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For Your Amusement 

Question:  Why do computer programmers confuse 
Christmas and Halloween? 

Answer:  Because 25 Dec = 31 Oct 

                         -- http://www.electronicsweekly.com 
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Goals of this Lecture  

Help you learn (or refresh your memory) about: 
•  The binary, hexadecimal, and octal number systems 
•  Finite representation of unsigned integers 
•  Finite representation of signed integers 
•  Finite representation of rational numbers (if time) 

Why? 
•  A power programmer must know number systems and data 

representation to fully understand C’s primitive data types 

Primitive values and 
the operations on them 



Agenda 

Number Systems 

Finite representation of unsigned integers 

Finite representation of signed integers 

Finite representation of rational numbers (if time) 
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The Decimal Number System 
Name 

•  “decem” (Latin) => ten 

Characteristics 
•  Ten symbols 

• 0 1 2 3 4 5 6 7 8 9 
•  Positional 

• 2945 ≠ 2495 
• 2945 = (2*103) + (9*102) + (4*101) + (5*100) 

(Most) people use the decimal number system Why? 



The Binary Number System 
Name 

•  “binarius” (Latin) => two 

Characteristics 
•  Two symbols 

• 0 1 
•  Positional 

• 1010B ≠ 1100B 

Most (digital) computers use the binary number system 

Terminology 
•  Bit: a binary digit 
•  Byte: (typically) 8 bits 
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Why? 



Decimal-Binary Equivalence 
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Decimal Binary 
      0      0 
      1      1 
      2     10 
      3     11 
      4    100 
      5    101 
      6    110 
      7    111 
      8   1000 
      9   1001 
     10   1010 
     11   1011 
     12   1100 
     13   1101 
     14   1110 
     15   1111 

Decimal Binary 
     16  10000 
     17  10001 
     18  10010 
     19  10011 
     20  10100 
     21  10101 
     22  10110 
     23  10111 
     24  11000 
     25  11001 
     26  11010 
     27  11011 
     28  11100 
     29  11101 
     30  11110 
     31  11111 
    ...    ... 



Decimal-Binary Conversion 

Binary to decimal: expand using positional notation 
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100101B = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20) 
      =    32  +  0   +  0   +  4  +  0   +  1 
      =    37 



Decimal-Binary Conversion 
Decimal to binary: do the reverse 

•  Determine largest power of 2 ≤ number; write template 

•  Fill in template 
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37 = (?*25)+(?*24)+(?*23)+(?*22)+(?*21)+(?*20) 

 37 = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20) 
-32 
  5 
 -4 
  1                   100101B 
 -1 
  0 



Decimal-Binary Conversion 
Decimal to binary shortcut 

•  Repeatedly divide by 2, consider remainder 
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37 / 2 = 18 R 1 
18 / 2 =  9 R 0 
 9 / 2 =  4 R 1 
 4 / 2 =  2 R 0 
 2 / 2 =  1 R 0 
 1 / 2 =  0 R 1 

Read from bottom 
to top: 100101B 



The Hexadecimal Number System 
Name 

•  “hexa” (Greek) => six 
•  “decem” (Latin) => ten 

Characteristics 
•  Sixteen symbols 

• 0 1 2 3 4 5 6 7 8 9 A B C D E F 
•  Positional 

• A13DH ≠ 3DA1H 

Computer programmers often use the hexadecimal number 
system 
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Why? 



Decimal-Hexadecimal Equivalence 
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Decimal Hex 
      0   0 
      1   1 
      2   2 
      3   3 
      4   4 
      5   5 
      6   6 
      7   7 
      8   8 
      9   9 
     10   A 
     11   B 
     12   C 
     13   D 
     14   E 
     15   F 

Decimal Hex 
     16  10 
     17  11 
     18  12 
     19  13 
     20  14 
     21  15 
     22  16 
     23  17 
     24  18 
     25  19 
     26  1A 
     27  1B 
     28  1C 
     29  1D 
     30  1E 
     31  1F 

Decimal Hex 
     32  20 
     33  21 
     34  22 
     35  23 
     36  24 
     37  25 
     38  26 
     39  27 
     40  28 
     41  29 
     42  2A 
     43  2B 
     44  2C 
     45  2D 
     46  2E 
     47  2F 
    ...  ... 



Decimal-Hexadecimal Conversion 
Hexadecimal to decimal: expand using positional notation 

Decimal to hexadecimal: use the shortcut 
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25H = (2*161) + (5*160) 
    =  32   +    5 
    =  37 

37 / 16 = 2 R 5 
 2 / 16 = 0 R 2 

Read from bottom 
to top: 25H 



Binary-Hexadecimal Conversion 
Observation: 161 = 24 

•  Every 1 hexadecimal digit corresponds to 4 binary digits 

Binary to hexadecimal 

Hexadecimal to binary 
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1010000100111101B 
  A   1   3   DH 

Digit count in binary number 
not a multiple of 4 => 
pad with zeros on left 

  A   1   3   DH 
1010000100111101B 

Discard leading zeros 
from binary number if 
appropriate 

Is it clear why programmers 
often use hexadecimal? 



The Octal Number System 
Name 

•  “octo” (Latin) => eight 

Characteristics 
•  Eight symbols 

• 0 1 2 3 4 5 6 7 
•  Positional 

• 1743O ≠ 7314O 

Computer programmers often use the octal number system 
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Why? 



Decimal-Octal Equivalence 
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Decimal Octal 
      0     0 
      1     1 
      2     2 
      3     3 
      4     4 
      5     5 
      6     6 
      7     7 
      8    10 
      9    11 
     10    12 
     11    13 
     12    14 
     13    15 
     14    16 
     15    17 

Decimal Octal 
     16    20 
     17    21 
     18    22 
     19    23 
     20    24 
     21    25 
     22    26 
     23    27 
     24    30 
     25    31 
     26    32 
     27    33 
     28    34 
     29    35 
     30    36 
     31    37 

Decimal Octal 
     32    40 
     33    41 
     34    42 
     35    43 
     36    44 
     37    45 
     38    46 
     39    47 
     40    50 
     41    51 
     42    52 
     43    53 
     44    54 
     45    55 
     46    56 
     47    57 
    ...   ... 



Decimal-Octal Conversion 
Octal to decimal: expand using positional notation 

Decimal to octal: use the shortcut 
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37O = (3*81) + (7*80) 
    =  24   +   7 
    =  31 

31 / 8 = 3 R 7 
 3 / 8 = 0 R 3 

Read from bottom 
to top: 37O 



Binary-Octal Conversion 
Observation: 81 = 23 

•  Every 1 octal digit corresponds to 3 binary digits 

Binary to octal 

Octal to binary 
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001010000100111101B 
 1  2  0  4  7  5O 

Digit count in binary number 
not a multiple of 3 => 
pad with zeros on left 

Discard leading zeros 
from binary number if 
appropriate 

 1  2  0  4  7  5O 
001010000100111101B 

Is it clear why programmers 
sometimes use octal? 



Agenda 

Number Systems 

Finite representation of unsigned integers 

Finite representation of signed integers 

Finite representation of rational numbers (if time) 
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Unsigned Data Types: Java vs. C 
Java has type 

• int 
•  Can represent signed integers 

C has type: 
• signed int 

•  Can represent signed integers 
• int 

•  Same as signed int 
• unsigned int 

•  Can represent only unsigned integers 

To understand C, must consider representation of both 
unsigned and signed integers 
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Representing Unsigned Integers 
Mathematics 

•  Range is 0 to ∞ 

Computer programming 
•  Range limited by computer’s word size 
•  Word size is n bits => range is 0 to 2n – 1 
•  Exceed range => overflow 

Nobel computers with gcc217 
•  n = 32, so range is 0 to 232 – 1 (4,294,967,295) 

Pretend computer 
•  n = 4, so range is 0 to 24 – 1 (15) 

Hereafter, assume word size = 4 
•  All points generalize to word size = 32, word size = n 
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Representing Unsigned Integers 
On pretend computer 
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Unsigned 
Integer   Rep  
      0   0000 
      1   0001 
      2   0010 
      3   0011 
      4   0100 
      5   0101 
      6   0110 
      7   0111 
      8   1000 
      9   1001 
     10   1010 
     11   1011 
     12   1100 
     13   1101 
     14   1110 
     15   1111 



Adding Unsigned Integers 
Addition 

Results are mod 24 

23 

          11   
   7      0111B 
+ 10    + 1010B 
  --      ---- 
   1     10001B 

           1  
   3      0011B 
+ 10    + 1010B 
  --      ---- 
  13      1101B 

Start at right column 
Proceed leftward 
Carry 1 when necessary 

Beware of overflow 

How would you 
detect overflow 
programmatically? 



Subtracting Unsigned Integers 
Subtraction 

Results are mod 24 

24 

          2   
   3      0011B 
- 10    - 1010B 
  --      ---- 
   9      1001B 

           12   
          0202 
  10      1010B 
-   7    - 0111B 
  --      ---- 
   3      0011B 

Start at right column 
Proceed leftward 
Borrow 2 when necessary 

Beware of overflow 

How would you 
detect overflow 
programmatically? 



