b4 4//

Aiaal) Ll and

i oAl Adad J3(L,

Cilucal )

(JJY‘M



Glualy ) : 3okl S DA B P PPN
oY) Ads A< S/ Al agaall
& sl 30 el Clsil)

& |t |o

3

dalall ga:iJ..\S Cm d-ﬁ@ﬂ

oA Aunigll g all 8 Leia BalaiuY) g daleal) cilipdaill & lucaly ) aladiul & Qlllal) 4lSa) ) gk
b Glaiaie J&&3 e Aalial) Sldanall g daaly Hl1 il g8l g Y alaal) Jiiad 8 2R (3 phal) llal) alas
Loy o g adl s it Cillabadall (e Adlida &) 5l g Sy sy

Gl ydall £ sai)

haanall e il el S Ak Agadll Y alaal U 2

il lileal) 2l Al el il 3

(AT bl Gl deatiall (ulie 4

Ao e Sl Adlall AT calaBlal) o 4L ) sal) 2d1al) 5

131 il ) g, Ay A1) 6

Ll siall 8

AL ac s Al Joalal 9

Ll ) all ol el Al @l) Al Agaidl J) sl 10

A e I J) gall daide AT ) sal) daidia 11




00 30 1l Adie dons¥ 1 A A 5

Sl 5 il g A yuadl 3 gl 5 el Aol AR ks 13

Sl le slll 5 ansY) 14

RO[PRFNPREPEPE LAk 15

Ll e Jalsill Jalsil) 16

B 5 Ay J)sal) JulS 17

ominiall G dabiall] Saiell st daluall saaall el ciliadad sasall Jalsil) 18

- gniall o Jsha Al ) sall o gaall 19

CAaia g AL 5l Gl 20

Al G sl Jaliis JalSill B ddle 35k 22-21

Aoad e dlll 5 A 5 a0 jall ) sl aladnl 23

L aiall 4k sacld | JalSal) 8 Al (3 )kl 24

bl Auilaiall g Alagiall Aloalidl) Y alad) Ja 25

. i ddadi Ua gl o) e dad alayl 26

_M’t__\ﬂ’c)la,@;, LS‘)AM dac ) 27

sl s s gl dpdadll Aspall 28

S sl o) Sall & paall Ay ) SE ey 5 6l dilaa) Cililaall 30-29




_:‘_)JLAAAM

Cpsddlal -]

(ki) Cilusly ) agiall QUSl 22

. <US Calculus Tomas -3

Advanced mathematics -4

Advanced Engineering Mathematics -5
By: Erwin Kreyszig

Mathematics for Electrical Engineering -6

By: Mary Attenborough



- QA&‘J Jo¥) £ sa)

- O e 1,0 Qllall g San —1palad) Caagll

\.@_sa\j;j dadaall K& (_Ac 8 -2
gl clilaall 8 Basall 5 4 sienall ariing-3

-l syl
A5 araall Ja (S 48y yha oS /24




Lageal 6d — Clddaall — cild ghuaall
Matrices Cild ghanall

Properties involving Addition. Let A, B, and C be mxn matrices. We have
(9) A+B =B+A

2. (A+B)+C = A + (B+C)

A+0=A4
3
where O is the m x n zero-matrix (all its entries are equal to 0);
4,
A+B=0

if and only if B = -A.

Properties involving Multiplication.

1.
Let A, B, and C be three matrices. If you can perform the products AB, (AB)C, BC, and A(BC),
then we have
(AB)C=A(BC)
Note, for example, that if A is 2x3, B is 3x3, and C is 3x1, then the above products are possible
(in this case, (AB)C is 2x1 matrix).
2.
If cvand  are numbers, and A is a matrix, then we have
a(fA) = (af)A
3.
If isanumber, and A and B are two matrices such that the product A - Bis possible, then
we have
a(AB) = (aA)B = A(aB)
4,

If A is an nxm matrix and €2 the mxk zero-matrix, then

AO=0



Note that Ais the nxk zero-matrix. So if n is different from m, the two zero-matrices are
different.

Properties involving Addition and Multiplication.

1.
Let A, B, and C be three matrices. If you can perform the appropriate products, then we have
(A+B)C=AC +BC
and
A(B+C) = AB + AC
2.

If tkand  are numbers, A and B are matrices, then we have

o(A+ B) = aA + B

and

(a+f)A=aA+ A

Example. Consider the matrices
(01 [ 2 B
A_(_lﬂ),B_(_l),and{?—(Ul 5).

Evaluate (AB)C and A(BC). Check that you get the same matrix.

Answer. We have

SO

0 -1 =5
0 -2 -10 )°

I
o,

um0=(j)(015)

On the other hand, we have



SO

0 1\[(0 2 10 0 -1 =5
A{BC)=(—1 0)(0—1 —5)=(u—2 —10)'

Example. Consider the matrices

=

X=|15 ,ade:(ar 8 v ’}f).

It is easy to check that

and

V=o(1000)+3(0100)+r(00 1 0)+y(00 0 1).

These two formulas are called linear combinations. More on linear combinations will be discussed on
a different page.

We have seen that matrix multiplication is different from normal multiplication (between numbers).
Are there some similarities? For example, is there a matrix which plays a similar role as the number 1?
The answer is yes. Indeed, consider the nxn matrix



(10 0 --- 0
010 ---0
001 -0

\ 000 - 1)

In particular, we have

10
Ig=(0 1) ﬂIldIg=

=S
== o
=

The matrix Iy has similar behavior as the number 1. Indeed, for any nxn matrix A, we have
A In = In A=A

The matrix I, is called the Identity Matrix of order n.

Example. Consider the matrices

Then it is easy to check that
AB =1, and BA = I,.

The identity matrix behaves like the number 1 not only among the matrices of the form nxn. Indeed,
for any nxm matrix A, we have

I,A=A and AL, = A.



Determinants <l ddaall
¢ sagl S Al ey Adadl) el s

The determinant of a square matrix is a number which is quite useful in the theory of equations and
can be computed in a straightforward manner.

2w 2
Definition 1.6.1 The determinant of the matrix

Example 1 Calculate the determinant of the following matrices.

12 ~1 2 1
0 3 17 3 _3
(@ (b) (c)

Solution

(@)
aet [ %) =3.1-2.0=3
D 3

-1 2
det (_1 T) =(=1)7 — (=1)2=—5

(b)

1 _ _
det (_3 _3) =1(-3)—i(-3)=—-3+3i

o 2x 2 _ det Anwn _
Our definition of det A fora matrix allows us to calculate by reducing the problem

2x 2
to several determinants of matrices. In the definition, we show an example alongside.

nXmn A,det A
Definition 1.6.2 For an matrix is the number which can be calculated in the

following way:
1.

R51 @iz Byay... o0 . L
Choose any row of A, say, ", Lo “(row i, where 1is arbitrarily chosen).



Mi; (n—1) % (n—1)
Let i'bethe

. : ) 7
matrix obtained from Aby crossing out the zth row and
th column of A

3.
det A = (— 1) a; det M;y
+ (~1)"*%a;, det My,
+ {_1 )i+ﬂﬂ'in dEt *-F"Iin
1 -2 2
A= 4 1 -3
2 1 1
Consider
1.
1 -2 2
4 1 -3
2 1 1
Choose row 2:
2.
-2 2
M. =
21 1 1 )
1 2
Moan =
22 2 1)
1 -2
Mo =
= 0 1)
3.

det A = (—1)%4(—2— 2)
+(-1)*1(1-4)
+(-1)°(=3)[1 — (—4)]

—16— 3415 =28

or the number can be calculated in an alternative way:
1.

Choose any column of A, say,

@15

ﬂ-Zj

By



1.7 .
(column "~ arbitrary).

2.
M;; .
Let be as in 2 above.
3.
det A = [—1}1+jﬂ1j det My
+ (= 1) o, det My,
1.
1 -2 2
4 1 -3
2 1 1
Choose column 3:
2.
4 1
M, =
13 2 1 )
1 =2
Mag =
= 2 1
1 =2
Mag =
= 4 1
3.
detA = (—1)*2(4—2)
+(—1)°(=3)[1 — (—4)]
+ (—1)°1[1 — (—8)]
=44154+9 =28
- n >< n - - - :l:l - -
Note that the determinant of an matrix is defined as a sum of times determinants of
(n—1)x (n—1) _ _ ) +1
matrices. Each of those determinants is calculated as a sum of times
(n—2) % (n—2)
determinants of matrices. Continuing this process, we work down to determinants
2x2
of matrices, which we know how to compute. It is not at all obvious (but true) that det A is

independent of the choice of row or column for calculation. The determinant is not defined for
nonsquare matrices.



Example 2 Calculate

1 2 -1
det | 4 1 0
3 -1 0

(9) by choosing a row and (b) by choosing a column.

Solution First we show a simple way to remember whether to write +10r 1in using the definition.
211 E_l}l-'_l =+1 -1
For , ; when we move to the right or down, we have a sign of  since
(=1 ()=l
and . That is, the sign changes as we move one row up or down, or

3x3
one column left or right. So for a matrix the signs are

(@)
Use the second row. This is preferable to using row 1 because the zero entry will be multiplied
by another determinant, which will give a zero. Using the second row (see Fig. 1.6.1) gives

to2 -l 27 —1 1 -1
det| 4 1 o0 | =—4det - 4 1det -
: 1 o -1 0 3 0

—0det 1 2
3 -1

= —4(-1)+1(3)-0

=7
1 2 -1
4 1
det| 4 0 1 =+|:—1}det(3 1)
3 _1 0 B

—l:lc]_et.(:L 2)—|—Clriet(1 2)
=1 —1 4 1

=-1(-7)-040=7

(b)



Use column 3 since it has the most zeros.

Example 3 Calculate

1 -2 4 0

et - 0 3
-1 1 -4 0

0 3 2 1

+ - + -
-+ - +
+ - + -
- 4+ - +
So
1 -2 4 0
7 3 0 3 1 -2 4
det L1 4 o =43det| -1 1 -4
B B 0o 3 2
0 3 21 . - .
Use column 1
1 -2 4
+1det T 3 0
-1 1 -4

Use column 3

=3[1de1:(1 _4]—[—1}de‘c(_2 4)]
3 2 3 2

7 3 1 -2
afuan( 1) ecnne(2 )

= 3[14 + (—16)] + [4(10) — 4(17)] = —34

Example 4 Solve



3I1-Iz+I3= 4

ri+x2+x3 = 6

Il — Iz— 1'3 = —4
by using Cramer’s rule
Solution First we calculate det A :
3 -1 1 -1 1
-1 1
detA=det | 1 1 1 = det 1 1 1 =2det( 1 1)=—-=l
1 -1 -1 T 2 0 0
R2z+R3
Now substitute
B = 6
—4
for column 1 and calculate
4 -1 1 4 -1 2
det B 11 det B 1 0
—4 -1 1 —4 -1 0 —4_
= —4 T —4 — 1"
2403
Similarly,
3 4 1 3 0 1
det 1 6 1 det 1 2 1
1 —4 -1 1 0 -1 —8 )
Tz = —4 T _4 — T4

—4024 02



det| 1 1 6 det| 4 0 10
1 -1 4 2 0 2 12,
= 4 T 4 T4
RiTR2

The answer checks, by direct substitution.

4548#‘ Jgﬁi\f\

Problems 1.6
1-Calculate the determinants of the following matrices by using the definition.
3 5 2 1
2 01 0 0 b
1 2 h -2 3 6 -7 1 0O
( 3 -1 ) i 1 2 2 o 3 0
(@) (b) ()
2-Calculate the determinants of the following matrices by using row reduction.
1 -2 0 3
-2 2 1 3 2 4 1 8
3 b 4 6 -1 3 4 1
1 4 7 g8 ¥ 9 2 5 B 10
(@) (b) (©)

3-Evaluate the determinants of the following matrices by using theorems or corollaries or
special structure of the matrix.

1 0 00
1 -1 2 2 4 00 0 1 -3
3 6 10 7T 3 2 0 0 4 -6
1 -1 2 8 6 b 7 0 ¥ 13

(@) (b) (©)



4-Use Cramer’s rule to solve the following systems.
r—2y+ z= 3
3r —2y="i —r— y— 2= 5
dx =8 3r — Tz =-3

5-Show for
1 -1 2
A=1] -3 1
1 2 3

that det A = det AT |

6-Using

A:( 12) B:(z _3)
6 3 711
and

illustrate
det AB = det Adet B

Find values for k& which make the determinant of the given matrix equal to zero.
k-1 2 k—2 5] E 1
1 k 10 E+3 -1 k
(@) (b) (©)

g. Show that detln =1,

9 Show that if AnxnBnxn =1 then det(ACB) = detC (C is nxn),
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Section 1: Vectors (Introduction) 4

Two vectors are equal if they have the same magnitude, the same
direction (i.e. they are parallel) and the same sense.
By

A e
Diagram 2

In diagram 2 the vectors AB and A, B, are equal, 1.e. AB=A,B5,.
If two vectors have the same length, are parallel but have opposite
senses then one is the negative of the other.

As e -
Diagram 3

—_—

In diagram 3 the vectors AB and BsAs are of equal length, are

parallel but are opposite in sense, so AB= — By As.

Quiz
Diagram 4 shows a parallelo-
gram. Which of the following B
equations is the correct one? __— C

! Diagram 4

(a) DA=BC,  (b) AD=—CB, (c¢) AD=CB, (d) DA= — CB.

If two vectors are parallel, have the same sense but different magni-
tudes then one vector is a scalar (i.e. numeric) multiple of the other.



It two vectors are parallel, have the same sense but different magni-
tudes then one vector is a scalar (i.e. numeric) multiple of the other.

In diagram 5 the vector AB 1s par- A_S______E 3 B
allel to Ang,, has the same sense but A,
is twice as long, so AB 2 A333 Diagram 5

In general multiplying a vector by a positive number A gives a vector
parallel to the original vector, with the same sense but with magnitude
A times that of the original. If X is negatwe then the sense 1s reversed.

Thus from diagram 5 for example, Ang— —= BA

2. Addition of Vectors

In dl‘a”‘l am 6 the three vectors given by C

AB BC and AC make up the sides of a tri-
angle as shown. Referring to this diagram, the
law of addition for vectors, which is usually

known as the triangle law of addition, is B
AB + BC=AC. A
The vector AC' is called the resultant vector. Diagram 6

Physical quantities which can be described as vectors satisfy such
a law. Omne such example 15 the actmn of forces. If two forces are

represented by the vectors AB and BC’ then the effect of applying
both of these forces togetheris equivalent to a single force, the resultant

foree, represented by the vector AC.

One further vector is required, the zero vector. This has no direction
and zero magnitude. It will be written as 0.



Example 1 (The mid-points theorem)
Let ABC be a triangle and let D

be the midpoint of AC and E be D B
the midpoint of BC'. Prove that

DE is parallel to AB and halfits A B
length i.e. |AB| = 2|DE|. Diagram 7

Proof
Since ) is the midpoint of AC, it follows that AC= 2 D(C'. Similarly

CB=2 CE. Then
AC+CB = 2DC +2CE
= 2(DC + CE).

Now AC+CB=AB and DC + CE=DE.

Substituting these into the equation above gives AB=2 DE .
Since these are vectors, AB must be parallel to DE and the length of

3. Component Form of Vectors

. C
The diagram shows a vector OC' at an angle
to the r axis. Take i to be a vector of length 1 }l i
(called a unit vector) parallel to the x axis and
in the positive direction, and j to be a vector L
of length 1 (another wnit vector) parallel to O iR A
the y axis and in the; pomEve dliEEt-]GH. B Diagram 8
From diagram 8, OC=0A + AC'. The vector QA is parallel to the

vector i1 and four times its length so O A= 4i. Similarly AC= 3j. Thus

the vector OC may be written as
OC=4i+ 3j.
This is known as the 2-dimensional component form of the vector. In



To find the sum a + 2b with

a=-1+3jandb=2i+3j,

first find the vector 2b:

2b=2x(2i+3))=4i+6j.

The vector a + 2b is now found by adding the corresponding components
of each vector. The resulting vector is thus

a+2b=(-i+3j)+ (4 +6j)

=(-1+4)i+(3+6)j=31+9;.

To find the vector 2b — 3a with

a=—-1+3jandb=2i+3j,

first find the vectors 2b and 3a:

2b=2x(2i+3))=4i+6j,

3a=3x(-1+3))=-3i+9j,

The vector 2b—3a is now easily found by subtracting the components
of these vectors:

2b —3a=(4i +6j) — (-3i +9j)

=(4+3)i+(6-9)j=7i—3j

To find the magnitude of the vector a + b, first find the sum of the
two vectors

a=—-1+3jandb=2i+3j.

The resulting vector is
atbh=(-1+3))+i+3)=(-1+2)i+B3+3)j=i+6j.

The magnitude of this vector is given by

la+b|=

p

12 +62 =

p
37.

To find |2a—b|, first find 2a—b. The vector a in component form is
given as

a=-1+3j

so the component form of the vector 2a is

2a=2x%x (-1)i+2x 3j=—2i +6j.

The difference between 2a and b = 2i + 3j is the vector
2a—-b=(-2i+6))-Q2i+3)=(-2-2)i+(6-3)j=-4i+3j.



The magnitude of the resulting vector 2a — b is therefore
|2a —b| =

p
(—4)2 + 32 =

P
25=5.

Choose the correct option for each of the following.
Begin Quiz
1.1fa=-2i+4},b=3i—2),c=4i+5jthena+b+cis
(@ -51—7j,()5 -7, (c)-5i+7j,(d)5 +7j.

2. 1fu=-2i+4j,v=3i+2),w=4i+6jthen|u+Vv+w|is
(@5,(b)13,(c)4,(d)15.

3. Ifu=—i+3jand v = i+2j, then _u+v is parallel to w = —i+4j
if _is
(@—6,(Mm)6,(c)-5,(d)5.
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Important relationship between the
sine and the cosine

From Pythagoras’s theorem, looking at the diagram in Figure 5.4, we
have x? + y* = r2. Dividing both sides by r* we get:

¥ %
x- N - |
22

and using the definitions of

x
coslx) = —
r

we get

and sin(x) =

= |t

{cus{a}]z + {Siﬂ{&}}z =1

and this is written in shorthand as

CDSZ{Q} + Sinz[l:t'} =1

o) ’
where cos“(a) means (cos(x))~.

Figure 5.8 (a)sin(e) = a/r
and cos(90° —w) = a/r. Then
cos(90° — w) = sin(w). As the
cosine is an even function
cos(90° —a) =
cos(—(90°—w)) = cos(e—90°)
which confirms that

cos(e — 907) = sin(w).

cos(e) = b/r and

sin(90* —a)=b/r, so

cos(o) = sin(90° — ).

sin (I + 5) = cos(i)
T .

cos (I — 5) = sin(f).

Other relationships can be shown using triangles as in Figure 3.8 giving
o . . T

cos (or — 5) = sinf{e) and sin (i — ar) = cos(®).

