

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information							
Module Title	Electrical and Electronic Engineering				Module Delivery		
Module Type		Basic			☑ Theory		
Module Code		PM 303			□ Lectı	ire	
ECTS Credits		6			□ Tuto	rial	
CWI (beels and		150			Pract	ical	
SWL (hr/sem)		150			□ Seminar		
Module l	Level	3	Sem	ester of	ester of Deliver 6		
Administering l	Department	PM and AM	Colleg e				
Module Leader	The file (modu electrical and e	Assaf Hamoodi le description form of electronic engineering) of. Dr. Haitham M.	e-mail	Safwan79azb@ntu.edu.iq		ntu.edu.iq	
Module Leader's Acad. Title		Assist. Prof	Module Leader's Qualification		M.Sc		
Module Tutor Prof. Dr. Haitha		itham M. Wadullah	e-mail	I	Or.haitham@n	tu.edu.iq	
Peer Review	er Name	Name	e-mail		E-mail		
Scientific Co Approval	1/6/2023		1.0				

Relation with other Modules				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
	Building a foundation for studying electrical calculations in both AC and DC circuits, and familiarizing students with the various theories used in these calculations	.1			
Module Objectives	Gaining a comprehensive understanding of electrical principles and concepts, such as voltage, current, resistance, and power. This knowledge will be applied to the analysis of electrical circuits and systems	.2			

	Developing practical skills in electrical measurements and testing by using .3
	various instruments and equipment. Students will learn how to accurately measure electrical parameters, interpret the results, and troubleshoot electrical systems
	Applying the acquired knowledge to the operation and maintenance of electrical .4 machines, including motors and generators. Students will also explore the fundamentals of power systems, including power generation, transmission, and distribution.
	Mastery of electrical circuit theory: Students will acquire a comprehensive understanding of the fundamental principles of electrical circuit theory, encompassing key concepts such as voltage, current, resistance, and power. They will be proficient in applying this knowledge to analyze and solve basic electrical circuits.
Module Learning Outcomes	Proficiency in electrical measurements and testing: Students will develop .2 expertise in utilizing electrical instruments and equipment for precise measurements and thorough testing of electrical parameters. They will learn to interpret measurement outcomes accurately and effectively troubleshoot electrical systems to identify and rectify faults.
	Application of electrical machines and power systems: Students will explore .3 the principles and workings of electrical machines, including motors and generators, gaining insight into their applications and performance characteristics. Additionally, they will develop a foundational understanding of power systems, encompassing power generation, transmission, and distribution aspects, enabling them to comprehend the broader context of electrical engineering.
	Part A: Fundamentals of Electrical Principles, Measurements, and Instruments [20 hours]
	Introduction to Electrical Machines, Power Systems, Safety, and Direct Current Circuits [20 hours]
Indicative	Revision Session and Quiz [1.5 hours]
Contents	Part B: 4. Alternating Current Circuits, Circuit Theory, and Analogue Electronics [20 hours]
	Control Systems, Renewable Energy, Troubleshooting, and Maintenance [10 hours]
	Revision Session and Quiz [1.5 hours]
	Revised Description: Part A of the course focuses on building a strong foundation in electrical engineering. Students will start by understanding the basic principles of

electricity, along with electrical measurements and the use of instruments. They will then explore electrical machines, power systems, and safety considerations in the context of direct current circuits. A revision session and quiz will help reinforce the learned concepts.

Learning and Teaching Strategies					
	Active Participation: Actively participate in class discussions to engage with the subject matter and deepen your understanding.	.1			
		.2			
	Practical Application: Gain hands-on experience through laboratory sessions and projects, allowing you to apply theoretical concepts to real-world scenarios.	.3			
	Collaborative Learning: Foster collaborative learning by actively engaging in group discussions and study sessions with your peers.	.4			
Strategies	Utilize Learning Resources: Make effective use of various resources such as textbooks, online tutorials, video lectures, and educational websites to supplement your learning and broaden your knowledge.	.5			
	Time Management: Manage your time effectively by creating a study schedule and dedicating specific time slots for studying Electrical and Electronic Engineering.	.6			
	Regular Review and Recap: Continuously review previously covered topics to reinforce your understanding and ensure long-term retention of the learned material.	.7			

Student Workload (SWL)					
Structured SWL (h/sem) الحمل الدراسي المنتظم للطالب خلال الفصل	78	Structured SWL (h/w) الحمل الدراسي المنتظم للطالب أسبوعيا	5		
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	72	Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا	5		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	150				

Module Evaluation							
A	As Weight (Marks) Week Due Relevant Learning Outcome						
	Quizzes	2	10% (10)	5 and 10	LO #1and #2		
Formative	Assignment s	2	5% (5)	2 and 12	LO #2 and #3		
assessment	Projects / Lab.	9	15% (15)	Continuous	LO #1 and #3		
	Report	1	10% (10)	13	LO #3		
Summative	Midterm Exam	2hr.	10% (10)	7	LO #1 - #2		
assessment	Final Exam 2hr.			16	All		
	Total assessment						