Shifting Unsigned Integers 
Bitwise right shift (>> in C): fill on left with zeros 

Bitwise left shift (<< in C): fill on right with zeros 

Results are mod 24 

25 

10 >> 1 => 5 

10 >> 2 => 2 

5 << 1 => 10 

3 << 2 => 12 

What is the effect 
arithmetically? (No  
fair looking ahead) 

What is the effect 
arithmetically? (No  
fair looking ahead) 

1010B 0101B 

1010B 0010B 

0101B 1010B 

0011B 1100B 



Other Operations on Unsigned Ints 
Bitwise NOT (~ in C) 

•  Flip each bit 

Bitwise AND (& in C) 
•  Logical AND corresponding bits 

26 

~10 => 5 

 10      1010B 
& 7    & 0111B 
 --      ----  
  2      0010B 

Useful for setting 
selected bits to 0 

1010B 0101B 



Other Operations on Unsigned Ints 
Bitwise OR: (| in C) 

•  Logical OR corresponding bits 

Bitwise exclusive OR (^ in C) 
•  Logical exclusive OR corresponding bits 

27 

  10      1010B 
|  1    | 0001B 
   --      ----  
  11      1011B 

Useful for setting 
selected bits to 1 

  10      1010B 
^ 10    ^ 1010B 
   --      ----  
   0      0000B 

x ^ x sets 
all bits to 0 



Aside: Using Bitwise Ops for Arith 
Can use <<, >>, and & to do some arithmetic efficiently 

x * 2y == x << y  
• 3*4 = 3*22 = 3<<2 => 12 

x / 2y == x >> y 
• 13/4 = 13/22 = 13>>2 => 3 

x % 2y == x & (2y-1) 
• 13%4 = 13%22 = 13&(22-1) 
= 13&3 => 1 
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Fast way to multiply 
by a power of 2 

Fast way to divide 
by a power of 2 

Fast way to mod 
by a power of 2 

 13      1101B 
& 3    & 0011B 
 --      ----  
  1      0001B 
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Aside: Example C Program 

#include <stdio.h> 
#include <stdlib.h> 
int main(void) 
{  unsigned int n; 
   unsigned int count; 
   printf("Enter an unsigned integer: "); 
   if (scanf("%u", &n) != 1) 
   {  fprintf(stderr, "Error: Expect unsigned int.\n"); 
      exit(EXIT_FAILURE); 
   } 
   for (count = 0; n > 0; n = n >> 1) 
      count += (n & 1); 
   printf("%u\n", count); 
   return 0; 
} 

What does it 
write? 

How could this be 
expressed more 
succinctly? 



Agenda 

Number Systems 

Finite representation of unsigned integers 

Finite representation of signed integers 

Finite representation of rational numbers (if time) 
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Signed Magnitude 

31 

Integer   Rep  
     -7   1111 
     -6   1110 
     -5   1101 
     -4   1100 
     -3   1011 
     -2   1010 
     -1   1001 
     -0   1000 
      0   0000 
      1   0001 
      2   0010 
      3   0011 
      4   0100 
      5   0101 
      6   0110 
      7   0111 

Definition 
High-order bit indicates sign 
      0 => positive 
      1 => negative 
Remaining bits indicate magnitude 
   1101B = -101B = -5 
   0101B =  101B =  5 



Signed Magnitude (cont.) 
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Integer   Rep  
     -7   1111 
     -6   1110 
     -5   1101 
     -4   1100 
     -3   1011 
     -2   1010 
     -1   1001 
     -0   1000 
      0   0000 
      1   0001 
      2   0010 
      3   0011 
      4   0100 
      5   0101 
      6   0110 
      7   0111 

Computing negative 
neg(x) = flip high order bit of x 
   neg(0101B) = 1101B 
   neg(1101B) = 0101B 

Pros and cons 
+ easy for people to understand 
+ symmetric 
- two reps of zero 



Ones’ Complement 
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Integer   Rep  
     -7   1000 
     -6   1001 
     -5   1010 
     -4   1011 
     -3   1100 
     -2   1101 
     -1   1110 
     -0   1111 
      0   0000 
      1   0001 
      2   0010 
      3   0011 
      4   0100 
      5   0101 
      6   0110 
      7   0111 

Definition 
High-order bit has weight -7 
1010B = (1*-7)+(0*4)+(1*2)+(0*1) 
      = -5 
0010B = (0*-7)+(0*4)+(1*2)+(0*1) 
      = 2 



Ones’ Complement (cont.) 
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Integer   Rep  
     -7   1000 
     -6   1001 
     -5   1010 
     -4   1011 
     -3   1100 
     -2   1101 
     -1   1110 
     -0   1111 
      0   0000 
      1   0001 
      2   0010 
      3   0011 
      4   0100 
      5   0101 
      6   0110 
      7   0111 

Computing negative 
neg(x) = ~x 
   neg(0101B) = 1010B 
   neg(1010B) = 0101B 

Pros and cons 
+ symmetric 
- two reps of zero 

Computing negative (alternative) 
neg(x) = 1111B - x 
   neg(0101B) = 1111B – 0101B 
              = 1010B 
   neg(1010B) = 1111B – 1010B 
                     = 0101B 



Two’s Complement 
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Integer   Rep  
     -8   1000 
     -7   1001 
     -6   1010 
     -5   1011 
     -4   1100 
     -3   1101 
     -2   1110 
     -1   1111 
      0   0000 
      1   0001 
      2   0010 
      3   0011 
      4   0100 
      5   0101 
      6   0110 
      7   0111 

Definition 
High-order bit has weight -8 
1010B = (1*-8)+(0*4)+(1*2)+(0*1) 
      = -6 
0010B = (0*-8)+(0*4)+(1*2)+(0*1) 
      = 2 



Two’s Complement (cont.) 

36 

Integer   Rep  
     -8   1000 
     -7   1001 
     -6   1010 
     -5   1011 
     -4   1100 
     -3   1101 
     -2   1110 
     -1   1111 
      0   0000 
      1   0001 
      2   0010 
      3   0011 
      4   0100 
      5   0101 
      6   0110 
      7   0111 

Computing negative 
neg(x) = ~x + 1 
neg(x) = onescomp(x) + 1 
   neg(0101B) = 1010B + 1 = 1011B 
   neg(1011B) = 0100B + 1 = 0101B 

Pros and cons 
- not symmetric 
+ one rep of zero 



Two’s Complement (cont.) 

Almost all computers use two’s complement to represent 
signed integers 

Why? 
•  Arithmetic is easy 

•  Will become clear soon 

Hereafter, assume two’s complement representation of 
signed integers 
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Adding Signed Integers 
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           11  
   3      0011B 
 + 3    + 0011B 
  --      ---- 
   6      0110B 

          111  
   7      0111B 
 + 1    + 0001B 
  --      ---- 
  -8      1000B 

pos + pos pos + pos (overflow) 

         1111  
   3      0011B 
+ -1    + 1111B 
  --      ---- 
   2     10010B 

pos + neg 

         11  
  -3      1101B 
+ -2    + 1110B 
  --      ---- 
  -5     11011B 

neg + neg 
         1 1  
  -6      1010B 
+ -5    + 1011B 
  --      ---- 
   5     10101B 

neg + neg (overflow) 

How would you 
detect overflow 
programmatically? 



Subtracting Signed Integers 
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         1 
         22  
  3      0011B 
- 4    - 0100B 
 --      ---- 
 -1      1111B 

   3      0011B 
+ -4    + 1100B 
  --      ---- 
  -1      1111B 

 -5      1011B 
- 2    - 0010B 
 --      ---- 
 -7      1001B 

         111  
  -5      1011 
+ -2    + 1110 
  --      ---- 
  -7     11001 

Perform subtraction 
with borrows 

Compute two’s comp 
and add or 



Negating Signed Ints: Math 
Question: Why does two’s comp arithmetic work? 

Answer:  [–b] mod 24 = [twoscomp(b)] mod 24 

See Bryant & O’Hallaron book for much more info 
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[–b] mod 24 

= [24 – b] mod 24 

= [24 – 1 - b + 1] mod 24 
= [(24 – 1 - b) + 1] mod 24 
= [onescomp(b) + 1] mod 24 
= [twoscomp(b)] mod 24 



Subtracting Signed Ints: Math 

And so: 
[a – b] mod 24 = [a + twoscomp(b)] mod 24 

See Bryant & O’Hallaron book for much more info 
41 

[a – b] mod 24 

= [a + 24 – b] mod 24 

= [a + 24 – 1 – b + 1] mod 24 
= [a + (24 - 1 – b) + 1] mod 24  
= [a + onescomp(b) + 1] mod 24 
= [a + twoscomp(b)] mod 24 



Shifting Signed Integers 
Bitwise left shift (<< in C): fill on right with zeros 

Bitwise arithmetic right shift: fill on left with sign bit 

Results are mod 24 
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6 >> 1 => 3 

-6 >> 1 => -3 

3 << 1 => 6 

-3 << 1 => -6 

What is the effect 
arithmetically? 

What is the effect 
arithmetically? 

0011B 0110B 

1101B -1010B 

0110B 0011B 

1010B 1101B 



Shifting Signed Integers (cont.) 
Bitwise logical right shift: fill on left with zeros 

In C, right shift (>>) could be logical or arithmetic 
•  Not specified by C90 standard 
•  Compiler designer decides 

Best to avoid shifting signed integers 
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6 >> 1 => 3 

-6 >> 1 => 5 

What is the effect 
arithmetically??? 