From Pythagoras theorem we also have that
a’ + b= rz._
dividing both sides by r? we get

> ]
a“ b~
2 2

=1,
r

and using the definitions of sin(e) = a/r and cos(a) = b/r, we get

cosg(a} + sin®(ce) = 1.

Rearranging this, we have cosf{e) = 1 — sinz(ar) or sinz(ar) =1-
cos? ().
Example Givensin(A) = 0.5and 0 < A < 907, use trigonometric

identities to find:
(a) cos(A)

(b) sin(90° — A)
(c) cos(90° — A).



(a) Using CDSE{H] =1- Siﬂziz"'l] and sin(A) = 0.5

= cos’(A)=1— (0.5 =075

& cos(A) = +0.866.
As A is between 0% and 90°, the cosine must be positive giving
cos(A) == 0.866.

(b)  Assin(90° — A) = cos(A),sin(90° — A) == 0.866.
(c) Ascos(90° — A) =sin(A),cos(90° — A) = 0.5.

The functions Acos(at + b) + B and
Asin(at+ b) + B

The graph of these functions can be found by using the ideas of Chapter 2
for graph sketching.

Example Sketch the graph of y against t, where

2n
v =2cos (EI + T)

The stages in sketching this graph are shown in Figure 5.9.

¥ A
i
/ ¥ = cos(r)
{a) /0'5 i
-Ilﬂ- —; o ; |{I}
—0.5
_1 -
v A
b ¥ = COs (! —n)
Figure 5.9 Sketching the 0.5+
graph of 2 cos(2t + 2x/3): (a) (b)
start with y = cos(); (b) shift
to the left by 27 /3 fo give Y x Py O z 10
¥ = cosit + (27 /3)), (c) -5 ]
squash the graph in the t-axis 05
to give ¥y = cos(2f + (27 /3));
(d) stretch the graph in the
y-axis giving i
v = 2cos(2f + (27 /3)).



Summary of important frigonometric

cos{A £ B) = cos(A)cos(B) Fsin{A)sin(B)
sin(A £ B) = sin(A) cos(B) £ cos(A) sin(B)
tan(A) £ tan(B)
1 Ftan(A) tan(B)
sin(X) +sin(Y) =2sin (1(X + ¥))cos ($(X - Y))
sin(X) —sin(Y) =2cos (3(X + Y))sin (F(X = Y))
cos(X) + cos(Y) = 2cos (§(X + Y))cos (3(X — Y))
cos(X) — cos(Y) = —2sin (H(X + ¥))sin (X - Y))
sin(24) = 2 sin(A) cos(A)
cos(2A) = cos?(A) — sin®(A)
) 2tan(A)
tan(24) = 3 —tan(A)
cos(2A) = 2cos?(A) — 1
cos(2A) = 1 — 2sin°(A)
cos?(A) + sinZ(A) = 1
cos?(A) = 1(cos(24) +1)
sin®(A) = %H — cos(24))

cos (A — %] = sin(A)

tan(A+ B) =

sin (A + g) = cos(A)

Example Using cos(2A4) = cos*(A) — sin?(A) and cos?(A) +
sin®(A) = 1, show that cos?(A) = %[CDS{EH} + 1).

Solution From cos?(A) + sin?(A) = 1, sinf(A) = 1 — cos?(A)
(subtracting cos2( A) from both sides).
Substitute this into

cos(2A) = CDSE{A} — sinz[ﬂ}
cos(2A) = cos?(A) — (1 — cos?(A))
& cos(2A4) = cos?(A) — 1 + cos?(A)
< cos(2A) = ECGSE{A] —1
< cos(2A)+ 1= Zcoszfﬁj (adding 1 on to both sides)
= coszfﬁj = %[CDS{Z:"!} + 1) (dividing by 2)
Hence

CDSE[A} = %{cos[ﬂ:‘i] +1)
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Find the values that cannot be input to the following
functions, where the independent variable (x or r) is real:

fa) y=3Jx=2+3
(b) y=3log(2 —4x)
r+ 1000

© R=T000-2
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The
hyperbolic
functions

L) 31 ) sl

Any function defined for both positive and negative values of x can be
written as the sum of an even and odd function. That is, for any function
v = f(x) we can write

Flx) = felx) + folx)

where

iy = L+ 1)
and

oy = L1

The even and odd parts of the function e* are given the names of hyper-
bolic cosine and hyperbolic sine. The names of the functions are usually
shortened to cosh(x) (read as ‘cosh of x’) and sinh(x) (read as ‘shine
of x').

e' = cosh(x) + sinh(x)
and

X —X I _a T
cosh(x) = %, sinh(x) = c ‘)e

They are called the hyperbolic sine and cosine because they bear the same
sort of relationship to the hyperbola as the sine and cosine do to the circle.
When we introduced the trigonometric functions in Chapter 5 we used
a rotating rod of length r. The horizontal and vertical positions of the
tip of the rod as it travels around the circle defines the cosine and sine

function, respectively. A point (x, ) on the circle can be defined using
x = rcos(a),y = rsin{ax). These are called parametric equations for
the circle and « is the parameter. If the parameter is eliminated then we
get the equation of the circle

2 e
i — =1
2R
(shown in Figure 8.4(a)). Any point on a hyperbola can similarly be
defined in terms of a parameter, o, and thus we get x = a cosh(w) and
v = bsinh(w).

If the parameter is eliminated from the equations we get the equation
for the hyperbola as

2 !



Figure ¥.3(b) shows the graph ot the hyperbola.
The function y = tanh(x) is defined, similarly to the tan(x), as

sinh(x)

tanh(x) = cosh(x)

and the reciprocal of these three main functions may be defined as

cosech(x) = Sh (D) (the hyperbolic cosecant)
sech(x) = cosh (o) (the hyperbolic secant)
coth(x) = mnllux} (the hyperbolic cotangent)

The graphs of cosh(x), sinh(x), and tanh(x) are shown in Figure 8.6.

{a) ¥4 {b)

1 a2 _ "
_\rms{u], rsin(e)) il 1

{acoshic), &sinh(o))

Figure 8.5 (a) x = rcos(a), y = rsin(x) defines a point on the circle x®/r®> + y?/r® = 1. (b) x = acosh(a)
and y = bsinh(x) defines a point on the hyperbola x*/a® — y?/b® = 1.

Table 8.2 Summary of important hyperbolic identifies

coshix) = (e* + e ¥)/2

sinh(x) = (e* —e %)/2

tanh(x) = sinh(x)/ cosh(x) = (e* —e *)/(e* +&¥)
cosh(x) + sinh(x) = e*

cosh({x) —sinh(x) =e™*

cosh{A = B) = cosh{A) cosh(B) £ sinh(A) sinh(E)

sinh(A = B) = sinh(A) cosh(B) £ cosh(A) sinh(B)

tanh(A £+ B) = (tanh{A) £ tanh(B))/(1 £ tanh(A) tanh(B))




{a) K (by Vi (4] ¥4

Figure 8.6 (a) The graph of y = cosh(x). (b) The graph of y = sinh(x). (c) The graph of y = tanh(x).

As the hyperbolic functions are defined in terms of the exponential
function we might suspect that the inverse would be defined in terms of
the logarithm. The logarithmic equivalences are

sinh '(x) =In(x + Vx2 +1) forallx
cosh™!(x) = In(x+vx2—-1) x=1

1 I +x
tanh“'(.r):iln( +A') —l=x=<1

l —x

Ex Show that sinh™'(x) = In(x + VaZ+1) using the
definitions

y= sinh™! (x) < sinh(y)=x

and

sinh(y) =



Hyperbolic identities

The hyperbolic identities are similar to those for trigonometric functions.
A list of the more important ones is given in Table 8.2.

Example 8.8 Show that cosh(A + B) = cosh(A)cosh(B) +
sinh(A) sinh( B).

Solution Substitute

A —A
cosh(A) = %
A_ ,—A

sinh(A) = c ;
B —B
cosh(B) = i
el _ g8
sinh(B) = —

into the right-hand side of the expression

coshiA) cosh(B) + sinh(A) sinh( B)

et re M Efre Byt —e ) (ef —e )
o 2 2 2 2 )

Multiplying out the brackets gives
Zli (EA+E _I_EA—B + e—A+B + e (A+B)

S (eAtB _oA—B _ o—A+B e—m+s};) )
Simplifying then gives

:Ii{\ze.-"l+3 + EE—{A—l—E}J — 111.—[6‘4_'_3 +e—[.-‘1-+5‘]]
which is the definition of cosh(A 4+ B).
We have shown that the right-hand side of the expression is equal to

the lefi-hand side. and therefore

cosh({A + B) = cosh({A) cosh(B) 4+ sinh{A)sinh(B).



Calculations

The hyperbolic and inverse hyperbolic functions are often not given in a
calculator. To calculate a hyperbolic function then use the definitions

cosh(x) = #
sinh(x) = _2

: X _ X
tanh(x) — sinh(x) et —e

cosh(x) e e

To calculate the inverse hyperbolic functions use their logarithmic
equivalences.

sl LAY

1- Using the definitions of

cosh(x) = #
and

_ X _ X
sinhix) = 2
show that

(a) cosh’(x) — sinh’(x) = 1
(b) sinh{x — v) = sinh(x) cosh{y) — cosh(x) sinh(y)

2- Calculate the following and where possible use the
appropriate inverse functions to check your result:

va) cosh(2.1) (b) tanh{3)
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A function f(z) is said to have the limit / as z approaches a point z;, written

(1) lim f(z) =1,

2’—+Zu
if f is defined in a neighborhood of 7, (except perhaps at z, itself) and if the values
of f are “close™ to [ for all z *close™ to z,; in precise terms, if for every positive real €
we can find a positive real & such that for all z # 7, in the disk |z — z¢| < & (Fig. 330)
we have

(2) If(z) — 1] < e;

geometrically, if for every z # zp in that -disk the value of f lies in the disk (2).
Formally, this definition is similar to that in calculus, but there is a big difference.
Whereas in the real case, v can approach an x, only along the real line, here, by definition,
z may approach z; from any direction in the complex plane. This will be quite essential
in what follows.
If a limit exists, it is unique. (See Team Project 26.)

A function f(z) is said to be continuous at = = z; it fizy) is defined and

(3) lim f(z) = f(zg).

T—=Iy

Note that by definition of a limit this implies that f(z) is defined in some neighborhood

of Z0-
fiz) 1s sand to be continuous in a domain if 1t 1s continuous at each point of this domain.

y v
"——\>___\._ 21 el
’ 200N e 2 SRR Pl s
/ \ T e N
'I \ / Rl YN \\
\\‘5/080 , l/ 0 A
/ I - flzy
| \\\ ’// 1\‘_/_#/0’ ’l
| \
A
/
- \\ P u
-~ -

Fig. 330. Limit



Derivative

The derivative of a complex function f at a point z, is written f'(zo) and is defined by

f(z + A7) = f(zo)
Az

4) f'(z0) = lim

provided this limit exists. Then f is said to be differentiable at z,. If we write Az = 2 — 2.
we have z = 75 + Az and (4) takes the form

@) f'(z0) = lim J@) — {(zo) .

iy " 20

Now comes an important point. Remember that, by the definition of limit. f(z) is defined
in a neighborhood of z; and z in (4) may approach zg, from any direction in the complex
plane. Hence differentiability at z, means that, along whatever path z approaches z,, the
quotient in (4") always approaches a certain value and all these values are equal. This is
important and should be kept in mind.

EXAMPLE 3 Differentiability. Derivative

EXAMPLE 4

The function f(z) = =2 is differentiable for all = and has the derivative f'(z) = 2z because

o = tim 2 L S N S 7L (03 e s -
H=m —F———— = 1lim = lm (2; + A7) = 2;.
f A:—0 Az Az—0 Az Az—D )

The differentiation rules are the same as in real calculus, since their proofs are literally
the same. Thus for any analytic functions f and g and constants ¢ we have

L)’ _Fa=1

g 2

hH =cf'. F+0' =f +g. (fa) =f'g + fg', ( F

as well as the chain rule and the power rule (z™)" = nz"~! (n integer).
Also, if f(z) is differentiable at z,, it is continuous at z,,. (See Team Project 26.)

z not Differentiable

It may come as a surprise that there are many complex functions that do not have a derivative at any point, For
mstance. f(z) = Z = x — iy is such a function. To see this, we write Az = Ax + Ay and obtain
fe+Ad—-f2) G+An-F Az Ax—ily
=3 | S el S ooy e
Az Az Az Ax + Ay *

(3)

If Ay = 0, this is +1. If Ax = 0, this is — I, Thus (5) approaches +1 along path I in Fig. 331 but —1 along

path II. Hence. by definition, the limit of (5) as Az — 0 does not exist at any z. o
v
"f —————— Oz + Az
|
I
{ L_J.
z
|
X

Fig. 331. Paths in (5)



PROOF

By assumption, the derivative f'(z) at z exists. It is given by

flz + Az) — f(2)
Az .

e Fea=ln,

The idea of the proof is very simple. By the definition of a limit in complex (Sec. 13.3)
we can let Az approach zero along any path in a neighborhood of z. Thus we may choose
the two paths [ and IT in Fig. 332 and equate the results. By comparing the real parts we
shall obtain the first Cauchy-Riemann equation and by comparing the imaginary parts the
second. The technical details are as follows.

We write Az = Ax + iAy. Then z + Az = x + Ax + i(y + Ay), and in terms of « and
v the derivative in (2) becomes

B o =1 [ulx + Ax, y + Ay) + iv(x + Ax, y + Ay)] — [u(x. y) + iv(x, »)]
S R A Ax + iAy :

We first choose path I in Fig. 332. Thus we let Ay — 0 first and then Ax — 0. After Ay
is zero, Az = Ax. Then (3) becomes, if we first write the two u-terms and then the two
u-terms,

i e WE T Ax, y) — ulx, y) c o ulx+ Ax,y) — v(x, y)
1@ =8, A + T -

Fie. 332. Paths in (2)



Since f'(z) exists, the two real limits on the right exist. By definition, they are the partial
derivatives of « and v with respect to x. Hence the derivative f '(z) of f(z) can be written

(4) 1'(2) = u; + iv,.

Similarly, if we choose path I in Fig. 332, we let Ax — 0 first and then Ay — 0. After
Ax is zero, Az = iAy, so that from (3) we now obtain

Py gy DEFT00) ZURR) | L PRy — i)

Since f'(z) exists, the limits on the right exist and give the partial derivatives of « and v
with respect to y; noting that 1/i = —i, we thus obtain

(5) '(2) = —iu, + vy,

The existence of the derivative f'(z) thus implies the existence of the four partial
derivatives in (4) and (5). By equating the real parts u, and v, in (4) and (5) we obtain
the first Cauchy—Riemann equation (1). Equating the imaginary parts gives the other. This
proves the first statement of the theorem and implies the second because of the definition
of analyticity. 2

Formulas (4) and (5) are also quite practical for calculating derivatives f’(z), as we shall
S€e.

EXAMPLE 1 Cauchy-Riemann Equations

fx) = % is analytic for all z. It follows that the Cauchy-Riemann eguations must be satisfied (as we have

verified above).

For f(z) = 2 = x — iy we have u = x, v = —y and see that the second Cauchy-Riemann equation is satisfied,
Uy = —Uy = 0, but the first is not: i, = | # v, = —1. We conclude that f(z) = Z is not analytic, confirming
Example 4 of Sec. 13.3. Note the savings in calculation! X

The Cauchy-Riemann equations are fundamental because they are not only necessary
but also sufficient for a function to be analytic. More precisely, the following theorem
holds.
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We can now draw graphs of the functions for all input values t as in
Figures 5.5-5.7.

These are all important examples of periodic functions. To show that
the cos(t) or sin(t) function is periodic, translate the graph to the left or
right by 2z. The resulting graph will fit exactly on top of the original
untranslated graph. 2z is called the fundamental period as translating
by 4z, 67, 87, etc. also results in the graph fitting exactly on top of

the original function. The fundamental period is defined as the smallest
period that has this property and all other periods are multiples of the
fundamental period. This periodic property can be expressed using a
letter, n, to represent any integer, giving

sin(t+ 2zn) = sin(t)

cos(t + 2zn) = cos(t)

/™
S NN A

Figure 5.5 The graph of y = sin(t), where t can take any value.
Notice that the function repeats itself every 2. This shows that the
function is periodic with period 2 . Notice also that the value of sin(t)
is never more than 1 and never less than —1. The function is odd as
sin(—1t) = —sin(t).

s

Figure 5.6 The graph of x = cos(t), where t can take any value.

Notice that the function repeats itself every 2. This shows that the
function is periodic with period 2. Notice also that the value of cosit)




Figure 5.7 The graph of

Z = tan(t), where t can take
any value except odd
multiples of = /2 (for instance
tan(t) is not defined for

t =mn/2,3n/2, 51/2). Notice
that the function repeats itself
every . This shows that the
function is periodic with
period . The function values
extend from —oo to oo, that is,
the range of tan(t) is all the
real numbers. The function is
odd as tan(—t) = — tan(t).
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(@) y= 3cos(t + 1); find the amplitude, frequency, period, angular

frequency, and phase where t is expressed in seconds.

Comparey = 3 cos(t+ 1) withy = Acos(wt + ¢). Then we can see

that the angular frequency w = 1, the phase ¢ = 1, and the amplitude

A = 3. As the frequency, f= w/2x, f= 1/2z, and the period 7 =

1= 1/(1/2xn) = 2xs.

(b) V= 12 cos(314t + 1.6); find the amplitude, frequency, period,

angular frequency, and phase where t is expressed in seconds.

