating the cooling circulation.
- 4. Know the work of the timetables of cooling.

B - The skills objectives of the course.

- 1. Measure the temperature of the cooling circulation.
- 2. Measuring the pressures of the cooling circulation.
- 3. Measure the relative and perceived humidity.
- 4. Measure the volumetric efficiency of compressors.

Teaching and learning methods

- 1. Theoretical lectures and practical training in laboratories.
- 2. Applying theoretical topics practically in various educational laboratories
- 3. Summer training
- 4. Graduation research
- 5. Scientific visits to various engineering projects related to the field of air conditioning.

Evaluation methods

- 1. Daily written tests
- 2. Submitting weekly reports on the practical experiments carried out by the student
- 3. Monthly and theoretical tests (theory and practical)
- 4. Class participation and continuous evaluation of the student's performance in practice

C- Emotional and value goals

- 1. Learning how to deal with others and work in a team spirit.
- 2. Learning and the ability to make appropriate decisions to address mistakes.
- 3. The student learned how to maintain the air conditioning systems.

Teaching and learning methods

- 1. Adherence to theoretical and practical lecture schedules.
- 2. Working in laboratories and workshops.
- 3. Implementation of projects by students.
- 4. E-learning.

Evaluation methods

- 1. Follow up on attendance and absence.
- 2. Theoretical and practical tests
- 3. Monitoring behavior and behavior inside the classroom.
- 4. Follow up on attendance at training sites and the extent of benefit.
- 5. Submitting and discussing reports.
- 6. Discussing graduation projects

D - Transferable general and qualifying skills (other skills related to employability and personal development).

- 1. Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- 2. Developing the student's ability to transfer information to practical reality after graduation.
- 3. Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- 1. Using modern technologies in the air conditioning field.
- 2. Competitive tests between groups of students for one section

Evaluation methods

- 1. Extracurricular activities and homework.
- 2. Participation and discussion in the classroom.

11. Course Structure

تفاصيل المفردات	الأسبوع
صيانة مبادلات الهواء – المراوح – ملفات التسخين والتبريد – المرشحات بأنواعها.	1
صندوق خلط الهواء مع البوابات – جهاز ترطيب الهواء – المسخن الكهرباني مع صمامات السيطرة	2
صيانة وحدة الملف والمروحة (وصف النظام ، صيانة خط الملف وتنظيف الملفات والمرشح من الأوساخ التي يتركها الهواء على الشبكة)	3
مجموعة السيطرة وكيفية ربطها مع لوحة السيطرة الكهربانية	4
صيانة أجزاء جهاز تكييف مركزي _ فحص زيت الضاغط مع صيانة صمامات الخدمة وغسل المكثف بالمواد الكيمياوية ، تنظيف المبخر ، تنظيم صمام التمدد ، فحص وتنظيم مسيطرات الضغط (مسيطر الضغط العالي والواطئ والزيت)	5
تبديل أجزاء الجهاز _ دورة التفريغ والشحن وفحص التسرب (قائمة تحديد الأعطال)	6
صيانة برج التبريد (أنواعها) صيانة جسم البرج و الحوض ، الطوافة ، الحشوة والمروحة والمحرك ، صندوق التروس (ان وجد) ، ضبط استقامة المحاور	7
وصف الأنواع المختلفة لمضخات الماء ، صياتة المحرك والصمامات	8
ضبط استقامة محور المحرك والمضخة _ أنواع مانع تسرب الماء ، الإصلاح أو الاستبدال _ تبديل المضخة والأنابيب والملحقات	9
صيانة الأجزاء الكهربانية	10
صيانة المرجل - تنظيف جسم المرجل من الداخل والخارج - تفكيك المحرك وتوابعها وصيانة أجزانه المختلفة إعادة التركيب على جسم المرجل.	11
إعداد المرجل من حيث تجهيز الماء وفحص الكهربانيات ثم تشغيل مع إعادة فحص نظم السيطرة له.	12
صيانة اللوحات الكهربانية وقراءتها لأجهزة التكييف المركزية	13
تفكيك وتنظيف أجزاء لوحة كهرباء منظومة التكييف المركزية وخاصة بادئ الحركة ، فحص التيار المسحوب لكل محرك في المنظومة والتأكد من صحة تنظيم واقي زيادة التيار ولكل محرك	14
زيارة علمية لإحدى الأبنية التي لديها لوحات سيطرة متطورة لمنظومة تكييف مركزية	15