0110B 0011B 

1010B 0101B 



Other Operations on Signed Ints 
Bitwise NOT (~ in C) 

•  Same as with unsigned ints 

Bitwise AND (& in C) 
•  Same as with unsigned ints 

Bitwise OR: (| in C) 
•  Same as with unsigned ints 

Bitwise exclusive OR (^ in C) 
•  Same as with unsigned ints 

Best to avoid with signed integers 
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Agenda 

Number Systems 

Finite representation of unsigned integers 

Finite representation of signed integers 

Finite representation of rational numbers (if time) 
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Rational Numbers 

Mathematics 
•  A rational number is one that can be expressed 

as the ratio of two integers 
•  Infinite range and precision 

Compute science 
•  Finite range and precision 
•  Approximate using floating point number 

•  Binary point “floats” across bits 
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IEEE Floating Point Representation 
Common finite representation: IEEE floating point 

•  More precisely: ISO/IEEE 754 standard 

Using 32 bits (type float in C): 
•  1 bit: sign (0=>positive, 1=>negative) 
•  8 bits: exponent + 127 
•  23 bits: binary fraction of the form 1.ddddddddddddddddddddddd 

Using 64 bits (type double in C): 
•  1 bit: sign (0=>positive, 1=>negative) 
•  11 bits: exponent + 1023 
•  52 bits: binary fraction of the form  

1.dddddddddddddddddddddddddddddddddddddddddddddddddddd 
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Floating Point Example 

Sign (1 bit): 
•  1 => negative 

Exponent (8 bits):  
• 10000011B = 131 
• 131 – 127 = 4 

Fraction (23 bits): 
• 1.10110110000000000000000B 
• 1 + 
(1*2-1)+(0*2-2)+(1*2-3)+(1*2-4)+(0*2-5)+(1*2-6)+(1*2-7) 
= 1.7109375 

Number: 
• -1.7109375 * 24 = -27.375 
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11000001110110110000000000000000 

32-bit representation 



Floating Point Warning 
Decimal number system can  

represent only some rational 
numbers with finite digit count 
•  Example: 1/3 

Binary number system can 
represent only some rational 
numbers with finite digit count 
•  Example: 1/5 

Beware of roundoff error 
•  Error resulting from inexact 

representation 
•  Can accumulate 
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Decimal  Rational 
Approx   Value 
.3       3/10 
.33      33/100 
.333     333/1000 
... 

Binary    Rational 
Approx    Value 
0.0        0/2 
0.01       1/4 
0.010      2/8 
0.0011     3/16 
0.00110    6/32 
0.001101   13/64 
0.0011010  26/128 
0.00110011 51/256 
... 



Summary 

The binary, hexadecimal, and octal number systems 

Finite representation of unsigned integers 

Finite representation of signed integers 

Finite representation of rational numbers 

Essential for proper understanding of 
•  C primitive data types 
•  Assembly language 
•  Machine language 
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Number	Systems-
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Number	System	
•  Number	
•  It	is	a	symbol	represen2ng	a	unit	or	quan2ty.	

•  Number	System	
•  Defines	a	set	of	symbols	used	to	represent	quan2ty	

•  Radix	
•  The	base	or	radix	of	number	system	determines	how	many	
numerical	digits	the	number	system	uses.		
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Types	of	Number	System	
•  Decimal	System	
•  Binary	Number	System	
•  Octal	Number	System	
•  Hexadecimal	Number	System	
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Decimal	Number	System	
•  Ingenious	method	of	expressing	all	numbers	by	means	of	tens	
symbols	originated	 from	 India.	 It	 is	widely	used	and	 is	based	
on	the	ten	fingers	of	a	human	being.	

•  It	makes	use	of	ten	numeric	symbols	
•  0,	1,	2,	3,	4,	5,	6,	7,	8,	9	
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Inherent	Value	and	Positional	Value	

•  The	inherent	value	of	a	symbol	is	the	value	of	that	
symbol	standing	alone.	
•  Example	6	in	number	256,	165,	698	
•  The	symbol	is	related	to	the	quan2ty	six,	even	if	it	is	used	
in	different	number	posi2ons	

•  The	posi2onal	value	of	a	numeric	symbol	is	
directly	related	to	the	base	of	a	system.	
•  In	the	case	of	decimal	system,	each	posi2on	has	a	
value	of	10	2mes	greater	that	the	posi2on	to	its	right.	
Example:	423,	the	symbol	3	represents	the	ones	(units),	the	
symbol	2	represents	the	tens	posi2on	(10	x	1),	and	the	symbol	
4	represents	the	hundreds	posi2on	(10	x	10).	In	other	words,	
each	symbol	move	to	the	leV	represents	an	increase	in	the	
value	of	the	posi2on	by	a	factor	of	ten.	
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Inherent	and	Positional	Value	cont.	

2539	=	2X1000	+	5X100	+	3X10	+	9X1	
									=	2X103	+	5X102	+	3X101	+	9	x100	
	

This	means	that	posi2onal	value	of	symbol	2	is	1000	or	using	the	
base	10	it	is	103	
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Binary	Number	System	
•  Uses	only	two	numeric	symbols	1	and	0	
•  Under	the	binary	system,	each	posi2on	has	a	value	2	2mes	
greater	than	the	posi2on	to	the	right.	
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Octal	Number	System	
•  Octal	number	 system	 is	using	8	digits	 to	 represent	numbers.	
The	highest	value	=	7.	Each	column	represents	a	power	of	8.	
Octal	numbers	are	represented	with	the	suffix	8.		
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Hexadecimal	Number	System	
•  Provides	another	convenient	and	simple	method	for	
expressing	values	represented	by	binary	numerals.	

•  It	uses	a	base,	or	radix,	of	16	and	the	place	values	are	the	
powers	of	16.	
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Decimal  Binary Hexadecimal Decimal Binary Hexadecimal 

0 0000 0 8 1000 8 

1 0001 1 9 1001 9 

2 0010 2 10 1010 A 

3 0011 3 11 1011 B 

4 0100 4 12 1100 C 

5 0101 5 13 1101 D 

6 0110 6 14 1110 E 

7 0111 7 15 1111 F 
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Radix	Conversion	
•  The	process	of	conver2ng	a	base	to	another.	
•  To	convert	a	decimal	number	to	any	other	number	system,	
divide	the	decimal	number	by	the	base	of	the	des2na2on	
number	system.	Repeat	the	process	un2l	the	quo2ent	
becomes	zero.	And	note	down	the	remainders	in	the	reverse	
order.			

•  To	convert	from	any	other	number	system	to	decimal,	take	
the	posi2onal	value,	mul2ply	by	the	digit	and	add.		



Radix	Conversion	
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Radix	Conversion	
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Decimal	to	Binary	Conversion	
of	Fractions	
•  Division	–	Mul2plica2on	Method	
•  Steps	to	be	followed	

•  Mul2ply	the	decimal	frac2on	by	2	and	no2ng	the	integral	part	of	the	
product	

•  Con2nue	to	mul2ply	by	2	as	long	as	the	resul2ng	product	is	not	
equal	to	zero.	

•  When	the	obtained	product	is	equal	to	zero,	the	binary	of	the	
number	consists	of	the	integral	part	listed	from	top	to	bocom	in	the	
order	they	were	recorded.	

Muhammad Davut Hassan



•  Example	1:	Convert	0.375	to	its	binary			equivalent	
	
	
	
	
	
	

Multiplication Product Integral part 
0.375 x 2 0.75 0 
0.75 x 2 1.5 1 
0.5 x 2 1.0 1 

0.37510  is equivalent to 0.0112 

Muhammad Davut Hassan



Exercises	
•  Convert	the	following	decimal	numbers	into	binary	and	
hexadecimal	numbers:	
1.  128	
2.  207	

•  Convert	the	following	binary	numbers	into	decimal	and	
hexadecimal	numbers:	
1.  						11111000	
2.  								1110110	

Muhammad Davut Hassan



Exercises	
•  Convert	the	number	in	binary	(110110)	into	octal	and	hex	
format.	
•  In	octal	(base	8)	
•  In	Hexadecimal	(base	16)	

•  		Convert	the	number	in	binary	(1110110)	into	octal	and	hex	
format.	
•  In	octal	(base	8)	
•  In	Hexadecimal	(base	16)	
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Exercises	
•  Convert	decimal	12.75	to	binary	representa2on	

•  Convert	binary	number	1010.0011		into	decimal	
representa2on	

Muhammad Davut Hassan



Fast	Conversion		
Binary	to	Power	of	2	Base	
•  If	you	have	a	binary	number	to	be	converted	into	base	which	
is	power	of	2,	
•  Split	the	number	in	a	group	beginning	from	the	right	by	the	factor	
of	power		«n»	(2n)	

•  Then	convert	the	binary	group	directly	to	the	power	of	2	base	

•  Example	

•  (100110010)2	=	(……)8		
•  (1100110)2	=	(……)8		

Muhammad Davut Hassan



Fast	Conversion		
Binary	to	Power	of	2	Base	

	

•  Examples	

•  (10110010)2	=	(……)16		
•  (1100110)2	=	(……)16		



Fast	Conversion		
Power	of	2	Base	to	Binary	
•  If	you	have	a	number,	which	is	a	power	of	2,	to	be	converted	
into	base	two,	
•  Split	each	digit	of	the	number,	
•  Then	convert	eah	digit	directly	to	binary	number	with	n	digits	

•  Where	n	is	the	power	factor	

•  Examples	

•  (53227)8	=	(……)2		
•  (125)8=	(……)2		
•  (AD2)16	=	(……)2	
•  (C3)16	=	(……)2		
•  		 Muhammad Davut Hassan



What	about	Octal	to	Hex	
Conversion	
• Examples	
• (125)8=	(……)16		
• (125)16=	(……)8		

Muhammad Davut Hassan



THANKS	FOR	YOUR	
ATTENTION!	
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CHAPTER 3

Numbers and Numeral
Systems

Numbers play an important role in almost all areas of mathematics, not least in
calculus. Virtually all calculus books contain a thorough description of the nat-
ural, rational, real and complex numbers, so we will not repeat this here. An
important concern for us, however, is to understand the basic principles be-
hind how a computer handles numbers and performs arithmetic, and for this
we need to consider some facts about numbers that are usually not found in
traditional calculus texts.