Compare V = 12 cos(314t + 1.6) with V = Acos(wt + ¢). Then

the angular frequency, o = 314, the phase ¢ = 1.6, and the amplitude
A= 12. Asf= w/?2x, = 314/2z ~ 50 Hz, and the period z =1/f = 1/50 =

0.02s.



s dihﬁ\ &JQMY‘

i le sl J)gall dfidie | AT J all A8t

N o T Ut e SLERAMT LB x2 Ul w s y=sinu DIl

P Worivd () (PRE (e Wovéd P P

o=t ()

, dv d(smu) du du
yV=—-=— 2 =cosu—

f
’

 dx du  dx dx
N o I Sl e GLEEMT 1L v2 Ul wdas y=cosu Uldl =31 (Y
dv  d(cosu) du . u
== = —Sinu—
dx du  dx dx

-

h% :si11(2x3 —3) Qi =% 1 LJL-]-.O

v =3x2x% cos(2x” —3) = 6x% cos(2x” —3)

y=cos(20° —3077) LIl ixides st

'.L_"l_—-J'I
u=20°—30" = _ 66" 4 667 Lo
A8
3 =—(66° +667)sin(20° —367) 1]

old M e T Yl e BLEEM 2L x2 Uiy s y =tanu U1 ==l (Y

., dv  dvdu d(tanu) du , du
y=—=——=——"—=sec u—
dx du dx du  dx dx
ol aaly = tanx " colss 13 VA JLe
dx
: |
. d
w=x2= = 9y Lo
dx
, d(tan d _ 5y 9 C.
Vv = g = isec2 u=-2x"sec’ x° 131
dx dx
ol M e T ! e SLEEMI LB ¥ 2 Uiy o y = cotar DI = (8
, dv dvdu d(cotu) du , du
yV=—"T=—"""—"=—_—"—""=—¢Cs¢C u—
dx  du dx du  dx dx



¥y =cot3x Ul Il isnde el t Jlie

'.L_j_—-ﬂ
dut
#=3x—=>—=3 LuJ
dx
,  d(cotu du .
v = ( ):— csc?u =—3csc” 3x Ols aiss

dx dx I

S W e I Jladl le BLEEMW LB ¥ 2 Ul 0ty =seCu DT 2= (0
. dv  dvdu d(secu)du du
== =———"—=—Tlanu secu

‘l = =
dx  du dx du dx dx
y=secx6’2 Al i85 8e Cecan | 8 -Jlin

: el
5 du
u=60"=-—=20 LLJ
dé
, d(cscu) du
"l.‘ = =
“ de
Ol M e I Jlall e BLEMI LG x 2 Uls w ey =cscu DIl = (1
., dv dvdu d(cscu) du du
y =—="——=——"—=——-Cotucscu

Cdy du dx du  dx dx

tanu secu = 20tan 0> sec H” 4ias

y=csex Ul iiiie cownlt  JLie

3 it

U=x = = 3x7 Lo s et

dx

d(cscu dr ) 3 3
y' = ( ) __ cotu ¢cscu =—3x~ cotx” ¢cscx
dx ax

y:csc(ExS —3) Ul iids cewn |t JLlo

|
=25 3= T _oxt L
dx
y'= d(escu) = —ﬁcotu cscu =—10x" cot(2x> —3)ese(2x” —3)
dx dx



L2l g LGN g
¥ &S AL Uy &=y a>0,0#] S y=blog, i Il Lod cdlés 13 1) gl

o Lo s ) Ll o

dy dydu o
—=——=h—log e
& dudyu
y=3logler’) -1 D10 Y1 e+l
s
. 3130x" Jloge 15¢° 15
y:(j 2 = 10ge —loge.: ,Lmﬁwmmwummm
Ox ¥ X
s x 2 LByt y=lnn DL edles 3] 1Y gl
,dy '
=2 opl
ke

p=e Ina b Ol il Y




1) y =sin’ 3x* 5)y =csc® (—7x") 9) y = sin x”
cos” x”
[ 2 5
2) y=xtan- 6)y=vl+cos"x  10) y=sec(2x+1)2
N
3) v= Jx cos 2x 7)y = tan”(x* +1) 11) y = 1
o N
X7 sin” x

4)y= x-'!csc X

) y= 10g3(3x2 —5)
2) y= hl(x - 3_]2

3) y=In*(x+3)

4) y :hl(x2 +2)x? +3) g

) y= (x4 —cot x)3

¢l HLIAY)

S|V BN PRSP B--EA RN |

12) y = (sin x — cos x)2

13) y = sin(cos 2x)
14) y =/1+sinx
15) y = xcot(—4x)

16) y =x cscx

S ol J oW A EL s | 2

x4 9)}' = er

(Bx—4)?
6) f(x)=1In sin3x

5) y=In
10) J" — 53.‘52

7) f(x):ln(xﬂe’nx?) 11) y=x?3"

)y=e?

13) y=¢ "Inx
14) y = ¢ " sin 3x

15) f(x)=Intan e~

16) f(x) =In1-2x



J.«.:I& glm\ &MY\
A 1 ) gl dlidia | A Ad1al) Adidis

h ¥ 19| HLELE g2

o x 2 LA ILB Uy o Eos y=ha” U1 Lood colss 13] 1) jealdds
dy
dt

—ba"Inau’

y=8 paxtanss) cob Lesm Dapall DN 3uil 1 JUe
Y =82 n2(6x+4)=(48x+32)In2 27
e=2,718 (gsbows ulo¥l il L1 A1) 3Ll o ¥ Gedlads

Ol x 2 5 LB U o e y=be" VUl lLdedlss 13

,_dy
y ——']—f')e u'
dt
y=8 e ™ Ll DI Jo¥ ImA el 8 JLe

: |
¥ =8x2e =162 L Lot law 3l A oY1 il

y=-5 5‘"’._;_._11*':.\‘_3&: JLe
Y

'=_5cosxe™® Ole



85ty Jlgadt ol

o e adlall as
[0 - -

......................................







) JLEAY)

1 =8 22x+l Sy Ao \-.jj;ﬁk Fhevivil "‘":"""""“h‘|| : '1-0:’._)‘03

]
- LY

1 )}' :gxg 2) .]-’:E"_I In 2

3) y=5" 4) y=e " sin3x



J.«.:I& Sl &MY\
Sl g Jaaaill g de puadl, 3 pandl 5 Cubaal) Adalas ARLEAL) Cilida

dadilud ) aglas! O¥alae
y=m(x—x)+ ¥ H(dashy LA dolell =5 @
y=mx+b (g sbamll ety LAD Uslall Jm s @
y=mx :(L_j.m:}” Aot s daadl) dslell =l @
y=b (e (gsbas JulDm0YI Ll o
xX=a :(J)_._ahtéd_‘.__l.1)‘_';_~_9_a_dh_l;_~‘..._ﬂ (]

Subelalig Ayl gl | davdilad | Jaglackt | . 7\
% C—A—Jg—ﬂ ) Lo ;‘fh\.nl.'.:.q ji L_)'_‘-J)If}:"“ Lea _)j_la_\ d.&; 5.3).9.5. ‘Q:\-:\:-u-l-}J Ja a1l sz llf.\k\_"t'_'....ull \_)/=|.Q:I
(my =my) Cmesbudio Leadus Ol 15] Lalng 13] (dlgie comages b onlas Lpusills 8 o )l

BJLCL)” J:.'T.""'h t..n d..uL"J'I J..ain_n.n L_;jL\..u:I Ja}.!a_-‘-hﬂl h\_xit_km Jll/zv ]_\1 _T;..‘Ssj ]_\1 LJ].,\.nLA:.q 1.19’:1:13

(my =——)
m,
.1. ‘ - .1. A
)yl g ndas
m, ",

> >
/ / m, = m, ¥ x

L

86_._“)_11

LB SV e Jem B (2,— 1) L] IS e e (o) euiieall dasdl Dslas o gTe JUa
2x—3y=5 il dazell o3l g0 Lasdl (a

23{‘—3}’ =35 ﬁu.ll;a“ Ja el ;:FL“- Aaleia ol (EJ



e

Al y=mr+b el e Dolall cadys ael galieall Ll fua st Y]

) ) 2 3
2x=3y=5=>-3y :—2x+3:>3-’::x—:
I 3
)‘)
iy gl 5 o
J)

e ety Lo Ld V1 g3 g aed) sl Y m:§ cllal] gl Ll s (a

I Ll 530 Lyl i) sl Aokl sl

)*':m(x—xl)ﬂ’l:g(A‘—2)+(—l):§x—§—1:§ —%
¢ e alaa GV 5)LEN s haadl Ll gman gsloas sllal] LAl Ul o0 2. (b
1 (0821 2 Lo (i 1 B m:—%:—%
: 2
y:—%(x—2)+(—1):—%x+§—1:—§x+§:—%x+2

-



S ladt laas
APPLICATIONS OF DIFFERENTIATION

Jl'__!f-lt-h J'.‘:.':" ;'f'_)""
(Related Rates)
s3e Y Slowq U s LS ans I I L e ) ae !

lf&@hb'ﬁ,@‘h—ahy%@d}' {9} ays Mo Jao s dniaLJ|qs¢S_JJh
oW e st b IS L s S ek e o N1 e sy e el L et

SRSV QIEFEC R e

: C

—ry - Js

3 5 ALl sty asill s e Sl ¥L wsledl s JSall Lo e el (s
L..“.:-,_’,U.HL‘_..,JL d.\l._,r”a.n)u ,_',‘ LIS qu 0—-.-JL.6..‘LJ Jla o ub 2L
ol |LJ,L.'L...=L d...:)...:_.ld.bjl_:/f\'c’,}l-.wu
l.’U-!"f_:

s uJ" sl aaslis *J“c—.-‘-'wuﬂ



b ol Sl ¥ o 5 e g2 3,501 ol i) bl JEadl amm Ly V!
¢ bl wlls i 50l Spme Sy as .

-

-t = JSe

;!

O T T V¥V =4 e
T 1=, + ¢
I T Tu—Tu..,.T('l}

Y= “Jg-i-'f7=wl?¥u5-g;d1'&"‘ulg’3

;&L&Mldbg.a-l e ol Y

o ®

(1) Uolse o potyY =0 v
(1)l g-=e
¢+‘1=(g—;‘l)—»11’=-?'-'-

(r) oladl s T(e 4 1) =T T(1)



e AT T AR PO | P-4 I P || alical,,
e - (e+V)Y =

o o :
(7)) ddoleadl o pom o v = o Lo Ludl alaad) l(;.:ca.l,sal.?-..‘!,
To=Y(r)+ ()
To=a v

o\, T =
ALY A =¥ x TLrY 1 = o

AOLYAY = IV A — 1Y = o

£ VA =o,TAY — 1= g -

=

3 -
_‘g_;-T-'P)’H’

2 () eed e eIl

[

i £ adoladl s g .

CJ
o (YA +0)T = (T)(¥v)Y
<~ yruivi=av
(.
1: & .. . 1Y = = _ -
e Wil o S
() Je

ﬁ'Moiw_synhﬁleggLS\_h_ﬁﬂ o ani; by s S0 L lo oy
u_,(..:a‘.s).uél., .MAJ;fT]n.UTUr- ‘LaJ‘d_q’u..-a_. o!a_\j Y. ML‘E&;'_’ !u..'l.io i o9

P o

— ) = J



%
s
h—
|
!

N

%
b
=
il
m

L

[:..
L~




. an.,d\ JLﬁi\J\

C).'.UL“
ol Ll g sllaal | ZLanils o3 all quliead | dasadl Ualaa (o of 11 O g
3 2 3
D(0.3).m==" 2)(0.0).m=" 3)(-2.4).m=-=
4 3 5
4(0.2),m=4 35)(0.4),m=0 6)(-1.2),m sjyea 2
3 il le x QJJ.IMML-U-‘ il "Jﬁ_q_'_n._a_"ld1d\1_'_n \_xﬂ Zd-l)ﬂ-'
J_JLJ1 n_uyll_x;-'_oll_‘a.i_u ”._1)_04 ’_,LH MHJAJJHAJJLQ_A \_x.:1 %.',.D.Q.I
...._“..l_U\_;n:r_U 19.;3L6,45J_1_1-J 9'_"‘|:1 ((T)
ol Lasdl e alata Lgd oSl e (D)
3
D(2.1),4x—2y=3 2)(-3.2) ., x+y=7 3)[%,1},5x+3y=0
4)(—6,4),3x+4y—-7=0  5)(2.5).,x=4 6)(-1,0), y=-3

el Gl sl ety tﬂ,J_.,sL:—..h:l.g. [ P VPSRN TR BT u,b ,.J... 4 R

Q:.ro_uwhrJ_J1-aMuQ,s_ou¢_leJ|r.u|mL*,_u,$L,

sl
sl bl i 5l has 1l 136 Y o qpyga iy 5l S, ss)S ol
¢ ¥ sl adyb Lo il lIl s kil il sls ;e e
{‘_‘_’_i"-*"‘J.U" rfaqulsmtyau:)‘!l&wi)smlI-c-tl.'tSJlulﬁcL_-m GO_J_)DJ
?a,,;b%tgm_u.,uaﬂlghaﬂldbhﬁq»L

n



e 2l ) g gaa)

el e,y e

THE INDICES AND LOGARITHMS

;QIU,'J..:-“\S_\“:__',E.:.,L«.L-;L.,.J

Yy V() ey o
e T (v U‘)“_(J‘ Q)U+Y(%.)-{—l-%+{—l-}-)u+\ =T(2+)

cen ) X(T—u)(\—u)o+ L O -ulo
Al UX OX O Y UX O

+ 1+

eee 4 (X Ay Ay
+ (= 1){0 \)‘,_]+(u ‘)TJ+!+1

H

w
¢3! Sl das oy 8390 3as Slajl IS dad S LS ol JeSaad! lan e s do
‘%J}‘S'"f'r"ul"-rlt-‘wlwﬁ-'ﬂ" l-"-’."a).—.—:scr-ﬂ:uul o 18ay jaar ) Wl

P ] ._,"“"oo..o;oo«c 4.L¢L

7 St ST

°°°° RN B "+'I+l=u[—-?—+\)L-——-é-"
Yy vy © ® ey

(e )2 lals b g enadl lin

- .......4.?!_]_4-.’5_.,,%_*1.,,1:‘:.
Aol Gl i b yor tad s S dan bl el le JU1 L (=) s o
o s a e

YOYVAYAVAYAf0d f0 =2 ol cos

sale dypae ol oMo Ma e e Ll s

YN A=2 6

U“'Q(_?--'. '\) L_E-:u..h o |



clactaachl!
-'i«ﬁse-s';-c-}bdlh,i.wuuf:_pgglml.:~.1 : Jb

T=uﬂ)—l :.J.ﬁ\.“
-
T-hzuﬂ.'.
1 o £ Y Y
+ooooq¢o+¢;+ T+ T+ T+ T.'. TT+\=
AYRELTIAE VI TR
-ov*a-ott*. 1£ + rT +-T_+-—£.+T+T'=

Yoo TYs TV *Y
**AOYYY 4 o ¥oTe v 4y
Covrarey =

Y.XEVw =

.

I

Y Lyl=wvoloeo, 1y . ;
+ (—J] T_J_ +(o)wu+\|:::=

, Ve 0) () = e o :
-oooto.o-ooooo,'_r(_:T) ( U.U')( U"U)L"U

s
{ g Y
s e s . U.+ U"+ U-+Uv+l=w-b
TR R )
B ¢ Y
(> > . .
000¢ootoo.+-uu_...;+-'-—,.——;..+uwl-‘-f+\=u- -Dd-‘*s,
Y TJ .

w=a gl lo

P g =

bVl e 1y bl sy Uy Ul e S anLIRPCS L IO PN I 8

e B Cles LS, B I i bl s Lt al Ll >y bl ol L U

oo Jass alliy it ans W le pany o saall b s JS e gl

bl lae L il e ey U1 g et Pt et e BN L iy g

P10l gl bl el el il sl W el
elaslpll Gle ghie wbIL Wl bob,s el el gl ol pas



e ool c-ll:..,llh,iomuuu._p,ialm 31, Jts

T=uﬂ)-1 s Jadl
-1
T-hzup.'.
1 T £ Y A\
0401-0004»414. T.‘. T+ T.'.. "+ TT+I=
AVIRECTTIRANE SIS I o
L B B 1£ rT T i =
+?¢-+1T¢+\'+\"+T+r

............................... LF,J-J,ET’{T’:‘_P
...

*ACYYY ¢ « Y0 eve 4 ¥ =

YOVENYYY =
YXENY

i

v Asanbly da bl ol e p U1 s a5 Y

PPz olen
»

‘Jd .

£ = o .

Ve Pz 4
). ).

& JJ-.;“=LP }Ju'LS'
Ve ).

DETEY =T A o Ol e Wslas ey

'1'

o NEY = e s
\.
)Ju!‘t.ﬁl
\.

P ¥
}

- |
TETEY ‘“’ofi”

.............................. o Tﬁ"-T'[:LP?i"_HLj‘

)

ST sl e g oo Lo (1) () sl s sl ey



e Sall ol Sl e LY !

SEIIE

STV PO N | S U A VOPIN

= e

o — ) - PR Y U"__. o 7
(8 o '
a Y

i

ST VOV N [ P R PN | Y RV RV TR

VA (=) T (=) r (1)
AU el o aes s oY @l Jylasdl Jaas !

Yorrox ¥
2 ﬂ:u_,J

YTV a



J) 9l aws
) W1 et i oaaalt Byl

. -

e
Xg 235 U £t Jlro lia oles 13 xp Aa3il 2 Lo alae Bl 45 £(x) DI T S5

POy L
f(x)<f(xy) VxeU

lo o350 1 7giie Jlme lin plss 13] 7 Aail 2 L (gpis Lled A3 /(x) DI o7 Js35
f(x)> flt,) Vxel

g

Llg 5 Lol elie Ll Aasilloha 2 315, xp Aa3il 2 SLEAM LB £(x) Ul colss 1)

F(x0) =0 ol Ld g paem

PEZCI IR P (IR

S(x) DI JeY il lae s G L o f(x) Dol o pd ! Lol
lgand ¢ v oatield Lecattl Y J oW1 Z80 80 Crwmdy f(x) D1 Dyl L5 liwmld diag
X yeatiell Dad = DNUT 50 1 deu B Ccumd ding X Jogall ld Dolall s 5 yaiall gales

1 1 .
y==x> —;xz —2x + 2 DIl Dy el IsLEI L oT 1YY Jie
3

'.J;-.H

Y=xT—x—2=(x—-D(x+D=0=x=25i x=—1

Xl Led et U 3 5le 2 st

1 1. 4
y==(2P -—(2)° -2)+2=—= gl x=2 4

3 2 3

1, s 1. 19 ,

== (D == (D —2(-D+2=" (b x=—1 1

y=3ED" -5 EDT-2(-D o o

(2, —§)~ (—]__ %) Hp- FEN LA PN et | di_@. diog
3 =



1S phual g (oaliaad| @adl! o 31 AGEL Ll
X <X g Lanie Lovge f(¥) Sl Ol xp LaZil 2 elae Ll 315 f(x) DIl cdlss 1)
5 Laslow e La3lslly g G T )3l LIS Conge bl Jus 0 T ¢ Ldlss L)3 Lgie duy35
Ll 2 b bl Jus o 6T < Ldles Ly3 Lgin Luy3g x> xp (95 Lonie Ll f() Lidie
sz le LaBlglls X e 20|
o By ¥ <y JE dal e f1(3) <0 ols xp da3ill 2 cyies Ll 3l fx) Ul Gl 1] L

Ll L)3 X e LpBs x> J= aioe f1(0) >0 5 Lol )3 g

=416 —x7 LI gyaaall Sllgills cebaall GLlitl asir JLie
Y

24 (ool Lo elhe Lad 3 g [ 4H4] JLadl (e 5 petnns Bp00 =416 -7 ULl
:L‘;}]X:O-‘_T;.:.J—'-"'\
—4=<x<0 5 0O<x=4 = Line f(x)<4

