Northern Technical University

الجامعة التقنية الشمالية

Bachelor's degree (B.Sc.) – Building & Construction Eng. Tech. بكالوريوس هندسة تقنيات البناء والانشاءات

جدول المحتويات | Table of Contents

1. Mission & Vision Statement	بيان المهمة والرؤية
2. Program Specification	مواصفات البرنامج
3. Program (Objectives) Goals	أهداف البرنامج
4. Program Student learning outcomes	مخرجات تعلم الطالب
5. Academic Staff	الهيئة التدريسية
6. Credits, Grading and GPA	الاعتمادات والدرجات والمعدل التراكمي
7. Modules	المواد الدراسية
8. Contact	اتصال

1. Mission & Vision Statement

Vision Statement

The department will be distinguished and a pioneer in the field of Building and Construction Technics Engineering, providing the labor market with technical engineers who can keep up with and transfer accelerating technology in the field of building and construction, as well as create and find job opportunities outside the public sector for self-service and community service. These engineers will have a variety of skills, including the ability to provide safe and efficient designs, manage complex projects, and ensure the quality and compliance of their work. With the mission of producing knowledgeable and highly skilled technical engineers, the Department of Building and Construction Technics Engineering will provide an education that is both current and progressive.

Mission Statement

Prepare technologically proficient engineers with the capability to employ modern techniques in designing, implementing, and maintaining diverse engineering projects. Also, equip them to manage and operate specialized production units for manufacturing construction materials and structural systems. Develop their ability to inspect various types of construction materials and structures. Foster a culture of continuous learning, self-improvement, and accessing reliable information sources. Additionally, cultivate and support creativity, innovation, and development among students and graduates, addressing the cultural requirements related to heritage and economic requirements. Facilitate employment opportunities for graduates, minimizing reliance on foreign competencies.

2. **Program Specification**

Programme code:	BCE	ECTS	240
Duration:	4 levels, 8 Semesters	Method of Attendance:	Full Time

The department of Building and Construction Engineering Techniques is broad and essential, offering students a comprehensive education that emphasizes the entire construction process—from designing safe, efficient structures to managing complex projects and ensuring quality compliance. This program appeals to a range of interests: for some, it's the opportunity to work directly on essential infrastructure projects, while for others, it's a path to specialization in areas such as structural materials, project management, or sustainable construction methods. The curriculum is structured to build foundational knowledge at Level 1, where students gain a solid grounding in core engineering principles. At Level 2, students engage with program-specific topics, preparing them for advanced, research-informed modules at Levels 3 and 4. Graduates of this program are equipped to contribute to the labor market as skilled technical engineers, able to design, execute, and maintain various civil engineering projects.

At Levels 2, 3, and 4, students are encouraged to select modules that reflect the diversity and complexity of civil engineering projects—ranging from building design and material testing to project management and construction technology. This flexibility enables students to shape their education around their career interests, with guidance from personal tutors. Research and practical experience are integrated from the start, with hands-on labs, field courses, and research seminars that support the department's commitment to experiential learning. Level 1 includes essential workshops, while advanced levels offer opportunities for independent projects, whether field-based, laboratory-based, or analysis-driven, fostering critical thinking and problem-solving skills in line with the department's mission of producing competent, innovative engineers.

3. Program Objectives

Graduate Objectives

- 1. This speciality aims to provide a bachelor's degree in technical engineering as well as graduate technical engineering cadres (technical engineers) capable of designing, implementing, and maintaining all civil engineering projects.
- 2. The goal of this specialization is to grant a master's degree in the speciality (building materials) and graduate academic engineering cadres with advanced abilities in scientific research and field laboratory testing.
- 3. The department's goal is to issue a PhD degree in the field of building materials and to graduate engineering cadres capable of keeping up with scientific breakthroughs in the field of building materials while also giving solutions to local challenges related to this speciality.

General objectives

- 1. Conducting scientific research in several civil fields, with an emphasis on applied research, to keep up with scientific and technological growth.
- 2. Reaching out to the community by offering scientific courses in areas of specialty as well as continuing education courses will help building and construction employees at all levels.
- 3. Providing engineering consulting for various engineering projects as well as engineering designs for various projects.
- 4. Continuing communication with graduates contributes to their continuous growth and provides input to the department in developing curriculum to suit the job market.