More specifically, we are going to review the basics of the decimal numeral
system, where the base is 10, and see how numbers may be represented equally
well in other numeral systems where the base is not 10. We will study represen-
tation of real numbers as well as arithmetic in different bases. Throughout the
chapter we will pay special attention to the binary number system (base 2) as
this is what is used in most computers. This will be studied in more detail in the
next chapter.

3.1 Terminology and Notation

We will usually introduce terminology as it is needed, but certain terms need to
be agreed upon straightaway. In your calculus book you will have learnt about
natural, rational and real numbers. The natural numbers N0 = {0,1,2,3,4, . . . }1

are the most basic numbers in that both rational and real numbers can be con-
structed from them. Any positive natural number n has an opposite number

1In most books the natural numbers start with 1, but for our purposes it is convenient to in-
clude 0 as a natural number as well. To avoid confusion we have therefore added 0 as a subscript.
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−n, and we denote by Z the set of natural numbers augmented with all these
negative numbers,

Z= {. . . ,−3,−2,−1,0,1,2,3, . . .}.

We will refer to Z as the set of integer numbers or just the integers.
Intuitively it is convenient to think of a real number x as a decimal number

with (possibly) infinitely many digits to the right of the decimal point. We then
refer to the number obtained by setting all the digits to the right of the decimal
point to 0 as the integer part of x. If we replace the integer part by 0 we obtain the
fractional part of x. If for example x = 3.14, its integer part is 3 and its fractional
part is 0.14. A number that has no integer part will often be referred to as a
fractional number.

Definition 3.1. Let x = dndn−1 · · ·d2d1.d0d−1d−2 · · · be a decimal number.
Then the number dndn−1 · · ·d2d1 is called the integer part of x while the num-
ber 0.d−1d−2 · · · is called the fractional part of x.

For rational numbers there are standard operations we can perform to find
the integer and fractional parts. When two positive natural numbers a and b are
divided, the result will usually not be an integer, or equivalently, there will be a
remainder. The notation a //b denotes the result of division when the remain-
der is ignored and is often referred to as integer division. For example 3//2 = 1,
9//4 = 2 and 24//6 = 4. We also need notation for the remainder in the division,
for this we write a %b. This means that 3%2 = 1, while 23%5 = 3.

We will use standard notation for intervals of real numbers. Two real num-
bers a and b with a < b define four intervals that only differ in whether the end
points a and b are included or not. The closed interval [a,b] contains all real
numbers between a and b, including the end points. Formally we can express
this by [a,b] = {x ∈R | a ≤ x ≤ b}. The other intervals can be defined similarly,

(a,b) = {x ∈R | a < x < b} (open);

[a,b] = {x ∈R | a ≤ x ≤ b} (closed);

(a,b] = {x ∈R | a < x ≤ b} half open;

[a,b) = {x ∈R | a ≤ x < b} half open.

With this notation we can say that a fractional number is a real number in the
interval [0,1)).

3.2 Natural Numbers in Different Numeral Systems

We usually represent natural numbers in the decimal numeral system, but in
this section we are going to see that this is just one of infinitely many numeral
systems. We will also give a simple method for converting a number from its
decimal representation to its representation in a different base.
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3.2.1 Alternative Numeral Systems

In the decimal system we use a positional convention and express numbers in
terms of the ten digits 0, 1, . . . , 8, 9, and let the position of a digit determine how
much it is worth. For example the string of digits 3761 is interpreted as

3761 = 3×103 +7×102 +6×101 +1×100.

Numbers that have a simple representation in the decimal numeral system are
often thought of as special. For example it is common to celebrate a 50th birth-
day in a special way or mark the centenary anniversary of an important event
like a country’s independence. However, the numbers 50 and 100 are only spe-
cial when they are written in the decimal number system.

Any natural number can be used as the base for a number system. Consider
for example the septenary numeral system which has 7 as the base and uses the
digits 0-6. In this system the numbers 3761, 50 and 100 become

3761 = 136527 = 1×74 +3×73 +6×72 +5×71 +2×70,

50 = 1017 = 1×72 +0×71 +1×70,

100 = 2027 = 2×72 +0×71 +2×70,

so 50 and 100 are not so special anymore.
These examples make it quite obvious that we can define numeral systems

with almost any natural number as a base. The only restriction is that the base
must be greater than one. To use 0 as base is quite obviously meaningless, and
if we try to use 1 as base we only have the digit 0 which means that we can only
represent the number 0.

We record the general construction in a formal definition. In this way the
construction receives a name (Definition 3.2) which we can refer to later, and it
becomes more visible as you flip through the pages.

Definition 3.2. Let β be a natural number greater than 1 and let n0, n1, . . . ,
nβ−1 be β distinct numerals (also called digits) such that ni denotes the num-
ber ni = i . A natural number representation in base β is an ordered collection
of digits (dndn−1 . . .d1d0)β which is interpreted as the natural number

dnβ
n +dn−1 β

n−1 +dn−2 β
n−2 +·· ·+d1β

1 +d0β
0

where each digit di is one of the β numerals {ni }β−1
i=0 .
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Formal definitions in mathematics often appear complicated until one gets
under the surface, so let us consider the details of the definition. The base β is
not so mysterious. In the decimal system β = 10 while in the septenary system
β = 7. The beginning of the definition simply states that any natural number
greater than 1 can be used as a base.

In the decimal system we use the digits 0–9 to write down numbers, and in
any numeral system we need digits that can play a similar role. If the base is 10
or less it is natural to use the obvious subset of the decimal digits as numerals.
If the base is 2 we use the two digits n0 = 0 and n1 = 1; if the base is 5 we use
the five digits n0 = 0, n1 = 1, n2 = 2, n3 = 3 and n4 = 4. However, if the base is
greater than 10 we have a challenge in how to choose numerals for the numbers
10, 11, . . . , β−1. If the base is less than 40 it is common to use the decimal digits
together with the initial characters of the latin alphabet as numerals. In base
β= 16 for example, it is common to use the digits 0–9 augmented with n10 = a,
n11 = b, n12 = c, n13 = d , n14 = e and n15 = f . This is called the hexadecimal
numeral system and in this system the number 3761 becomes

eb116 = e ×162 +b ×161 +1×161 = 14×256+11×16+1 = 3761.

Definition 3.2 defines how a number can be expressed in the numeral system
with base β. However, it does not say anything about how to find the digits of a
fixed number. And even more importantly, it does not guarantee that a number
can be written in the base-β numeral system in only one way. This is settled in
our first lemma below.

Lemma 3.3. Any natural number can be represented uniquely in the base-β
numeral system.

Proof. To keep the argument as transparent as possible, we give the proof for a
specific example, namely a = 3761 and β = 8 (the octal numeral system). Since
84 = 4096 > a, we know that the base-8 representation cannot contain more than
4 digits. Suppose that 3761 = (d3d2d1d0)8; our job is to find the value of the
four digits and show that each of them only has one possible value. We start by
determining d0. By definition of base-8 representation of numbers we have the
relation

3761 = (d3d2d1d0)8 = d383 +d282 +d18+d0. (3.1)

We note that only the last term in the sum on the right is not divisible by 8, so
the digit d0 must therefore be the remainder when 3761 is divided by 8. If we
perform the division we find that

d0 = 3761%8 = 1, 3761//8 = 470.
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We observe that when the right-hand side of (3.1) is divided by 8, the result is
d382 +d28+d1. In other words be must have

470 = d382 +d28+d1.

But then we see that d1 must be the remainder when 470 is divided by 8. If we
perform this division we find

d1 = 470%8 = 6, 470//8 = 58.

Using the same argument as before we see that the relation

58 = d38+d2 (3.2)

must hold. In other words d2 is the remainder when 58 is divided by 8,

d2 = 58%8 = 2, 58//8 = 7.

If we divide both sides of (3.2) by 8 and drop the remainder we are left with 7 =
d3. The net result is that 3761 = (d3d2d1d0)8 = 72618.

We note that during the computations we never had any choice in how to de-
termine the four digits, they were determined uniquely. We therefore conclude
that the only possible way to represent the decimal number 3761 in the base-8
numeral system is as 72618.

The proof is clearly not complete since we have only verified Lemma 3.3 in a
special case. However, the same argument can be used for any a and β and we
leave it to the reader to write down the details in the general case.

Lemma 3.3 says that any natural number can be expressed in a unique way
in any numeral system with base greater than 1. We can therefore use any such
numeral system to represent numbers. Although we may feel that we always use
the decimal system, we all use a second system every day, the base-60 system.
An hour is split into 60 minutes and a minute into 60 seconds. The great advan-
tage of using 60 as a base is that it is divisible by 2, 3, 4, 5, 6, 12, 20 and 30 which
means that an hour can easily be divided into many smaller parts without resort-
ing to fractions of minutes. Most of us also use other numeral systems without
knowing. Virtually all electronic computers use the base-2 (binary) system and
we will study this in the next chapter.

