

MODULE DESCRIPTION FORM

نموذج وصف المادة الدر اسية

Module Information معلومات المادة الدر اسية						
Module Title	Solar Photovoltaic Conversi		ersion	Modu	le Delivery	
Module Type	Core				⊠ Theory	
Module Code		RE 401			□ Lecture ⊠ Lab	
ECTS Credits	7			🛛 Tutorial		
SWL (hr/sem) 175		175		□ Practical □ Seminar		
Module Level		4	Semester of Delivery		7	
Administering De	epartment	РМ	College	ТЕМО		
Module Leader	Bashar Abdulla	h Hamad	e-mail	bashar.l	bashar.hamad@ntu.edu.iq	
Module Leader's	Acad. Title	Lecturer	Module Le	ader's Q	ualification	M.Sc.
Module Tutor	ile Tutor Name (if available) e-mail					
Peer Reviewer Name		Name	e-mail			
Scientific Committee Approval Date		01/6/2023	Version Nu	mber	1.0	

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	Prerequisite module None Semester				
Co-requisites module None Semester					

Module Aims, Learning Outcomes and Indicative Contents

	أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإرشادية
Module Objectives أهداف المادة الدر اسية	This course of photovoltaic energy systems will focus on the fundamentals of solar energy conversion, photovoltaic, and environmental impacts, and cover topics including shading, energy storage, and emerging PV technologies. Stand-alone PV system components. Designing stand-alone PV systems and sizing. Analysis of the efficiency of solar cells. PV power system. Grid-connected PV.
Module Learning Outcomes مخرجات التعلم للمادة الدر اسية	 Important: Write at least 6 Learning Outcomes, better to be equal to the number of study weeks. Upon completion of this course, the student will be 1. Able to describe markets and applications for photovoltaic systems. 2. Able to identify safety hazards of photovoltaic systems. 3. Able to identify practices and protective equipment used for PV systems installation and maintenance. 4. Able to define and demonstrate solar energy fundamentals 5. Able to conduct site assessments and planning for PV systems installations 6. Able to explain the characteristics of different PV system configurations 7. Able to explain and calculate PV module parameters using module specifications 8. Able to describe the purpose and operation of PV balance-of-system (BOS) components 10. Able to calculate photovoltaic array and BOS component sizing 11. Able to conduct PV systems electrical design/integration per National Electrical Code (NEC) requirements 12. Able to calculate and analyze photovoltaic system performance 14. Able to understand proper installation and troubleshooting procedures
Indicative Contents المحتويات الإر شادية	Indicative content includes the following. Part A - Introduction to Photovoltaic Energy Conversion Energy from Solar Photovoltaic (PV) Conversion, Solar PV Modules, Solar PV Systems, Advantages and Challenges of Solar Photovoltaic Energy Conversion. Solar Cells , How Solar Cells are Better than any Conventional Sources of Electricity? , What is a Solar Cell?, How Solar Cell Generates Electricity? , Parameters of Solar Cells , Solar Cell Technologies , Factors Affecting Electricity Generated by a Solar Cell [15 hrs] Solar PV Modules, What is a Solar PV Module? Ratings of PV Module, Standard PV Module Parameters, I-V and P-V Characteristics of SPV Module Solar PV Module Arrays, Connection of Modules in Series, Estimating Number of PV Modules Required in Series and Their Total Power, Connection of Modules in Parallel Combination [15 hrs] PV Module Shading - Causes and effects of shading in PV systems - Bypass diodes for mitigating shading effects [6hrs]

Learning and Teaching Strategies				
استر اتيجيات التعلم والتعليم				
Strategies	Type something like: The major approach used to offer this module will be to promote student engagement in the exercises while also enhancing and broadening their critical thinking abilities. This will be accomplished through lectures, interactive tutorials, and the consideration of various sorts of easy experiments incorporating some engaging sampling exercises for the students.			

Student Workload (SWL) الحمل الدر اسي للطالب محسوب لـ ١٥ أسبو عا				
Structured SWL (h/sem) 78 Structured SWL (h/w) الحمل الدر اسي المنتظم للطالب أسبو عيا الحمل الدر اسي المنتظم للطالب خلال الفصل			5	
Unstructured SWL (h/sem) الحمل الدر اسي غير المنتظم للطالب خلال الفصل	97	Unstructured SWL (h/w) الحمل الدر اسي غير المنتظم للطالب أسبو عيا	6	
Total SWL (h/sem) 175 الحمل الدر اسي الكلي للطالب خلال الفصل				

