

Northern Technical University Eng. Technical College/ Mosul Department of Power Mechanics Engineering Technologies



## MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

| Module Information<br>معلومات المادة الدراسية      |              |                     |           |                                      |                           |        |
|----------------------------------------------------|--------------|---------------------|-----------|--------------------------------------|---------------------------|--------|
| Module Title                                       | Enginee      | ring Mechanics/ Dyn | amics     | Mod                                  | ule Delivery              |        |
| Module Type                                        |              | Core                |           |                                      | I Theory                  |        |
| Module Code                                        |              | PM 101              |           |                                      | I Lecture                 |        |
| ECTS Credits                                       |              | 8                   |           |                                      | 🗆 Lab                     |        |
|                                                    |              |                     |           |                                      | 🗵 Tutorial                |        |
| SWL (hr/sem)                                       |              | 200                 |           |                                      | Practical                 |        |
|                                                    |              |                     |           |                                      | Seminar                   |        |
| Module Level                                       |              | 1                   | Semester  | of Delive                            | f Delivery 2              |        |
| Administering De                                   | epartment    | PM                  | College   | TEMO                                 |                           |        |
| Module Leader                                      | Tariq Khalid |                     | e-mail    | tariqail                             | tariqaikhalidi@ntu.edu.iq |        |
| Module Leader's                                    | Acad. Title  | Assist. Professor   | Module Le | Module Leader's Qualification MASTER |                           | MASTER |
| Module Tutor                                       | e Tutor      |                     | e-mail    | E-mail                               |                           |        |
| Peer Reviewer Name                                 |              | Dr. Ayman sabah     | e-mail    | ayman                                | aymansabah@ntu.edu.iq     |        |
| Scientific Committee Approval<br>DateJune /01/2023 |              | Version Nu          | imber 1.0 |                                      |                           |        |

| Relation with other Modules |                                    |          |  |  |  |
|-----------------------------|------------------------------------|----------|--|--|--|
|                             | العلاقة مع المواد الدراسية الأخرى  |          |  |  |  |
| Prerequisite module         | None                               | Semester |  |  |  |
| Co-requisites module        | Co-requisites module None Semester |          |  |  |  |





| Module Aims, Learning Outcomes and Indicative Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| <ul> <li>Module Objectives for Engineering Mechanics/Dynamics:</li> <li>Understand the fundamental concepts and principles of dynamics, including motion, forces, and acceleration.</li> <li>Apply kinematic equations to analyze the motion of particles and rigid bodies in various scenarios.</li> <li>Determine the relationship between forces, mass, and acceleration using Newton's laws of motion.</li> <li>Apply the principles of work and energy to analyze and solve dynamic problems.</li> <li>Analyze and calculate linear and angular momentum, and apply the principle of impulse and momentum to dynamic systems.</li> <li>Understand and apply the principles of vibrations and oscillations in mechanical systems.</li> <li>Apply principles of balancing rotating masses and vibrations to ensure smooth operation of machinery.</li> <li>Analyze multi-degree of freedom systems and determine their natural frequencies and mode shapes.</li> <li>Apply dynamic principles to real-world engineering problems and systems.</li> <li>Develop critical thinking and problem-solving skills in the context of engineering dynamics.</li> <li>Communicate effectively, both orally and in writing, to present and explain the analysis, results, and solutions of dynamic problems.</li> <li>By achieving these module objectives, students will gain a comprehensive understanding of the principles and applications of engineering dynamics. They will be able to analyze and solve problems related to motion, forces, and vibrations in mechanical systems, and apply their knowledge to real-world engineerings. Steps, and apply and problem-solving skills in the context of system and solve problems related to motion, forces, and vibrations in mechanical systems, and apply their knowledge to real-world engineering scenarios. They will also develop skills in critical thinking, problem-solving, and effective communication, which are valuable in the field of engineering.</li> </ul> |  |  |  |  |  |
| Module Learning Outcomes for Engineering Mechanics/Dynamics:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| <ol> <li>Demonstrate a thorough understanding of the fundamental concepts and principles of<br/>dynamics, including motion, forces, and acceleration.</li> <li>Apply kinematic equations to analyze the motion of particles and rigid bodies in<br/>different scenarios and determine their velocities and accelerations.</li> <li>Analyze and calculate the forces and moments acting on particles and rigid bodies in<br/>dynamic situations, considering the principles of equilibrium.</li> <li>Apply Newton's laws of motion to determine the relationship between forces, mass, and<br/>acceleration, and solve dynamic problems using these principles.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |





|                     | 5. Utilize the principles of work and energy to analyze and solve dynamic problems,          |
|---------------------|----------------------------------------------------------------------------------------------|
|                     | calculating mechanical work, kinetic energy, and potential energy.                           |
|                     | 6. Apply the principles of impulse and momentum to analyze the motion and collision of       |
|                     | particles and rigid bodies, and solve related problems.                                      |
|                     | 7. Understand the principles of vibrations and oscillations in mechanical systems, and       |
|                     | analyze their behavior, natural frequencies, and damping effects.                            |
|                     | 8. Analyze three-dimensional motion of rigid bodies, applying Euler's equations of motion    |
|                     | to determine their rotational and translational behavior.                                    |
|                     | 9. Understand gyroscopic motion and its applications in stability and control systems,       |
|                     | including precession and gyroscope stabilization.                                            |
|                     | 10. Apply the principles of balancing rotating masses to minimize vibrations and ensure      |
|                     | smooth operation of rotating machinery.                                                      |
|                     | 11. Analyze multi-degree of freedom systems, determine their natural frequencies and         |
|                     | mode shapes, and understand their response to dynamic loading.                               |
|                     | 12. Apply the principles and techniques learned in dynamics to solve real-world              |
|                     | engineering problems, such as analyzing the motion and forces in mechanical systems.         |
|                     | 13. Demonstrate critical thinking and problem-solving skills by effectively applying         |
|                     | dynamic principles to analyze and solve complex engineering problems.                        |
|                     | 14. Communicate effectively, both orally and in writing, to present and explain the          |
|                     | analysis, results, and solutions of dynamics problems.                                       |
|                     | By achieving these module learning outcomes, students will have a solid foundation in        |
|                     | engineering dynamics, enabling them to analyze and solve problems related to motion,         |
|                     | forces, vibrations, and stability in mechanical systems. They will develop critical thinking |
|                     | skills, problem-solving abilities, and effective communication skills, which are essential   |
|                     | for success in the field of engineering dynamics.                                            |
|                     | Indicative Contents for Engineering Mechanics/Dynamics:                                      |
|                     | 1. Kinematics of Particles                                                                   |
|                     | <ul> <li>Position, velocity, and acceleration</li> </ul>                                     |
|                     | Rectilinear and curvilinear motion                                                           |
|                     | Projectile motion                                                                            |
| Indicative Contents | <ul> <li>Tangential and normal components of acceleration</li> </ul>                         |
| المحتويات الإرشادية | 2. Kinetics of Particles                                                                     |
|                     | Newton's laws of motion                                                                      |
|                     | Force, mass, and acceleration                                                                |
|                     | Application of Newton's laws to particles                                                    |
|                     | Frictional forces                                                                            |
|                     | Applications of particle kinetics                                                            |
|                     | 3. Kinematics of Rigid Bodies                                                                |



Northern Technical University Eng. Technical College/ Mosul Department of Power Mechanics Engineering Technologies



| • | Rotation and | angular | displacement |
|---|--------------|---------|--------------|
|---|--------------|---------|--------------|

- Angular velocity and acceleration
- Fixed axis rotation
- General plane motion
- 4. Kinetics of Rigid Bodies
  - Moment of inertia
  - Parallel-axis theorem
  - Angular momentum and torque
  - Equations of motion for rigid bodies
  - Applications of rigid body kinetics
- 5. Work and Energy
  - Work done by a force
  - Kinetic energy and potential energy
  - Principle of work and energy
  - Power and efficiency
  - Conservative and non-conservative forces
- 6. Impulse and Momentum
  - Linear momentum and impulse
  - Conservation of linear momentum
  - Impulse-momentum principle
  - Impact and collision
  - Applications of momentum
- 7. Vibrations and Oscillations
  - Free and forced vibrations
  - Single degree of freedom systems
  - Damping and damping ratios
  - Natural frequency and resonance
  - Vibration isolation and control