Delivery Plan (Weekly Syllabus)				
Week	Material Covered			
Week 1	D.C motors, construction, commutator, types of D.C motors			
Week 2	Back e.m.f, speed equation, speed control			
Week 3	Load Toque Requirement, types Load Torque			
Week 4	Starting of D.C motor, starter connection, torque of D.C motors			
Week 5	Speed-torque characteristics of each type of D.C motor			
Week 6	Examples to evaluate the starting current of D.C motor with and without starter, speed control			
Week 7	Single phase induction motor, split-phase, capacitor-start, shaded-pole type			
Week 8	3-phase induction motor, construction, synch. Speed, slip.			
Week 9	Control of three-phase induction motor using voltage frequency control.			
Week 10	Starting of 3-phase induction motor, star-delta method, step down transformer			
Week 11	Torque characteristic, max torque			
Week 12	3-phase system, star and delta connection, line current, line voltage, phase current and voltage			
Week 13	Instruments and measurements, ammeters, voltmeter, ohmmeter, kw - h meters.			
Week 14	Contactors, relays, timers			
Week 15	Thermal overload, starter (contactor +timer)			
Week 16	Final Examination			

Delivery Plan (Weekly Lab. Syllabus)

Week	Material Covered
Week 1	Lab 1: Basic wiring diagram for electrical measurements
Week 2	Lab 2: Measurement of inductive reactance of comp. windings
Week 3	Lab 3: Test of current, voltage and solid-state relay
Week 4	Lab 4: Test and calibrate pressure switch and thermostat
Week 5	Lab 5: Test of overload and defrost.
Week 6	Lab 6: Start-up compressor with solid state relay.
Week 7	Lab 7: Start-up compressor with current relay
Week 8	Lab 8: Rotor Voltage Control of Induction Motor
Week 9	Lab 9: Frequency Control of Induction Motor
Week 11	Lab 10: slip power control by dc converter of Induction Motor
Week 12	Lab 11: Single phase Dismantling of induction motor
Week 13	Lab 12: Make fault on voltage and current relay, effect of faults
Week 14	Lab 13: damage, notice the effects
Week 15	Lab 14: Dismantling of induction motor

Learning and Teaching Resources						
	Text		Available in the Library?			
	"Electric Machinery and Power System Fundamentals" by Stephen J. Chapman "Electricity and Electronics for HVAC" by Rex					
Required Texts	Miller and Mark R. Miller "Principles of Electric Machines and Power Electronics" by P.C. Sen	.3				
	"Electrical Power Systems: Design and Analysis" by Mohamed E. El-Hawary	.4				
	"Electrical Wiring Residential" by Ray C. Mullin and Phil Simmons	.1				
Recommended	"Industrial Electrical Troubleshooting" by Lynn Lundquist	.2				
Texts	"Electrical Safety Handbook" by John Cadick, Mary Capelli - Schellpfeffer, and Dennis Neitzel					
	"Digital Control Systems" by Benjamin C. Kuo "Electromechanical Energy Conversion" by David J. Braun					
Websites		(1)	www.allaboutcircuits.com) (www.electrical4u.com) (www.khanacademy.org)			

Grading Scheme مخطط الدرجات						
Group	Grade	التقدير	Marks %	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
Connection	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success	C - Good	ختد	70 - 79	Sound work with notable errors		
Group (50 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded		
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Module 1

Code	Course/Module Title	ECTS	Semester
AM 303	Electrical and Electronic Engineering	6	3
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL (hr/sem)	USWL (hr/sem)
3	2	78	72

Description

Electrical and Electronic Engineering is a dynamic and rapidly evolving field that focuses on the study, design, and application of electrical systems, devices, and technologies. This discipline plays a critical role in shaping the modern world, as it encompasses a wide range of areas, including power generation and distribution, communication systems, electronics, control systems, and renewable energy.

In Electrical and Electronic Engineering, students delve into the fundamental principles of electricity, circuits, and electromagnetism. They learn how to analyze and design electrical systems, apply mathematical and scientific principles to solve complex problems, and utilize advanced tools and software for simulation and modeling.

The field emphasizes hands-on experience through laboratory work, where students gain practical skills in building, testing, and troubleshooting electrical circuits and devices. They also explore emerging technologies, such as renewable energy sources and sustainable power

systems, to address the growing demand for cleaner and more efficient energy solutions. Through their studies, students develop a strong foundation in engineering principles, critical thinking, problem-solving, and project management. They become adept at designing, implementing, and maintaining electrical and electronic systems that are safe, reliable, and sustainable. Graduates of Electrical and Electronic Engineering programs find diverse career opportunities in industries such as power generation, telecommunications, electronics, automation, and research and development.