X

() == DIl g yheall wblellls elaall cbleadl ioaslt Jlie

1+ x
=1
ok b Gl Leitdes Moo 1l L2 2SI ALLE s 5 a2 pae f1(3) Dl

1— a7

i

e go Lagy alall ¥ dacdl 3 )Lal (re dosd 5lils =1y x=—1 LI 2 sws nall o,

fi(x)=

L:,_Tt'._ﬂ Jj-‘-‘."‘ﬂ \_)_n -_t*._x\ .3

X — 0 —1 1 + o0
l-x + + -
I+ x - + +
1-x? - + -

Jom mmallslal i gl —l<x <l &= bige f/(0)>0 s x<—1 J= aige f(x) <0 o

Lo 5 yhon Gl L5 f(2) U0 oy x=—1 Lgb {pmy all Ll oo Lo shl J] liall 0

1
(L) a5
2 -



il Hlal of gf x>1 = hige f(30) <05 —l<x<]l = i (x>0 Lais

elie Ll A5 f(x) DI iy x=1 Led pmmy 1 L3l Jom Llad) J) Linsll (o Jo

(-

1
(L E) 23 l=s

1 sl 19 alaal| @udl AL AGTEL S HLols |
Tl elie Tlgh o Tanyll olia ols Ll Do pand| A3 e L LSEN I3EL Led colss 1)
il 6 phen il oa Al pla oyl Tox g Loyl Aamil) e G010 SO0 8L e ciles (3]s
1 | _ ;
y=oat —oxt 220+ 2 DI gyl allgills elnadl SLLE Loy JLe

3 5 2Ll 2 >3
=l
E VA [ POEP v RAY
y=x'—x-2,

y'=2x-1

2.-). (—1,%) o iyl B B ) JEL e

J ) -
4

(2,—7) L=l dant Lol

¥ =2(2)-1=3>0
x=2
- - - . 4 -
Lo gy Llgb 2 (2,—5) ding
19 . ; :
(-1 ?) FENEN [ e | - S|
D
V' =2(-D-1=-3<0
x=-1

i Lo 19
._d_umdq_b.; -J.:sLeu = (—1,?) diag
- )

Gllaa)¥ i akady .4

Bl e o AL s s 2T o LgHLA| 5udts Tagies SO IRAL el 13

| 1 s
«1::?_:{‘3—;;’(2—23("'2 :‘_”,\.U -\_l.g,u.aj_'_ ‘ll__ilT"JLﬁ‘
J L

}!":2x—1:0::>x:l



1 *
Allaad| ol Lo U yesmy ¥ = — a5 Latiad diag

2
DIl s ke 2 x :% FPU-TRUNVOE Bt B RGN BER
1y 11y 1 11
=== —=|=| 2=2)+2=—
g 3(2) 2 2) (2) 12
. {1 11) .
Collaadl 2hasy s | =, | Lasutf 13|
2 12
Sl las
Dy=r y=-r 3)}::\/,1( y=1-r
16 un | x =30 <10 +15
D)y:x2+—2 6)y:A—+J Tz’ 8)y=3x"-10x" +15x



J.&Q u.ndl.u]\ &MY\
Ay & ol g 4 yuad) J1gall JalSi daaal) & Jalsil) | Jalil
Jo )

INTEGRATION

Jolicdl Clusd s i gaidl asl say Jolic) Cls o Y1 asd oo L
o SAN G 5ot o 395 St gay LI Gt I 01 I 5 b 1 Sy Jo S,
cadladl Jolicy adladl diaie o oy el

Ol oy Bnaadl Y byla 0 Ll b Lol o alladl aacs, o b LIl 13l
il o iz alat b 136 apley c30le Jitnsd! il g 6 jicad decl 0K
eliSy v o) dndU dineadt (s Lo el Gy ) e '-sl_"S‘-’” NI P | PR |
RPN 1 I O o | Bl PJ..aYI, lasly (g9l lq...bwull [V | B T LT

IARCIIRTPR P2 N J"’L"'JU' ":“n.r'd-‘l’-' W3Sy o 3 g o Jolic LI
Jolisdl aas (S 6 ine I sl plioy W e 5l adls &l Jolic sley! aie
e Lo g Y ol ol st el il

ol 2 Y Sl g asse g0y JalSally Jsliadl Clusd GBI Gut J1 g il )20 Y
on iwlely Bas 21 Giadl Gl e mite e Wy ppigell lim of I Ll s
somall el badl sl i Ll bty 3 05 g samad ol JS Jomns Lo g b
138 gy o+ o0 gl JU1 3550 5 wlimiadt Jlbl gl o gmad! Gans slond o) i,
Jo Il e Gl Ll ssa, ki L Lamy syamadl JtSIl, LI e il
leinze cnhel Gl i lo VT iIall slagl 151 Ginagy Joo i)l iden) i s icdes yeu

sl el )l a ool lin G e LS,

oladl edn Lo cansl Gall aadl St ol ciplolicdl Wolad) Jodl ol ! 4
sl et LIl LS e g gl 1im ey L il




s bl asted! Jo ; (1) Jbo

: K
A< p u"Vru*= S

o 2

c 2 Yl G I el Jamy 65 Y gl 1 S ol LY il ol
el st g (v) Jbe
(€ or) abadl LI, T T = 22

U«J
,.aUJluJ‘J_n.oli &\.L.Jldl.‘...”u. :Ja."
-
dj+ r‘_,.-_‘l_z T,_,OT

i

<
JeTr)L=T(0) v

Jyq=g

O === t.t



|  Jolll il
PR PY-CPRSTTIR AP A PO

(1) oot e IR PUPYSSP B
el g ksl enl lashy o spluy o adls Jolic JuI ) !
ol el Jetlalal e el alyos Sar — o
(1) +eveemn et e et e e llaga. I
ke Jo 3 Ll e el il el Sa Y ; e
ol 6l el G50 ol g Syl SV gl pelolis G ) prare JWE O -2
(F) ceemreeen U.J]_?.ca'[*w..\]:(w.\:ca:una)l
BLL o 5 U Ll Ll Jyasd! ey 6l ¢ amly il spbs ¥ o w6 151 s
: ol ! arasdl Y1 Gle daidl 2 WY1 1 asly

NEPRPN | - WYL oo aladl
s VIO S sl Jt

u,a"t:uoé.'. V4 r Y =2
| il 3 galt Lo
)

o2V "Tl:'l-l-u-f)l +=w-"\+u~?\r' L

T
Y.
v L‘—:_U.ll =
¥

-L .
gy ¥ ('l+u-'1'}-%-=



L4

skl
Cadbd e L el s T T
> 2 (o ~T) 1

a..r‘“q‘('l—i.rr) 1

I
VEREIAZ IR
uu-"l
V(Y +0orT)
J e ¥ )
Te—)
v
ST T (Yra) Yo

s | + >~v) 1
| TV
-kﬁhw,ﬂJlL’ﬂJuuiwwlwm| wYoledl J> 2
. V=) = ' 1JWT=LF4

o 2



: dﬂlg.” lﬁél&i 1!435.;

Lol Joticl! E525 Lale

A dm . d.a_,.:,‘._

L 4 o 3

i Jebill Gae el Lot

X $ 3
L:i\j--t- .h: ..hﬁ..}

L
G alz we sl

I et Lot Al e g W Jlis IS5 8 Ly

L l"."'

s
gy \ﬂ::‘;“}w[::f .ialg(])t“.m
w

G L R 1 '-Ju."-‘ : {f‘r) ‘:,Ji‘;..l

%JTg(WT) 3 el

< asl Lall .,jfgli-u}i L pdge L.;,i .L.._n.-d!-!
g o

.
-—w -25@,1 a'r.-
& & oo P

m.ﬁb

_ X t
L T T I I N LI I R S T T T G Llj..’. uﬁ'_*ljr}rﬂ .ﬁl..{

Lt



{"ﬁ} 0 ea sens s

o ledales Gl abalesdl Gige M,

uﬁ“_ﬁig‘)‘s}e Q'E‘:, I mgw‘eg.g‘.’,J.J

oF 5 S »

o. EEEE R & @gvﬁ.g’;@,}g t_ht’-‘ »s
- (&

A1 Vo) i (y) Jte
Ve " ¥

220 te) ) s (1) Jt

Ti‘lu“?'ﬁﬂ L

s Jadl

o ALY $w7)z(f+m7+‘w) <3
w*{j%uﬂ}tl c.r'"(_\-l-u-) 1
T’+u~7+7w f+mf-+Tuﬁ'

o (f’+u-'i’+_‘:w] 1j+ﬂ

-
¥

Y+ (S wb’mf
o5 1 (Sl \'( )1
™ T, ¢ el
IV BV o
- v e ¥
wa‘mﬁatwe} @wllwé -.I
5w ‘;:J"",'i U""" &
e | ¢ e L S
& o S AT 40
S RS
B e B
ge e |
> o
EL R S )



e bl g o)
At ) gal) Jalss

To find the table of standard integrals we take Table 6.3 for differentiation,
swap the columns, rewrite a couple of the entries in a more convenient
form and add on the constant of integration. This gives Table 7.1.

As integration is ‘anti-differentiation” we can spot the integral in the

standard cases. that is. those listed in Table 7.1.

A table of standard integrals

f(x) [ f(x)dx
1 x+C
xﬂ+1
n —_—
x"(n#£—1) P +C
sin(x) —cos(x)+C
cOoS(X) sin(x) +C
sec?(X) tan(x)+ C
1 4
sin" ' (x)+C
1—x2 )
_ cos '(x)+ C
Jv1—=x2
! tan'(x)+C




Example 1

(a) f(B.rz T — ]_)dx:x3—|—x2—x—|—Cv

Check:

_1
;—(.r3—l—x2—x + C) = 3x2 4 2x — 1.
dx

(b) / 3sin(x) 4+ cos(x)dx = —3 cos(x) + sin(x) + C.
Check:
_1
%(—3 cos(x) + sin(x) + C) = 3 sin(x) + cos(x).
.
(C)f : o > dx =sinT!'(x) — 2tan~'(x) + C
V11— x2 1 4+ x2 ) - = :
Check:
dx(sln (x) —2tan” "(x) + C) = ]_xz_ e

If ¥ is a composite function that can be written in terms of the variable e,
then

dw dy dee

dx  dua dx’

Substituting the chain rule for dy/dx into Equation (7.1) gives

1y d
fLJﬂd.‘{’:y—f—C.
die dx

If v is a function of u. then we could just differentiate with respect to
v and then integrate again and we will get back to the same expression,
give or take a constant, that is

dv
f du = v + C.
die

Considering Equations (7.2) and (7.3) together. we have

fdyd_u 1.r:fﬁdu
du dx due




Example 2 Find [ sin(3x + 2) dx.

Solution Substitute u = 3x + 2. Then du/dx = 3 = du
dx = du/3. Then the integral becomes

fsin(u)d; = —CDS(H) +C

¥

z .

Re-substitute u = 3x 4 2 to give

cos(3x 42
_eosGr D)

fsin(lr +2)dx = C.

Check:

_ L 3x 42
dx 3 X or T2

3sin(3 2
— gm(? +2) = sin(3x + 2).

¥

A

d (_ cos(3x + 2) N C) sin(3x +2) d

3dx =



Example Find f x sin(x?) dx.

Solution Substitute u = x? = du/dx = 2x = du = 2x dx = dx =
du/2x to give

d I
f.r sin(,rz) dx = ]:c Si[](&')—u = f —sin(u) du
2x 2

1
=—3 cos(u) + C.

2

As u = x-, we have

.2 I 2
xsin(x“)dx = -5 cos(x”) + C.

Check:

d r, c) — P, d
i 3 cos(x”) + =5 sin(x )dx (x~)

Example Find

3x
fﬁdx'
(x=+3)

Solution Substitute u = x> + 3. Then du/dx = 2x = du = 2x dx =
dx = du/2x. The integral becomes

3x du 3 4
i Pt |
(u)* 2x f!u !

which can be integrated, giving

3 !

L,
S c——utic
Jcaxnp TeT T



Re-substituting for u = x* + 3 gives

3x I 5 s 1

Check:

Rl (RPN e R
T —5{1 +3) " +C _—5{— Nx™+3) E(I + 3).

Using the function of a function rule, we get

1 2 —4 2 —4 3
—3 (DT I =36+ 37 = o

Example Find _Jl"ccrsz(x} sin{x) dx.

Solution This can be rewritten as f (ccs{x}}z sin(x)dx. Substitute
u = cos(x), then du/dx = —sin(x). so du = —sin(x)dx, or
dx = —du/ sin(x). The integral becomes

fuz sin{x]L =f—u2du.
—simix)

Integrating gives

1
U

-——+C.
3 +

Re-substitute for u, giving

c053{.r)

'/"[c:«tjl_ﬂ.(x]l)2 sin(x)dx = — +C.



Check:
1, 1 .
—7 cos (x)+C = —E(CDS{I]}' +C.

Differentiate

d 1 3 _ l L
P (—g{cos{x}} +C) = -3 (1) (cos(x))"(—sin(x))

= cos?(x) sin(x).

This method of integration will only work when the integral is of the

form
ff(u}

that is, there is a function of a function multiplied by the derivative of the
substituted variable, or where the substituted variable is a linear function.

Sometimes you may want to try to perform this method of integration
and discover that it fails to work, in this case. another method must be

du
—d
dx :

used.

Example Find

¥
2
— _dx.
f(IE'FUE *

Substitute u = x? + 1, then du/dx = 2x = dx = du/2x. The integral
becomes

gl
fx- du = in:lu
ul2x ) 2

This substitution has not worked. We are no nearer being able to perform
the integration. There is still a term in x involved in the integral, so we
are not able to perform an integration with respect to u only.

In some of these cases, integration by parts may be used.



gn,al\ Jl—)ﬂi\f‘

1 Find [ x sin(x?) dx.

2 Find [ cos®(x)sin(x) dx.
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The definite integral from x = a to x = b is defined as the area under
the curve between those two points. In the graph in Figure 7.1, the area
under the graph has been approximated by dividing it into rectangles. The
height of each is the value of y and if each rectangle is the same width
then the area of the rectangle is yax.

If the rectangle is very thin, then vy will not vary very much over its
width and the area can reasonably be approximated as the sum of all of
these rectangles.

The symbol for a sum is £ (read as capital Greek letter sigma). The
area under the graph is approximately

x=b—bx
A=yidr+ydx+ydx+ydx+--= ) ybr
r=a
We would assume that if 8x i1s made smaller, the approximation to the
exact area would improve. An example is given for the function y = x in

Figure 7.2. Between the values of 1 and 2, we divide the area into strips,
first of width 0.1, then 0.01, then 0.001.

Example Find

1
f 3x? 1+ 2x — 1 dx.
—1

Solurion

1
f 3x7 4 2x — 1ldx = [13 + x2 —_r]_ll
—1

= (17417 — 1) —(—1)F 4+ (—1)* —(—1))
= 1—(—14+1+1)=1—1=0.



The shaded
area is bound by the graph of
¥ = —X% 4+ 6x — 5 and the O

X-axis.

Example Find

/6
f sin(3x + 2) dx.
1]

Solution

w6 1 |
f sin(3x + 2)dx = [— 3 cos(3x + 2]];;6
0

| T |
— 5 cos (SE + 2) _ (_g cos(z})

1 i) 1
= — | — 2 — 3 == i
3 cOos ( 5 + H) + 3 cos(2) == 0.1644.

Example Find the shaded area in Figure 7.6, where y = —x” +
bx — 5.

Solution First, we find where the curve crosses the x-axis, that 1s, when
y=0

0=—x+6x—5 = x2—6x+5=0

& (=-5x-D)=0 e x=5vx=1




This has given the limits of the integration. Now we integrate:

5

5 3 el
f —x? 4+ 6x —Sdr=| -+ — —5x
l 302 I

"3 542
(1)° 5(1}' -
(ol
125 32
=—T+?5—" —|—§—3 :?:1{]

Therefore, the shaded area 1s ID_% units>,

Finding the area when the
integral is negative

The integral can be negative if the curve is below the x-axis as in
Figure 7.7, where the area under the curve y = sin(x) from x = m
to x = 3w /2 is illustrated.

3m/2 - 3
f sin(x) dx = [— cc-:-;(x]]?rﬂ* = — COs (?H) + cos(m) = —1
'

The integral is negative because the values of y are negative in that
region. In the case where all of that portion of the curve is below the
x-axis to find the area we just take the modulus. Therefore, the shaded
area A = 1.

This is important because negative and positive areas can cancel out
giving an integral of 0. In Figure 7.8, the area under the curve y = sin(x)
from x = Otox = 2m is pictured. The area under the curve has a positive
part from O to w and an equal negative part from 7 to 2.



| r;i'! 2

Figure 7.7 The area under the curve given by sin(x) dx.

¥

7

The following gives an integral of 0

2
f sin(x) dx = [— C1'.:|1='.|[J:]I]S"r = —cos(2m) — (—cos(0))
0

=—1—(=1)=0

To prevent cancellation of the positive and negative parts of the integra-
tion, we find the total shaded area in two stages

fﬂ sin{x)dx = [— cos{x]]; = —cos(m) — (—cos(0)) =2
0
and
2 )
f sin{x)dx = [ — cos(r}]; = —cos(2m) — (—cos(m)) = -2

So, the total areais 2 + | — 2| = 4.

We have seen that if we wish to find the area bounded by a curve which
crosses the x-axis, then we must find where it crosses the x-axis first and
perform the integration in stages.



Sketch of

¥ = x(x — 1), with the area
bounded by the x-axis and
X = —1 and x =1 marked.
The area above the x-axis is
marked as A, and the area
below the x-axis is marked
as As.

Example Find the area bounded by the curve y = x? — x and the
x-axis and the linesx = —landx = 1.

Solution  First, we find if the curve crosses the x-axis. x> —x =0 &
x(x = 1) =0 & x = 0orx = 1. The sketch of the graph with the
required area shaded is given in Figure 7.9.

Therefore, the area is the sum of A and A;. We find A by integrating
from —1to0

0 3 290 3 2
2 X X 0 (-1 _(—1}
f_]“ _’”‘“‘[TT}_]_D ( 32 )
11
32 6

Find A> by integrating from 0 to 1 and taking the modulus

1 3 2
f{xz—x}dx= r =l_l=_l
0 3 21, 3 2 6

Therefore, A» = %.
Then, the total areais A} + A, = % + f]—] =1.

Lgéaél\ Jlaay

1- Find the area bounded by the x-axis and the portion of
the curve v = 2(x — 1){x — 4) which lies below it.

2- Find the total area bounded by the curve v = 2x — x2,
the x-axis and the lines x = —l and x = 1.
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we looked at differentiating composite functions. If y =
f(x) where we can make a substitution in order to express y in terms of
u, that is, v = g(u), where u = h(x). then

dv _ dv du
dr ~ duwdx’

We can use this to integrate in very special cases by making a substi-
tution for a new variable. The idea is to rewrite the integral so that we
end up with one of the functions in Table 7.1. To see when this might
work as a method of integration, we begin by looking at differentiating
a composite function. Consider the derivative of

y=(3x+2)".
We differentiate this using the chain rule, giving

dy d i
=3(3x + 2}2'1—{31 +2) = 3(3x + 2)%3.
X

|

As integration is backwards differentiation, therefore
f 33x +2)%3dx = 3x + 3 + C.

