

Northern Technical University Eng. Technical College/ Mosul Department of Power Mechanics Engineering Technologies

Module Information معلومات المادة الدر اسية						
Module Title	Design of Thermal Syste		stem	Mod	ule Delivery	
Module Type	Core				⊠ Theory □ Lecture	
Module Code	RE 403					
ECTS Credits	6				□ Lab ⊠ Tutorial	
SWL (hr/sem)	150				☐ Practical □ Seminar	
Module Level		4	Semester	of Delivery 7		7
Administering Department		РМ	College	TEMO		
Module Leader	Nabeel Abdulrazzaq		e-mail	Nabil8	4m@ntu.edu.iq	
Module Leader's Acad. Title		Lec.	Module L	Module Leader's Qualification		Ph.D.
Module Tutor			e-mail			
Peer Reviewer Name			e-mail			
Scientific Committee Approval Date			Version Number		1.0	

Relation with other Modules				
العلاقة مع المواد الدر اسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents				
	اهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Objectives أهداف المادة الدر اسية	 Understand the fundamentals of thermodynamics and heat transfer principles. Analyze different types of thermal systems and their components. Evaluate the performance and efficiency of thermal systems. Learn about heat exchangers and their design considerations. Explore various energy sources and their utilization in thermal systems. 			

	6. Understand the principal design of pipe system.				
	7. Learn about renewable energy systems and their integration into				
	thermal systems.				
	8. Explore the design considerations for solar thermal system.				
	9. Study the control and optimization of thermal systems for improved				
	performance.				
	10. Analyze the environmental impact and sustainability aspects of thermal				
	system design				
	11 Develop skills in designing and siging components of thermal systems				
	11. Develop skins in designing and sizing components of thermal systems,				
	such as pumps, compressors, and turbines.				
	1. Comprehensive knowledge of thermodynamics and heat transfer				
	principles.				
	2. Understanding of different types of thermal systems and their				
	2 Ability to analyze and evaluate the performance and efficiency of				
	5. Admity to analyze and evaluate the performance and efficiency of thermal systems				
	A Proficiency in designing and sizing components of thermal systems				
	such as nine system heat exchangers and numps				
	5. Familiarity with various methods of heat transfer, including conduction.				
	convection, and radiation.				
	6. Knowledge of fluid mechanics principles and their application in				
	thermal systems.				
Module Learning	7. Ability to design and optimize thermal systems for improved				
Outcomes	performance and energy efficiency.				
	8. Understanding of solar thermal system and thermal energy storage				
مخرجات التعلم للمادة الدراسية	systems and their design considerations.				
	9. Proficiency in using computational tools and software for modeling and				
	simulation of thermal systems.				
	10. Awareness of safety considerations and regulations relevant to thermal				
	system design.				
	11. Ability to analyze case studies of real-world thermal systems and their				
	design challenges.				
	of thermal system design				
	13 Development of critical thinking and problem-solving skills in the				
	context of thermal system design				
	14. Ability to communicate and present technical information related to				
	thermal system design effectively.				
	1. Introduction to Thermal Systems Design				
	• Overview of thermal systems and their significance				
	• Introduction to design methodologies and considerations				
Indicative Contents	2. Performance Analysis and Optimization				
المحتويات الإرشادية	• Efficiency calculations and performance metrics				
	• Parametric analysis and optimization techniques				
	\circ Economic and environmental considerations				
	3 Computational Tools and Simulation				
	5. <u>Computational roots and Omitiation</u>				

 Introduction to software for thermal system modeling
• Simulation of thermal systems and performance analysis
4. Case Studies and Design Projects
• Analysis of real-world thermal systems and design challenges
• Group projects involving the design of thermal systems
5. Sustainability and Environmental Impact
• Environmental considerations in thermal system design
• Energy conservation strategies and sustainable practices
6. Communication and Presentation Skills
• Technical report writing
• Oral presentation skills and effective communication

Learning and Teaching Strategies				
	استر اتيجيات التعلم والتعليم			
Strategies	 Lectures: Traditional lectures can be used to introduce new concepts, explain theoretical principles, and provide an overall framework for the course content. Instructors can utilize visual aids, demonstrations, and examples to enhance understanding. Problem-solving sessions: Conducting problem-solving sessions allows students to apply the concepts learned in lectures to solve real-world problems related to thermal system design. Instructors can present a variety of problem scenarios and guide students through the problem-solving process. Case studies: Presenting case studies of actual thermal systems and their design challenges can help students understand the practical application of the concepts learned. Analyzing and discussing case studies can enhance critical thinking and problem-solving skills. Group projects: Assigning group projects related to the design of thermal systems encourages collaboration and teamwork among students. These projects can involve designing and analyzing thermal systems, conducting simulations, or presenting feasibility studies. Computer simulations: Utilizing computational tools and software for modeling and simulation of thermal systems enables students to analyze system performance, optimize designs, and simulate different operating conditions. Field trips and industry visits: Organizing field trips or visits to thermal system facilities, power plants, or HVAC installations offers students a chance to observe and understand the practical implementation of thermal system design principles. Discussions and debates: Engaging students in discussions and debates on controversial or emerging topics related to thermal system design 			

 can foster critical thinking, encourage different perspectives, and enhance communication skills. 8. Multimedia resources: Incorporating multimedia resources such as videos, animations, interactive simulations, and online resources can enhance student engagement and facilitate self-paced learning. 9. Assessments and feedback: Regular assessments, quizzes, exams, and assignments allow instructors to evaluate students' understanding and progress. Providing timely feedback helps students identify areas for improvement and reinforces learning.

