

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information							
معلومات المادة الدراسية							
Module Title	Gas Dynamics			Modu	le Delivery		
Module Type	Core				🛛 Theory		
Module Code	RE 302				□ Lecture ⊠ Lab □ Tutorial		
ECTS Credits	8						
SWL (hr/sem)	200				Practical Seminar		
Module Level 3		Semester o	Delivery 5				
Administering Department		PM	College	TEMO			
Module Leader	Firas Aziz Ali		e-mail	firasazi	firasaziz@ntu.edu.iq		
Module Leader's	Acad. Title	Lecturer	Module Lea	ıder's Qı	alification	M.Sc.	
Module Tutor	Module Tutor e-mail		e-mail				
Peer Reviewer Name			e-mail				
Scientific Committee Approval Date		01/6/2023	Version Nu	mber	1.0		

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Modu	Ile Aims, Learning Outcomes and Indicative Contents
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية
Module Objectives أهداف المادة الدراسية	 To discuss the effect of compressibility in gas flow To derive the steady one-dimensional isentropic flow equation To discuss the effects of friction and heat transfer on compressible flows through constant area duct To familiarize the occurrence of shocks and calculate property changes across a shock wave To derive the thrust equation and discuss its application in jet and rocket.
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Important: Write at least 6 Learning Outcomes, better to be equal to the number of study weeks. CO1: Apply the thermodynamics concepts in relation to compressible flows and derive relationships between various compressible flow parameters CO2: Understanding of isentropic compressible flows in variable area ducts and apply in design of static components like nozzles and diffusers CO3: Solve for compressible flow characteristics with friction and heat transfer CO4: Develop relationship for shocks and determine their characteristics under various conditions CO5: Analyse the performance of aircraft and rocket propulsion engines
Indicative Contents المحتويات الإرشادية	Indicative content includes the following. <u>Part A -</u> Introduction to gas dynamics, Isentropic flow, Bryton cycle ideal and actual. [15hrs] Shock waves in supersonic flow, normal shock and oblique shock waves[15 hrs] Introduction to gas turbine power plant, [10 hrs] Introduction to rockets thrust equations, [15hrs] <u>Part B –</u>

Fundamentals . To understand the charts of oblique shock waves, [15 hrs]
Types of pumps, pumps Characteristics, [7 hrs]
Introduction to jet propulsion, The Kinds, Impulse Turbine, Blades Efficiency. [15 hrs]

Learning and Teaching Strategies			
Strategies	Type something like: The major approach used to offer this module will be to promote student engagement in the exercises while also enhancing and broadening their critical thinking abilities. This will be accomplished through lectures, interactive tutorials, and the consideration of various sorts of easy experiments incorporating some engaging sampling exercises for the students.		

Ste	udent Worl	doad (SWL)			
۱ أسبوعا	ب محسوب لـ (الحمل الدراسي للطالد			
Structured SWL (h/sem)	62	Structured SWL (h/w)	4		
الحمل الدراسي المنتظم للطالب خلال الفصل	63	الحمل الدراسي المنتظم للطالب أسبوعيا	4		
Unstructured SWL (h/sem)	107	Unstructured SWL (h/w)	0		
الحمل الدراسي غير المنتظم للطالب خلال الفصل	137	الحمل الدراسي غير المنتظم للطالب أسبوعيا	9		
Total SWL (h/sem)		200			
الحمل الدراسي الكلي للطالب خلال الفصل	الحمل الدراسي الكلي للطالب خلال الف				

Module Evaluation						
تقييم المادة الدراسية						
Time/Number Weight (Marks) Week Due Relevant Learning Outcome					Relevant Learning Outcome	
	Quizzes	5	20% (20)	3,4,9 and 11	LO #1, #2,#3and #4, #5	
Formative assessment	Assignments	4	10% (10)	2,6,8 and 12	LO #2, #3, #4 and#5	
	Projects / Lab.	3	10% (10)	Continuous	All	
	Report	0	0% (0)			
Summative	Midterm Exam	3hr	10% (10)	7	LO #1 - #3	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessment			100% (100 Marks)			

Delivery Plan (Weekly Syllabus)			
المنهاج الاسبوعي النظري			
	Material Covered		
Week 1	Conservations laws, Mass, Energy, and Momentum equations		
Week 2	Introduction to Compressible Flow, classifications of fluid flow		
Week 3	Wave Propagation, stagnation condition, Thermodynamics relationships		
Week 4	Isentropic flow of a perfect gas in varying area duct		
Week 5	Isentropic Flow in Converging-diverging Nozzles and Diffusers		
Week 6	Thrust of Rocket Engine, specific thrust equation		
Week 7	Introduction to Stationary Normal Shock Waves		
Week 8	Stationary Normal Shock Waves in C-D Nozzles		
Week 9	Stationary Normal Shock Waves in C-D Diffusers		
Week 10	Moving Normal Shock Waves		

Week 11	Introduction to Oblique Shock Waves relationships
Week 12	Oblique Shock Waves over wedges and inlets
Week 13	Introduction to pumps, pumps classifications
Week 14	Introduction to Compressors, types of compressors
Week 15	Introduction to Gas Turbines.

Delivery Plan (Weekly Lab. Syllabus)			
المنهاج الاسبوعي للمختبر			
	Material Covered		
Week 1	Introduction of gas dynamics instruments		
Week 2	Subsonic wind tunnel pressure distribution		
Week 3	Subsonic wind tunnel velocity distribution		

Learning and Teaching Resources					
	مصادر التعلم والتدريس				
	Text	Available in the Library?			
Required Texts	Dynamics and Thermodynamics of compressible flow, A.				
	Shapiro	INO			
Recommended	Fundamentals Of engineering thermodynamics, Michael J.	No			
Texts	Moran and Howard N. Shapiro, Fifth edition	NO			
Websites	https://www.linquip.com/ Linquip Content Management Tean	n			

Grading Scheme مخطط الدرجات					
Group	Grade	ر. التقدير	Marks %	Definition	
	A – Excellent	امتياز	90 - 100	Outstanding Performance	
Success Group (50 - 100)	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
	C – Good	جيد	70 - 79	Sound work with notable errors	
	D – Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E – Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 – 49)	F — Fail	راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Code	Course/Module Title	ECTS	Semester
RE 302	Gas Dynamics	8	5
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL (hr/sem)	USWL (hr/w)
2	2	63	137
Description			

The course on Thermal Power Plants covers various sections to provide students with a comprehensive understanding. It begins by introducing thermodynamics and studying thermal systems in terms of energy interactions with their surroundings. Students will learn how to measure differences in the relevant properties of the system and its surroundings, emphasizing their engineering applications.

The course also delves into one-dimensional compressible flows, covering essential concepts such as isentropic flow, normal and oblique shock waves, and flows with heat transfer, friction, and mass addition. Additionally, students will explore topics like simple waves, small perturbation theory for linearized and steady flows, and the method of characteristics for two-dimensional steady flow and one-dimensional unsteady flow.

By the end of the course, students will have gained a solid foundation in thermodynamics, with a specific focus on thermal power plants. They will be equipped with the knowledge and skills to analyze and comprehend the complex dynamics involved in these systems.