4. Student Learning Outcomes

Building and Construction Technics Engineering is the study of the design, construction, and maintenance of infrastructure projects, focusing on structural, material, and project management aspects. Graduates gain knowledge in the technical, historical, and social impacts of construction engineering and apply fundamental principles to solve complex engineering challenges. The Department offers a Bachelor of Science in Building and Construction Technics Engineering, equipping students with skills in general construction management, materials testing, and structural design. Additionally, the Department provides courses for students from other departments, supporting interdisciplinary learning and professional development. The curriculum and practical experiences prepare students for careers in the construction industry, graduate studies, and specialized technical roles.

Outcome 1: Structural Analysis and Design

Graduates will be able to analyze and design structural components, understanding their function within larger engineering systems.

Outcome 2: Technical Communication

Graduates will be able to clearly communicate construction plans, project proposals, and technical findings through both oral and written formats.

Outcome 3: Practical Application of Construction Techniques

Graduates will be able to conduct on-site and laboratory testing of materials, operate specialized construction equipment, and adhere to safety standards.

Outcome 4: Historical and Social Context in Engineering

Graduates will be able to demonstrate an understanding of the development of construction technologies, including historical perspectives and societal impacts.

Outcome 5: Quantitative Analysis and Project Management

Graduates will be able to apply quantitative skills for project planning, resource management, and cost estimation in construction projects.

Outcome 6: Problem Solving and Innovation

Graduates will be able to use critical-thinking skills to identify challenges in construction projects and develop innovative solutions to address them.

5. Academic Staff

Zaid Hazim Hussein | PhD in Construction Materials | Lecturer (Head Department) Email: zaid.alsaffar@ntu.edu.iq Mobile no.: +964 770 965 1653

Hiba A. Abdul Kareem | Master's in architecture | Assis Lecturer Email: hibaabdulhafith@ntu.edu.iq Mobile no.: +964 770 204 1656

Ethar Thanoon Dawood | PhD in Construction Materials | Professor Email: eethardawood@ntu.edu.iq Mobile no.: +964 770 176 1858

Nabil Khalil Ismail | PhD in Environment| Assistant Professor Email: nabeelismail@ntu.edu.iq Mobile no.: +964 751 809 6434

Saleh Jafar Suleiman | PhD in Water Resources | Assistant Prof. Email: salehj1970@gmail.com Mobile no.: +964 772 206 8599

Hassan Mohammed Ahmed | PhD in Structure | Assistant Prof. Email: albegmprli@ntu.edu.iq

Mobile no.: +964 774 090 7726

Jassim Mohammed Abed| Master's Degree in Construction Materials| Assistant Prof. Email: jasimabd@ntu.edu.iq Mobile no.: +964 773 189 3521

Mohammed Adnan Bashir | PhD in Structure | Lecturer Email: mbasher@ntu.edu.ig

Mobile no.: +964 770 827 0828

Mohammed Tarek Khalil | PhD in Water Resources | Lecturer Email: mohammed.alsafaawe@ntu.edu.iq

