

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدر اسية						
Module Title		Heat Transfer		Modu	ıle Delivery	
Module Type	Core				⊠ Theory ⊠ Lecture ⊠ Lab	
Module Code	RAC 300					
ECTS Credits	8				□ Tutorial □ Practical	
SWL (hr/sem)	200				□ Practical □ Seminar	
Module Level		3	Semester of Deliver 5		5	
Administering De	epartment	РМ	College	TEMO		
Module Leader	Omar Mohami	med yousif	e-mail	Omar.n	n.yousif@ntu.edu	ı.iq
Module Leader's	Acad. Title	Ass.Lecture	Module Leader's Qualification M		M.S.C.	
Module Tutor	available		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail E-mail			
Scientific Committee Approval Date		01/10/2023 01/2/2024	Version Nu	mber	1.0	

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	Prerequisite module None Semester				
Co-requisites module	Co-requisites module None				

Module Aims, Learning Outcomes and Indicative Contents					
	أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإر شادية				
Module Objectives أهداف المادة الدر اسية	 Introduce the student to the groups used in heat transfer and to know their composition and how they work. Introduce the student Basic Concepts of Heat Transfer, Heat Transfer Mechanisms, Thermal conductivity –convection heat transfer –Radiation heat transfer Introducing the student the main scientific principle in the field of heat transfer and its application in the Refrigeration, Cooling, and air conditioning fields, power plants. Introducing students how calculation Overall Heat Transfer Coefficient Introducing students study the heat conduction through a large plane wall cylinder and sphere as one dimension steady state case and a multilayer plane walls, cylinders, and spheres medium under steady conditions and unsteady conditions . Providing the student with practical and technical experience in calculating the heat transfer from finned surfaces. Introducing the student to Investigate the steady state one dimensional heat conduction in a cylinder and sphere, and estimate the critical radius of insulation for them Introduce the student Basic Concepts convection heat transfer , viscous flow ,inviscid flow ,laminar boundary layer on flat plate . Introducing students study Forced convection –Empirical relations for pipe and flow over flat plate and across tube banks , Empirical relation for free convection on a vertical and horizontal flat plate , vertical and horizontal cylinders . Introduce the student Type of heat exchanger ,The log mean temperature difference Heat exchangers-The overall heat transfer coefficient . Introduce the student Basic Concepts Radiation heat transfer , physical mechanism ,Radiation Radiation shape factor, relation between shape factors ,heat exchange between non-black bodies, Infinite parallel planes –radiation shields. 				
Module Learning Outcomes	Important: Write at least 6 Learning Outcomes, better to be equal to the number of study weeks.1. Show the student's ability to use knowledge to prepare scientific and applied research.2. The ability to use electronic programs to solve the problems of heat				
مخرجات التعلم للمادة الدراسية	transfer.3. The ability to think to extract engineering solutions to problems related to heat transfer.				

	4. The ability to keep pace with scientific and technical modernity.			
	5. Teaching leadership skills, the value of commitment, love of work and			
	devotion to it.			
	6. The ability to calculate the rate of heat transfer.			
	7. The ability to calculate the heat transfer from finned surfaces .			
	8. The ability to design heat exchangers.			
	After studying this chapter, the student is expected to master the following			
	knowledge and skills: .			
	1-Basic Concepts of Heat Transfer, and Heat Transfer Mechanisms [10 hrs]			
	2-Steady State One Dimensional Heat Conduction in a Large Plane Wall, and in a			
	Cylinder [15 hrs]			
Indicative Contents	3-Conduction through Multilayer Plane Wall Overall Heat Transfer Coefficient,			
المحتويات الإرشادية	Critical Radius of Insulation [15 hrs]			
	4-Unsteady State One Dimensional heat transfer . [5 hrs]			
	5-Studying the heat transfer from finned surfaces [10 hrs]			
	6-force and free convection [20 hrs].			
	7- design heat exchangers[15 hrs].			
	8- Solve problem of Radiation heat transfer [20 hrs]			

Learning and Teaching Strategies			
	استراتيجيات التعلم والتعليم		
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.		

Student Workload (SWL) الحمل الدر اسي للطالب محسوب لـ ١٥ اسبو عا				
Structured SWL (h/sem) Structured SWL (h/w) 7 الطالب أسبو عيا الحمل الدراسي المنتظم المالتين المنتظم 7				
Unstructured SWL (h/sem) خلال الفصل الحمل الدراسي غير المنتظم للطالب	92	Unstructured SWL (h/w) الحمل الدر اسي غير المنتظم للطالب أسبو عيا	6	
Total SWL (h/sem) 200 الحمل الدر اسي الكلي للطالب خلال الفصل				