Note: The indicative contents provided above give an overview of the topics typically covered in an Engineering Mechanics/Dynamics course. The actual contents may vary depending on the specific curriculum and academic institution.





| Learning and Teaching Strategies<br>استراتيجيات التعلم والتعليم |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Strategies                                                      | Type something like: The main strategy that will be adopted in delivering this module is to<br>encourage students' participation in the exercises, while at the same time refining and<br>expanding their critical thinking skills. This will be achieved through classes, interactive<br>tutorials and by considering types of simple experiments involving some sampling activities<br>that are interesting to the students. |  |  |  |  |

| Student Workload (SWL)<br>الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا                                                                                                                 |                |                                                                    |   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------|---|--|
| Structured SWL (h/sem)         93         Structured SWL (h/w)         6           الحمل الدراسي المنتظم للطالب أسبوعيا         الحمل الدراسي المنتظم للطالب خلال الفصل         6 |                |                                                                    |   |  |
| Unstructured SWL (h/sem)<br>الحمل الدراسي غير المنتظم للطالب خلال الفصل                                                                                                           | 107            | Unstructured SWL (h/w)<br>الحمل الدراسي غير المنتظم للطالب أسبوعيا | 7 |  |
| Total SWL (h/sem)<br>الحمل الدراسي الكلي للطالب خلال الفصل                                                                                                                        | 200 الحمل الدر |                                                                    |   |  |

| Module Evaluation     |  |
|-----------------------|--|
| تقييم المادة الدراسية |  |





|                         |                 | Time/Numbe<br>r | Weight (Marks)      | Week Due             | Relevant Learning<br>Outcome       |
|-------------------------|-----------------|-----------------|---------------------|----------------------|------------------------------------|
|                         | Quizzes         | 5               | 15% (15)            | 2,4,9,11<br>and 13   | LO #1, #3 ,#8,#9 and<br>#10,       |
| Formative<br>assessment | Assignments     | 6               | 15% (15)            | 3,5,7,8,10a<br>nd 15 | LO #2, #4, #5, #7, #9 ,<br>and #11 |
| assessment              | Projects / Lab. |                 |                     |                      |                                    |
|                         | Report          | 1               | 10% (10)            | 15                   | LO #6, #12,#13 and<br>#14          |
| Summative               | Midterm Exam    | 2hr             | 10% (10)            | 7                    | LO #1 - #7                         |
| assessment              | Final Exam      | 3hr             | 50% (50)            | 16                   | All                                |
| Total assessment        |                 |                 | 100% (100<br>Marks) |                      |                                    |

| Delivery Plan (Weekly Syllabus) |                                                                                                                                                                                               |  |  |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| المنهاج الاسبوعي النظري         |                                                                                                                                                                                               |  |  |  |
|                                 | Material Covered                                                                                                                                                                              |  |  |  |
| Week 1                          | <ul> <li>Introduction to Engineering Mechanics/Dynamics</li> <li>Overview of Engineering Mechanics/Dynamics</li> <li>Fundamental concepts and principles</li> <li>Unit conversions</li> </ul> |  |  |  |
| Week 2                          | <ul> <li>Kinematics of Particles</li> <li>Position, velocity, and acceleration</li> </ul>                                                                                                     |  |  |  |
| Week 3                          | Rectilinear motion                                                                                                                                                                            |  |  |  |
| Week 4                          | Curvilinear motion                                                                                                                                                                            |  |  |  |
| Week 5                          | Tangential and normal components of acceleration                                                                                                                                              |  |  |  |
| Week 6                          | Projectile motion                                                                                                                                                                             |  |  |  |
| Week 7                          | <ul> <li>Kinetics of Particles</li> <li>Newton's laws of motion</li> <li>Force, mass, and acceleration</li> </ul>                                                                             |  |  |  |
| Week 8                          | Application of Newton's laws to particles                                                                                                                                                     |  |  |  |
| Week 9                          | <ul> <li>Frictional forces</li> <li>Applications of particle kinetics</li> </ul>                                                                                                              |  |  |  |
| Week 10                         | <ul> <li>Kinetics of Rigid Bodies</li> <li>Moment of inertia</li> </ul>                                                                                                                       |  |  |  |



