

Northern Technical University Eng. Technical College/ Mosul Department of Power Mechanics Engineering Technologies

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية							
Module Title	Engineering Mechanics/ Statics			Mod	ule Delivery		
Module Type	Core				🗷 Theory		
Module Code		PM 100			🗷 Lecture		
ECTS Credits		8			🗆 Lab		
		200			🗷 Tutorial		
SWL (hr/sem)					Practical		
					Seminar		
Module Level		1	Semester	r of Delivery		1	
Administering D	epartment	РМ	College	TEMO			
Module Leader	Tariq Khalid		e-mail	tariqaikhalidi@ntu.edu.iq		u.iq	
Module Leader's Acad. Title		Assist. Professor	Module Leader's Qualification MASTE		MASTER		
Module Tutor	Tariq Khalid	e-mail		E-mail			
Peer Reviewer Name		Asma Taha	e-mail	asmaa	taha@ntu.edu.	iq	
Scientific Committee Approval Date		June /01/2023	Version N	umber	m ber 1.0		

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	None	Semester		
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents				
	أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية			
Module Objectives أهداف المادة الدرا <i>سي</i> ة	 Module Objectives for Engineering Mechanics/Statics: Understand the fundamental concepts and principles of Statics, including motion, forces, and acceleration. Apply kinematic equations to analyze the motion of particles and rigid bodies in various scenarios. Determine the relationship between forces, mass, and acceleration using Newton's laws of motion. Apply the principles of work and energy to analyze and solve dynamic problems. Analyze and calculate linear and angular momentum, and apply the principle of impulse and momentum to dynamic systems. Understand and apply the principles of vibrations and oscillations in mechanical systems. Understand and apply the principles of rotating masses and vibrations to ensure smooth operation of machinery. Analyze multi-degree of freedom systems and determine their natural frequencies and mode shapes. Apply dynamic principles to real-world engineering problems and systems. Develop critical thinking and problem-solving skills in the context of engineering Statics. Communicate effectively, both orally and in writing, to present and explain the analysis, results, and solutions of dynamic problems. By achieving these module objectives, students will gain a comprehensive understanding of the principles and applications of engineering Statics. They will be able to analyze and solve problems related to motion, forces, and vibrations in mechanical systems, and apply their knowledge to real-world engineering scenarios. They will also develop skills in critical thinking, problem-solving, and effective communication, which are valuable in the field of engineering.			
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Apply fundamental concepts of engineering mechanics/statics to analyze and solve problems related to the equilibrium of rigid bodies. Demonstrate a deep understanding of vector mathematics and its application in statics, including vector addition, subtraction, dot product, and cross product. Apply the principles of static equilibrium to solve problems involving forces and moments acting on rigid bodies in two and three dimensions. Analyze and calculate the internal forces, such as axial forces, shear forces, and bending moments, in statically determinate structures using methods such as the method of sections and the method of joints. Utilize free-body diagrams to model and analyze the forces acting on a structure or a rigid body, and determine the resultant forces and moments at specific points. Analyze and calculate the centroid and moment of inertia of various two- dimensional shapes, including rectangles, triangles, and circles, and apply these concepts to determine the stability and strength of structures. 			

	7. Apply the concepts of friction and its effects on the equilibrium of bodies in				
	statics, including calculating static and kinetic friction forces and determining				
	the angle of friction.				
	8. Analyze and calculate the forces in trusses and frames, including the method of				
	joints and the method of sections, and determine the stability and structural				
	integrity of these systems.				
	9. Apply the principles of equilibrium to solve real-world engineering problems,				
	such as determining the stability of structures, calculating the forces on				
	supports and connections, and analyzing the behavior of mechanical systems.				
	10. Communicate effectively, both orally and in writing, to present and explain the				
	analysis, results, and solutions of engineering mechanics/statics problems.				
	By achieving these module learning outcomes, students will develop a strong				
	foundation in engineering mechanics/statics and be equipped with the				
	necessary knowledge and skills to analyze and solve a wide range of engineering				
	problems involving static equilibrium and structural stability.				
	Indicative content includes the following.				
	1. Introduction to Statics				
	Definition and scope of statics				
	 Fundamental concepts and principles 				
	 Importance of statics in engineering 				
	2. Vectors and Vector Analysis				
	 Vector representation and operations 				
	 Vector components and coordinate systems 				
	 Vector addition, subtraction, and scalar multiplication 				
	3. Forces and Moments				
Indicative Contents	Forces and their characteristics				
المحتويات الإرشادية	Resultant and equilibrium of forces				
	 Moment of a force and its properties 				
	Couples and their effects				
	4. Equilibrium of Rigid Bodies				
	 Free body diagrams and force analysis 				
	 Equations of equilibrium in two and three dimensions 				
	 Solving equilibrium problems using scalar and vector approaches 				
	 Applications to simple systems and structures 				
	5. Truss Structures				
	Introduction to truss analysis				
	 Method of joints and method of sections 				
	 Determination of member forces and support reactions 				