Mobile no.: +964 771 854 3780

Majid Ali Dhahir PhD in Structure Lecturer

Email: majid.algburi@ntu.edu.iq

Mobile no.: +964 751 732 2799

Fadia Abdulqader Suleiman | PhD in Environment | Lecturer

Email: fadiah@ntu.edu.iq

Mobile no.: +964 750 204 1220

Mohammed Hatim| PhD in Structure | Lecturer

Email: mohammed.hatem@ntu.edu.iq

Mobile no.:+964 770 206 3220

Faiza Ibrahim Mohammed Master's in Environment Lecturer
Email: faizaibrahim@ntu.edu.ig
Mobile no.: +964 770 177 3405
Waseem Thabet Mohammed Master's in Construction materials Assistant Lecturer
Email: Waseem.thabit@ntu.edu.iq
Mobile no.: +964 770 161 1769
Einas Hisham Mohammed Ph.D. in Geotechnic Eng Assistant Lecturer
Email: enas.alhayali@ntu.edu.iq
Mobile no.: +964 770 388 6103
Raghad Ibrahim Zidan Master's in Computer Science Assistant Lecturer
Email: raghad.zidan@ntu.edu.iq
Mobile no.: +964 770 170 6305
Hisham Salem Murad PhD in Structure Lecturer
Email: hesham.salim@ntu.edu.iq
Mobile no.: +964 770 417 5315
Israa Mohammed Mushtaq Master's in Geotechnic Eng. Assistant Lecturer
Email: israa.m.mushtaq@ntu.edu.iq
Mobile no.:+964 771 513 1013
Helen Faris Sidiq Master's in Highways Assistant Lecturer
Email: helen.faris@ntu.edu.iq
Mobile no.: +964 771 141 8222
Dhabia Saad Mazahim Master's in Construction Assistant Lecturer
Email: dhabia.saad@ntu.edu.iq
Mobile no.: +964 770 999 1241

6. Credits, Grading and GPA

Credits

NTU University is following the Bologna Process with the European Credit Transfer System (ECTS) credit system. The total degree program number of ECTS is 240, 30 ECTS per semester. 1 ECTS is equivalent to 25 hrs student workload, including structured and unstructured workload.

Grading

Before the evaluation, the results are divided into two subgroups: pass and fail. Therefore, the results are independent of the students who failed a course. The grading system is defined as follows:

GRADING SCHEME مخطط الدرجات							
Group	Grade	التقدير	Marks (%)	Definition			
	A - Excellent	امتياز	90 - 100	Outstanding Performance			
Success	B - Very Good	جيد جدا	80 - 89	Above average with some errors			
Group	C - Good	جيد	70 - 79	Sound work with notable errors			
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings			
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria			
Fail Group	FX – Fail	راسب - قيد المعالجة	(45-49)	More work required but credit awarded			
(0 – 49)	F — Fail	راسب	(0-44)	Considerable amount of work required			
Note:							

Number Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Calculation of the Cumulative Grade Point Average (CGPA)

1. The CGPA is calculated by the summation of each module score multiplied by its ECTS,

all are divided by the program total ECTS.

CGPA of a 4-year B.Sc. degree:

CGPA = [(1st module score x ECTS) + (2nd module score x ECTS) +] / 240

7. Curriculum/Modules

Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
BCE101	CONSTRUCTION MATERIALS	84	150	6.00	С	
BCE102	PLAIN SURVEYING	84	150	6.00	С	
BCE103	ENGINEERING MECHANICS (STATIC)	91	150	6.00	С	
BCE104	ENGINEERING DRAWING AND DESCRIPTIVE GEOMETRY	95	125	5.00	В	
BCE105	ENGINEERING PHYSICS	50	75	3.00	S	
NTU100	HUMAN RIGHTS and DEMOCRACY	35	50	2.00	S	
NTU101	ENGLISH LANGUAGE	35	50	2.00	S	

Semester 1 | 30 ECTS | 1 ECTS = 25 hrs

Semester 2 | 30 ECTS | 1 ECTS = 25 hrs

Semester 2						
Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
BCE106	BUILDING MATERIALS	84	150	6.00	С	
BCE107	SURVEYING-I	84	126	5.04	С	
BCE108	ENGINEERING GEOLOGY	54	75	3.00	В	
BCE109	ENGINEERING MECHANICS (DYNAMIC)	76	150	6.00	С	
BCE110	CALCULAS-1	74	150	6.00	В	
NTU102	COMPUTER PRINCIPLES	39	50	2.00	S	
NTU103	ABRABIC LANGUAGE	35	50	2.00	S	

Semester 3 | 30 ECTS | 1 ECTS = 25 hrs

Code Module	SSWL USSWL	ECTS	Туре	Pre-request	1
-------------	------------	------	------	-------------	---

BCE 201	CONCRETE TECHNOLOGY-I	84	125	5.00	С	
BCE 202	STRENGTH OF MATERIALS	66	125	5.00	С	
BCE 203	BUILDING CONSTRUCTION	54	100	4.00	S	
BCE 204	SURVEYING-II	84	125	5.00	С	
BCE 205	PROBABILITY & STATISTICS	54	100	4.00	С	
BCE 206	CALCULAS-II	106	125	5.00	В	
NTU200	CRIMES OF BAATH PARTY	35	50	2.00	S	

