

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية							
Module Title				Modu	ıle Delivery		
Module Type	Core				☑ Theory		
Module Code	RE 301				□ Lecture ⊠ Lab		
ECTS Credits	8			☐ Tutorial			
SWL (hr/sem)	200			☐ Practical ☑ Seminar			
Module Level 3		Semester of Delivery 5		5			
Administering Department		AM	College	TEMO			
Module Leader	Firas Aziz Ali		e-mail	firasaziz@ntu.edu.iq			
Module Leader's Acad. Title		. Lecturer	Module Lea	le Leader's Qualification		M.Sc.	
Module Tutor			e-mail				
Peer Reviewer Name			e-mail				
Scientific Committee Approval Date		01/06/2023	Version Number 1.0		1.0		

Relation with other Modules						
العلاقة مع المواد الدراسية الأخرى						
Prerequisite module	None	Semester				
Co-requisites module	None	Semester				

Module Aims, Learning Outcomes and Indicative Contents

أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية

The main purpose of this course is to introduce students with renewable energy resources availability, potential and suitability as a substitute for conventional energy resources in future energy demand. Having completed the courses, the student should have Knowledge: **Module Objectives** Advanced knowledge about different renewable energy resources. Advanced knowledge أهداف المادة الدراسية about potential of using renewable energy technologies as a complement to and to the extent possible, replacement for conventional technologies, and possibilities to combine renewable and non-renewable energy technologies in hybrid systems. Knowledge about strategies for enhancing the use of renewable energy resources for future demand.Skills: Analysis on importance of renewable energy solutions for sustainable development. Important: Write at least 6 Learning Outcomes, better to be equal to the number of study weeks. 1. Explain about the types of renewable energy resources **Module Learning** 2. To make the students understand the working of turbines, and pumps. **Outcomes** 3. To make the students understand the operational principle of renewable energy resources. مخرجات التعلم للمادة 4. To make the students understanding all about the geothermal, biomass energies الدراسية 5. To explain the Pumps, Kinds of Pumps 6. Explain the operation of Pumps in series and Parallel, Centrifugal pumps 7. To help students to calculate gas Turbines, Impulse Turbine. Indicative content includes the following. Part A -Introduction to renewable energy resources, solar energy, wind energy. Introduction to renewable energy resources, Hydro-electric power plants [15 hrs] Geothermal energy power plants technology [10 hrs] **Indicative Contents** المحتويات الإرشادية Biomass energy, different resources of biomass materials [15hrs] Part B -**Fundamentals** - To understand the modern technologies of renewable energy [15 hrs] - Ability to design different types of turbines and compressors [7 hrs]

Learning and Teaching Strategies				
استراتيجيات التعلم والتعليم				
Strategies	Type something like: The major approach used to offer this module will be to promote student engagement in the exercises while also enhancing and broadening their critical thinking abilities. This will be accomplished through lectures, interactive tutorials, and the consideration of various sorts of easy experiments incorporating some engaging sampling exercises for the students.			

Student Workload (SWL)					
له ۱۵ اسبوعا	ب محسوب	الحمل الدراسي للطالب			
Structured SWL (h/sem)	137	Structured SWL (h/w)	9.13		
الحمل الدراسي المنتظم للطالب خلال الفصل	157	الحمل الدراسي المنتظم للطالب أسبوعيا	9.15		
Unstructured SWL (h/sem)	63	Unstructured SWL (h/w)	4.2		
الحمل الدراسي غير المنتظم للطالب خلال الفصل	03	الحمل الدراسي غير المنتظم للطالب أسبوعيا	4.2		
Total SWL (h/sem)	200				
الحمل الدراسي الكلي للطالب خلال الفصل					

Module Evaluation						
تقييم المادة الدراسية						
Time/Number			Weight (Marks)	Week Due	Relevant Learning	
		Time, Namber	weight (wanks)	WEEK DUC	Outcome	
Formative assessment	Quizzes	6	20% (20)	3,5,8,9,10	LO #1, #2,#4,#5 and	
	Quizzes			and 12	#6,#7	
	Assignments	4	10% (10)	2,4,7and14	LO #3,#4,#6,#7	
	Projects / Lab.	5	10% (10)	Continuous	All	
	Report					
Summative	Midterm Exam	3hr	10% (10)	7	LO #1 - #4	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessment 100% (100 Mar						

	Delivery Plan (Weekly Syllabus)					
	المنهاج الاسبوعي النظري					
	Material Covered					
Week 1	Traditional energy resources					
Week 2	Renewable energy, definition and Resources					
Week 3	Solar energy, solar constant, and Solar radiation at earth`s surface					
Week 4	Solar angles and solar time					
Week 5	Global Radiation (Beam and Diffuse) Radiation Components					
Week 6	Flat plate Solar collector					
Week 7	Evacuated Tube Collector					
Week 8	Applications of solar Energy					
Week 9	Hydro-electric power plant					
Week 10	Types of Hydraulic Turbines					
Week 11	Introduction to Wind turbines					
Week 12	Classification of Wind Turbines					
Week 13	Introduction to Geothermal Energy					
Week 14	Ocean Energy Conversion Technologies (Waves, Currents, and Tides)					
Week 15	Biomass Energy Resources					

Delivery Plan (Weekly Lab. Syllabus)						
	المنهاج الاسبوعي للمختبر					
	Material Covered					
Week 1	Introduction solar radiation measurement instruments					
Week 2	Estimating the useful heat or heat gain using solar water heater					
Week 3	Estimating the useful heat or heat gain using solar air heater					
Week 4	Estimating the amount of Distilled water using solar distillation unit					
Week 5	Estimating the useful heat or heat gain using solar chimeny device					
Week 6						
Week 7						

Learning and Teaching Resources					
مصادر التعلم والتدريس					
Text Available in the Library?					
Required Texts	Solar Engineering of Thermal Processes 3rd Edition, 2006	No			
Recommended Texts	Solar Energy Engineering Processes and Systems Second Edition, 2014	No			
Websites	https://www.linquip.com/ Linquip Content Management Tean	า			

Grading Scheme مخطط الدرجات						
Group	Grade	التقدير	Marks %	Definition		
	A – Excellent	امتياز	90 - 100	Outstanding Performance		
	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C – Good	جيد	70 - 79	Sound work with notable errors		
(30 - 100)	D – Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E – Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Code	Course/Module Title	ECTS	Semester	
RE 301	Introduction to Renewable Energy	8	5	
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL (hr/sem)	USWL (hr/w)	
2	2	63	137	

Description

A course on Thermal Power Plants . Includes the following sections:

- 1. demonstrate an ability to use critical thinking and problem-solving skills to evaluate business energy use and how and when to apply renewable energy solutions
- 2. demonstrate an understanding of, and assess the obstacles associated with implementation of renewable energy systems
- 3. evaluate the advantages, limitations and potential of various clean energy sources for buildings and businesses
- 4. demonstrate an understanding and familiarity with engineering and financial aspects of projects
- 5. demonstrate an understanding and familiarity with the regulatory aspects of renewable energy projects
- 6. demonstrate an understanding and familiarity with the State policies, financing and utility-led programs in CT.