المفردات العملية		
تفاصيل المفردات	الاسبوع	
صيانة المبادلات الحرارية – المراوح – المحركات – ملفات التسخين والتبريد ومرشحات الهواء + صناديق الخلط – البوابات – أجهزة التبخير – سخانات الكهرباء – صمامات السيطرة ومحركاتها	1 - 2	
فحص وصيانة وحدات الملف والمروحة – تنظيف مصافي الهواء – التاكد من مرور الماء الى الملف – فحص محرك المروحة – فحص المنظم الحراري وصمام السيطرة	3	
فحص أجزاء الدائرة الكهربائية – تنظيف نقاط التوصيل للموصلات وفحص وإعادة تنظيم المسيطرات	4	
فحص كمية الشحنة (كمية الوسيط الموجود) فحص صلاحية وكمية الزيت بالضاغط – وكيفية تعويض النقص ان وجد – فحص وتبديل أجزاء الجهاز – التفريغ والشحن وتحديد الأعطال	5	
غسل المكثف بالمواد الكيمياوية – غسل وتشغيل أقفال الماء المستخدمة	6	
فحص أداء لوحة السيطرة الكهربانية ومتابعة أداء كل مسيطر وفحص أداء صمام التمدد	7	
صيانة أبراج التبريد – التنظيف وصبغ الجسم الخارجي للبرج والحوض وتنظيف المراوح وتزييت مساندها صيانة الحشوات – تبديل أحزمة نقل الحركة – صيانة المحرك – تنظيف مصفى الماء – تشغيل صمامات الماء المؤدية من والى البرج	8	
صيانة مضخات الماء – تفكيك المضخة – فحص الأجزاء – صيانة الأجزاء المطلوب صيانتها أو استبدالها – صيانة المحرك الكهرباني الخاص بها – صيانة بادئ الحركة – ضبط استقامة المضخة والمحرك – إعادة تركيب الأجزاء – صيانة أنابيب الماء وملحقاتها	9 - 10	
صيانة المراجل ـ تنظيف المرجل من الخارج والداخل ـ صيانة الأجزاء والمنظمات ـ إعادة المرجل للعمل مرة أخرى ـ فحص الكهربانيات لجهاز السيطرة .	11 - 12	
صيانة اللوحة الكهربانية _ تفكيك وتنظيف الأجزاء _ فحص جميع الأجزاء _ إعادة ربط اللوحة	13	
صيانة غاسلات الهواء ــ المبردات التبغيرية	14	
زيارة علمية لإحدى المواقع ذات التكييف المركزي الحديثة للإطلاع على لوحات السيطرة	15	

1- -Ashrae Guide and Data Book 1- Required textbooks 2 -Modern Refrigeration and Air-condition by Althouse & **Turnquist** 3 -Refrigeration & Air-condition 4 -Refrigeration & Air-condition institute 2- The main references (sources) the scientific books in the Free **Education Division** A- Recommended books and references (Scientific journals, reports,....) **B** - Electronic references, Internet Sites concerned with internal combustion engines sites...

- 13. Course development plan
- 1- Keeping pace with scientific development in the field of specialization with every new development.
- 2- Updating lectures.
- 3- Using modern methods in education.

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFOMANCE REVIEW: PROGRAMME REVIEW

Second level / Second semester Advanced of Air Conditioning Systems Drawing

Academic Program Description

This academic program description provides a concise summary of the main features of the program and the expected learning outcomes for students to achieve, demonstrating whether they have maximized their benefit from the available learning opportunities. It must be linked to the program description.

1- Educational Institution	Northern Technical University
2- Scientific Department/ Center	Institute Technical /Mosul
3- Name of the academic or	Department of Refrigeration and
professional program	Conditioning
4- Course name/code	Advanced of Air Conditioning
	Systems Drawing / PMTR251
5- Available forms of attendance	mandatory
6- Semester/year	Courses
7- Number of study hours (total)	(3 practical) per week * 15 weeks =
	45 hours
8-Date of preparing the description	10/2/2025

Course Objectives:

The objective of studying the Advanced of Air Conditioning Systems Drawing course is:

1. Teaching the student to distribute fan-coil type indoor units on an

- architectural plan.
- 2. Introducing the student to the method of connecting terminal units to the machine room via a piping network.
- 3. Teaching the student to draw three-dimensional drawings of air conditioning system accessories.
- 4. Introducing the student to drawing pipe supports and machine bases.