Semester 4 | 30 ECTS | 1 ECTS = 25 hrs

Semester 4	30 ECTS 1 ECTS = 25 hrs					
Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
BCE 209	CONCRETE TECHNOLOGY-II	84	150	6.00	С	
BCE 210	SOLID MECHANICS	73	150	6.00	С	
BCE 211	CONSTRUCTION TECHNIQUES	54	100	4.00	S	
BCE 212	FLUID MECHANICS	69	125	5.00	С	
BCE 213	MATHEMATICS	85	125	5.00	S	
NTU201	Professional Ethics	35	50	2.00	S	
NTU202	Computer Applications	39	50	2.00	S	
BCE 214	PRACTICAL TRAINING-I					

Semester 5 | 30 ECTS | 1 ECTS = 25 hrs

Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
BCE 301	CONCRETE TECHNOLOGY-III	84	150	6.00	С	
BCE 302	FUNDAMENTALS OF REINFORCED CONCRETE	73	150	6.00	С	
BCE 303	STRACTURAL ANALYSIS	73	150	6.00	С	
BCE 304	SOIL MECHANICS	66	100	4.00	С	
BCE 305	PAVEMENT ENGINEERING	66	100	4.00	С	
BCE 306	ENGINEERING ANALYSIS	54	100	4.00	С	

Semester 6 | 30 ECTS | 1 ECTS = 25 hrs

Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
BCE 307	MASONRY BUILDINGS	68	150	6.00	С	BCE 307
BCE 308	CONSTRUCTION MANAGEMENT	68	125	5.00	С	BCE 308
BCE 309	ADVANCED SOIL MECHANICS	66	100	4.00	С	BCE 309
BCE 310	ENVIRONMENTAL ENGINEERING	69	125	5.00	С	BCE 310
BCE 311	ADVANCED PAVEMENT ENGINEERING	53	125	5.00	С	BCE 311
BCE 312	NUMERICAL ANALYSIS	60	125	5.00	С	BCE 312

Semester 7 | 30 ECTS | 1 ECTS = 25 hrs

Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
BCE 401	DESIGN OF REINFORCED CONCRETE STRUCTURES	72	100	4.00	С	
BCE 402	TRANSPORTATION ENGINEERING	56	100	4.00	С	
BCE 403	QUANTITY SURVEYING & ESTIMATING	82	125	5.00	С	
BCE 404	FOUNDATION ENGINEERING	82	125	5.00	С	
BCE 405	CONSTRUCTION DRAWING	49	100	4.00	С	
BCE 406	DESIGN OF STEEL STRUCTURES	82	125	5.00	С	
BCE 407	INNOVATIVE PROJECT- I	30	75	3.00	С	

Semester 8 | 30 ECTS | 1 ECTS = 25 hrs

Code	Module	SSWL	USSWL	ECTS	Туре	Pre-request
BCE 408	MATERIALS FOR HERITAGE buildings	52	125	5.00	С	
BCE 409	ADVANCED FOUNDATION ENGINEERING	82	125	5.00	С	
BCE 410	SAFETY IN CONSTRUCTION	35	50	2.00	В	
BCE 411	COMPUTER AIDED DESIGN OF STRUCTURE	79	125	5.00	С	
BCE 412	REPAIRS & REHABILITATION OF STRUCTURES	53	125	5.00	С	
BEC 413	SUSTAINABLE CONSTRUCTION MATERIALS	53	125	5.00	С	
BEC 414	INNOVATIVE PROJECT-II	30	75	3.00	С	

8. Contact

Program Manager:

Zaid Hazim Hussein | PhD in Construction Materials | Lecturer Email: zaid.alsaffar@ntu.edu.iq Mobile no.: +964 770 965 1653

Program Coordinator:

Hiba A. Abdul Kareem | Master's in architecture | Assis Lecturer Email: hibaabdulhafith@ntu.edu.iq Mobile no.: +964 770 204 1656