Supposing then we had started with the problem to find the following
integral

f 3(3x +2)%3dx.



If we could spot that the expression to be integrated comes about from
differentiating using the chain rule then we would be able to perform the
integration. We can substitute 1 = 3x + 2 to give du/dx = 3, and the
integral becomes:

3 du
3u o du

we then use the ‘trick’ of replacing (du/dx)dx by du giving

f 3u” du.

As the expression to be integrated only involves the variable u, we can
perform the integration and we get

f3u2du —uw’ +C.
Substituting again for u = 3x + 2, we get the integral as

f 33x +2)%3dx = 3x +2)° + C.

We used the trick of replacing (du/dx)dx by du, this can be justified
in the following argument. By the definition of the integral as inverse
differentiation, if y is differentiated with respect to x and then integrated
with respect to x we will get back to y, give or take a constant. This is
expressed by

d1
fa-‘dx=}-+r:. (1.1)



If ¥ is a composite function that can be written in terms of the variable u,
then

dy _ dv du
dx  dudx’

Substituting the chain rule for dy/dx into Equation (7.1) gives

dv du
— —dx = C. 7.2
f du dx x=y+ (7.5

If v is a function of u, then we could just differentiate with respect to
u and then integrate again and we will get back to the same expression,
give or take a constant, that is

f—du—w—l—lﬁ' (7.3)
du

Considering Equations (7.2) and (7.3) together, we have

dyvd d
o ax = f 4
du dx du
so that we can represent this result symbolically by (du/dx) dx = du.

In practice, we make a substitution for # and change the variable of
integration by finding du/dx and substituting dx = du /(du/dx).

Example 7.4 Find the integral [ —(4 — 2x)* dx.
Make the substitution u = 4 — 2x. Then du /dx = —2,s0du = —2dx
and dx = —du /2. The integral becomes

[ (2)- [5o-5e

Re-substitute for u1 = 4 — 2x, giving

1
f —(4—2x)dx = @ - 200 + C.

Check: Differentiate the result.

d (=207 Laa— 20 La—2v)
dx 8 =% Y dx *

= %4(4 —2x)°(=2) = —(4 — 2x)*

As this is the original expression that we integrated. this has shown that
our result was correct.



When using this method, to find a good thing to substitute, look for
something in a bracket, or an ‘implied” bracket. Such substitutions will
not always lead to an expression which it is possible to integrate. However,
if the integral is of the form f flu)dx, where u is a linear function of x,
or if the integral is of the form

du
f f{”]E dx

then a substitution will work providing f(u) is a function with a known
integral (i.e. a function listed in Table 7.1).

Integrations of the form [ f(ax + b) dx

For the integral f flax + b) dx, make the substitution u = ax + b.

Example 7.5 Find [ sin(3x + 2) dx.

Solution Substitute u = 3x + 2. Then du/dx = 3 = du = 3dx =
dx = du/3. Then the integral becomes

f sjn{u}dTu = —CD;[”} +C

Re-substitute u = 3x + 2 to give

cos(3x + 2)

C.
3 +

f sin(3x +2)dx = —
Check:

d cos(3x 4+ 2) sin(3x +2) d
r (——3 —|—E) = E(S.r-l—?]
_ 3sin(3x +12)

3 = sin(3x + 2).



Example Integrate

1

JI— (3 —x)?

with respect to x.

Solution Notice that this is very similar to the expression which inte-
grates to 5in_l{x] or cos_l{x]. We substitute for the expression in the

bracket = 3 — x giving du/dx = —1 = dx = —du. The integral
becomes
1 —d
[ = [
1 —(u)? 1 — (u)?

From Table 7.1, this integrates to give
cos ! (u)+C

Re-substituting u = 3 — x gives

1
f nix:ccs_l(S—x]—l—C.
1 —(3—x)2

Check:

i{ms—'(:a—_r}H:} =— : 1(3—1}
dx 1 —(3—x)2dx
1

CJ1—3—x?2




Example Find [ x sin(x?) dx.

Solution Substitute u = x2 = du/dx = 2x = du = 2xdx = dx -
du/2x to give

fx sin[rz]dx = fx sin[u}i—u = f%sin(u]du
2x

1
= —Ecos{u} + C.

,,
As u = x-, we have

» 1
fx sin(x~) dx = ) ccs{xz} + C.

Check:
d

L eos6?) +€ ) = S sin(?)— (?)
i 24::05)( + C _zsm{x dru

1 5
= —sin(x?)(2x) = x sin(x?).

Example Find

3
f%dl.
(x=+ 3)

Solution Substitute u = x> + 3. Then du/dx = 2x = du = 2x dx =
dx = du/2x. The integral becomes

3x du 3 4
i Y e |
f{u}‘tﬁx fﬂu “

which can be integrated, giving

3 —4+1 1

i —13
2 ® i Cc—-—ul+cC.
24+ 4 T

Re-substituting for u = x2 + 3 gives

3x 1, 4 1
fmd“—i“ A C= e TE



which can be integrated, giving

3 !

I
2t iCc—-ul+cC.
2caxn T T

Re-substituting for u = x* + 3 gives

3x I 5 s 1

Check:

il (L B e Loy +3* L2 +3
T —5{1 +3) " +C _—5{— Hx™+3) E(I + 3).

Using the function of a function rule, we get

1 3x
2{ Hx=+3) " (2x) = 3x(x~+ 3) 213

Example Findfccrsz(x} sin(x) dx.
Solution This can be rewritten as _Jlr 1((:4::15![;:]1]2 sin(x) dx. Substitute

u = cos(x), then du/dx = —sin(x), so du = —sin(x)dx, or
dx = —du/ sin{x). The integral becomes

5 d
fu‘ Sin{x)T:{_x} =f—u2du.

Integrating gives

3
'

——+C.
3-|-

Re-substitute for u, giving

cc:53{.r)

fl[m::nﬁ()r]l)2 sin(x)dx = — +C.



Check:
| | 1
3 cos (x)+C = —E(cc}s{x)}' + C.

Differentiate

d 1 3 o 1 2 :
dx (_E(CDS{I}} + C) =—3 (i) (cos(x))~(—sin(x))

= cos”(x) sin(x).

This method of integration will only work when the integral is of the

form
f )

that is, there is a function of a function multiplied by the derivative of the
substituted variable, or where the substituted variable is a linear function.

Sometimes you may want to try to perform this method of integration
and discover that it fails to work, in this case, another method must be
used.

du
—d
dx o

Example Find

gl
2
—  _dx.
f(12+1}2 *

Substitute u = x? + 1, then du/dx = 2x = dx = du/2x. The integral

becomes
¥
-d
f x_?_u — i diu.
ul 2x 2u?

This substitution has not worked. We are no nearer being able to perform
the integration. There is still a term in x involved in the integral, so we

are not able to perform an integration with respect to u only.
In some of these cases, integration by parts may be used.



s Jadlly Jalsl

Integration by parts

This can be useful for integrating some products, for example,
. f x sin(x) dx. The formula is derived from the formula for differentiation
of a product.

d du dv
E{uu} = d—b + ua
du dv
< H{uv} B il
(subtracting (du /dx) v from both sides)
dv d du
& u— = d—{HL] — ab

dv d
= fu—L dx = uv — f Ud_u dx (integrating both sides)
b

As we found before (du/dx)dx can be replaced by du so (dv/dx)dx
can be replaced by dv. and this gives a compact way of remembering the
formula:

fudr,':uv—fvdn.

To use the formula, we need to make a wise choice as to which term is
u (which we then need to differentiate to find du) and which term is dv
(which we then need to integrate to find v). Note that the second term
[ v du must be easy to integrate.

Example =~ Find [ x sinx dx

Solution Use u = x;dv = sin{x) dx. Then

d
& I and v =fsinx dx = —cosi(x).
dx

Substitute in [ udv = uv — [ vdu to give

f xsinx dx = —x cos(x) — f —cos(x)l dx

= —x cos(x) + sin(x) + C.



Check:
d ) .
d—{—x cos(x) + sin(x) + C) = — cos(x) + x sin(x) + cos(x)
X
= x sin(x).

We can now solve the problem that we tried to solve using a substitution,
but had failed.

Example Find

2

X
L
f{x?+1}2 t

Solution
We can spot that if we write this as

X
— d
fx(xhrl)? *

then the second term in the product can be integrated. We set u = x and

dv dx = x(x> + 1) dx.

B x
C(x241)2

Then du = dx and v = —%I[x2 + 1}_]. (To find v we have performed
the integration erl:Jr2 + 1) dx = —%{IZ + 1)~ 1. Check this result by



substituting for x% + 1). Substitute in fudv=wuv— [vdu to give

2 —1
x x o —{.?C +l}
X— dx = —Z(x2 41 '—f—d
f’ftﬂﬂ}? v=pl b 2 X
—X 1 dx
=5t 50—
22+ 1) Ef(x*+1}

Note that the remaining integral is a standard integral given in Table 7.1
as tan— ' (x), so the integral becomes

¥

x- —X 1
— dx=——" 4+ —tan "(x)+ C.
f(x?+1)2 Y= aaryn T2 @
Check:
— | ———+—-tan (x)+C
dx(z(x2+1} p ) )
d X2 —1 —1
_H(_E(r + 17! + tan {x}+c)
1 5 X a a 1 1
=2+ D 2+ D) o
ST+ DT+ (206G + 1D 3D
xZ
T 23 D2

Example Find f sinz(x) dx.
Solution As cos(2x) = 1 — 2sin®(x),

1 —cos(2x)
5 .

sinz{x} =

The integral becomes

1 — cos(2 1 1
fsinzfx} dx = f ﬂdx = —x — —sin(2x) + C.

2 2 4
Check:
d 1 | 5 c 1 | o "
I = 2_1: 1 sin(2x) +C | = ST cos(2x)

1
= —(1 — cos(2.
> cos(2x))

= sin?(x) (from the double angle formula).



Exercises

Find the following integrals

(a) ][13 +3%)da

(c) ]l,, dx
)

(e) f{]—ix)dx
(g) fﬂx— ldx

(i f =4y dx

(b) fﬁ sin[x)-l—secz(x} dx
(d) f (142" + 30" dx

(f) [ cos(2 — 4x)dx

|
h dx
{Jf\/x+2

0 f WITDds

Uﬂf cusl(.r] g
(14 sin(x))-

4y
o [

(o) f.xi cos(x) dx
Q) f 12 =3 dr

(s) f cos*(x) dr

@xal) LAY

(I) f (X +x—6)(2e+1) d

"
&

(n) f xcos(x)dx
|

4
o f T

q
&

a2
(r) f sinj{x} dx
i

(t) f sin(3x) cos(3x)dx.



The
exponential

function y = e!

O dad) g Gty £ s)

Agay 8 oll) g Al g Al geus) i)

(a)

Figures 8.2(a) and 8.3(a) give graphs of y = 2" and v = 3', which are
two exponential functions. We can sketch their derivative functions by
drawing tangents to the graph and measuring the gradient of the tan-
gent at various different points. The derivative functions are pictured in
Figure 8.2(h), dy/df where y = 2, and in Figure 8.3(b), dy/dt where
y = 3.

We can see that for these exponential functions the derivative has
the same shape as the original function but has been scaled in the
y-direction, that is, multiplied by a constant, k, so thatdy/dt = ky as we
expected:

d d
— (2 = (CH2H d —(3 = (D3
dr( ) ) an dr( ) (3%

where C and D are constants. We can see from the graphs that C < 1 and
D = 1. Thus, the derivative of 2' gives a squashed version of the original
graph and the derivative of 3' gives a stretched version of the original
graph.

It would seem reasonable that there would be a number somewhere
between 2 and 3 that we can call e, which has the property that the
derivative of ' is exactly the same as the original graph. That is,

d i 3
E(e}_e.

The exponential function

¥ A




(h) dy

a b
2.77 =
Figure 8.2 (a) The graph of
y = 2! with some tangents
marked. (b) The graph of the 0.69
derivative (the gradient of the 4—/ .
tangent at any point on y = 2! 3 2 -1 O 1 a2 3 :
plotted against t).
Example
(a) Show that any function of the form y = yge’, where yy is a constant,
is a solution to the equation
dy B
dr
{(b) Show that in the function v = wpe', v = yg whent = 0.
dy
(a) y (b) =
7.4 7 e Slope 7.4 7.4+
2.74 ~— Slope 2.7 2.7+
B _
ol 1 2 ol 1 2 :

Figure 8.4 (a) The graph of y = e' with some tangents marked. (b) The graph of the derivative (the gradient
of the tangent at any point on &' plotted against 1).



The exponential function

Solution

(a) To show that v = wpe’ are solutions, we first differentiate

—(vpe') = ype'
dr

(as yp is a constant and d(e")/di = e).

Substitute for dv/dt and for v into the differential equation and
we get ype' = yge'. which is a true statement for all 7. Hence the
solutions to dy/df = y are v = wge'.

(b) Substitute = 0 in the function y = ype' and we get y = voel. As
any number raised to the power of 0 is 1, we have y = ¥;. Hence
vy is the value of v at r = (0.

Using the function of a function rule we can find the derivative
of e*' . where k is some constant, and show that this function can be
used to solve differential equations of the form dv/dr = ky.

The derivative of a!

The derivative of ¥y = 2" can now be found by observing that 2 = e(Iny,
Therefore, v = 2/ = (&™) = @' This is of the form e with

k= 1In(2). As

d
ﬁ(ekr) — ke.ﬁf

then
d In(2)y tlni2)
—ie V= In(2)e T

dt

Using again the fact that ™2 = (el"(2))! = 27 we get

d d

E(zf) — d_(e]mzjr) — IH(Z}E]HIZ}E — ]n(z}zf
r

that is

d
—(2") = In(2)2f
3 %) =@



The derivative of y = In(x)

v = In(x) is the inverse function of f(x) = e*, and therefore we can find
the derivative in a manner similar to that used to find the derivatives of
the inverse trigonometric functions in Chapter 5.

v = In(x) where x = 0

=

=

W

e’ = ™™ (take the exponential of both sides)

e’ = x (as exp is the inverse function to In, e — x)

We wish to differentiate both sides with respect to x but the left-hand side
is a function of y, so we use the chain rule, setting w = ¢”, thus, equation

3

e’ = x becomes w = x and dw/dy = e”.

Differentiating both sides of w = x with respectto x givesdw /dx = 1,

where
dw dwdy
dx  dydx

from the chain rule. So

Ldy
g — =
dx

and resubstituting x = ¥ we get

dwv dw 1
- 1 S
xdx = dx X

(we can divide by x as x = 0). Hence.

d 1
—i(lnx) = —.
d_r{nﬂ X

The derivative of the log, of whatever the base, can be found using the
change of base rule for logarithms as given in Chapter 4 of the Backgrounc
Mathematics notes available on the companion website for this book. We
can write

Inix)
log,(x) = In(a)’
Therefore
d d /In(x) 1
_— I_ _ — = N
d_r{ 024 (x)) dx (ln(a}) In(a)x



Example Show that cosh(iA + B)

sinh(A) sinh(B).

Solution  Substitute

A —A
cosh(A) = e te
2
eA _ A
sinh(A) =
sinh(A) 3
B —B
cosh(B) = c —:E
B_ .—B
sinh(B) = —

into the right-hand side of the expression

cosh(A) cosh(B) + sinh(A) sinh(B)

[f:-”l + e 4 (eB —|—re:_3] (e — e_"*] (e?

= cosh(A)cosh(B)

—e_E}

2 2 2

Multiplying out the brackets gives

i(e.d+ﬂ 4 eA—B o —A+B | —(A+B)

4 (eMB _A-B _ —AE ﬁ—m+3.‘:]) _

Simplifying then gives

i(zﬂA—rB 4 Ee—(.ﬂ.—rﬂj} _ _l{cA-rB + e—[.ﬂ.+ﬂj}

=
¥

which is the definition of cosh(A + B).

2

We have shown that the right-hand side of the expression is equal to

the left-hand side, and therefore

cosh(A + B) = cosh(A) cosh(B) + sinh(A) sinh(5).



Table 8.3 The derivatives Example 8.12  Find derivatives of the following:
of some simple functions

2 sinh

o0 oo @y=e¢2* (b)x=c"cos(3) (¢)y= qum x £0.
C D S . . . —2?3-0-3 . .

i ot olution (a) To differentiate vy = ¢ using the function of a
X nx , function rule think of this as v = e’(‘y = e to the bracket’).
CF)S(X ) — Sinix) Now differentiate y with respect to () and multiply by the derivative
Sin(x) Cos(X) of () with respect to t. That is. use
tan(x) Sec?(x)
sin~'(x) 1/+v/1—x2 dy _ dy dO
cos—(x) —1/V1=x2 e d() det
tan~"(x) 1/(1+x2) where () represents the expression in the bracket
ex ex
ar (In(ayax) dy _ ap3d 0 ~2243 o243
Inex) 1/x m =e E(—J +3)=¢ (—4t) = —4te .
log, (x) 1/(In(a)x) o » )
cosh(x) sinh(x) (b) To find the derivative of x = e™" cos(3r), write x = uv so that
sinhx) coshix) i =e " and v = cos(3t); then,
tanh(x) sech?®(x) du L, dv ‘
sinh~" () NTFRE g = ¢ g = sinGn
cosh™T(x /X2 -1
tanh-" {[X)] 1;: 1 —x2) where we have used the chain rule to find both these derivatives.

Now use the product rule

dx dv du

Table 8.4 Some standard — =Uu— Tt V—
integrals dt dt ds
dx i i ., .
fx) [ foodxfix) o= —e " cos(3t) —e "3sin(3t) = —e ' cos(3t) — 3e” sin(31).
J ;
1 X+ C (c) To find the derivative of
x"(n#-1) xX"/(n+1)+C sinh(x)
sin(x) —cos(x) + C y=—
COS(X) sin(x) + C ’
sec?(x) tan(x) + C we use the formula for the quotient of two functions where ¥y = u;
1//1 —x2 sin'(x)+ C sinh(x), v = x, and
—1/¥T—x% cos'(x)+C dy  w(du/dx) — u(dv/dx)
1/(1+x2) tan '(x)+C dx 2
e~ e*+C
ax (@ /In(a)+C Hence., we get
1/x In(x) +C : .
cosh(x) sinh(x) + C i (smh(x}) _ x cosh(x) 2slnl'll:,":]l 1
sinh(x) cosh(x)+ C dx X X
sech?(x) tanh(x) + C _ X cosh(x) — sinh(x)
1/V1¥x2  sinh ')+ C x2

1/+/x2 -1  cosh 'ix)+C
1/(1 —x2) tanh "(x)+C



Example Find the following integrals:

(a) fxclzﬂ dx (b) [sinh(t)cosh®(r)dt (c) [xe*dx
3 3x? 4+ 2x
{d} fl ll'l{.x}li'{.' [f:} f(m) X

Solution (a) f xe* +2 dx. Here, we have a function of a function e +2)
multiplied by a term that is something like the derivative of the term in
the bracket.