We are really only considering natural numbers in this section, but let us add
a comment about how to represent negative numbers in the base-β numeral
system. This is not so difficult. There is nothing particularly decimal about the
minus sign, so the number −a may be represented like a, but preceded with −.
Therefore, we represent for example the decimal number −3761 as −72618 in
the octal numeral system.
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3.2.2 Conversion to the Base-βNumeral System

The method used in the proof of Lemma 3.3 for converting a number to baseβ is
important, so we record it as an algorithm. An algorithm is just a detailed recipe
for accomplishing a specific task, and in these notes we will come across many
algorithms. An algorithm may be performed manually as in the proof above,
but for most of the algorithms we encounter the intention is that they should be
implemented in a computer program. Our algorithms are therefore formulated
in a syntax that is reminiscent of a programming language.

Algorithm 3.4. Let a be a natural number that in base β has the n +1 digits
(dndn−1 · · ·d0)β. These digits may be computed by performing the operations:

a0 := a;
for i := 0, 1, . . . , n

di := ai %β;
ai+1 := ai //β;

Let us add a little explanation since this is our first algorithm. We start by
setting the variable a0 equal to a. We then let i take on the values 0, 1, 2, . . . , n.
For each value of i we perform the operations that are indented, i.e., we compute
the numbers ai %β and ai //β and store the results in the variables di and ai+1.
Note the use of the assignment operator :=. This simply means ’compute the
value of the right-hand side and store the result in the variable on the left’. This
is different from the relation = which tests whether the two sides are equal.

Algorithm 3.4 demands that the number of digits in the representation to
be computed is known in advance. If we look back on the proof of Lemma 3.3,
we note that we do not first check how many digits we are going to compute,
since when we are finished the number that we divide (the number ai in Algo-
rithm 3.4) has become 0. We can therefore just repeat the two indented state-
ments in the algorithm until the result of the division becomes 0. The following
version of the algorithm incorporates this. We also note that we do not need to
keep the results of the divisions; we can omit the subscript and store the result
of the division a //β back in a.

Algorithm 3.5. Let a be a natural number that in base β has the n +1 digits
(dndn−1 · · ·d0)β. These digits may be computed by performing the operations:
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i := 0;
while a > 0

di := a %β;
a := a //β;
i := i +1;

The ’while a > 0’ statement means that all the indented statements will be
repeated until a becomes 0. The variable i is needed so that we can number the
digits correctly, starting with d0, then d1 and so on. The statement i := i +1 may
look a bit strange, but if we remember the meaning of the := operator, it is not
so strange. Each time we reach this statement, the variable already has a value;
even the first time since i is initialized with the value 0 before we reach the while
statement. Then the statement i := i +1 leads to the following: Extract the value
of i , add 1, and store the result back in i . Suppose for example that i has the
value 3 when we reach the statement, then i will be 4 when the statement has
been completed. The statement a := a //β should be interpreted in the same
way.

It is also important to realize that the order of the indented statements is not
arbitrary. When we do not keep all the results of the divisions, it is important that
di is computed before a is updated with its new value. And when i is initialized
with 0, we must update i at the end, since otherwise the subscript in di will be
wrong.

We will not usually discuss algorithms in this much detail, but will comment
when we introduce important new concepts and constructs.

The results produced by Algorithm 3.5 can be conveniently organized in a
table. The example in the proof of Lemma 3.3 can be displayed as

3761 1
470 6

58 2
7 7

The left column shows the successive integral parts resulting from repeated di-
vision by 8, whereas the right column shows the remainder in these divisions.
Let us consider one more example.

Example 3.6. Instead of converting 3761 to base 8 let us convert it to base 16. We
find that 3761//16 = 235 with remainder 1. In the next step we find 235//16 = 14
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with remainder 11. Finally we have 14//16 = 0 with remainder 14. Displayed in
a table this becomes

3761 1
235 11

14 14

Recall that in the hexadecimal system the letters a–f usually denote the values
10–15. We have therefore found that the number 3761 is written eb116 in the
hexadecimal numeral system.

Since we are particularly interested in how computers manipulate numbers,
we should also consider an example of conversion to the binary numeral system,
as this is the numeral system used in most computers. Instead of dividing by 16
we are now going to repeatedly divide by 2 and record the remainder. A nice
thing about the binary numeral system is that the only possible remainders are
0 and 1: it is 0 if the number we divide is an even integer and 1 if the number is
an odd integer.

Example 3.7. Let us continue to use the decimal number 3761 as an example,
but now we want to convert it to binary form. If we perform the divisions and
record the results as before we find

3761 1
1880 0

940 0
470 0
235 1
117 1

58 0
29 1
14 0

7 1
3 1
1 1

In other words we have 3761 = 1110101100012. This example illustrates an im-
portant property of the binary numeral system: Computations are simple, but
long and tedious. This means that this numeral system is not so good for hu-
mans as we tend to get bored and make sloppy mistakes. For computers, how-
ever, this is perfect as computers do not make mistakes and work extremely fast.
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3.3 Representation of Fractional Numbers

We have seen how integers can be represented in numeral systems other than
decimal, but what about fractions and irrational numbers? In the decimal sys-
tem such numbers are characterized by the fact that they have two parts, one to
the left of the decimal point, and one to the right, like the number 21.828. The
part to the left of the decimal point — the integer part — can be represented in
base-β as outlined above. If we can represent the part to the right of the decimal
point — the fractional part — in base-β as well, we can follow the convention
from the decimal system and use a point to separate the two parts. Negative ra-
tional and irrational numbers are as easy to handle as negative integers, so we
focus on how to represent positive numbers without an integer part, in other
words numbers in the open interval (0,1).

3.3.1 Rational and Irrational Numbers in Base-β

Let a be a real number in the interval (0,1). In the decimal system we can write
such a number as 0, followed by a point, followed by a finite or infinite number
of decimal digits, as in

0.45928. . .

This is interpreted as the number

4×10−1 +5×10−2 +9×10−3 +2×10−4 +8×10−5 +·· · .

From this it is not so difficult to see what a base-β representation of a similar
number must look like.

Definition 3.8. Let β be a natural number greater than 1 and let n0, n1, . . . ,
nβ−1 be β distinct numerals (also called digits) such that ni denotes the num-
ber ni = i . A fractional representation in base β is a, finite or infinite, ordered
collection of digits (0.d−1d−2d−3 . . . )β which is interpreted as the real number

d−1β
−1 +d−2 β

−2 +d−3 β
−3 +·· · (3.3)

where each digit di is one of the β numerals {ni }β−1
i=0 .

This definition is considerably more complicated than Definition 3.2 since
we may have an infinite number of digits. This becomes apparent if try to check
the size of numbers on the form given by (3.3). Since none of the terms in the
sum are negative, the smallest number is the one where all the digits are 0, i.e.,
where di = 0 for i =−1, −2, . . . . But this can be nothing but the number 0.
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The largest possible number occurs when all the digits are as large as possi-
ble, i.e. when di =β−1 for all i . If we call this number x, we find

x = (β−1)β−1 + (β−1)β−2 + (β−1)β−3 +·· ·
= (β−1)β−1(1+β−1 +β−2 +·· ·

= β−1
β

∞∑

i=0
(β−1)i .

In other words x is given by a sum of an infinite geometric series with factor
β−1 = 1/β< 1. This series converges to 1/(1−β−1) so x has the value

x = β−1
β

1
1−β−1 = β−1

β

β

β−1
= 1.

Let us record our findings so far.

Lemma 3.9. Any number on the form (3.3) lies in the interval [0,1].

The fact that the base-β fractional number with all digits equal to β−1 is the
number 1 is a bit disturbing since it means that real numbers cannot be repre-
sented uniquely in base β. In the decimal system this corresponds to the fact
that 0.99999999999999. . . (infinitely many 9s) is in fact the number 1. And this is
not the only number that has two representations. Any number that ends with
an infinite number of digits equal toβ−1 has a simpler representation. Consider
for example the decimal number 0.12999999999999. . . . Using the same tech-
nique as above we find that this number is 0.13. However, it turns out that these
are the only numbers that have a double representation, see Theorem 3.10 be-
low.

Let us now see how we can determine the digits of a fractional number in a
numeral system other than the decimal one. As for natural numbers, it is eas-
iest to understand the procedure through an example, so we try to determine
the digits of 1/5 in the octal system. According to Definition 3.8 we seek digits
d−1d−2d−3 . . . (possibly infinitely many) such that the relation

1
5
= d−18−1 +d−28−2 +d−38−3 +·· · (3.4)

becomes true. If we multiply both sides by 8 we obtain

8
5
= d−1 +d−28−1 +d−38−2 +·· · . (3.5)
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The number 8/5 lies between 1 and 2 and we know from Lemma 3.9 that the sum
d−28−1 +d−38−2 + ·· · can be at most 1. Therefore we must have d−1 = 1. Since
d−1 has been determined we can subtract this from both sides of (3.5)

3
5
= d−28−1 +d−38−2 +d−48−3 +·· · (3.6)

(to be precise, we subtract 1 on the left and d−1 on the right). This equation is
on the same form as (3.4) and can be used to determine d−2. We multiply both
sides of (3.6) by 8,

24
5

= d−2 +d−38−1 +d−48−3 +·· · . (3.7)

The fraction 24/5 lies in the interval (4,5) and since the terms on the right that
involve negative powers of 8 must be a number in the interval [0,1], we must
have d−2 = 4. We subtract this from both sides of (3.7) and obtain

4
5
= d−38−1 +d−48−2 +d−58−3 +·· · . (3.8)

Multiplication by 8 now gives

32
5

= d−3 +d−48−1 +d−58−2 +·· · .

from which we conclude that d−3 = 6. Subtracting 6 and multiplying by 8 we
obtain

16
5

= d−4 +d−58−1 +d−68−2 +·· · .

from which we conclude that d−4 = 3. If we subtract 3 from both sides we find

1
5
= d−58−1 +d−68−2 +d−78−3 +·· · .