Northern Technical University Eng. Technical College/ Mosul Department of Power Mechanics Engineering Technologies



| Week 11 | <ul> <li>Work and Energy</li> <li>Work done by a force</li> </ul>                                                                                                                                                          |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week 12 | <ul> <li>Kinetic energy and potential energy</li> <li>Principle of work and energy</li> </ul>                                                                                                                              |
| Week 13 | <ul> <li>Impulse and Momentum</li> <li>Linear momentum and impulse</li> <li>Conservation of linear momentum</li> <li>Impulse-momentum principle</li> <li>Impact and collision</li> <li>Applications of momentum</li> </ul> |
| Week 14 | <ul> <li>Vibrations</li> <li>Free and forced vibrations</li> <li>Single degree of freedom systems</li> <li>•</li> </ul>                                                                                                    |
| Week 15 | <ul> <li>Damping and damping ratios</li> <li>Natural frequency and resonance</li> <li>Vibration isolation and control</li> </ul>                                                                                           |

| Learning and Teaching Resources<br>مصادر التعلم والتدريس |                                                                                                      |                           |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|--|--|
|                                                          | Text                                                                                                 | Available in the Library? |  |  |
| Required Texts                                           | ENGINEERING MECHANICS, STATICS AND DYNAMICS<br>TWELFTH EDITION R. C. HIBBELER                        | yes                       |  |  |
| Recommended<br>Texts                                     | Theory and Problems of Engineering Mechanics<br>Statics and Dynamics/ Fifth Edition, Shaum's Outline | No                        |  |  |
| Websites                                                 |                                                                                                      |                           |  |  |

| Grading Scheme<br>مخطط الدرجات |                      |         |          |                                |  |  |  |
|--------------------------------|----------------------|---------|----------|--------------------------------|--|--|--|
| Group                          | Grade                | التقدير | Marks %  | Definition                     |  |  |  |
| Success Group                  | A - Excellent        | امتياز  | 90 - 100 | Outstanding Performance        |  |  |  |
| (50 - 100)                     | <b>B</b> - Very Good | جيد جدا | 80 - 89  | Above average with some errors |  |  |  |





|                        | C - Good                   | جيد                 | 70 - 79 | Sound work with notable errors        |
|------------------------|----------------------------|---------------------|---------|---------------------------------------|
|                        | <b>D</b> -<br>Satisfactory | متوسط               | 60 - 69 | Fair but with major shortcomings      |
|                        | E - Sufficient             | مقبول               | 50 - 59 | Work meets minimum criteria           |
| Fail Group<br>(0 – 49) | <b>FX –</b> Fail           | راسب (قيد المعالجة) | (45-49) | More work required but credit awarded |
|                        | <b>F</b> – Fail            | راسب                | (0-44)  | Considerable amount of work required  |
|                        |                            |                     |         |                                       |

**Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.





| Code         | Course/Module Title                | ECTS          | Semester      |
|--------------|------------------------------------|---------------|---------------|
| PM 101       | Engineering Mechanics/<br>Dynamics | 8             | 2             |
| Class (hr/w) | Lect/Lab./Prac./Tutor              | SSWL (hr/sem) | USWL (hr/sem) |
| 3            | 3                                  | 93            | 107           |
|              |                                    |               |               |

Dynamics is a branch of Engineering Mechanics that focuses on the study of objects in motion and the forces that cause that motion. It builds upon the principles of statics and expands them to analyze the behavior of objects subjected to acceleration, velocity, and displacement. This field is concerned with understanding and predicting the motion of particles and rigid bodies, as well as the forces and energy associated with their motion.

The primary goal of Engineering Mechanics/Dynamics is to provide engineers with a comprehensive understanding of how objects move and interact under the influence of forces and moments. By studying dynamics, engineers can design and analyze systems such as machines, vehicles, and structures to ensure their optimal performance, efficiency, and safety.

In this subject, students explore various topics, including the kinematics and kinetics of particles and rigid bodies. Kinematics deals with the description of motion, focusing on concepts such as displacement, velocity, and acceleration. Kinetics, on the other hand, focuses on the forces and torques acting on objects, leading to their motion.