Try a substitution, u = x? + 2

du du
;“-a=2&'=}dx=§

then

du
fxcxl"'z dx = fxﬁ“— = f %c“du —le 4
2x =

resubstituting u = x? + 2 gives
2z ]
fxcx Hdx =" TP+ C

(b) To find fsinh{f}cc-shz(r}dr we remember that cc-shz(r} =
(cosh(1))2, so

f sinh(r) cosh’(¢) dt = f sinh(#)(cosh(2))*dt

sinh(r) is the derivative of the function in the bracket, cosh(r), so a
substitution, u = cosh(t), should work:

d
u = cosh(t) = d—I: = sinh(t)

du

= dt =
sinh(z)

du
sinh(r)




o d
fsinh{r}cnshjl[r}dr =fsinhn}wsin;‘m _ f”

=u'+C
resubstituting u = cosh(r) gives

h(t
f sinh{r}cnshzir} dt = CDES—{} +C

(c) [ xe*dx. Use integration by parts

fudu:uu—fvdu

and choose u = x and dv = e"dx giving

d
¥ _1 and 1J=fﬁxd.¥=ﬁx
dx

Then

fxcxnit = xe' —fe:lnir

=xe' —e'+C



(d) J|r|? In(x)dx. Write In(x) = 1 In(x) and use integration by parts with

u=In(x) and dv=1dx

d
=:~|:lu=—x v=f1dx=x
X

f‘ In(o)dx = [x ()P — f‘xldx
1 1 X

a2

=2In(2)—1 Inl[l}—f ldx
1

=2In(2) — [x]7
— 2In(2) — (2 — 1) ~ 0.3863 to 4 5.f.

(e) We rewrite
3x2 + 2x
f ———=dxr = fl[sz + 2x}(r3 +xt+ 2]_' dx.
x4+ x-4+2
MNotice that there are two brackets. To decide what to substitute we notice
that
d

1 (x* +x2+2) =3x% + 2x.
X

so it should work to substitute u = x* + x2 + 2

du dx
— =3x?42 dy = ———.
:}dx raer=dx 3x? + 2x
The integral becomes
du
3+ 20—
f{ ) 3x2 +2x

du
f — =Inlu)+C.
u

Resubstituting for u gives

3x2 42
f—;x + Y x—(3 22412+ C
x4+ x-+412



Integration using partial fractions

The fact that expressions like 1/(3x + 2) can be integrated using a
substitution which results in an integral of the form:

1
f —du = In(u)+ C
u
is exploited when we perform the integration of fractional expressions
like
2x — 1
(x =3)(x+1)

We first rewrite the function to be integrated using partial fractions.

Example Find

2r — 1
{a]f[r—3}{r+l} '

® ]f(r+2}{21—1}-d

Solution

2x —1
@ f Y

Rewrite the expression using partial fractions. We need to find A and B
so that:

2x — 1 B A N B
(x—3Nx+1) (x=3) (x+1)
where this should be true for all values of x.

Multiplying by (x —3){x 4+ 1) gives 2x — 1 = A{r + 1)+ B(x — 3).
This is an identity, so we can substitute values for x

substitute x = —1 giving —3=B(—4) < B=3/4
substitute x =3 giving5=A(4) < A=5/4

Hence,



2% — 1 5 N 3
(x—3)x+1 4x—-3) 4x+1)
So

f 2x — 1 d f 5 N 3 d
X = x
(x =3)x+1) 4x—-3) 4x+1)

As (x —3) and (x + 1) are linear functions of x, we can find each part of

this integral using substitutions of u = x —3and u = x + 1:

f4(_r—3} +4{I+]]dr=£ “{’f—3}+ ln(r—|—l}—|—£‘

f 2 2 2 3+ 3 S In(x + 1)+ C.
PN T I  h i i

Check:

d

5 3 5 3
— (L—lln{x 1}—|—Eln{t—|— ]]—I—C)

4(x }+4{I—I—]}

dx
writing this over a common denominator gives
Sx+1)+3(x —3)
dix —3)(x+1)

S5y +54+3x -9
dx =3)x+1)

8x —4
T Ax—3)x+ 1)

2x — 1

T - 3Ix+1)

d(SI 3 3I 1 C
e 1"”“}+Z“(‘r+ )+ =

2

X
®) f G122

Again, we can use partial fractions. Because of the repeated factor in the
denominator we use both a linear and a squared term in that factor. We
need to find A, B. and C so that

x* A B __C
(x+2)2x—12  x+2) 2x—1)  (2x—1)2

where this should be true for all values of x.
Multiply by (x + 2)(2x — 1)? to get



where this should be true for all values of x.
Multiply by (x + 2)(2x — 1)? to get

P =ARx — 1P +BR2x — 1(x+2)+ C(x +2)
This is an identity. so we can substitute values for x

substitute x = lz giving 0.25 = C(2.5) <= C=0.1
substitute x = —2 giving 4 = A(—35)? = A=4,/25=0.16
substitute x = 0 giving 0 = A + B(—11(2) + C(2).

Using the fact that A = 0.16 and C = 0.1, we get
0=016—28B402 <= 0=036—2B < 2B=036 <= B =018

Then we have

f x2 B f 0.16 N 0.18 N 0.1 a
G+ —12 " T cxy T - T 2x—12 "

0.18 0.1
=0.16In(x +2) + —— In(2x — 1) — —(2x — n'+cC

0.05

e 3 . W 3
0.16 In(x + 2) +0.09 In(2x — 1) (zx_1}+f
Check:
a4 (O.Iﬁ»ln{x £ 2) 40092y — 1) — 29 c)
dx > 1
= %(0.16][}(}: +2)+0.09In(2x — 1) — 0.052x — 1)~ + C)
0.16 0.09
= 2) 4+ 0.05(2)(2x — 1)~2
i-r+2}+{2x—11{}+ (2)2x —1)
0.16 0.18 0.1

+ + :
(x+2) (2x—1) (2x—1)2
Writing this over a common denominator gives

0.,162x — 12 4+ 0182x — 1x +2) +0.1(x + 2)
(x +2)(2x — 1)2
0.16(4xF —4x + 1)+ 0.182x2 +3x —2) + 0.1x + 0.2
(x +2)(2x — 1)
0.64x2 — 0.64x +0.16 +0.36x2 +0.54x — 036 +0.1x + 0.2
(x +2)(2x — 1)?

x2

(x +2)(2x — 1)2°




Exercises

d
. Using E(e*) = ¢' show that the function 2¢¥ is a

solution to the differential equation

dy
— = 3 1
dt !
. Assuming p = poe™ find po and k such that
d_ r
dt 1200

and p = 1 whent =0.
. Assuming N = Nge“ find Ny and k such that

dN
I=-4.3><m-w and N=5x10%atr=0.

. Assuming ¢ = Ae*’ + 300 find A and k such that

d
d—q:):—lll(qb—}[}l]j and ¢ =400 whent =0.

. Using the definitions of

ef ¥
9

cosh(x) =

Qgéa..d\ J\,\S&Y\

1. Calculate the following and where possible use the

appropriate inverse functions to check your result:

(a) cosh(2.1) (b} tanh(3) (c) sinh~'(0.6)

(d) tanh~'(1.5) (e) cosh™!(~1.5)

8. Differentiate the following:

@z=¢ 2 (br=c cosh(2¢)

b
=1

'3
c b (d) In(x" = 3x)

(e) log,(2x) () a™
(g) 2't? () 1/

. Find the following integrals:

Iode
( S-3 4t (b f
%) f ¢ ) vy

(c) f xsinh(2x%)dx  (d) f x In(x)dx

b sinh(r)
t’e}fo e x dx m[msh(!]dr
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Numerical Many problems may be difficult to solve analytically. In such cases

numerical methods may be used. This is often necessary in order to per-

MethOdS Of form integrations. The following integrals could not be solved by the
Integ rati on methods of integration we have met so far:

q =
- 8In
f (x) d
b x2+1
2 2
f 27 dx
-3

Numerical methods can usually only give an approximate answer.

General method

We wish to approximate the integral

b
f flx)ydx
i

Formulae for numerical integration are obtained by considering the
area under the graph and splitting the area into strips, as in Figure 7.11.
The area of the strips can be approximated using the trapezoidal rule or
Simpson’s rule. In each case, we assume that the thickness of each strip
is i and that there are N strips, so that

_ (b—a)

h
N

Numerical methods are obviously to be used with a computer or pos-
sibly a programmable calculator. However, it is a good idea to be able to
check some simple numerical results, which needs some understanding
of the algorithms used.



The trapezoidal rule

The strips are approximated to trapeziums with parallel sides of length
Vr—1 and y, as in Figure 7.12. The area of each strip is (h/2)(y,— +¥,).

¥ e "-F-_._‘._-‘:ﬁx]

Figure "11 Numerical

integration is performed by
splitting the area into strips of e
width h. The area of the strips / X
is approximated using the 770 h h hh 5 x
trapezoidal rule or Simpson’s a
rule. b-a

o

Yo ¥ ¥ ¥ Ya

Figure 7.12 The trapezoidal

rule is found by approximating ) s s s
each of the strips as a a x ) Ia X4
trapezium.

The formula becomes:
A=h(Iyo+yi+ym+-+ynor+3w)
where x, = a + rh.

yr = f(xr)

-
N=—




A computer program would more likely use the equivalent recurrence
relation, where A, is the area up to rth strip (at x = x,)

h
Ar = A1 + ;(}'r—l + ¥r)

forr =1to N and Ag = 0.
This is simply stating that the area is found by adding on the area of
one strip at a time to the previously found area.

Example We wish to approximate
3 >
f x dx.
1
The limits of the integration are 1 and 3, soa = 1 and & = 3. We choose

a step size of 0.5, therefore,

_Gb—a) _3-1 _

N
h 0.5

2

Using x, = a +rh and y, = f(x,), which in this case gives y, = x;

we get
=1 y=(>07>=1
=15 y=(152=225

n=2 »n=027>=4
=25 y=(25)7 =625
=3 y=03)7=9

Using the formula for the trapezoidal rule:
A=h(Eyo+yi+y2+--+¥nv_1+5In)
we get
A=0505+225+4+6254+45)=8.75.

Hence, by the trapezoidal rule:

3
f x2dx = 8.75.
|



Simpson’s rule

For Simpson’s rule, the area of each strip is approximated by drawing a

parabola through three adjacent points (see Figure 7.13). Notice that the
number of strips must be even.

The area of the strips in this case is not obvious as in the case of the
trapezoidal rule. Three strips together have an area of:

h
g()’zn—z +4¥20—1 + Yau)
where r = 2n. The formula then becomes

h
A= 00 +4y + 230+ 433+ 2ya+ -+ 2yv—2 +4v—1 + W)

Figure 7.13 Simpson’s rule
is found by approximating the
areas of the strips by drawing
a parabola through three Yo ¥i ¥z ¥a ¥ ¥s Vi
adjacent points. To do this the
total number of strips must be

even. o

where

_ (b—a)

xr=a-+rh, v.= flx;), N i

as before.

Again, a computer program would more likely use the recurrence
relation to define the area

h
Ay = Azgp—1y + 5{}'2;:—2 +4y2a—1 + Y2a)

wherer =1,....N/2 and Ay = 0.

=y



Example’ Find JI"I'J’ x? dx using Simpson’s rule with i = 0.5.

Solution  From the limits of the integral we find thata = 1 and b = 3.
So,

(b—a) (B-1)
=~ o5 %

N

Using x, = a +rh and ¥, = f(x,), which in this case gives

v =27
we get

xo=1 y=()?=1
xp=15 y =(1.5)2=225
xn=2 w»=27=4

X3 =25 ys=(2.5)2 =625
=3 wm=0@3)F=0
Hence,

0.5
A= —=(1+4(2.25) +2(4) +4(625) + 9) = 8.66667.

In this case, as we are integrating a parabola the result is exact (except
for rounding errors).

) LAY

1. Find the mean value of i1 (#) = 5 — cos(f /2) fort = 0
to f = 5.

2. Calculate the rm._s. value of i = 3 cos(50m¢) between
t =0 and ¢ = 0.01.

3. Approximate:

1 i
f sin(x) dx
0 X

(a) using the trapezoidal rule with i = 0.2 and h =
0.1; {(b) using Simpson’s rule with i = 0.5 and
h = 0.25.

4. Find an approximate value of

3
L d -
A= | =
1 X
(a) by the trapezoidal rule with N = 6: (b) by
Simpson’s rule with N = 6.
5. Approximate ._J'-UI x dx using Simpson’s rule

with N = 10.
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Linear ODEs. Bernoulli Equation.

Linear ODEs or ODEs that can be transformed to linear form are models of various
phenomena, for instance, in physics, biology, population dynamics, and ecology, as we
shall see. A first-order ODE is said to be linear if it can be written

(1) y' + p)y = rx).

Homogeneous Linear ODE. We want to solve (1) in some interval a < x < b, call it
J, and we begin with the simpler special case that r(x) is zero for all x in J. (This 1is
sometimes written r(x) = 0.) Then the ODE (1) becomes

(2) y +pxy=0

and 1is called homogeneous. By separating variables and integrating we then obtain

dy
— = —ptx) dx, thus In|y| = —Jp(x) d% + &2,
)7

Taking exponents on both sides, we obtain the general solution of the homogeneous
ODE (2),

3) ) = gg E e (c = ¢ when y = 0);

here we may also choose ¢ = 0 and obtain the trivial solution y(x) = 0 for all x in that
interval.

Nonhomogeneous Linear ODE. We now solve (1) in the case that r(x) in (1) is no
everywhere zero in the interval J considered. Then the ODE (1) is called nonhomogeneous
It turns out that in this case, (1) has a pleasant property; namely, it has an integratin;
factor depending only on x. We can find this factor F(x) by Theorem 1 in the last section
For this purpose we write (1) as

(py — rndx +dy = 0.



EXAMPLE 1

EXAMPLE 2

First-Order ODE, General Solution
Solve the linear ODE

Solution. Here,
p=-1, r= e, h=fpdx=—x

and from (4) we obtain the general solution
y(x) = e* (fe—err dx + c) = e"(e® + ¢) = ce® + &2~

From (4%) and (5) we see that the response to the input is P

In simpler cases, such as the present, we may not need the general formula (4), but may wish to proceed
directly, multiplying the given equation by " = e~ This gives

O ~PeE= e == 8,
Integrating on both sides, we obtain the same result as before:
ye ¥ =%+ ¢, hence y = €2 + ce®. [
First-Order ODE, Initial Value Problem
Solve the initial value problem
y' + ytanx = sin 2x, y(0) = 1.

Solution. Here p = tan x, r = sin 2x = 2 sin x cos x, and

fp dx = ftanx dx = In [sec x].
From this we see that in (4),
/ —h

e = secx, e " = cosux, = (sec x)(2 sin x cos x) = 2 sin x,

and the general solution of our equation is

y(x) = cos x (Zfsinx dx + c) = ¢ cosx — 2 cosZ x.

From this and the initiz;l condition, I = ¢+ 1 — 2+ 1% thus ¢ = 3 and the solution of our initial value problem
is y = 3 cosx — 2 cos“ x. Here 3 cos x is the response to the initial data, and —2 cos2 x is the response to the

input sin 2x.



Homogeneous Linear ODEs of Second Order

We have already considered first-order linear ODEs (Sec. 1.5) and shall now define and
discuss linear ODEs of second order. These equations have important engineering
applications, especially in connection with mechanical and electrical vibrations (Secs. 2.4,
2.8, 2.9) as well as in wave motion, heat conduction, and other parts of physics, as we

shall see in Chap. 12.
A second-order ODE is called linear if it can be written

® y' + px)y" + g(x)y = r(x)

and nonlinear if it cannot be written in this form.

The distinctive feature of this equation is that it is linear in y and its derivatives, whereas
the functions p, g, and r on the right may be any given functions of x. If the equation
begins with, say, f(x)y”, then divide by f(x) to have the standard form (1) with y" as
the first term, which is practical.

If r(x) = 0 (that is, r(x) = 0 for all x considered; read “r(x) is identically zero™), then
(1) reduces to

(2) y' + px)y’ + gx)y =0

and is called homogeneous. If r(x) # 0, then (1) is called nonhomogeneous. This is

similar to Sec. 1.5.
For instance, a nonhomogeneous linear ODE is

" —
y + 25y = e ¥ cos x,
and a homogeneous linear ODE is

' +3 +ap=0, in standard form y'+ =y +y=0.
X

An example of a nonlinear ODE is

The functions p and ¢ in (1) and (2) are called the coefficients of the ODEs.
Solutions are defined similarly as for first-order ODEs in Chap. 1. A function

¥= hx)



is called a solution of a (linear or nonlinear) second-order ODE on some open interval /
if /1 is defined and twice differentiable throughout that interval and is such that the ODE
becomes an identity if we replace the unknown y by £, the derivative y’ by /', and the
second derivative y” by 4”. Examples are given below.

Homogeneous Linear ODEs: Superposition Principle

Sections 2.1-2.6 will be devoted to homogeneous linear ODEs (2) and the remaining
sections of the chapter to nonhomogeneous linear ODE:s.

Linear ODEs have a rich solution structure. For the homogeneous equation the backbone
of this structure is the superposition principle or linearity principle, which says that we
can obtain further solutions from given ones by adding them or by multiplying them with
any constants. Of course, this is a great advantage of homogeneous linear ODEs. Let us
first discuss an example.

EXAMPLE 1T Homogeneous Linear ODEs: Superposition of Solutions

The functions y = cos x and y = sin x are solutions of the homogeneous linear ODE

\,” iy y = 0
for all x. We verify this by differentiation and substitution. We obtain (cos x)” = —cos x; hence
y" 4+ y = (cosx)" + cosx = —cos x + cos x = 0.

Similarly for y = sinx (verify!). We can go an important step further. We multiply cos x by any constant, for
instance, 4.7, and sin x by, say, —2, and take the sum of the results, claiming that it is a solution. Indeed,
differentiation and substitution gives

(4.7 cosx — 2 sinx)” + (4.7 cosx — 2sinx) = —4.7 cosx + 2 sinx + 47 cosx — 2sinx = 0.

In this example we have obtained from y; (= cos x) and y, (= sin x) a function of the form
3) Yy =c1y; t Ccoys (cy, co arbitrary constants).

This is called a linear combination of y; and y,. In terms of this concept we can now
formulate the result suggested by our example, often called the superposition principle
or linearity principle.

THEOREM 1 | Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), any linear combination of two solutions on an
open interval I is again a solution of (2) on I. In particular, for such an equation,
\ 3 . - : ‘
‘ sums and constant multiples of solutions are again solutions. ‘

EXAMPLE 2 A Nonhomogeneous Linear ODE

Verify by substitution that the functions y = 1 + cosxand y = | + sin x are solutions of the nonhomogeneous
linear ODE

¥ Ey=1,

but their sum is not a solution. Neither is, for instance, 2(1 + cos x) or 5(1 + sin x). [ |
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Reduce to first order and solve (showing each

step 1n detail).