But this relation is essentially the same as (3.4), so if we continue we must gener-
ate the same digits again. In other words, the sequence d−5d−6d−7d−8 must be
the same as d−1d−2d−3d−4 = 1463. But once d−8 has been determined we must
again come back to a relation with 1/5 on the left, so the same digits must also
repeat in d−9d−10d−11d−12 and so on. The result is that

1
5
= 0.1463146314631463 · · ·8 .

Based on this procedure we can prove an important theorem.
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Theorem 3.10. Any real number in the interval (0,1) can be represented in
a unique way as a fractional base-β number provided representations with
infinitely many trailing digits equal to β−1 are prohibited.

Proof. We have already seen how the digits of 1/5 in the octal system can be
determined, and it is easy to generalize the procedure. However, there are two
additional questions that must be settled before the claims in the theorem are
completely settled.

We first prove that the representation is unique. If we look back at the con-
version procedure in the example we considered, we had no freedom in the
choice of any of the digits. The digit d−2 was for example determined by equa-
tion 3.7, where the left-hand side is 4.8 in the decimal system. Then our only
hope of satisfying the equation is to choose d−2 = 4 since the remaining terms
can only sum up to a number in the interval [0,1].

How can the procedure fail to determine the digits uniquely? In our example,
any digit is determined by an equation on the form (3.7), and as long as the left-
hand side is not an integer, the corresponding digit is uniquely determined. If
the left-hand side should happen to be an integer, as in

5 = d−2 +d−38−1 +d−48−3 +·· · ,

the natural solution is to choose d−2 = 5 and choose all the remaining digits as 0.
However, since we know that 1 may be represented as a fractional number with
all digits equal to 7, we could also choose d−2 = 4 and di = 7 for all i < −2. The
natural solution is to choose d−2 = 5 and prohibit the second solution, which
secures the uniqueness of the representation.

The second point that needs to be settled is more subtle; do we really com-
pute the correct digits? It may seem strange to think that we may not compute
the right digits since the digits are forced upon us by the equations. But if we look
carefully, the equations are not quite standard since the sums on the right may
contain infinitely many terms. In general it is therefore impossible to achieve
equality in the equations, all we can hope for is that we can make the sum on
the right in (3.4) come as close to 1/5 as we wish by including sufficiently many
terms.

Set a = 1/5. Then equation (3.6) can be written

8(a −d−18−1) = d−28−1 +d−38−2 +d−48−3 +·· ·

while (3.8) can be written

82(a −d−18−1 −d−28−2) = d−38−1 +d−48−2 +d−58−3 +·· · .
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After i steps the equation becomes

8i (a −d−18−1 −d−28−2 −·· ·−d−i 8−i ) =
d−i−18−1 +d−i−28−2 +d−i−38−3 +·· · .

The expression in the bracket on the left we recognize as the error ei in approxi-
mating a by the first i numerals in the octal representation. We can rewrite this
slightly and obtain

ei = 8−i (d−i−18−1 +d−i−28−2 +d−i−38−3 +·· · ).

From Lemma 3.9 we know that the number in the bracket on the right lies in
the interval [0,1] so we have 0 ≤ ei ≤ 8−i . But this means that by including suffi-
ciently many digits (choosing i sufficiently big), we can get ei to be as small as we
wish. In other words, by including sufficiently many digits, we can get the octal
representation of a = 1/5 to be as close to a as we wish. Therefore our method
for computing numerals does indeed generate the digits of a.

Some simple properties of fractional numbers in base β will be useful for
understanding how computers handle numbers, but before we discuss this we
will formulate precisely the algorithm for computing the base β representation.

3.3.2 An Algorithm for Converting Fractional Numbers

The basis for the proof of Theorem 3.10 is the procedure for computing the digits
of a fractional number in base-β. We only considered the case β = 8, but it is
simple to generalize the algorithm to arbitrary β.

Algorithm 3.11. Let a be a fractional number whose first n digits in base β
are (0.d−1d−2 · · ·d−n)β. These digits may be computed by performing the op-
erations:

for i :=−1, −2, . . . , −n
di := &a ∗β(;
a := a ∗β−di ;

Compared with the description on pages 34 to 35 there should be nothing
mysterious in this algorithm except for perhaps the notation &x(. This is a fairly
standard way of writing the floor function which is equal to the largest integer
that is less than or equal to x. We have for example &3.4( = 3 and &5( = 5.
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When converting natural numbers to base-β representation there is no need
to know or compute the number of digits beforehand, as is evident in Algo-
rithm 3.5. For fractional numbers we do need to know how many digits to com-
pute as there may often be infinitely many. A for-loop is therefore a natural con-
struction in Algorithm 3.11.

It is convenient to have a standard way of writing down the computations
involved in converting a fractional number to base-β, and it turns out that we
can use the same format as for converting natural numbers. Let us take as an
example the computations in the proof of Theorem 3.10 where the fraction 1/5
was converted to base-8. We start by writing the number to be converted to the
left of the vertical line. We then multiply the number byβ (which is 8 in this case)
and write the integer part of the result, which is the first digit, to the right of the
line. The result itself we write in brackets to the right. We then start with the
fractional part of the result one line down and continue until the result becomes
0 or we have all the digits we want,

1/5 1 (8/5)
3/5 4 (24/5)
4/5 6 (32/5)
2/5 3 (16/5)
1/5 1 (8/5)

3.3.3 Properties of Fractional Numbers in Base-β

Real numbers in the interval (0,1) have some interesting properties related to
their representation. In the decimal numeral system we know that fractions
with a denominator that only contains the factors 2 and 5 can be written as a
decimal number with a finite number of digits. In general, the decimal repre-
sentation of a rational number will contain a finite sequence of digits that are
repeated infinitely many times, while for an irrational number there will be no
such structure. In this section we shall see that similar properties are valid when
fractional numbers are represented in any numeral system.

For rational numbers Algorithm 3.11 can be expressed in a different form
which makes it easier to deduce properties of the digits. So let us consider what
happens when a rational number is converted to base-β representation. A ratio-
nal number in the interval (0,1) has the form a = b/c where b and c are nonzero
natural numbers with b < c. If we look at the computations in Algorithm 3.11, we
note that di is the integer part of (b ∗β)/c which can be computed as (b ∗β)//c.
The right-hand side of the second statement is a∗β−d1, i.e., the fractional part
of a ∗β. But if a = b/c, the fractional part of a ∗β is given by the remainder in
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the division (b ∗β)/c, divided by c, so the new value of a is given by

a = (b ∗β)%c
c

.

This is a new fraction with the same denominator c as before. But since the
denominator does not change, it is sufficient to keep track of the numerator.
This can be done by the statement

b := (b ∗β)%c. (3.9)

The result of this is a new version of Algorithm 3.11 for rational numbers.

Algorithm 3.12. Let a = b/c be a rational number in (0,1) whose first n digits
in base β are (0.d−1d−2 · · ·d−n)β. These digits may be computed by perform-
ing the operations:

for i :=−1, −2, . . . , −n
di := (b ∗β)//c;
b := (b ∗β)%c;

This version of the conversion algorithm is more convenient for deducing
properties of the numerals of a rational number. The clue is to consider more
carefully the different values of b that are computed by the algorithm. Since b is
the remainder when integers are divided by c, the only possible values of b are
0, 1, 2, . . . , c −1. Sooner or later, the value of b must therefore become equal to
an earlier value. But once b gets back to an earlier value, it must cycle through
exactly the same values again until it returns to the same value a third time. And
then the same values must repeat again, and again, and again, . . . . And since the
numerals di are computed from b, they must repeat with the same frequency.
This proves part of the following lemma.

Lemma 3.13. Let a be a fractional number. Then the digits of a written in
base β will eventually repeat, i.e.,

a = 0.d−1 · · ·d−i d−(i+1) · · ·d−(i+n)d−(i+1) · · ·d−(i+n) · · ·β

if and only if a is a rational number.
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As an example, consider the fraction 1/7 written in different numeral sys-
tems. If we run Algorithm 3.12 we find

1/7 = 0.00100100100100100 · · ·2 ,

1/7 = 0.01021201021201021 · · ·3 ,

1/7 = 0.17.

In the binary numeral system, there is no initial sequence of digits; the sequence
001 repeats from the start. In the trinary system, there is no intial seqeunce
either and the repeating sequence is 010212, whereas in the septenary system
the initial seqeunce is 1 and the repeating sequence 0 (which we do not write
according to the conventions of the decimal system).

An example with an initial sequence is the fraction 87/98 which in base 7 be-
comes 0.6133333 · · ·7. Another example is 503/1100 which is 0.457272727272 · · ·
in the decimal system.

The argument preceding Lemma 3.13 proves the fact that if a is a rational
number, then the digits must eventually repeat. But this statement leaves the
possibility open that there may be nonrational (i.e., irrational) numbers that
may also have digits that eventually repeat. However, this is not possible and
this is the reason for the ’only if’-part of the lemma. In less formal language
the complete statement is: The digits of a will eventually repeat if a is a rational
number, and only if a is a rational number. This means that there are two state-
ments to prove: (i) The digits repeat if a is a rational number and (ii) if the digits
do repeat then a must be a rational number. The proof of this latter statement is
left to excercise 14.