10- Course Outcomes and Teaching, Learning, and Assessment Methods:

A- Cognitive objectives

- 1. Learn to read architectural plans.
- 2. Learn to read mechanical work plans of all kinds.
- 3. Learn to distribute machines in machine rooms.
- 4. Learn and draw the control parts and valves related to the pipe network and devices. B Skills Objectives:
 - 4. Layout of cooling pipes and chilled water pipes on the architectural plan.
 - 5. Knowing the appropriate locations of valves and other control devices.
 - **6.** Correct selection of device locations before drawing pipe networks.

Teaching and learning methods

- 1. Theoretical lectures and practical training in laboratories.
- 2. Applying theoretical topics practically in various educational laboratories
- 3. Summer training
- 4. Graduation research
- 5. Scientific visits to various engineering projects related to the field of air conditioning and refrigeration.

Evaluation methods

- 1. Daily written tests
- 2. Weekly reports on practical experiments conducted by the student
- 3. Monthly and theoretical tests (theory and practical)
- 4. Classroom participation and continuous assessment of student performance practically.

C- Emotional and Ethical Objectives:

- 1. Learning how to deal with others and work in a team spirit.
- 2. Learning and the ability to make appropriate decisions to address mistakes.
- 3. Teaching students how to handle each system to facilitate the maintenance process.

Teaching and learning methods

- 1. Adherence to theoretical and practical lecture schedules.
- 2. Working in laboratories and workshops.
- 3. Implementation of projects by students.
- 4. E-learning.

Evaluation methods

- 1. Attendance and absenteeism monitoring.
- 2. Theoretical and practical tests
- 3. Monitoring behavior and behavior inside the classroom.
- 4. Monitoring attendance at training sites and level of engagement.
- 5. Submitting and discussing reports.
- 6. Discussion of graduation projects.

D - Transferable general and qualifying skills (other skills related to employability and personal development).

- 1. Developing the student's ability to deal with modern technologies related to the curriculum's vocabulary.
- 2. Developing the student's ability to transfer information to practical reality after graduation.
- 3. Developing the student's ability to find appropriate solutions.

Teaching and learning methods

- 1. Utilizing modern drawing programs in the field of refrigeration and air conditioning.
- 2. Competitive tests between groups of students for one section

Evaluation methods

- 1. Extracurricular activities and homework.
- 2. Participation and discussion in the classroom.

11. Course Structure

Assessment method	Learning method	Unit name / or the subject	Required learning outcome	Hours	Week
Classwork, homework, weekly and monthly exams	Practical	Advanced of Air Conditioning Systems Drawing	Drawing an architectural drawing of a single floor - showing how to connect fan coil units	3	1
Classwork, homework, weekly and monthly exams	Practical	Advanced of Air Conditioning Systems Drawing	Draw a diagram of the cooling water pipes connecting the machine room to the engine room on a floor	3	2
Classwork, homework, weekly and monthly exams	Practical	Advanced of Air Conditioning Systems Drawing	A three-dimensional drawing of the cooling, condensing and charging water system with valves and control devices installed	6	4-3
Classwork, homework, weekly and monthly exams	Practical	Advanced of Air Conditioning Systems Drawing	Drawing a diagram of the control systems for a condensing unit - an air exchanger unit, a home cooling panel a split unit panel	18	-6-5 -8-7 10-9
Classwork, homework, weekly and monthly exams	Practical	Advanced of Air Conditioning Systems Drawing	Drawing the supports and pipe fasteners, device supports, pump bases - with a scientific visit to a buildings to see the implementation of air ducts and the extension of .the water pipe network	15	-11 -12 -13 -14 15

12. Infrastructure

1- Required textbooks	1- Mechanical Drawing by Feach
	Thomas.

	2- Sourcebook of H. V. A. C.Details by Frank E. Beaty, Jr. P. E.3- Handbook & Air-conditionsystem design by Carrier.
2- The main references (sources)	the scientific books in the Free Education Division
A- Recommended books and references (Scientific journals, reports,)	 Books concerned with Refrigeration Systems The presence of a laboratory specializing in the principles of Refrigeration Systems
B - Electronic references, Internet sites	Sites concerned with Refrigeration Systems

- 13. Course development plan
- 1- Keeping pace with scientific development in the field of specialization with every new development.
- 2- Updating lectures.
- 3- Using modern methods in education.