1. y" = ky'

2.y =1+ y'2

3. yy" = 4y'2

4. xy" + 2y + xy =0, ¥
5.y +y'3siny =0

6. (1 —x*)y" — 2y + 2y

0,

y1 =X
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Introduction

Stationary
points, local
maxima and
minima

Differentiation can be used to examine the behaviour of a function and find
regions where it is increasing or decreasing, and where it has maximum
and minimum values. For instance, we may be interested in finding the
maximum height, maximum power, or generating the maximum profit, or
in finding ways to use the minimum amount of energy or minimum use of
materials. Maximum and minimum points can also help in the process of
sketching a function.

Example 11.1  Throw a stone in the air and initially it will have a positive
velocity as the height, s, increases; that is, ds/df > 0. At some point it
will start to fall back to the ground, the distance from the ground is then
decreasing, and the velocity is negative, ds/df < 0. In order to go from
a positive velocity to a negative velocity there must be a turning point,
where the stone is at its maximum height and the velocity is zero. If the
stone has initial velocity 20 ms™ ' how can we find the maximum height
that it reaches?

In order to express the velocity of the stone we can make the assumption
that air resistance is negligible and use the relationship between distance
and time for motion under constant acceleration, giving

§=ut+ %.:nfI

where s is the distance travelled, u the initial velocity, t is time, and a the
acceleration. In this case. u = 20ms~! anda = —g (acceleration due to
gravity & 10ms—2), so s = 20t — 5¢°.

At the maximum height, the rate of change of distance with time
must be 0, that is, the velocity is 0. Therefore, we differentiate to find
the velocity:

ds

=L 0100
Y=

Putting v = 0 gives
0=20-10f & 10t =20 & =2



Maxima and minima and sketching functions

We have shown that the maximum height is reached after 2 s. But what
is that height? Substituting f = 2 into the equation for s gives

s =20(2) —5(2)> =20m

giving the maximum value of 5 as 20 m.

This example illustrates the important step in finding maximum and
minimum values of a function, v = f(x). That is, we differentiate and
solve

=0

r:|.|r:|.
==

This may give various values of x. The points where dy/dx = 0 are
called the stationary points but having found these we still need a way
of deciding whether they could be maximum or minimum values. In the
example, we knew that a stone thrown into the air must reach a maximum
height and then return to the ground, and so by solving ds/df = 0 we
would find the time at the maximum. Other problems may not be so clear
cut and thus we need a method of distinguishing between different types
of stationary points.

A stationary point is classified as either a local maximum, a local
minimum, or a point of inflexion. The plural of maximum is maxima
and the plural of minimum is minima. The word ‘local’ is used in the
description, because local maxima or local minima do not necessarily give
the overall maximum or minimum values of the function. For instance,
in Figure 11.1 there is a local maximum at B, but the value of y at x = x)
is actually bigger; hence, the overall maximum value of the function in

the range is given by y at xy.

To see how to classify stationary points, examine Figure 11.1, where
points A, B, and C are all stationary points.

In order to analyse the slope of the function, imagine the function as
representing the cross-section of a mountain range and we are crossing it
from left to right.

At points A, B, and C in Figure 11.1, the gradient of the tangent to the
curve is zero, that is, dy/dx = 0.

At A there is a local minimum, where the graph changes from going
downhill to going uphill.

At B there is a local maximum, where the graph changes from going
uphill to going downhill.



Flgure A graph of
some function y =f(x)
plotted from x = X; toX = Xs.
Points A, B, and C in the
graph are stationary points.
They are points where the
gradient of the tangent to the
curve is zero, that is,

dy/dx = 0.

Maxima and minima and sketching functions

(a) y=f(x) 4

decreasing

Increasing

decreasing

Figure (&) The graph

-'hl"

increasing the derivative is
positive and where f(x) Is
decreasing the derivative s
negafive.

of Figure 11.1. (b) A sketch of . A N S
its derivative dy/dx = f'(x). b 50 N/ % X \ X
Wherey =f(x) has a d ! I
stationary point, that is, where Dotk L e | :
the tangent to the curve is flat, d pOTE |
then dy/dx = 0. Where f(x) s /" N\ .
. —
mgulwt




Example 1 Find and classify the stationary points of y = x* —9x? 4
24x + 3 and find the overall maximum and minimum value of the function
in the range x =0tox =35.

Solution
Step 1. First, we must solve dy/dx =0

9 dy 7
y=r3 -0+ 2U4x+3 = d—} — 322 — 18x + 24
X

So we put

3t —18x +24=0
& ' —6x+8=0 (dividing by3)
& (x—2)x—-4)=0



Example 2 Find and classify the stationary points of y = —(2—x)*.

Solution
Step 1

dw

y=—2-x* = =42 —x)*

2|

Stationary points occur where dy/dx = O:
42-xP =0 & x=

Step 2. To classify this stationary point, we differentiate again:

d?v
— = —12(2 — x)?
2 ( )
Atx =2, we get d?y/dx* = —12(2 — 2)? = 0. So the second derivative
is Zero.

We cannot use the second derivative test to classify the stationary point
because a zero value is inconclusive, so we go back to the first derivative
and examine its sign at a value of x just less than x = 2 and just greater
than x = 2. This can be done with the help of a table. Choose any values
of x less than x = 2 and greater than x = 2, and here we choose x = 1
and x = 3. Be careful if the function is discontinuous at any point not to
cross the discontinuity

dy/dx = 4(2 — x)* 4 0 —4

Aty = l.dy/dx =42 -1) =4 (positive); at x = 3,dy/dx

42-3) =4 (negative). Therefore, near the point x = 2 the derivative
goes from positive to zero to negative. Therefore, the graph of the function
goes from travelling uphill to travelling downhill, showing that we have

a maximum value.

Step 3. Finally, we find the value of the function at the maximum point.

Atx =2, v =0, that is, there is a maximum at (2, 0).



EXxercises

1. Find and classify the stationary points of the following
functions:

(@)y =x" —5x +2 (b) y = —3x” +4x
200
(©)y =3x"—x () x =2+ ——

(e)w=2z*+4z7 —8z2+2

2. Find the overall maximum and minimum value of
x/(2x* 4+ 1) in the range x € [—1,1]

3. Sketch the graphs of the following functions:

(x —3)(x +5) 1
(@) y = 12 fb]}—x—l-;
(x —1)(x+4)
b — 0 — 3y — —
(c)y=x 3x — 1 (d) v &3

4. Sketch the graph of v = 2sin(x) — sin(2x) for x
between —2m and 2.
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Complex numbers

In the previous chapter, we have shown that a single frequency wave
can be represented by a phasor. We begin this chapter with a brief look
at linear system theory. Such systems, when the input is a single fre-
quency wave, produce an output at the same frequency which may be
phase shifted with a scaled amplitude. Using complex numbers the sys-
tem can be represented by a number which multiplies the input phasor
having the effect of rotating the phasor and scaling the amplitude. We can
define j as the number which rotates the phasor by m /2 without changing
the amplitude. If this multiplication is repeated, hence rotating the phasor
by (m/2) 4+ (w/2) = m, then the system output will be inverted. In this
way we can get the fundamental definition j2 = —1. jis clearly not a real
number as any real number squared is positive. j is called an imaginary
number.

The introduction of imaginary numbers allows any quadratic equa-
tion to be solved. In previous chapters we said that the equation
ax” + bx + ¢ = 0 had no solutions when the formula leads to an attempt
to take the square root of a negative number. The introduction of the num-
ber | makes square roots of negative numbers possible and in these cases
the equation has complex roots. A complex number, z, has a real and
imaginary part, z = x 4+ jv where x is the real part and y is the imaginary
part. Real numbers are represented by points on a number line. Complex
numbers need a whole plane to represent them.

We shall look at operations involving complex numbers, the conversion
between polar and Cartesian (rectangular) form and the application of
complex numbers to alternating current theory.

By looking at the problem of motion in a circle, we show the equiv-
alence between polar and exponential form of complex numbers and
represent a wave in complex exponential form. We can also obtain for-
mulae for the sine and cosine in terms of complex exponentials, and we

solve complex equations " = ¢, where ¢ i1s a complex number.



Consider a single frequency input of 0 phase and amplitude 1. If there
is a system which has the effect of simply shifting the phase by m/2,
then we represent this by the imaginary number j. Soj x 120 = 14m /2.
This system is shown in Figure 10.3(a). Supposing now we consider a
system which can be broken into two components both of which shift the
phase by 5 as shown in Figure 10.3(b). The combined effect of the two
systems is to multiply the input by j x j. The final output wave, shifted
now by . is the cos(wt + m) = —cos(wt) so it is —1 times the initial
iput. For this to be sothen j x j = —1.

This is the central definition for complex numbers:

jx)=-1
meaning that | = +/—1, where j is an operator which rotates a phasor

by m/2.
We will return to these linear time-invariant systems in Chapter 16.

Complex numbers allow us to find solutions to all quadratic equations.
Equations like x* + 4 = 0 do not have real roots because

rd=0sxt=—4

and there is no real number, which if squared will give —4.



Imaginary (v) 4

oN Real (x)

24 N (1L,-2)

Figure 10.4 The number
z=1—j2. The real partis
plotted along the x-axis and
the imaginary part along the
y-axis.

If we introduce new numbers by using | = /—1, then a solution to
x> +4 = 0isx = j2. j2 is an imaginary number. To check that j2 is in
fact a solution to x2 + 4 = 0, substitute it into the equation xI+4=0,
to give

(2°+4=0 < jF2)*+4=0
& (—1)(4)+4 =0 using j* = —1
= 0=0

which is true.

Therefore, x = j2 is a solution. In order to solve all possible quadratic
equations we need to use complex numbers, that is numbers that have
both real and imaginary parts. Mathematicians often use i instead of j to
represent /— 1. However, j is used in engineering work to avoid confusion
with the symbol for the current.

Real and imaginary parts and
the complex plane

A complex number, z, can be written as the sum of its real and imaginary
parts:

z=a+jb

where a and b are real numbers.

The real part of z is a (Re(z) = a). The imaginary part of z is
b(Im(z) = b).

Complex numbers can be represented in the complex plane (often
called an Argand diagram) as the points (x, v) where

z=x+]y
for example. z = 1 — j2 is shown in Figure 10.4. The methods used for

visualizing and adding and subtracting complex numbers is the same as
that used for two-dimensional vectors in Chapter 9.

Equality of two complex humbers

Two complex numbers can only be equal if their real parts are equal and
their imaginary parts are equal.

Example 10.1 Ifa — 2 + jb = 6 + j2, where a and & are known to be
real numbers, then find a and b

Solution
a—24+jp=6+j2
We know that @ and b are real, so

a—2=6 (real parts must be equal)
< a=28
=2 (imaginary parts must be equal)



Imaginary &

(3.4)
't
54,2)
ZI + Zl
O . Real
1,-2)
i

Check by substituting @ = 8 and # = 2 into
a—2+jh=6+j2
which gives

8—2+j2=6+]2
& 6+2=6+]2

which is correct

Addition of complex numbers

To add complex numbers, add the real parts and the imaginary parts.

Example 10.2 Givenz) =3+ j4andz; =1 —j2, find z; + z2.

Solution
1+22=3+4+1-2=0C3+D+jd-2)=4+]2

On the Argand diagram, the numbers add like vectors by the parallelogram
law as in Figure 10.5.

Subtraction of complex humbers

To subtract complex numbers, we subtract the real and imaginary parts.

Example 10.3 Givenz) =34 j4andz; =1 —j2, find z; — z2.

Solution

Figure 10.5 Adding two
complex numbers using the
parallelogram law.

Imaginary 2.6)
A1 5
; (3.4)

;’ ::I'

o
I
0 ﬁeal
(1,-2)
2

Figure 10.6 To findzy — z»

H—2=3+[d—(1—j)=3—-1+jd—(-2) =2+jé.

On the Argand diagram, reverse the vector z; to give —z2 and then add
z) and —z» as in Figure 10.6.

Multiplication of complex nhumbers

To multiply complex numbers multiply out the brackets, as for any other
expression, and remember that j* = —1.

Example 10.4 Givenz; =3+ jdandzp =1 —j2, find z; - 23.

Solution

2122 = f£ +J'£H] —J&J =3+ +3(—j2) + H(=j2)
I S |



on an Argand diagram, =3+j4—j6—78
reverse vector z; fo give —z5 .
and then add giving z1 + —2». =3—j2+8 (usingj-=-1)

= 11-j2.

Example 10.5  Find (4 — j2)(8 —j).
Solution Multiplying as before gives

4 — i@ =) =32—j16 — 4 + (—j2)(—)
L L_J R
—32-j20+j2

Using j° = —1 gives 32 — j20 — 2 = 30 — j20

The complex conjugate

The complex conjugate of a number, z = x +jy, is the number with equal
real part and the imaginary part negated. This is represented by z*:

tf=x—jy

A number multiplied by its conjugate is always real and positive (or zero).
Forexample.z =3+j4 < * =3 —j4.

Imaginary =03+ H03 - =33+ (H3+3=H + (D=
*=1+j2 2
~ —94i12—j12 16
\ — 0?16 =94+16=25 (usingj’ =—1).
o " Real
a Note that the conjugate of the conjugate takes you back to the original
L number.
z=1=j2
z=3+j4
Figure 10.7 The complex . .
conjugate of a number can be "=3-44

found by reflecting the
number in the real axis in the
diagram are shown. The _

¥ =3+4=¢

diagram shows 1 — 2 and its The conjugate of a number can be found on an Argand diagram by
conjugate 1 +j2. reflecting the position of the number in the real axis (see Figure 10.7).



Example Find complex conjugates of the following and show that
zz" 1s real and positive, or zero, in each case

(@2—35 (b) —44j2 (c) =5 (d)j6
(e) a4+ )b, where a and b are real.

Solution (a) The conjugate of 2 — j51s

2—j5)* =245

Hence

225 =2 =52 +j5 = ()2 + (=92 +2(j5) + (=D ()
— 4 —j10+j10 —j*25
=4—j%25 (usingj’=—1)
=4425=129

which is real and positive. We have shown that 2 — |5 multiplied by its
conjugate 2 + j5 gives a real, positive number.



b) (—4+[2) =—4—]2
(=4 +]2)(=4-j2) = (=H (=) + (-4
+ (=H(=j2) + (12)(=j2)
=16—j8 +j8 —j4
=16—i’4 (usingj’=—1)
=16+4=20
which is real and positive.
(c) =5 is areal number and therefore its complex conjugate is the same:
—35.(=3)* = =5 and (—5)(—3) = 25, which is real and positive.
(d) (6)" = —j6
(16)(—j6) = —j"36 = 36

which is real and positive.

© (a+jb)* =a—jb

(a +jb)(a — jb) = (a)(a) + (jb)(a) + (a)(—jb) + (jp)(—jb)
= a’ +jab — jab — i*b* = a® — j*b*
using j> = —1, this gives a® + b*

As a and b are real, this must be a real number. Also, we know that the
square of a real number is greater than or equal to 0. So a® + b? is real,
and it 1s positive if @ #= 0, b # 0 or zero if both @ and b are zero.

It is a good idea to remember this last result that a 4+ jb multiplied by
its conjugate, @ — jb, gives a® + b®. That is, any number multiplied by
its complex conjugate gives the sum of the square of the real part and the
square of the imaginary part. This is the same as the value of the modulus
of z squared,that is,

¥
zz¥ = |z|°.



Division of complex humbers

To divide complex numbers, we use the fact that a number times its
conjugate 1s real to transform the bottom line of the fraction to a real
number. If we multiply the bottom line by its complex conjugate, we must
also multiply the top line in order not to change the value of the number.

Example 10.7 Givenzy =3+ jdand 22 =1 — )2, find 21 /22.
Solution
3+
2 1—j2

B+ +52)

(I =21 +j2)

Here, we have multiplied the top and bottom line by z3 to make the bottom
line entirely real. Hence, we get

(B+j44+j6+j*8) (=5+j10) -5 jlo :
= SRS b g )
1+2) 5 5775 T

Example Find

—3+j2
10+ 5

in the form x + jy.

Solution  Multiply the top and bottom line by the complex conjugate of
10 + j5 to make the bottom line real

—3+4+j2 _ (=3+j2)(10-j5)
10+i5  (10+j5)(10 — j5)
_(=3)(10) +j2(10) + (=3)(=}5) + (j2)(=)3)
= (102 + 52)
—30 +j20 4 j15 — {10
125
—30+j20+j15+ 10
125
—204+i35 -20 {35
125 125 15

—0.16 + j0.28.



Example Given that the equation x* — kx +8 = 0, where k ¢ R
has one solution x = 2 — j2 then find the other solution and also the
value of k.

Solution  We know that non-real solutions must be complex conjugates
of each other so if one solution 1s x = 2 — j2 the other one must be
x = 24)2. To find k, we use the result that if an equation has exactly two
solutions x| and x2, then the equation must be equivalent to (x —xy)(x —
x7) = 0. We know that x = 24 j2 or x = 2 — 2, therefore, the equation
must be equivalent to

(x = 2+j2)x - (2-j2)) =0.
Multiplying out the brackets gives:
X—x24j2)—x2-j)+2+j2—-j2)=0
el bx(—2-2-24+2)+E+4H=0
sx?—4x+8=0

Compare x> —4x +8 = 0 with x> — kx + 8 = 0. The coefficient of x>
are equal in both cases, as are the constant terms, so the equations would
be the same if —k = —4 < k = 4, giving the solution as k = 4.
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Exercises

. Givenzy =1 —-2j,z0 =3+ 3j,and 73 = —1 + 4j.
{a) Represent 71, 72, and 73, on an Argand diagram.
(b) Find the following and show the results on the
Argand diagram
(z1+z2 (i)zza—z1 (i) 7Y
{c) Calculate

Do+t (g -zt (i)
(iv) z1/22 (v) z123.

. Simplify
@j* ®i' ©

. Find each of the following complex numbers in the
form a + jb., where a and b are real:

 4_j3
@G —TNE+id)  (b) (=1 +2j)? (c}ﬁ—_‘]_
{d}ﬂ—ﬁ

j@#=j9) ]

. Find the real and imaginary parts of z2 + 1/z%, where
1=03+)/2-]))

. Giventhat x and v are real and that 2y —34-j(v—x) =
x4+ j2, find x and y.
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Polar form
of a complex
number

Imaginary

Figure 10.8 The number

X + |y can be expressed in
polar form by the length of the
line representing the number,
r, and the angle it makes fo
the x axis, 0, that is,

X +jy =rio.

s AL

From the Argand diagram in Figure 10.8, we can see that a complex
number can be expressed in terms of the length of the vector (the modulus)
and the angle it makes with the x-axis (the argument). This is exactly the
same process as that as in expressing vectors in polar coordinates as in
Section 9.4.