Although all rational numbers have repeating digits, for some numbers the
repeating sequence is ’0’, like 1/7 in base 7, see above. Or equivalently, some
fractional numbers can in some numeral systems be represented exactly by a
finite number of digits. It is possible to characterize exactly which numbers have
this property.

Lemma 3.14. The representation of a fractional number a in base-β consists
of a finite number of digits,

a = (0.d−1d−2 · · ·d−n)β,

if and only if a is a rational number b/c with the property that all the prime
factors of c divide β.

Proof. Since the statement is of the ’if and only if’ type, there are two claims to
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be proved. The fact that a fractional number in base-β with a finite number of
digits is a rational number is quite straightforward, see exercise 15.

What remains is to prove that if a = b/c and all the prime factors of c divide
β, then the representation of a in base-β will have a finite number of digits. We
give the proof in a special case and leave it to the reader to write down the proof
in general. Let us consider the representation of the number a = 8/9 in base-
6. The idea of the proof is to rewrite a as a fraction with a power of 6 in the
denominator. The simplest way to do this is to observe that 8/9 = 32/36. We
next express 32 in base 6. For this we can use Algorithm 3.5, but in this simple
situation we see directly that

32 = 5×6+2 = 526.

We therefore have

8
9
= 32

36
= 5×6+2

62 = 5×6−1 +2×6−2 = 0.526.

In the decimal system, fractions with a denominator that only has 2 and 5
as prime factors have finitely many digits, for example 3/8 = 0.375, 4/25 = 0.16
and 7/50 = 0.14. These numbers will not have finitely many digits in most other
numeral systems. In base-3, the only fractions with finitely many digits are the
ones that can be written as fractions with powers of 3 in the denominator,

8
9
= 0.223,

7
27

= 0.0213,

1
2
= 0.111111111111 · · ·3 ,

3
10

= 0.02200220022 · · ·3 .

In base-2, the only fractions that have an exact representation are the ones with
denominators that are powers of 2,

1
2
= 0.5 = 0.12,

3
16

= 0.1875 = 0.00112,

1
10

= 0.1 = 0.00011001100110011 · · ·2 .
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3.4 Arithmetic in Base β

The methods we learn in school for performing arithemetic are closely tied to
properties of the decimal numeral system, but the methods can easily be gen-
eralized to any numeral system. We are not going to do this in detail, but some
examples should illustrate the general ideas. All the methods should be famil-
iar from school, but if you never quite understood the arithmetic methods, you
may have to think twice to understand why it all works. Although the methods
themselves are the same across the world, it should be mentioned that there are
many variations in how the methods are expressed on paper. You may therefore
find the description given here unfamiliar at first.

3.4.1 Addition

Addition of two one-digit numbers is just like in the decimal system as long as
the result has only one digit. For example, we have 48 + 38 = 4+ 3 = 7 = 78. If
the result requires two digits, we must remember that the carry is β in base-β,
and not 10. So if the result becomes β or greater, the result will have two digits,
where the left-most digit is 1 and the second has the value of the sum, reduced
by β. This means that

58 +68 = 5+6 = 11 = 8+11−8 = 8+3 = 138.

This can be written exactly the same way as you would write a sum in the deci-
mal numeral system, you must just remember that the value of the carry is β.

Let us now try the larger sum 4578 +3258. This just requires successive one
digit additions, just like in the decimal system. One way to write this is

1 1
4578

+3258

= 10048

This corresponds to the decimal sum 303+213 = 516.

3.4.2 Subtraction

One-digit subtractions are simple, for example 78 − 38 = 48. A subtraction like
148 −78 is a bit more difficult, but we can ’borrow’ from the ’1’ in 14 just like in
the decimal system. The only difference is that in base-8, the ’1’ represents 8 and
not 10, so we borrow 8. We then see that we must perform the subtraction 12−7
so the answer is 5 (both in decimal and base 8). Subtraction of larger numbers
can be done by repeating this. Consider for example 3218 − 1778. This can be
written
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8 8
/3/218

−1778

= 1228

By converting everything to decimal, it is easy to see that this is correct.

3.4.3 Multiplication

Let us just consider one example of a multiplication, namely 3124 × 124. As in
the decimal system, the basis for performing multiplication of numbers with
multiple digits is the multiplication table for one digit numbers. In base 4 the
multiplication table is

1 2 3
1 1 2 3
2 2 10 12
3 3 12 21

We can then perform the multiplication as we are used to in the decimal system

3124 ×124

12304

3124

110104

The number 12304 in the second line is the result of the multiplication 3124×24,
i.e., the first factor 3124 multiplied by the second digit of the right-most factor
124. The number on the line below, 3124, is the first factor multiplied by the
first digit of the second factor. This second product is shifted one place to the
left since multiplying with the first digit in 124 corresponds multiplication by
1×4. The number on the last line is the sum of the two numbers above, with a
zero added at the right end of 3124, i.e., the sum is 12304 + 31204. This sum is
calculated as indicated in Section 3.4.1 above.

Exercises

3.1 Convert the following natural numbers:

a) 40 to base-4

b) 17 to base-5

c) 17 to base-2

d) 123456 to base-7
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e) 22875 to base-7

f) 126 to base 16

3.2 Convert the following rational numbers:

a) 1/4 to base-2

b) 3/7 to base-3

c) 1/9 to base-3

d) 1/18 to base-3

e) 7/8 to base-8

f) 7/8 to base-7

g) 7/8 to base-16

h) 5/16 to base-8

i) 5/8 to base-6

3.3 Convert π to base-9.

3.4 Convert to base-8:

a) 10110012

b) 1101112

c) 101010102

3.5 Convert to base-2:

a) 448

b) 1008

c) 3278

3.6 Convert to base-16:

a) 10011012

b) 11002

c) 101001111001002

3.7 Convert to base-2:

a) 3c16

b) 10016
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c) e5116

3.8 a) Convert 7 to base-7, 37 to base-37, and 4 to base-4 and formulate a
generalisation of what you observe.

b) Determine β such that 13 = 10β. Also determine β such that 100 =
10β For which numbers a ∈N is there a β such that a = 10β?

3.9 a) Convert 400 to base-20, 4 to base-2, 64 to base-8, 289 to base-17 and
formulate a generalisation of what you observe.

b) Determine β such that 25 = 100β. Also determine β such that 841 =
100β. For which numbers a ∈ N is there a number β such that a =
100β?

c) For which numbers a ∈N is there a number β such that a = 1000β?

3.10 a) For which value of β is a = b/c = 0.bβ? Does such a β exist for all
a < 1? And for a ≥ 1?

b) For which rational number a = b/c does there exist a β such that
a = b/c = 0.01β?

c) For which rational number a = b/c is there a β such that a = b/c =
0.0bβ? If β exists, what will it be?

3.11 If a = b/c, what is the maximum length of the repeating sequence?

3.12 Show that if the digits of the fractional number a eventually repeat, then
a must be a rational number.

3.13 Show that a fractional number in base-βwith a finite number of digits is a
rational number.

3.14 Show that if the digits of the fractional number a eventually repeat, then
a must be a rational number.

3.15 Show that a fractional numbers in base-β with a finite number of digits is
a rational number.

3.16 If a = b/c, what is the maximum length of the repeating sequence?

3.17 Perform the following additions:

a) 37 +17

b) 56 +46
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c) 1102 +10112

d) 1223 +2013

e) 435 +105

f) 35 +17

3.18 Perform the following subtractions:

a) 58 −28

b) 1002 −12

c) 5278 −3338

d) 2103 −213

e) 435 −145

f) 37 −117

3.19 Perform the following multiplications:

a) 1102 ·102

b) 1102 ·112

c) 1103 ·113

d) 435 ·25

e) 7208 ·158

f) 2103 ·123

g) 1012 ·112
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Simplifying Boolean Expressions   
 

We can use the sum-of-products method to generate any digital logic circuit for which we 
can write the truth table.  While the sum-of-products method will always produce a correct 
circuit, it usually does not produce the optimal circuit.  We want the simplest possible circuit 
because fewer gates or simpler gates mean reduced cost, improved reliability, and often 
increased speed.   We can simplify a circuit by simplifying the Boolean expression for it, then 
using the techniques already learned to produce the circuit that is equivalent to the simplified 
expression.  The need to simplify Boolean expressions occurs in programming as well as 
hardware design, and the techniques discussed here are equally applicable to programming. 
 

One way to simplify a Boolean expression is to apply the laws of Boolean algebra, some 
of which are summarized in the table on p. 144 of Tanenbaum.  We will apply the laws of 
Boolean algebra to simplify BAAB + .  We choose this expression because it is key to how 
Karnaugh maps work; other expressions can also be simplified using Boolean algebra. 

BAAB +  original expression 
   )BB(A +  after applying distributive law 
   A1  after applying inverse law 
   1A  after applying commutative law 
   A  after applying identity law 
Therefore, ABAAB =+ . 

Karnaugh Maps 
 
Karnaugh maps are a graphical way of using the relationship ABAAB =+  to simplify a 

Boolean expression and thus simplify the resulting circuit. A Karnaugh map is a completely 
mechanical method of performing this simplification, and so has an advantage over manipulation 
of expressions using Boolean algebra. Karnaugh maps are effective for expressions of up to 
about six variables.  For more complex expressions the Quine-McKluskey method, not discussed 
here, may be appropriate. 
 