Module Evaluation تقييم المادة الدر اسية						
Time/Number Weight (Marks) Week Due Relevant Learning Outcome						
	Quizzes	4	10% (10)	2, 4 and 9	LO #1, #3and #8, #9,	
Formative assessment				,14	#13	
	Assignments	5	10% (10)	3, 5, 7 and	LO #2, #4 and #6, #7,	
				8, 15	#11, #14	
	Projects / Lab.	6	15% (15)	Continuous	All	
	Report	1	5% (5)	14	LO #5, #10, #12	
Summative	Midterm Exam	3hr	10% (10)	7	LO #1 - #7	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessm	ent	I	100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)
	المنهاج الأسبوعي النظري
	Material Covered
Week 1	Introduction to Photovoltaic Energy Conversion Energy from Solar Photovoltaic (PV) Conversion, Solar PV Modules, Solar PV Systems, Advantages and Challenges of Solar Photovoltaic Energy Conversion
	Fundamentals of Semiconductor Materials
Week 2	- Introduction to semiconductor materials
	 Properties of semiconductors Formation of P-N junctions and basic operation of diodes
	Solar Cells , How Solar Cells are Better than any Conventional Sources
Week 3	of Electricity? , What is a Solar Cell?, How Solar Cell Generates Electricity? , Parameters of Solar
Week 5	Cells , Solar Cell Technologies , Factors Affecting Electricity Generated by a Solar Cell
	Solar PV Modules, What is a Solar PV Module? Ratings of PV Module, Standard PV Module
	Parameters, I-V and P-V Characteristics of SPV Module, How Many Cells in Module? ,
Week 4	Estimating or Designing Wattage of a PV Module , Factors Affecting Electricity Generated by a
Week 4	Solar PV
	Module
Wo-l- C	Solar PV Module Arrays, Connection of Modules in Series, Estimating Number of PV Modules
Week 5	Required in Series and Their Total Power, Connection of Modules in Parallel Combination
Week 6	Connected in Parallel and Their Total Power, Connection of Modules in Series and Parallel (Mixed Combination), Estimation Number of Modules to be Connected in Series and Parallel
	and Their Total Power

Week 7	PV Module Shading - Causes and effects of shading in PV systems - Bypass diodes for mitigating shading effects - Strategies for minimizing shading effects
Week 8	Basics of Batteries, Some Basics about Batteries, How Does a Battery Work? Types of Batteries, Parameters of Batteries
Week 9	Applications of Batteries in Solar PV Systems, Why to Connect Batteries Together? Estimating Number of Batteries Required in Series, Estimating Total Energy Stored in Series Connected Battery Array
Week 10	Estimating Maximum Power from Series Connected Batteries, Parallel Connection, Estimating Number of Batteries Required in Parallel
Week 11	Charge Controller, MPPT and Inverters, Need for BoS, Power Converters and Their Efficiency, AC to DC Converters
Week 12	DC to AC Converter (Inverters), DC to DC Power Converters, Charge Controllers
Week 13	Solar PV System Design and Integration, Types of Solar PV Systems, Standalone SPV System, Grid-connected SPV System, Hybrid SPV Systems
Week 14	Grid-connected Solar PV Power Systems, Introduction to Grid-connected PV Systems, Grid- connected PV Systems for Small Power Applications, Grid-connected PV Systems for Large Power Applications,
Week 15	Configuration of Grid-connected Solar PV Systems, Grid-connected PV System Design for Small Power Applications, Steps of System Design

	Delivery Plan (Weekly Lab. Syllabus)				
	المنهاج الاسبوعي للمختبر				
	Material Covered				
Week 1	Effect of solar radiation changing on V_{OC} and I_{SC} measurements				
Week 2	Characteristics of a Single Solar Cell				
Week 3	Series Connections of Solar Cells				
Week 4	Effect of PV Module Shading and Bypass diode Series Connections of Solar Cells				
Week 5	Parallel Connections of Solar Cells				
Week 6	Characteristics of a Single Solar Cell with solar radiation changing				
Week 7					

Learning and Teaching Resources				
مصادر التعلم والتدريس				
	Text Available in the Library?			
Required Texts	Solanki, Chetan Singh. Solar photovoltaic technology and systems: a manual for technicians, trainers and engineers. PHI Learning Pvt. Ltd., 2013	No		
Recommended Texts	Shepherd, William, and David William Shepherd. <i>Energy studies</i> . World Scientific Publishing Company, 2014.	No		
Websites				

Grading Scheme مخطط الدرجات					
Group	Grade التقدير Marks % Definition			Definition	
	\mathbf{A} – Excellent	امتياز	90 - 100	Outstanding Performance	
	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group	C – Good	ختر	70 - 79	Sound work with notable errors	
(50 - 100)	D – Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E – Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group (0 – 49)	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
	F – Fail	راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Code	Course/Module Title	ECTS	Semester
RE 401	Solar Photovoltaic Conversion	7	7
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL (hr/sem)	USWL (hr/sem)
2	3	78	97
Description			

The Solar Photovoltaic Conversion course offers a comprehensive study of the principles and technologies involved in converting solar energy into electricity using photovoltaic (PV) systems. This course explores the design, operation, and optimization of PV systems for various applications.

Students will delve into the physics of solar energy conversion, including the behavior of semiconductor materials and the working principles of solar cells. They will learn about the different types of PV technologies, such as crystalline silicon, thin-film, and emerging solar cell technologies. The course will cover topics including PV system components, system sizing, performance analysis, and integration into the electrical grid.

Students will gain hands-on experience through laboratory exercises and simulations, enabling them to design and evaluate PV systems for residential, commercial, and utility-scale applications. They will also explore topics like solar resource assessment, system economics, and the environmental impacts of PV systems.

By the end of the course, students will have a solid understanding of solar photovoltaic conversion and the ability to design, analyze, and optimize PV systems. They will be well-prepared for careers in the renewable energy industry, as PV system designers, project managers, or researchers in the field of solar energy.