Module Evaluation تقييم المادة الدر اسية						
	Time/Number Weight (Marks) Week Due Relevant Learning Outcome					
	Quizzes	3	10% (10)	3, 5 and 8	LO #1, #3, #5 and #8	
Formative	Assignments	3	10% (10)	2, 6 and 12	LO #2, #4 ,#6 and #7	
assessment	Projects / Lab.	10	20% (20)	Continuous	All	
	Report					
Summative	Midterm Exam	2hr	10% (10)	7	LO #1 - #7	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessm	ent	•	100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)				
	المنهاج الاسبوعي النظري				
	Material Covered				
Week 1	Introduction, Basic Concepts of Heat Transfer, Heat Transfer Mechanisms				
Week 2	Steady State One Dimensional Heat Conduction in a Large Plane Wall, and in a Cylinder. Conduction through Multilayer Plane Wall, and Cylinder.				
Week 3	Overall Heat Transfer Coefficient, Critical Radius of Insulation, Thermal Contact Resistance.				
Week 4	Heat transfer from finned surfaces.				
Week 5	Transient Heat Conduction, (Lumped System Analysis), Two-Dimensional Steady Heat Conduction				
Week 6	Fundamentals of convection –viscous flow –inviscid flow –laminar boundary layer on flat plate, The thermal boundary layer –turbulent flow in the tube.				
Week 7	Empirical Equations of Forced convection for Laminar and Turbulent Flow on Flat Plate, across cylinders and sphere				
Week 8	Empirical Equations of Forced convection for Laminar and Turbulent Flow across cylinders and sphere				
Week 9	Empirical Equations of Forced convection for Laminar and Turbulent Flow inside pipes and ducts .				
Week 10	Empirical relation for free convection on a vertical and horizontal flat plate, vertical and horizontal cylinders				

Week 11	Introduction to Heat Exchangers, Kinds of Heat Exchangers, The Overall Heat Transfer
Week 11	Coefficient
Week 12	Fouling Factor, The Log Mean Temperature Difference Method
Week 13	The Effectiveness of the heat Exchangers, The Performances for Difference Kinds of the
WEEK 15	Heat Exchangers
Week 14	Heat Radiation, Introduction, Basic Concepts, Characteristics of Radiation, The View Factor
WCCK 14	Radiation Heat Transfer Between Two Black Surfaces
Week 15	Radiation Heat Transfer Between Two Gray Surfaces, Radiation Shields and The Radiation
WEEK 15	Effect
Week 16	Preparatory week before the final Exam

	Delivery Plan (Weekly Lab. Syllabus)			
	المنهاج الأسبوعي للمختبر			
	Material Covered			
Week 1	Lab 1: Temperature measurements			
Week 2	Lab 2: Thermal conductivity.			
Week 3	Lab 3: Calibration of thermo-couple			
Week 4	Lab 4: Flow across tube banks			
Week 5	Lab 5: Heat exchangers			
Week 6	Lab 6: Critical Heat Flux			
Week 7	Lab 7: Heat Transfer through the Lagged Pipe			
Week 8	Lab 8: Thermal Conductivity of Insulating Powder			
Week 9	Lab 9 Heat Transfer from a Pin-Fin Apparatus			
Week 10	Lab 10: Heat Transfer through Composite Wall			
Week 11	Lab 11: Heat Transfer in Forced Convection			
Week 12	Lab 12: Parallel Flow / Counter Flow Heat Exchanger			
Week 13	Lab 13: Heat Transfer in Natural Convection			
Week 14	Lab 14: Thermal Conductivity of Metal Rod			
Week 15	Lab 15: Emissivity Measurement Apparatus			

Learning and Teaching Resources مصادر التعلم والتدريس			
	Text	Available in the Library?	
Required Texts	. Heat transfer By : J.P. Holman, Heat and mass transfer By: YunusA.Gengel,	Yes	
Recommended Texts	. Fundamentals of heat and mass transfer By: Incropera	yes	
Websites	https://www. Heat transfer handbook By: Bijan		

Grading Scheme مخطط الدرجات					
Group Grade التقدير Ma			Marks %	Definition	
	A - Excellent	امتياز	90 - 100	Outstanding Performance	
G G	B - Very Good	جيد جدا	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors	
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings	
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded	
(0 - 49)	F – Fail	راسب	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Undergraduate Courses 2023-2024

Code	Course/Module Title	ECTS	Semester
RAC 300	Heat Transfer	8	5
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL (hr/sem)	USWL (hr/w)
3	4	107	93
Description			

Heat transfer describes the flow of heat (thermal energy) due to temperature differences and the subsequent temperature distribution and changes. The study of transport phenomena concerns the exchange of momentum, energy, and mass in the form of conduction, convection, and radiation. These processes can be described via mathematical formulas. The fundamentals for these formulas are found in the laws for conservation of momentum, energy, and mass in combination with constitutive laws, relations that describe not only the conservation but also the flux of quantities involved in these phenomena. For that purpose, differential equations are used to describe the mentioned laws and constitutive relations in the best way possible. Solving these equations is an effective way to investigate systems and predict their behavior.

Heat transfer science is important in engineering application to determination of the rate of heat transfer at specified temperature difference .To estimate the cost ,the feasibility ,and the size of equipment necessary to transfer a specified amount of heat in a given time a detailed heat transfer analysis must be made .The dimensions of boilers, heaters ,refrigerators ,and heat exchangers depend not only on amount of heat to be transmitted but also on the rate at which the heat is to be transferred under given conditions .The successful operation of equipment components such as turbine blades or the walls of combustion chambers depends on the possibility of cooling certain metal parts by continuously removing heat from surface at rapid rate .A heat transfer analysis must also be made in the design of electric machines ,transformers and bearings to avoid conditions that will cause overheating and damage the equipment .These examples show the importance to understand the basic modes of heat transfer . It is necessary to know the three modes of heat transfer: conduction, convection, and radiation, and to qualitatively understand the mechanism of these modes .