

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information						
Module Title	Control systems			Module Delivery		
Module Type		Core				☑ Theory
Module Code		PM 402			□ Lecture	
ECTS Credits		6				□ Tutorial
CWI (bw/gors)		150	150			☑ Practical
SWL (hr/sem)		150			□ Seminar	
Module	Level	4	Sem	ester of Deliver 8		8
Administering	Department	PM	College	TEM	0	
Module Leader	Prof. Dr. Haitham M. Wadullah		e-mail		Dr.haitham@i	ntu.edu.iq
Module Leader's Acad. Title		Prof.		odule L Qualific	eader's ation	PhD
Module Tutor		e-mail	il Dr.haitham@ntu.edu.iq		ntu.edu.iq	
Peer Reviewer Name		Name	e-mail E-mail		il	
Scientific Committee Approval Date		1/6/2023	Versi Numl			1.0

Relation with other Modules					
Prerequisite module	None	Semester			
Co-requisites module	None	Semester			

Module Aims, Learning Outcomes and Indicative Contents					
Module Objectives	 Understanding Measurement Principles: Gain knowledge of measurement principles, including device selection, calibration, and measurement limitations. Familiarity with Control Systems: Learn the basics of control systems, including feedback, closed-loop control, and the role of sensors, actuators, and controllers. Application of Measurement Techniques: Develop practical skills in using measurement techniques and instruments to collect and analyze data in engineering systems. System Analysis and Optimization: Acquire the ability to analyze measurement and control systems, identify performance issues, and implement optimization strategies for enhanced system performance. 				
Module Learning Outcomes	 Understand Measurement Principles: Develop a solid understanding of the fundamental principles of measurement, including accuracy, precision, and uncertainty. Gain the ability to choose appropriate measurement devices and methods for different engineering applications. 				

	 Analyze and Design Control Systems: Acquire the skills to analyze and design control systems, including feedback loops, controllers, and actuators. Grasp concepts such as stability, transient response, and steady-state error in control systems. Apply Measurement Techniques: Gain practical expertise in applying measurement techniques and instruments to collect and analyze data in engineering systems. Utilize statistical methods to effectively analyze and interpret measurement data. Troubleshoot and Optimize Systems: Develop the ability to troubleshoot and optimize engineering systems by identifying and rectifying measurement and control issues. Learn techniques for system optimization to enhance performance and efficiency.
Indicative Contents	Part A: Fundamentals of measurement systems, General Measurement System, Error and uncertainty analysis and Static characteristics of measurement system elements [25 hours] Introduction to control system, Power circuit elements, Principles of electric control and Plc basics [25 hours] Revision Session and Quiz [2 hours] Part B: 4. tutorial of symbols, equipment's and Counters, timers, introduction to inverter [25 hours] PLC system structure, Basic ladder logic Timers, Counters & Comparators [25 hours] Up Counter (CTU), Down Counter (CTD), Latch and Unlatch Logic Memory Concept in Allen Bradley PLC, and Hardware of PLC circuit, review of PLC ladder. [25 hours] Revision Session and Quiz [2 hours] Revised Description: Part A of the Engineering Measurement and Control Systems course provides students with a solid understanding of the fundamental principles in this field. The module begins by covering the basics of measurement, including different measurement techniques and the use of instruments. Students will then delve into the topic of control systems and explore considerations related to Programmable Logic Controllers (PLCs). To reinforce the learned concepts, a revision session and quiz will be conducted, allowing students to review and assess their understanding. This module serves as a crucial foundation for further studies in the field of Engineering Measurement and Control Systems.

Learning and Teaching Strategies

Strategies

- 1. Active Participation: Actively engage in class discussions, ask questions, and contribute to group activities. This will help you better understand the concepts and reinforce your learning.
- 2. Practical Application: Apply the theoretical knowledge to real-world examples and projects. Participate in laboratory sessions and hands-on activities to gain practical experience in measurement and control systems.
- 3. Problem-Solving Approach: Develop strong problem-solving skills by practicing solving different types of measurement and control problems. Work on assignments and projects that require critical thinking and analytical skills

Student Workload (SWL)				
Structured SWL (h/sem) 78 Structured SWL (h/w) 14-14-14-14-14-14-14-14-14-14-14-14-14-1				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	72	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	5	
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150			

Module Evaluation						
1	As Time/Number Weight (Marks) Week Due Relevant Learning Outcome					
	Quizzes	2	10% (10)	5 and 10	LO #1and #2	
Formative assessment	Assignment s	2	5% (5)	2 and 12	LO #2 and #3	
	Projects / Lab.	9	15% (15)	Continuous	LO #1 and #3	
	Report	1	10% (10)	13	LO #3	
Summative	Midterm Exam	2hr.	10% (10)	7	LO #1 - #2	
assessment	Final Exam	2hr.	50% (50)	16	All	
	Total assessme	ent	100% (100 Marks)			