If z = x + jy then z can be represented in polar form as r /@ where

¥ 7r 7r
rr=x"+y

¥y

tan(@) = —
X

Hence

r= fxz +y3, B= tan~"! (l) (4o if x is negative)
X
We can write the complex number as

1=r/0

r, the modulus of z, is also written as |z].

As it is usual to give the angle between — and 7, it may be necessary
to subtract 27 from the angle given by this formula. As 2 is a complete
rotation, this will make no difference to the position of the complex
number on the diagram.

Example 1  Express the following complex numbers in polar form

@3+2 () -2-]5
© —4+i2 @d4-]2

Solution  To perform these conversions to polar form, it is a good idea
to draw a diagram of the number in order to check that the angle is of the
correct size (see Figure 10.9).

(a) 3+)2has modulus r = v/3- +2- 2 3.61 and the angle is given by
tan”~! (2/3); therefore, in polar form 3 + )2 ~ 3.61£0.59



Imaginary | 3
2nd quadrant I st quadrant Imaginary "2_:
(3.2)
@ -'::,.b\ ] (o)
=T 0.5 | 0 0
o 3 Real Real
3rd quadrant 4th quadrant
n
2
L3
2
Imaginary Imaginary g
{—4,2)
(c) ' g5 {d)
2y 268 .
' . - 0
- o Real e O[04 | Rea
-2 43> 12
F(4,-2)
_n
2
Figure Conversion fo polar form: (a) 3+ 2 =~ 3.6120.59; (b) —2 —jb =~ 5.39-—1.95;

(C) 4+ [2~447,268; (d)4—j2~4.47/_0.46.

(b) —2—j5has modulus r = /(—2)? 4+ (—5)2 = 5.39 and the angle is
given by tan~!(—53/(—2))+m = 4.332. As this angle is bigger than
2m, subtract 2 (a complete revolution) to give —1.95. Therefore,
in polar form —2 — j5 =~ 3392 — 1.95. Note that the angle is
between —m and —m /2, meaning that the number must lie in the
third quadrant, which we can see is correct from the diagram.

(c) —4+ j2 has modulus r = /(—4)2 + 22 = 4.47 and the angle is
given by tan~'(2/(—4)) + 7 =~ —046 + 7 ~ 2.68. Therefore. in
polar form —4+j2 == 4.47.72.68. Note that the angle is between 7 /2
and 7, meaning that the number must lie in the second quadrant,
which we can see is correct from the diagram.

(d) 4 —j2 has modulus r = /()2 + (—2)? = 4.47 and the angle is
given by tan~!(—2/4) = —0.46. Therefore, in polar form 4 — j2 =~
4472 — 0.46. Note that the angle is between — /2 and 0 meaning
that the number must lie in the fourth quadrant, which we can see
is correct from the diagram.

Check the calculations by using the rectangular to polar conversion
facility on your calculator.



Conversion from polar form to
Cartesian (rectangular) form

If a number is given by its modulus and argument, in polar form, r 28,
we can convert back to Cartesian (rectangular) form using:

x =rcos(?) and v = rsin(f)

Imaginary

Real

Figure 10.10 The number

rZ# can be

wriften as x + jy.

Using the triangle,
cos(f) = x/r giving
X = rcos(?). Also
sin(f) = y/r giving

¥ = rsin(#@).

@) Imaginary &

25

This can be seen from Figure 10.10 and examples are given in
Figure 10.11. As z = x 4 jy, 2 = rcos(#) + jrsin(#) = r(cos(d) +
jsin(@)).

Addition, subtraction, multiplication,
and division of complex numbers in
polar form

To add and subtract two complex numbers, always express them first in
rectangular form; that is, write as 7 = a + jb. The result of the addition
or subtraction then can be converted back to polar form.

To multiply two numbers in polar form, multiply the moduli and add
the arguments.

To divide two numbers in polar form divide the moduli and subtract
the arguments.

Example Given

Notice that this is the same equation as we had for x. We can represent
the motion, both in the x- and y-directions by using a complex number
to represent the rotating vector. The real part of z represents the position
in the x-direction and the imaginary part of z represents the position in

the y-direction:

Z =X+ ]jy =rcos(wt) + jrsin(wt)

Then
dz
dr

= —rwsin{wt) + jro cos(wt)



The real part of dz/df represents the component of velocity in the
x-direction and the imaginary part represents the velocity in the v-
direction. Again, we can differentiate to find the acceleration

d*z . :
a = —rw’ cos(wi) _erz sl )

= —w”(r cos(wf) + jrsinfwt)) = —w’z
as

z = rcos(wt) + jrsin{wt)

So, we get
dz.?. 3
az T TYE

This shows that the acceleration operates along the length of the vector
. - . . 2 .
z towards the origin and it must be of magnitude | —w*z| = w’r wherer is

the radius of the circle. The ball is always accelerating towards the centre
of the circle. This also tells us the force that the string must provide in order
to maintain the circular motion at constant angular velocity. The force
towards the centre. called the centripetal force. must be |F| = me?r,
where r is the radius of the circle and m is the mass of the ball. This has

been given by Newton’s second law F = ma.

We can use the equation for circular motion to show that it is possible
to represent a complex number, z, in the form z = r el? | where r is
the modulus and the argument. To do this we must first establish the
conditions which determine a particular solution to the equation

&z = —w’z
de? '

We know that one solution of the differential equation

=8
8
W

= —¥ T

=8
-,
1)

(I

X

\ v=(0,mr)

with the condition that z = r when 1 = 0, is given by z = r cos(wf) +
jr sin(ewr). Unfortunately, there is at least one other solution, given by the
case where the string travels clockwise rather than anti-clockwise, that is,
z = r cos(—wf) +jr sin(—wr). However, we can pin down the solution to
the anti-clockwise direction of rotation by using the fact that we defined
the angular velocity by d@/dr = . This gives a condition on the initial
velocity (at 1 = 0). From Figure 10.17 we can see that the velocity must
be positive and only have a component in the y-direction at t = 0.

This discounts the possibility of the motion being clockwise as this
would give a negative initial velocity. From z = r cos(w!) + jr sin(wt)

dz

T Te sin{ewt ) + jrowcos(wf)ds



and at t = 0, dz/dr = jrw. We now have enough information to say that

— = —wzand z=r whent=0

d_’;‘ — jor whent =0 & 7 =rcos(wt)+ jrsin(wt)

In Chapter 8 we looked at the exponential function and we found that
v = vpe* isasolution to the equation dy/dr = ky. This equation models
the situation where the rate of change of the population is proportional to
its current size: the first derivative of y is proportional to y. The equation

"
“

(=9
-

7
= —r 7

[

dr

is similar only now the acceleration is related to z, that is the second
derivative 1s proportional to z. As the exponential functions have the
property that the derivative gives a scaled version of the original function,
we must also get ascaled version of the original function if we differentiate

twice. So we can try a solution of the form z = r e’ for the equation

dEZ 9
PP
z=re"
dz
= T rk e
d?z
F — rkz Kt

Substituting into

dzz 9
T

we get

el g
rk? et = —wlr et



Dividing both sides by re* gives k* = —w’ < k= Ljw.

This gives two possible solutions: z = r e/’ when k = jw and z =
re " when k = —jw. Again, we can use the initial velocity to determine
the solution. Using z = r &' we get
dz .

— = jrwe™

ar !

at 1 = 0 then we get the velocity as jwr, which was one of the conditions
we wanted to fulfil. _

This shows that the two expression 7 = r e and 7 = r cos(wt) +
jr sin(wt) both satisfy

d?z 5

drgl =—w7Zz and z=r whent =10
and

dz

T jor  whent =0.

We have stated that these initial conditions are enough to determine
the solution of the differential equation. So, the only possibility is that

rel = rcos(wt) + jr sin(wt)

This shows the equivalence of the polar form of a complex number and the
exponential form. Replacing wt by 6, we get r e/ = r cos(8) +jr sin(6),
which we recognize as the polar form for a complex number z = r.28
where r is the modulus and # is the argument. We can represent any
complex number 7 = x +jy in the form r el r and 4 are found, as given
before for the polar form, by

r = ;'xz_|_}_.2

6 = tan~! (;) (4 if x is negative)

Conversely, to express a number %iven in exponential form in rectangular
(Cartesian) form, we can use r e/ = r cos(f) + jr sin(#).



Example Show that z = 2e is a solution to d°z/df* = —9z
where z = 2 when t = 0 and dz/dr = j6 when 1 = 0.

Solution 1z = 2P thenwhent =0,z =2e" =2

whent =0
dz

— — e’ = j6.
THL. ]

Hence

a

L

'

de?

= j6(j3)e"

d2- .
= = —18e!
dr?

=

Substituting into d?z/di? = —9z gives —18e/¥ = —9(2e) &
—18el* = —18eP, which is true.

Example Express £ = 3 4 j4 in exponential form.

Solution The modulus r if given by

r=+v324+42=+25=35
The argument is tan~!(4/3) == 0.9273. Hence, 7 == 509273

Example Find the real and imaginary parts of the following

(a)3 E!J_-[T”?] (b) E;_j (c) eti2
(d) el {E}jj

Solution (a) Use r el = rcos(#) + jrsin(d) - 3e/™2 has r = 3 and
6 =m/2



3¢/ = 3cos(m/2) + j3sin(/2)
=30+j3)(1) =j3
The real part is 0 and the imaginary part is 3.

(b) Comparing e/ with re/ gives r = 1 and @ = —1. Using rel? =
rcos(f) + jrsin(#)

e/ = 1 cos(—1) + jsin(—1)
22 (.5403 — j0.8415

So the real part of e/ is approximately 0.5403 and the imaginary part is
approximately —0.8415.

e’ = 20.09 is a real number, and the remaining exponent j2 is purely

imaginary:
e'el? 2 20.09 ¢/

Comparing e’e/” with rel@ gives r = e’ and & = 2. Using rel? =
rcos(f) + jrsin(f) gives
e'el? = e’ cos(2) -I-jE:3 sin(2)

=~ —8.359 4 j18.26

The real part of e**1? is approximately —8.359 and the imaginary part is
approximately 18.26.

(d) For e 10— we need first to write the exponent in a form that allows
us to split it into its real and imaginary bits. So, we remove the brackets
to give

e iG-1 _ o1
Using j* = —1, this gives

eili1) _ ol



De Moivre’s theorem

Using the expression for the cmoplex number in terms of a sine and cosine,
rel? = r(cos(8) + jsin(#)), and using this in r elfn = real? we get

(ricos(#) + jsin(@))" = r"(cos(nf) + jsin(nd))

This is called De Moivre’s theorem and can be used to obtain multiple
angle formulae.

Example Find sin(36) in terms of powers of sin(#) and cos(f).

Solution  We use the fact that sin(36) = Im(cos(38) + ] sin(36)), where
Im( ) represents ‘the imaginary part of . Hence

sin(38) = Im{eﬁ&}
= Im((cos(#) + jsin(8))°).
Expanding
(cos(f) + ] sin{H)f = (cos(f) + jsin(f))(cos(F) + ] 5][1{3)}2
= (cos(@) +j sin(8))(cos?(0) + 2jcos(6) sin(A) +j2’ sin’(8))
= cos (@) + jsin(f) cos?(0) + 2] cos’(#) sin(0)
+ j2 cos(@) sin’(0) + Ej2 cos(8) sin’(0) +j3 sin’(8)
= CBSI[E) + 3jsin(f) CDSZ{E] — 3 cos(@) sinziﬁ'} — ] sing(ﬁ')
= cos’ () — 3cos(f) sin*(8) + j(3 sin(0) cos> () — sin’ (4)).

Assin(38) = Im((cos(#) + | sin (6))%), we take the imaginary part of the
expression we have found to get

sin(36) = 3sin(6) cos*(#) — sin” (4).
Example Express cos” (@) in terms of cosines of multiples of .
Solution  Using cos(f) = (1 /2)(e +e71%) and the expansion (a+b)* =
a® + 3a’b + 3ab* + b*:

3
CDSI[E} = (%{ejﬂ + e,_j'g))



1. . : :
= ﬁ{eﬂ& + 3el? 4 3271 4 1)

1 /1 . . 3 :
2 (E{eﬂ& +e ) 4 E{eje + e—JE]) .
As
cos(6) = L + o) and cos(36) = (@ +e i)
we get

CDSE(H} = icosﬁﬁ'} — % cos(d).

The exponential form can be used to solve complex equations of the
form z" = ¢, where ¢ is a complex number. A particularly important
example is the problem of finding all the solutions of 7" = 1, called the
n roots of unity.

The n roots of unity

To solve the equation " = 1. we use the fact that 1 1s a complex number
with modulus 1 and argument (, as can be seen in Figure 10.19(a). How-
ever, we can also use an argument of 2, 477, 677, or any other multiple of
2m. As 2w 1s acomplete revolution, adding 27 on to the argument of any
complex number does not change the position of the vector representing
it and therefore does not change the value of the number.

Imaginary 1 Imaginary Imaginary

.

. ]
Ol 1 (1,o) Real OLA (1,0) Real

N s,
‘Q'J (1,00 Real

(a) (b ()

Figure 10.19 (a) 1 is the complex number &°, that is, with a modulus of 1 and an argument of 0. (b) 1 can
also be represented using an argument of 2z, that is, 1 = €27, (¢) 1 represented with an argument of 4z,
that is, 1 = el*~.

The equation z" = | can be expressed as

-
"=V whereN cZ

We can solve this equation by taking the nth root of both sides. which is
the same as taking both sides to the power 1/n.

V" = PN where N € Z



Imaginary 4
ej!m"ﬂ

4
E\T"
3

o 1 Real

jlams3
e

Figure 10.20 The solufions
foz®=1arez =1,

z =263 and z = e*/3,
Notice that one solution can
be obtained from another by

rotafion through 2 /3.

Imaginary 4
gj!n‘ﬁ

j4mis
EJ

P

/0 1 Real
P | jpwss

Figure 10.21 The solufions
to z° =1 are z=1, &l®7/5,
ej-d-::fﬁ, ejS_rr_.fﬁ, and ei-Brr,"S‘
Notice that one solution can
be obtained from another by
rotation through 2x /5.

We can substitute some values for N to find the various solutions also
using the fact that there should be n roots to the equation " = 1 so that
we can stop after finding all n roots.

Example Find all the solutions to z°* = 1.

Solution Write 1 as a complex number with argument 27 N giving the
equation as

7 =e® N where N € Z.

Taking the cube root of both sides:
(213 = @N3 where N ¢ L.
Substituting

N=0: z=e70_

— ejl'r,r'i
_ ej4.'r,r'3

There is no need to use any more values of N. We use the fact that
there should be three roots of a cubic equation. If we continued to sub-
stitute values for N, then the values will begin to repeat. For example,
substituting N = 3 gives 7 = el?™3/3 — @i™ ‘which we know is the same
as el (subtracting 27 from the argument) which equals 1, which is a root
that we have already found.

The solutions to z° = 1 are shown on an Argand diagram in
Figure 10.20. The principal root of a complex equation is the one found
nearest to the position of the positive x-axis. Notice that in the case of
7 = 1, the principal root is 1 and the other solutions can be obtained
from another by rotation through 2m /3. Hence, another way of ﬁndin%
the n roots of z" = 1 is to start with the principal root of z = 1 = &/

N=1:

]

N=2:

1

and add on multiples of 27 /n to the argur;]ent, in order to find the other
roots.

Example Find all the roots of z° = 1

Selution  One root, the principal root, isz =1 = /. The other roots
can be found by rotating this around the complex plane by multiples of
2m /3. Therefore, we have the solutions:

j2n/5  _fnfs  jém/5  _j8a/f
7= 15 ej?.ff,r:r+ EH'” . eJﬁT,l' ) eJET,rSl

These are shown in Figure 10.21.



Solving some other complex equations

If we have the equation z" = ¢, where ¢ is any complex number, then we
write the right-hand side of the equation in exponential form and use the
fact that we can add a multiply of 27 to the argument without changing

the value of the number. Write

c=re =TV where N €

M ej{-!:"+_f_.1f N

2

o= r[l;"n]et_j{ﬂ+2:rh"}fnj

taking the nth root of both sides.

Example 1

Solve z° = —4 + j44/3.

Solution Write —4 + j4£ in exponential form, r el?

r=y/(—42 + 4V37 = V16 7 48 = V6i = 8

! (A3
= [an 1

Imaginary 4
- 2 L_]I‘.l:.“‘?
2¢"
? Real
26l14%

Figure 10.22 The solutions
toz® = —4 +j4/3 are

z = 2el27/9 2el87/9  and
2el147/9 Notice that one
solution can be obtained from
another by rotation through
2 /3.

) +m =2n/3 (using tan~! (+v/3) = 7/3).

So, the equation becomes

X mAian N
7 = 8l 3H+IN)  where N € Z

= - — g1/3 Q27 /3+2x N) /3
L
o= - Eej[ﬁ,'r,-"_?-i—znj"f’],.-'?-
N T

Substituting some values for N gives

0: z=2&"
1 - 7 =2 Ej{z.'l?,."‘;+2.'l',-"3} _ zejﬂrr,-"q

2 =z =z
[

7., 7 l2T/OHAT3) _ 5 ildm/9

The solutions are

g =2e/27/9, 287/9 2 eildn/9,

These are shown in Figure 10.22.

. where N ¢ &



4-

Ln
1

=
1

o |
1

Find the roots x| and 17 of the following quadratic
equations. In each case, find the product (x —x ){x —
xz) and show that the original equation is equivalent
to(x —xp)x —x2) =100

(a)xl=3x4+2=0 (b) —64+2x—x2=0
©3xP—x+1=0 (d4x?—Tx—-2=0
(e)2xt+3=0.

The equation x° 4+ bx 4+ ¢ = 0 where b and ¢ are real
numbers, has one complex root, ¥ = —1 + j3.

{a) What is the other root?
(b) Find & and ¢.

Convert the following to polar form:

(a)3 +j5 (b) —6+j3
(€) —4—j5 (d) —5—j3.

Express in rectangular (Cartesian) form

(a) 52225°  (b)42330°
(€)222.723  (d) 52 — 0.646.

If x and v are real and 2x + v +j(2x — y) = 15+ b,
find x and v
Ifzy = 1243n /4 and 7, = 3227 /5, find:

(a)z122 (b)z1/z2  (e)21+22
(dz2—z1 ()7 (f) z3.

1 &

)

giving the results in polar form.

If z = 270.8, find z*.

8- Find the impedance of the circuit shown in

Figure 10.23(a) at 90kHz, where . = 4mH, C =
2pF, and R = 400 k2. Assuming a current source of
amplitude 5 A, calculate the voltage V' and its relative
phase.

9-Find the admittance of the circuit given in

Figure 10.23(b) at 20 kHz given that R = 250k£2,
L = 20mH, and C = 50pF. Given that the voltage
source has amplitude 10V find the current, /. and its
relative phase.

st\}a..m Jl—)ﬂi\f‘
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