The Karnaugh map uses a rectangle divided into rows and columns in such a way that 
any product term in the expression to be simplified can be represented as the intersection of a 
row and a column.  The rows and columns are labeled with each term in the expression and its 
complement.  The labels must be arranged so that each horizontal or vertical move changes the 
state of one and only one variable. 

Muhammad Davut Hassan
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To use a Karnaugh map to simplify an expression: 
1. Draw a “map” with one box for each possible product term in the expression.  

The boxes must be arranged so that a one-box movement either horizontal or 
vertical changes one and only one variable.  See Figure 1. 

2. For each product term in the expression to be simplified, place a checkmark in the 
box whose labels are the product's variables and their complements. 

3. Draw loops around adjacent pairs of checkmarks.  Blocks are "adjacent" 
horizontally and vertically only, not diagonally.  A block may be "in" more than 
one loop, and a single loop may span multiple rows, multiple columns, or both, so 
long as the number of checkmarks enclosed is a power of two. 

4. For each loop, write an unduplicated list of the terms which appear; i.e. no matter 
how many times A appears, write down only one A. 

5. If a term and its complement both appear in the list, e.g. both A and A , delete 
both from the list. 

6. For each list, write the Boolean product of the remaining terms. 
7. Write the Boolean sum of the products from Step 5; this is the simplified 

expression. 

Karnaugh Maps for Expressions of Two Variables 
 
 Start with the expression BAAB + .  This is an expression of two variables.  We draw a 
rectangle and divide it so that there is a row or column for each variable and its complement.   
 
 Next, we place checks in the boxes that represent each of the 
product terms of the expression.  The first product term is AB, so we 
place a check in the upper left block of the diagram, the conjunction 
of A and B.  The second is BA , so we place a check in the lower left 
block.  Finally, we draw a loop around adjacent pairs of checks. 
 
  The loop contains A, B, A, and B .  We remove one A so that 
the list is unduplicated.  The B and B  "cancel," leaving only A, 
which is the expected result: ABAAB =+ . 

 Let us try a slightly more interesting example: simplify BABABA ++ .  There are two 
variables, so the rectangle is the same as in the first example.  We perform the following steps: 
 

• Place a check in the BA  area. 
• Place a check in the BA  area. 
• Place a check in the BA  area. 
• Draw loops around pairs of adjacent checks. 

 

B

B

A A

Figure 1.  Karnaugh map for 
BAAB + .
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Figure 2.  Karnaugh 
map for BABABA ++  

AB AB AB AB

C

C

Figure 3.  Form of a Karnaugh map 
for expressions of three variables. 

A B C

The Karnaugh map appears in Figure 2.  Because there are two loops, there 
will be two terms in the simplified expression.  The vertical loop contains A , 
B, A , and B .  We remove one A  to make an unduplicated list.  The B and 
B  cancel, leaving the remaining A . From the horizontal loop we remove the 
duplicate B , then remove A and A  leaving only B  in the second term.   We 
write the Boolean sum of these, and the result is BA + , so:  
 BABABA ++  =  BA +  
 

Expressions of Three Variables 
 
  Recall that an essential characteristic of a Karnaugh map is that moving one position 
horizontally or vertically changes one and only one variable to its complement.  For expression 
of three variables, the basic Karnaugh diagram is shown in Figure 3. 

 
 As with the diagram for two variables, adjacent squares 
differ by precisely one literal.  The left and right edges are 
considered to be adjacent, as though the map were wrapped 
around to form a cylinder.  
 
 Now we'll work through a complete example, starting 
with deriving a circuit from a truth table using the sum of 
products method, simplifying the sum of products expression, 
and drawing the new, simpler circuit. 
 
Truth Table       Product  Sum-of-Products    Digital Logic 
         Terms  Expression     Circuit 
A B C X  
0 0 0 1 CBA  
0 0 1 0  
0 1 0 0  
0 1 1 1 CBA  
1 0 0 0  
1 0 1 0  
1 1 0 0  
1 1 1 1 A B C 
 
 a)     b)     c) 
Figure 4.  a) A truth table with product terms, b) the resulting sum-of-products expression, and c) the equivalent 
digital logic circuit. 
  
 

CBACBACBA ++  

A A

B

B
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C

C

AB AB AB AB

Figure 5. Simplifying 
CBACBACBA ++  with a 

Karnaugh map. 

A B C

A B C

The truth table in Figure 4a generates an expression with three 
product terms, as shown in Figure 4b.  A measure of the complexity 
of a digital logic circuit is the number of gate inputs.  The circuit in 
Figure 4c has 15 gate inputs.  The Karnaugh map for the expression 
in Figure 4b is shown at the right.  In this Karnaugh map, the large 
loop surrounds CBA  and CBA ; note that it "wraps around" from 
the left edge of the map to the right edge.  The A and A  cancel, so 
these two terms  simplify to BC.   
 
 CBA is in a cell all by itself, and so contributes all three of its terms to the final 
expression.  The simplified expression is CBACB +  and the 
simplified circuit is shown in Figure 6.  In the simplified circuit, one 
three-input AND gate was removed, a remaining AND gate was 
changed to two inputs, and the OR gate was changed to two inputs, 
resulting in a circuit with ten gate inputs. 
 
 Let’s consider another example.  The truth table in Figure 7a  
generates a sum-of-products expression with five product terms of 
three variables each.  The sum-of-products expression is shown in 
Figure 7b.  The digital logic circuit for this expression, shown in  
Figure 7c, has nine gates and 23 gate inputs.  The Karnaugh map for  
this expression is shown in Figure 8. 
 
Truth Table       Product  Sum-of-Products    Digital Logic 
         Terms  Expression     Circuit 
A B C X  
0 0 0 0  
0 0 1 0  
0 1 0 1 CBA  
0 1 1 1 CBA  
1 0 0 0  
1 0 1 1 CBA  
1 1 0 1 CBA  
1 1 1 1 A  B C 
 
 

 a)    b)     c) 
Figure 7.  a) A truth table with product terms, b) the resulting sum-of-products expression, and c) the equivalent 
digital logic circuit. 
 

Figure 6.  Simplified circuit for the 
truth table of Figure 4a. 

CBACBA

CBACBACBA

++

++
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Figure 8.  Karnaugh map for the 
expression of figure 7. 

A

B
C

Figure 9.  Simplified circuit 
equivalent to Figure 7c. 

AB AB AB AB

C

C

AB AB AB AB

C

C

Figure 10.  Karnaugh map showing a 
redundant loop. 

 

 After removing duplicates, the large loop contains A and A  
and also C and C ; these cancel.  All that's left after removing the 
two complement pairs is B.  The small loop contains B and B , 
which are removed, so it yields AC.  We have simplified the 
expression in Figure 7b to B+AC. 

 
 The circuit for B+AC is shown in Figure 9.  We have 
simplified the circuit from nine gates and 23 inputs to two two-input 
gates.  This is a substantial reduction in complexity.   

 
 
 
 

Getting the Best Results 
 
 For maximum simplification, you want to make the loops in a Karnaugh map as big as 
possible.  If you have a choice of making one big loop or two small ones, choose the big loop.  
The restriction is that the loop must be rectangular and enclose a number of checkmarks that is a 
power of two.  
 
 When a map is more than two rows deep, i.e. when it represents more than three 
variables, the top and bottom edges can be considered to be adjacent in the same way that the 
right and left edges are adjacent in the two-by-four maps above. 

 
 If all checkmarks in a loop are enclosed within other loops 
as well, that loop can be ignored because all its terms are 
accounted for.  In the Karnaugh map in Figure 10, the vertical 
loop is redundant and can be ignored. 
 

Sometimes not all possible combinations of bits 
represented in a truth table can occur.  For example, if four bits are 
used to encode a decimal digit, combinations greater than 1001 
cannot occur.  In that case, you can place a “D” (for “don’t care”) 
in the result column of the truth table.  These D’s may be treated 
as either ones or zeroes, and you can place check marks on the map in the D’s positions if doing 
so allows you to make larger loops. 
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One General Form for a Karnaugh Map 
 
  There are several possible forms for a Karnaugh map, including some three-dimensional 
versions.  All that is required is that a movement of one position changes the value of one and 
only one variable.  We have shown a form for maps of two and three variables.  Below are maps 
for four and five variables. 

 

 

A Notation Reminder  
 
The Boolean product of two variables is written as AB, A∧B or A·B; the variables are combined 
using the AND function. 
 
The Boolean sum of two variables is written as A+B or A∨B; the variables are combined using 
the OR function. 
 
The complement of a Boolean variable is written as A ; it is evaluated using the NOT function. 
 
The product, sum, and complement can be applied to expressions as well as single variables.  
Parentheses can be used to show precedence when needed. 
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Figure 11.  One form of the Karnaugh map for expressions of four and five variables. 
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Exercises 
 
1. Verify that the circuit in Figure 9 is equivalent to the circuit in Figure 7c by deriving the 

truth table for the circuit in Figure 9 and comparing it to Figure 7a. 
 

2. Sketch a Karnaugh map for expressions of six variables.  Hint: See Figure 11. 
 

3. The truth table for binary addition has three inputs: the addend, the augend, and the carry in.  
The output has two parts, the sum and the carry out.  Write the truth table for the sum part of 
binary addition.  Use a Karnaugh map to simplify the expression represented by this truth 
table.  Hint: This is a sneaky question, but you will learn a lot about the power of Karnaugh 
maps. 
 

4. Write the truth table for the carry part of binary addition.  Use a Karnaugh map to simplify 
the sum-of-products expression which this truth table produces. 
 

5. Use a Karnaugh map to simplify CBACBACBA ++ . 
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