	Delivery Plan (Weekly Syllabus)				
Week	Material Covered				
	Fundamentals of measurement systems				
Week 1	- Definition of measurement and instrumentation				
	- Significance of measurement General Measurement System				
Week 2	- Functions of instrument in measurements				
.,, 5 5 - 2	- Calibration and standards				
	Error and uncertainty analysis				
	- Errors in Measurements				
Week 3	- Accuracy and precision				
	- Sources of errors				
	Static characteristics of measurement system elements				
Week 4	- Characteristics of instruments				
Week 4	- Static characteristics of measuring system				
	- Environmental effects				
	Introduction to control system				
Week 5	- Types of Control System				
	- Block Diagrams				
Week 6	Introduction to Block Diagrams - Block Diagram Reduction Rules				
Week 7	Power circuit elements Circuit breaker Overload Relay				
Week 8	Contactor				
XX71. O	Principles of electric control, components, elements, sensors, electric relays, controlled				
Week 9	devices (final elements), switches, power & control circuits, planning (mapping)				
Week 10	Plc basics, tutorial of symbols, equipment's				
Week 11	Counters, timers, introduction to inverter				
Week 12	PLC system structure, Basic ladder logic				
	Timers, Counters & Comparators Lin Counter (CTL) Proper Counter (CTD)				
Week 13	Up Counter (CTU) , Down Counter (CTD)				
Week 14	Latch and Unlatch Logic Memory Concept in Allen Bradley PLC				
Week 15	Hardware of PLC circuit, review of PLC ladder				
Week 16	Final Examination				
,, com 10					

Delivery Plan (Weekly Lab. Syllabus)				
Week	Material Covered			
Week 1	Over view on the control workshop, tools, and measuring devices			
Week 2	Knowledge of connection & operation of the measuring devices for temperature, pressure, humidity, fluid flow.			
Week 3	Built electric circuit (power & control) for domestic refrigerator or freezer and checking before operating the circuit.			
Week 4	Built electric circuit (power & control) for domestic water cooler and checking before operating the circuit.			
Week 5	Built electric circuit (power & control) for domestic window type A/C for cooling and checking before operating the circuit.			
Week 6	Built electric circuit (power & control) for domestic window type A/C for cooling & heating, and checking before operating the circuit.			
Week 7	Built electric circuit (power & control) for domestic defrost refrigerator and checking before operating the circuit.			
Week 8	Built electric circuit (power & control) for domestic clothes washer and checking before operating the circuit.			
Week 9	Check and calibration of thermal expansion valve.			
Week 11	Check and calibration for the contacts of the electric contactor & thermal switch.			
Week 12	Built a control circuit for motor power circuit (ON-OFF) start and stop from one location.			
Week 13	Built a control circuit for motor power circuit (ON-OFF) start and stop from two deferent locations.			
Week 14	Built a control circuit for motor power circuit (star-delta) rotate in one direction, and other in two directions.			
Week 15	Practical study of the PLC gets.			

Learning and Teaching Resources				
	Text	Available in the Library?		
1. "Measurement and Control Basics" by Thomas A. Hughes 2. "Principles of Measurement Systems" by John P. Bentley 3. "Industrial Instrumentation and Control Systems" by William C. Dunn 4. "Process Control: A Practical Approach" by Myke King		yes		
Recommended Texts	1. "Instrumentation and Control Systems Documentation" by Fred A. Meier 2. "Control Systems Engineering" by Norman S. Nise 3. "Automatic Control Systems" by Benjamin C. Kuo and Farid Golnaraghi			
Websites 1. National Instruments: www.ni.com 2. Automation.com: www.automation.com 3. ControlGlobal: www.controlglobal.com 4. ISA - International Society of Automation: www.isa.org 5. Omega Engineering: www.omega.com 6. Emerson Automation Solutions: www.emerson.com				

Grading Scheme مخطط الدرجات						
Group	Grade	التقدير	Marks %	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Success	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Group	C - Good	ختخ	70 - 79	Sound work with notable errors		
(50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group (0 – 49)	FX – Fail	(راسب (قيد المعالجة	(45-49)	More work required but credit awarded		
	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Module 1

Code	Course/Module Title	ECTS	Semester
PM 402	Control systems	6	4
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL (hr/sem)	USWL (hr/sem)
2	3	78	72

Description

Control systems involve the application of various techniques and technologies to measure, monitor, and control physical variables and processes in industrial, engineering, and scientific applications. This field encompasses the design, implementation, and optimization of systems that ensure accurate and reliable measurements, as well as effective control of processes.

Measurement and Control Systems play a crucial role in industries such as manufacturing, power generation, automation, and instrumentation. They involve sensors, transducers, data acquisition systems, signal processing techniques, and control algorithms. These systems enable precise measurement of variables like temperature, pressure, flow rate, and level, and utilize control strategies to regulate and optimize processes.

Understanding Measurement and Control Systems requires knowledge of sensors, data acquisition methods, signal conditioning, measurement principles, control theory, and instrumentation. Professionals in this field need to analyze system behavior, design control algorithms, implement hardware and software components, and troubleshoot issues.

This field is constantly evolving with advancements in technology, such as the integration of Internet of Things (IoT), machine learning, and cloud computing. Measurement and Control Systems are vital for ensuring efficiency, safety, and reliability in various industries, making it a critical area of study for engineers and scientists.