Northern Technical University Eng. Technical College/ Mosul Department of Power Mechanics Engineering Technologies

6. Friction
Laws of friction and frictional forces
 Types of friction and their characteristics
Calculation of frictional forces and moments
 Applications to inclined planes, wedges, and screws
7. Center of Gravity and Centroids
 Definitions and properties of center of gravity and centroids
 Determination of center of gravity and centroids of simple shapes
Composite bodies and distributed loads
8. Moments of Inertia
 Moment of inertia and its physical significance
 Calculating moments of inertia for simple shapes
 Parallel-axis and perpendicular-axis theorems
 Application of moments of inertia in engineering analysis

Learning and Teaching Strategies			
	استراتيجيات التعلم والتعليم		
Strategies	Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering types of simple experiments involving some sampling activities that are interesting to the students.		

Student Workload (SWL) الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا				
Structured SWL (h/sem)93Structured SWL (h/w)6الحمل الدراسي المنتظم للطالب أسبوعيا				
Unstructured SWL (h/sem) الحمل الدراسي غير المنتظم للطالب خلال الفصل	107	107 Unstructured SWL (h/w) الحمل الدراسي غير المنتظم للطالب أسبوعيا		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	200			

Module Evaluation						
تقييم المادة الدراسية						
		Time/Numbe	Weight	Week Due	Relevant Learning	
		r	(Marks)	Week Due	Outcome	
	Ομίττος	4	15% (15)	5,7,9 and 13	LO #2 , #3 , #5 and	
Formative assessment	Quizzes	-	1378 (13)		#8	
	Assignments	5	15% (15)	2,6,8,10 and 14	LO #1 ,#4 ,#6 ,#7 and	
					#9	
	Projects / Lab.					
	Report	1	10% (10)	13	LO #5, #8 and #10	
Summative	Midterm Exam	2hr	10% (10)	7	LO #1 - #5	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessment			100% (100			
			Marks)			

Delivery Plan (Weekly Syllabus)			
المنهاج الاسبوعي النظري			
	Material Covered		
Week 1	Introduction, Fundamental Concepts, Units Conversion, Scalar and Vector Quantities.		
Week 2-4	Resultant force Resolution & Composition of Forces. Triangle & parallelogram law		
Week 5	Addition of a System of Coplanar Forces: Scalar Notation, Cartesian Vector Notation		
Week 6-7	Equilibrium of a Particle		
Week 8	Moment of a Force, Varignon Theorem.		
Week 9	Moment of a Couple		
Week 10-11	Equilibrium of a Rigid Body		
Week 12	Distributed loads.		
Week 13	Friction		
Week 14	Centroid		
Week 15	Centroid of area, First moment of area.		
Week 16	Area moment of inertia, Second moment of area.		

Learning and Teaching Resources مصادر التعلم والتدريس				
	Text	Available in the Library?		
Required Texts	Engineering Mechanics/ Statics, Fourteen Edition, R.C.	Ves		
Required Texts	Hibbeler	yes		
	1- Engineering Mechanics , Ferdinand L. Singer			
Pocommondod Toxts	2- Engineering Mechanics, Meriam	No		
Recommended Texts	3- Engineering Mechanics/ Statics, Arthur P. Boresi &	NO		
	Richard J. Schmidt			
Websites		•		

Grading Scheme						
	مخطط الدرجات					
Group	Grade	التقدير	Marks %	Definition		
	A - Excellent	امتياز	90 - 100	Outstanding Performance		
	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors		
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	(راسب (قيد المعالجة	(45-49)	More work required but credit awarded		
(0 – 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Code	Course/Module Title	ECTS	Semester	
PM 100	Engineering Mechanics/ Statics	8	1	
Class (hr/w)	Lect/Lab./Prac./Tutor	SSWL (hr/sem)	USWL (hr/sem)	
3 3		93	107	
Description				

Statics, is a fundamental branch of Engineering Mechanics that deals with the analysis and prediction of the behavior of objects at rest or in equilibrium. It provides the foundation for understanding the principles of forces, moments, and their effects on structures and systems. This branch of engineering mechanics is primarily concerned with the study of particles and rigid bodies under the action of forces and moments.

One of the main objectives of Engineering Mechanics/Statics is to enable engineers to calculate and predict the behavior of structures and systems under different loading conditions. This includes understanding the concepts of force vectors, moments, and couples, as well as the methods for resolving and combining these forces to determine their resultant effects.

Through theoretical study, problem-solving, and practical applications, students of Engineering Mechanics/Statics develop critical skills in analyzing and solving engineering problems. They learn to apply mathematical principles, physics, and engineering concepts to determine the forces and moments in structures and systems, and to ensure their stability and safety.