Student Workload (SWL) الحمل الدر اسي للطالب محسوب لـ ١٥ اسبو عا				
Structured SWL (h/sem) الحمل الدر اسي المنتظم للطالب خلال الفصل	Structured SWL (h/w) الحمل الدر اسي المنتظم للطالب أسبو عيا	5		
Unstructured SWL (h/sem) الحمل الدر اسي غير المنتظم للطالب خلال الفصل	87	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبو عيا	6	
Total SWL (h/sem) الحمل الدر اسي الكلي للطالب خلال الفصل		150		

Module Evaluation						
تقييم المادة الدر اسية						
		Time/Numbe	Weight	Week Due	Relevant Learning	
		r	(Marks)	Week Due	Outcome	
	Quizzes	2	10% (10)	5 and 10	LO #1 - #10	
	Assignments	6	200(-(10))	2,4,6,8,10	$I \cap \#1 - \#12$	
Formativa	Assignments	0 20	20% (10)	and 12	LO #1 - #12	
assessment	Projects	1	5% (5)	Continuous	All	
assessment				Will be		
	Siminar	1 5% (5)	5% (5)	decided	LO #13, #14 and #15	
			later			
Summative	Midterm	2hr	10% (10)	7	LO #1 - #7	
assessment	Exam	2111	10% (10)	1		
	Final Exam	3hr	50% (50)	16	All	
Total assessment		100% (100				
		Marks)				

Northern Technical University Eng. Technical College/ Mosul Department of Power Mechanics Engineering Technologies

Delivery Plan (Weekly Syllabus)					
المنهاج الأسبوعي النظري					
	Material Covered				
Week 1	Introduction to Thermal Systems Design				
WEEK I	Overview of thermodynamics, fluid mechanics, and heat transfer principles				
Week 2	Pipe sizing and hydraulic calculations: Flow rates, pressure drop, and pipe diameter selection				
Week 3	Pump selection and performance analysis: Centrifugal pumps, pump curves, and system head calculations				
Wook/	Pipe material selection and characteristics				
VV CCK4	Pipe layout and routing considerations				
Week 5	Solar thermal system design principles				
WEEK 5	Solar collectors and system components				
Week 6	Solar thermal system sizing and performance analysis				
WEEK 0	Integration of solar thermal systems in thermal designs				
Week 7	Heat exchanger fundamentals and types				
	Design considerations for heat exchangers				
Week 8	Heat exchanger sizing and performance analysis				
	Heat exchanger selection and optimization				
Week 9	Cost estimation in thermal system design				
Week 10	Economic analysis and evaluation methods				
	Computational tools and software for thermal system simulation				
Week11	Introduction to simulation software (e.g., MATLAB, ANSYS, Starccm)				
Week12	Simulation of thermal systems using software tools				
	Performance analysis and optimization through simulations				
Week13	Advanced optimization techniques for thermal system design				
	Parameter optimization and sensitivity analysis				
Week14	Case studies: Real-world applications and design challenges				
Week15	Analysis and discussion of case studies related to thermal system design				
Week 16	Preparatory week before the final Exam				

Learning and Teaching Resources مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	"Design of Thermal Systems" by Wilbert F. Stoecker and J. W. Jones	Yes		
Recommended Texts	 "Thermal Systems Design" by W. P. Jones "Thermal Systems Engineering: Thermodynamics, Fluid Mechanics, and Heat Transfer" by Michael J. Moran, Howard N. Shapiro, Bruce R. Munson, and David P. DeWitt 	No		
Websites	NA			

Grading Scheme مخطط الدر جات					
Group	Grade	التقدير	Marks %	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group (50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
	C - Good	جيد	70 - 79	Sound work with notable errors	
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group (0 – 49)	FX – Fail	ر اسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
	F – Fail	راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Module 1

Code	Course/Module Title	ECTS	Semester
RE 403	Thermal Systems Design	6	7
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL (hr/sem)	USWL (hr/sem)
3	1	63	87

The Design of Thermal Systems course is a comprehensive exploration of the principles and practices involved in creating efficient and effective thermal systems. This course delves into the design considerations and methodologies necessary for designing systems that involve heat transfer, thermodynamics, fluid mechanics, and energy conversion.

Students will learn how to analyze and optimize thermal systems by examining factors such as heat generation, heat transfer mechanisms, and energy efficiency. They will study the design of components like heat exchangers, boilers, turbines, compressors, and refrigeration systems. Through case studies, simulations, and hands-on projects, students will gain practical experience in sizing, performance analysis, and material selection for thermal systems.

Furthermore, the course will cover system integration, control strategies, and the assessment of environmental impacts. Students will develop the skills to address real-world challenges in various industries, including power generation, HVAC, automotive, and aerospace.

By the end of the course, students will possess the knowledge and tools needed to design and optimize thermal systems, making them well-equipped for careers as thermal system engineers, energy consultants, or researchers in the field of thermal sciences